2 * Timer device implementation for SGI SN platforms.
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
8 * Copyright (c) 2001-2006 Silicon Graphics, Inc. All rights reserved.
10 * This driver exports an API that should be supportable by any HPET or IA-PC
11 * multimedia timer. The code below is currently specific to the SGI Altix
14 * 11/01/01 - jbarnes - initial revision
15 * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
16 * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
17 * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
18 * support via the posix timer interface
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/ioctl.h>
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
29 #include <linux/mmtimer.h>
30 #include <linux/miscdevice.h>
31 #include <linux/posix-timers.h>
32 #include <linux/interrupt.h>
33 #include <linux/time.h>
34 #include <linux/math64.h>
35 #include <linux/smp_lock.h>
36 #include <linux/slab.h>
38 #include <asm/uaccess.h>
39 #include <asm/sn/addrs.h>
40 #include <asm/sn/intr.h>
41 #include <asm/sn/shub_mmr.h>
42 #include <asm/sn/nodepda.h>
43 #include <asm/sn/shubio.h>
45 MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
46 MODULE_DESCRIPTION("SGI Altix RTC Timer");
47 MODULE_LICENSE("GPL");
49 /* name of the device, usually in /dev */
50 #define MMTIMER_NAME "mmtimer"
51 #define MMTIMER_DESC "SGI Altix RTC Timer"
52 #define MMTIMER_VERSION "2.1"
54 #define RTC_BITS 55 /* 55 bits for this implementation */
56 extern unsigned long sn_rtc_cycles_per_second
;
58 #define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC))
60 #define rtc_time() (*RTC_COUNTER_ADDR)
62 static long mmtimer_ioctl(struct file
*file
, unsigned int cmd
,
64 static int mmtimer_mmap(struct file
*file
, struct vm_area_struct
*vma
);
67 * Period in femtoseconds (10^-15 s)
69 static unsigned long mmtimer_femtoperiod
= 0;
71 static const struct file_operations mmtimer_fops
= {
74 .unlocked_ioctl
= mmtimer_ioctl
,
78 * We only have comparison registers RTC1-4 currently available per
79 * node. RTC0 is used by SAL.
81 /* Check for an RTC interrupt pending */
82 static int mmtimer_int_pending(int comparator
)
84 if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED
)) &
85 SH_EVENT_OCCURRED_RTC1_INT_MASK
<< comparator
)
91 /* Clear the RTC interrupt pending bit */
92 static void mmtimer_clr_int_pending(int comparator
)
94 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS
),
95 SH_EVENT_OCCURRED_RTC1_INT_MASK
<< comparator
);
98 /* Setup timer on comparator RTC1 */
99 static void mmtimer_setup_int_0(int cpu
, u64 expires
)
103 /* Disable interrupt */
104 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE
), 0UL);
106 /* Initialize comparator value */
107 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPB
), -1L);
109 /* Clear pending bit */
110 mmtimer_clr_int_pending(0);
112 val
= ((u64
)SGI_MMTIMER_VECTOR
<< SH_RTC1_INT_CONFIG_IDX_SHFT
) |
113 ((u64
)cpu_physical_id(cpu
) <<
114 SH_RTC1_INT_CONFIG_PID_SHFT
);
116 /* Set configuration */
117 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG
), val
);
119 /* Enable RTC interrupts */
120 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE
), 1UL);
122 /* Initialize comparator value */
123 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPB
), expires
);
128 /* Setup timer on comparator RTC2 */
129 static void mmtimer_setup_int_1(int cpu
, u64 expires
)
133 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE
), 0UL);
135 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPC
), -1L);
137 mmtimer_clr_int_pending(1);
139 val
= ((u64
)SGI_MMTIMER_VECTOR
<< SH_RTC2_INT_CONFIG_IDX_SHFT
) |
140 ((u64
)cpu_physical_id(cpu
) <<
141 SH_RTC2_INT_CONFIG_PID_SHFT
);
143 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG
), val
);
145 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE
), 1UL);
147 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPC
), expires
);
150 /* Setup timer on comparator RTC3 */
151 static void mmtimer_setup_int_2(int cpu
, u64 expires
)
155 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE
), 0UL);
157 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPD
), -1L);
159 mmtimer_clr_int_pending(2);
161 val
= ((u64
)SGI_MMTIMER_VECTOR
<< SH_RTC3_INT_CONFIG_IDX_SHFT
) |
162 ((u64
)cpu_physical_id(cpu
) <<
163 SH_RTC3_INT_CONFIG_PID_SHFT
);
165 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG
), val
);
167 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE
), 1UL);
169 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPD
), expires
);
173 * This function must be called with interrupts disabled and preemption off
174 * in order to insure that the setup succeeds in a deterministic time frame.
175 * It will check if the interrupt setup succeeded.
177 static int mmtimer_setup(int cpu
, int comparator
, unsigned long expires
)
180 switch (comparator
) {
182 mmtimer_setup_int_0(cpu
, expires
);
185 mmtimer_setup_int_1(cpu
, expires
);
188 mmtimer_setup_int_2(cpu
, expires
);
191 /* We might've missed our expiration time */
192 if (rtc_time() <= expires
)
196 * If an interrupt is already pending then its okay
197 * if not then we failed
199 return mmtimer_int_pending(comparator
);
202 static int mmtimer_disable_int(long nasid
, int comparator
)
204 switch (comparator
) {
206 nasid
== -1 ? HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE
),
207 0UL) : REMOTE_HUB_S(nasid
, SH_RTC1_INT_ENABLE
, 0UL);
210 nasid
== -1 ? HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE
),
211 0UL) : REMOTE_HUB_S(nasid
, SH_RTC2_INT_ENABLE
, 0UL);
214 nasid
== -1 ? HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE
),
215 0UL) : REMOTE_HUB_S(nasid
, SH_RTC3_INT_ENABLE
, 0UL);
223 #define COMPARATOR 1 /* The comparator to use */
225 #define TIMER_OFF 0xbadcabLL /* Timer is not setup */
226 #define TIMER_SET 0 /* Comparator is set for this timer */
228 /* There is one of these for each timer */
231 struct k_itimer
*timer
;
235 struct mmtimer_node
{
236 spinlock_t lock ____cacheline_aligned
;
237 struct rb_root timer_head
;
238 struct rb_node
*next
;
239 struct tasklet_struct tasklet
;
241 static struct mmtimer_node
*timers
;
245 * Add a new mmtimer struct to the node's mmtimer list.
246 * This function assumes the struct mmtimer_node is locked.
248 static void mmtimer_add_list(struct mmtimer
*n
)
250 int nodeid
= n
->timer
->it
.mmtimer
.node
;
251 unsigned long expires
= n
->timer
->it
.mmtimer
.expires
;
252 struct rb_node
**link
= &timers
[nodeid
].timer_head
.rb_node
;
253 struct rb_node
*parent
= NULL
;
257 * Find the right place in the rbtree:
261 x
= rb_entry(parent
, struct mmtimer
, list
);
263 if (expires
< x
->timer
->it
.mmtimer
.expires
)
264 link
= &(*link
)->rb_left
;
266 link
= &(*link
)->rb_right
;
270 * Insert the timer to the rbtree and check whether it
271 * replaces the first pending timer
273 rb_link_node(&n
->list
, parent
, link
);
274 rb_insert_color(&n
->list
, &timers
[nodeid
].timer_head
);
276 if (!timers
[nodeid
].next
|| expires
< rb_entry(timers
[nodeid
].next
,
277 struct mmtimer
, list
)->timer
->it
.mmtimer
.expires
)
278 timers
[nodeid
].next
= &n
->list
;
282 * Set the comparator for the next timer.
283 * This function assumes the struct mmtimer_node is locked.
285 static void mmtimer_set_next_timer(int nodeid
)
287 struct mmtimer_node
*n
= &timers
[nodeid
];
296 x
= rb_entry(n
->next
, struct mmtimer
, list
);
298 if (!t
->it
.mmtimer
.incr
) {
299 /* Not an interval timer */
300 if (!mmtimer_setup(x
->cpu
, COMPARATOR
,
301 t
->it
.mmtimer
.expires
)) {
302 /* Late setup, fire now */
303 tasklet_schedule(&n
->tasklet
);
310 while (!mmtimer_setup(x
->cpu
, COMPARATOR
, t
->it
.mmtimer
.expires
)) {
312 struct rb_node
*next
;
313 t
->it
.mmtimer
.expires
+= t
->it
.mmtimer
.incr
<< o
;
314 t
->it_overrun
+= 1 << o
;
317 printk(KERN_ALERT
"mmtimer: cannot reschedule timer\n");
318 t
->it
.mmtimer
.clock
= TIMER_OFF
;
319 n
->next
= rb_next(&x
->list
);
320 rb_erase(&x
->list
, &n
->timer_head
);
325 e
= t
->it
.mmtimer
.expires
;
326 next
= rb_next(&x
->list
);
331 e1
= rb_entry(next
, struct mmtimer
, list
)->
332 timer
->it
.mmtimer
.expires
;
335 rb_erase(&x
->list
, &n
->timer_head
);
343 * mmtimer_ioctl - ioctl interface for /dev/mmtimer
344 * @file: file structure for the device
345 * @cmd: command to execute
346 * @arg: optional argument to command
348 * Executes the command specified by @cmd. Returns 0 for success, < 0 for
353 * %MMTIMER_GETOFFSET - Should return the offset (relative to the start
354 * of the page where the registers are mapped) for the counter in question.
356 * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
359 * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
362 * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
364 * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
366 * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
367 * in the address specified by @arg.
369 static long mmtimer_ioctl(struct file
*file
, unsigned int cmd
,
377 case MMTIMER_GETOFFSET
: /* offset of the counter */
379 * SN RTC registers are on their own 64k page
381 if(PAGE_SIZE
<= (1 << 16))
382 ret
= (((long)RTC_COUNTER_ADDR
) & (PAGE_SIZE
-1)) / 8;
387 case MMTIMER_GETRES
: /* resolution of the clock in 10^-15 s */
388 if(copy_to_user((unsigned long __user
*)arg
,
389 &mmtimer_femtoperiod
, sizeof(unsigned long)))
393 case MMTIMER_GETFREQ
: /* frequency in Hz */
394 if(copy_to_user((unsigned long __user
*)arg
,
395 &sn_rtc_cycles_per_second
,
396 sizeof(unsigned long)))
400 case MMTIMER_GETBITS
: /* number of bits in the clock */
404 case MMTIMER_MMAPAVAIL
: /* can we mmap the clock into userspace? */
405 ret
= (PAGE_SIZE
<= (1 << 16)) ? 1 : 0;
408 case MMTIMER_GETCOUNTER
:
409 if(copy_to_user((unsigned long __user
*)arg
,
410 RTC_COUNTER_ADDR
, sizeof(unsigned long)))
422 * mmtimer_mmap - maps the clock's registers into userspace
423 * @file: file structure for the device
424 * @vma: VMA to map the registers into
426 * Calls remap_pfn_range() to map the clock's registers into
427 * the calling process' address space.
429 static int mmtimer_mmap(struct file
*file
, struct vm_area_struct
*vma
)
431 unsigned long mmtimer_addr
;
433 if (vma
->vm_end
- vma
->vm_start
!= PAGE_SIZE
)
436 if (vma
->vm_flags
& VM_WRITE
)
439 if (PAGE_SIZE
> (1 << 16))
442 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
444 mmtimer_addr
= __pa(RTC_COUNTER_ADDR
);
445 mmtimer_addr
&= ~(PAGE_SIZE
- 1);
446 mmtimer_addr
&= 0xfffffffffffffffUL
;
448 if (remap_pfn_range(vma
, vma
->vm_start
, mmtimer_addr
>> PAGE_SHIFT
,
449 PAGE_SIZE
, vma
->vm_page_prot
)) {
450 printk(KERN_ERR
"remap_pfn_range failed in mmtimer.c\n");
457 static struct miscdevice mmtimer_miscdev
= {
463 static struct timespec sgi_clock_offset
;
464 static int sgi_clock_period
;
467 * Posix Timer Interface
470 static struct timespec sgi_clock_offset
;
471 static int sgi_clock_period
;
473 static int sgi_clock_get(clockid_t clockid
, struct timespec
*tp
)
477 nsec
= rtc_time() * sgi_clock_period
478 + sgi_clock_offset
.tv_nsec
;
479 *tp
= ns_to_timespec(nsec
);
480 tp
->tv_sec
+= sgi_clock_offset
.tv_sec
;
484 static int sgi_clock_set(clockid_t clockid
, struct timespec
*tp
)
490 nsec
= rtc_time() * sgi_clock_period
;
492 sgi_clock_offset
.tv_sec
= tp
->tv_sec
- div_u64_rem(nsec
, NSEC_PER_SEC
, &rem
);
494 if (rem
<= tp
->tv_nsec
)
495 sgi_clock_offset
.tv_nsec
= tp
->tv_sec
- rem
;
497 sgi_clock_offset
.tv_nsec
= tp
->tv_sec
+ NSEC_PER_SEC
- rem
;
498 sgi_clock_offset
.tv_sec
--;
504 * mmtimer_interrupt - timer interrupt handler
506 * @dev_id: device the irq came from
508 * Called when one of the comarators matches the counter, This
509 * routine will send signals to processes that have requested
512 * This interrupt is run in an interrupt context
513 * by the SHUB. It is therefore safe to locally access SHub
517 mmtimer_interrupt(int irq
, void *dev_id
)
519 unsigned long expires
= 0;
520 int result
= IRQ_NONE
;
521 unsigned indx
= cpu_to_node(smp_processor_id());
522 struct mmtimer
*base
;
524 spin_lock(&timers
[indx
].lock
);
525 base
= rb_entry(timers
[indx
].next
, struct mmtimer
, list
);
527 spin_unlock(&timers
[indx
].lock
);
531 if (base
->cpu
== smp_processor_id()) {
533 expires
= base
->timer
->it
.mmtimer
.expires
;
534 /* expires test won't work with shared irqs */
535 if ((mmtimer_int_pending(COMPARATOR
) > 0) ||
536 (expires
&& (expires
<= rtc_time()))) {
537 mmtimer_clr_int_pending(COMPARATOR
);
538 tasklet_schedule(&timers
[indx
].tasklet
);
539 result
= IRQ_HANDLED
;
542 spin_unlock(&timers
[indx
].lock
);
546 static void mmtimer_tasklet(unsigned long data
)
549 struct mmtimer_node
*mn
= &timers
[nodeid
];
554 /* Send signal and deal with periodic signals */
555 spin_lock_irqsave(&mn
->lock
, flags
);
559 x
= rb_entry(mn
->next
, struct mmtimer
, list
);
562 if (t
->it
.mmtimer
.clock
== TIMER_OFF
)
567 mn
->next
= rb_next(&x
->list
);
568 rb_erase(&x
->list
, &mn
->timer_head
);
570 if (posix_timer_event(t
, 0) != 0)
573 if(t
->it
.mmtimer
.incr
) {
574 t
->it
.mmtimer
.expires
+= t
->it
.mmtimer
.incr
;
577 /* Ensure we don't false trigger in mmtimer_interrupt */
578 t
->it
.mmtimer
.clock
= TIMER_OFF
;
579 t
->it
.mmtimer
.expires
= 0;
582 /* Set comparator for next timer, if there is one */
583 mmtimer_set_next_timer(nodeid
);
585 t
->it_overrun_last
= t
->it_overrun
;
587 spin_unlock_irqrestore(&mn
->lock
, flags
);
590 static int sgi_timer_create(struct k_itimer
*timer
)
592 /* Insure that a newly created timer is off */
593 timer
->it
.mmtimer
.clock
= TIMER_OFF
;
597 /* This does not really delete a timer. It just insures
598 * that the timer is not active
600 * Assumption: it_lock is already held with irq's disabled
602 static int sgi_timer_del(struct k_itimer
*timr
)
604 cnodeid_t nodeid
= timr
->it
.mmtimer
.node
;
605 unsigned long irqflags
;
607 spin_lock_irqsave(&timers
[nodeid
].lock
, irqflags
);
608 if (timr
->it
.mmtimer
.clock
!= TIMER_OFF
) {
609 unsigned long expires
= timr
->it
.mmtimer
.expires
;
610 struct rb_node
*n
= timers
[nodeid
].timer_head
.rb_node
;
611 struct mmtimer
*uninitialized_var(t
);
614 timr
->it
.mmtimer
.clock
= TIMER_OFF
;
615 timr
->it
.mmtimer
.expires
= 0;
618 t
= rb_entry(n
, struct mmtimer
, list
);
619 if (t
->timer
== timr
)
622 if (expires
< t
->timer
->it
.mmtimer
.expires
)
629 spin_unlock_irqrestore(&timers
[nodeid
].lock
, irqflags
);
633 if (timers
[nodeid
].next
== n
) {
634 timers
[nodeid
].next
= rb_next(n
);
638 rb_erase(n
, &timers
[nodeid
].timer_head
);
642 mmtimer_disable_int(cnodeid_to_nasid(nodeid
),
644 mmtimer_set_next_timer(nodeid
);
647 spin_unlock_irqrestore(&timers
[nodeid
].lock
, irqflags
);
651 /* Assumption: it_lock is already held with irq's disabled */
652 static void sgi_timer_get(struct k_itimer
*timr
, struct itimerspec
*cur_setting
)
655 if (timr
->it
.mmtimer
.clock
== TIMER_OFF
) {
656 cur_setting
->it_interval
.tv_nsec
= 0;
657 cur_setting
->it_interval
.tv_sec
= 0;
658 cur_setting
->it_value
.tv_nsec
= 0;
659 cur_setting
->it_value
.tv_sec
=0;
663 cur_setting
->it_interval
= ns_to_timespec(timr
->it
.mmtimer
.incr
* sgi_clock_period
);
664 cur_setting
->it_value
= ns_to_timespec((timr
->it
.mmtimer
.expires
- rtc_time()) * sgi_clock_period
);
668 static int sgi_timer_set(struct k_itimer
*timr
, int flags
,
669 struct itimerspec
* new_setting
,
670 struct itimerspec
* old_setting
)
672 unsigned long when
, period
, irqflags
;
675 struct mmtimer
*base
;
679 sgi_timer_get(timr
, old_setting
);
682 when
= timespec_to_ns(&new_setting
->it_value
);
683 period
= timespec_to_ns(&new_setting
->it_interval
);
689 base
= kmalloc(sizeof(struct mmtimer
), GFP_KERNEL
);
693 if (flags
& TIMER_ABSTIME
) {
698 now
= timespec_to_ns(&n
);
702 /* Fire the timer immediately */
707 * Convert to sgi clock period. Need to keep rtc_time() as near as possible
708 * to getnstimeofday() in order to be as faithful as possible to the time
711 when
= (when
+ sgi_clock_period
- 1) / sgi_clock_period
+ rtc_time();
712 period
= (period
+ sgi_clock_period
- 1) / sgi_clock_period
;
715 * We are allocating a local SHub comparator. If we would be moved to another
716 * cpu then another SHub may be local to us. Prohibit that by switching off
721 nodeid
= cpu_to_node(smp_processor_id());
723 /* Lock the node timer structure */
724 spin_lock_irqsave(&timers
[nodeid
].lock
, irqflags
);
727 base
->cpu
= smp_processor_id();
729 timr
->it
.mmtimer
.clock
= TIMER_SET
;
730 timr
->it
.mmtimer
.node
= nodeid
;
731 timr
->it
.mmtimer
.incr
= period
;
732 timr
->it
.mmtimer
.expires
= when
;
734 n
= timers
[nodeid
].next
;
736 /* Add the new struct mmtimer to node's timer list */
737 mmtimer_add_list(base
);
739 if (timers
[nodeid
].next
== n
) {
740 /* No need to reprogram comparator for now */
741 spin_unlock_irqrestore(&timers
[nodeid
].lock
, irqflags
);
746 /* We need to reprogram the comparator */
748 mmtimer_disable_int(cnodeid_to_nasid(nodeid
), COMPARATOR
);
750 mmtimer_set_next_timer(nodeid
);
752 /* Unlock the node timer structure */
753 spin_unlock_irqrestore(&timers
[nodeid
].lock
, irqflags
);
760 static struct k_clock sgi_clock
= {
762 .clock_set
= sgi_clock_set
,
763 .clock_get
= sgi_clock_get
,
764 .timer_create
= sgi_timer_create
,
765 .nsleep
= do_posix_clock_nonanosleep
,
766 .timer_set
= sgi_timer_set
,
767 .timer_del
= sgi_timer_del
,
768 .timer_get
= sgi_timer_get
772 * mmtimer_init - device initialization routine
774 * Does initial setup for the mmtimer device.
776 static int __init
mmtimer_init(void)
778 cnodeid_t node
, maxn
= -1;
780 if (!ia64_platform_is("sn2"))
784 * Sanity check the cycles/sec variable
786 if (sn_rtc_cycles_per_second
< 100000) {
787 printk(KERN_ERR
"%s: unable to determine clock frequency\n",
792 mmtimer_femtoperiod
= ((unsigned long)1E15
+ sn_rtc_cycles_per_second
/
793 2) / sn_rtc_cycles_per_second
;
795 if (request_irq(SGI_MMTIMER_VECTOR
, mmtimer_interrupt
, IRQF_PERCPU
, MMTIMER_NAME
, NULL
)) {
796 printk(KERN_WARNING
"%s: unable to allocate interrupt.",
801 if (misc_register(&mmtimer_miscdev
)) {
802 printk(KERN_ERR
"%s: failed to register device\n",
807 /* Get max numbered node, calculate slots needed */
808 for_each_online_node(node
) {
813 /* Allocate list of node ptrs to mmtimer_t's */
814 timers
= kzalloc(sizeof(struct mmtimer_node
)*maxn
, GFP_KERNEL
);
815 if (timers
== NULL
) {
816 printk(KERN_ERR
"%s: failed to allocate memory for device\n",
821 /* Initialize struct mmtimer's for each online node */
822 for_each_online_node(node
) {
823 spin_lock_init(&timers
[node
].lock
);
824 tasklet_init(&timers
[node
].tasklet
, mmtimer_tasklet
,
825 (unsigned long) node
);
828 sgi_clock_period
= sgi_clock
.res
= NSEC_PER_SEC
/ sn_rtc_cycles_per_second
;
829 register_posix_clock(CLOCK_SGI_CYCLE
, &sgi_clock
);
831 printk(KERN_INFO
"%s: v%s, %ld MHz\n", MMTIMER_DESC
, MMTIMER_VERSION
,
832 sn_rtc_cycles_per_second
/(unsigned long)1E6
);
838 misc_deregister(&mmtimer_miscdev
);
840 free_irq(SGI_MMTIMER_VECTOR
, NULL
);
845 module_init(mmtimer_init
);