[CPUFREQ] Remove deprecated sysfs file sampling_rate_max
[linux-kbuild.git] / drivers / cpufreq / cpufreq_conservative.c
blobc80b80d48644adfaddb3a02261475eec564e255c
1 /*
2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
36 * The polling frequency of this governor depends on the capability of
37 * the processor. Default polling frequency is 1000 times the transition
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
40 * rate.
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
43 * All times here are in uS.
45 #define MIN_SAMPLING_RATE_RATIO (2)
47 static unsigned int min_sampling_rate;
49 #define LATENCY_MULTIPLIER (1000)
50 #define MIN_LATENCY_MULTIPLIER (100)
51 #define DEF_SAMPLING_DOWN_FACTOR (1)
52 #define MAX_SAMPLING_DOWN_FACTOR (10)
53 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
55 static void do_dbs_timer(struct work_struct *work);
57 struct cpu_dbs_info_s {
58 cputime64_t prev_cpu_idle;
59 cputime64_t prev_cpu_wall;
60 cputime64_t prev_cpu_nice;
61 struct cpufreq_policy *cur_policy;
62 struct delayed_work work;
63 unsigned int down_skip;
64 unsigned int requested_freq;
65 int cpu;
66 unsigned int enable:1;
68 * percpu mutex that serializes governor limit change with
69 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70 * when user is changing the governor or limits.
72 struct mutex timer_mutex;
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
76 static unsigned int dbs_enable; /* number of CPUs using this policy */
79 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
80 * different CPUs. It protects dbs_enable in governor start/stop.
82 static DEFINE_MUTEX(dbs_mutex);
84 static struct dbs_tuners {
85 unsigned int sampling_rate;
86 unsigned int sampling_down_factor;
87 unsigned int up_threshold;
88 unsigned int down_threshold;
89 unsigned int ignore_nice;
90 unsigned int freq_step;
91 } dbs_tuners_ins = {
92 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
93 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
94 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
95 .ignore_nice = 0,
96 .freq_step = 5,
99 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
100 cputime64_t *wall)
102 cputime64_t idle_time;
103 cputime64_t cur_wall_time;
104 cputime64_t busy_time;
106 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
107 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
108 kstat_cpu(cpu).cpustat.system);
110 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
111 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
112 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
113 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
115 idle_time = cputime64_sub(cur_wall_time, busy_time);
116 if (wall)
117 *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
119 return (cputime64_t)jiffies_to_usecs(idle_time);
122 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
124 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
126 if (idle_time == -1ULL)
127 return get_cpu_idle_time_jiffy(cpu, wall);
129 return idle_time;
132 /* keep track of frequency transitions */
133 static int
134 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
135 void *data)
137 struct cpufreq_freqs *freq = data;
138 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
139 freq->cpu);
141 struct cpufreq_policy *policy;
143 if (!this_dbs_info->enable)
144 return 0;
146 policy = this_dbs_info->cur_policy;
149 * we only care if our internally tracked freq moves outside
150 * the 'valid' ranges of freqency available to us otherwise
151 * we do not change it
153 if (this_dbs_info->requested_freq > policy->max
154 || this_dbs_info->requested_freq < policy->min)
155 this_dbs_info->requested_freq = freq->new;
157 return 0;
160 static struct notifier_block dbs_cpufreq_notifier_block = {
161 .notifier_call = dbs_cpufreq_notifier
164 /************************** sysfs interface ************************/
165 static ssize_t show_sampling_rate_min(struct kobject *kobj,
166 struct attribute *attr, char *buf)
168 return sprintf(buf, "%u\n", min_sampling_rate);
171 define_one_global_ro(sampling_rate_min);
173 /* cpufreq_conservative Governor Tunables */
174 #define show_one(file_name, object) \
175 static ssize_t show_##file_name \
176 (struct kobject *kobj, struct attribute *attr, char *buf) \
178 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
180 show_one(sampling_rate, sampling_rate);
181 show_one(sampling_down_factor, sampling_down_factor);
182 show_one(up_threshold, up_threshold);
183 show_one(down_threshold, down_threshold);
184 show_one(ignore_nice_load, ignore_nice);
185 show_one(freq_step, freq_step);
187 /*** delete after deprecation time ***/
188 #define DEPRECATION_MSG(file_name) \
189 printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs " \
190 "interface is deprecated - " #file_name "\n");
192 #define show_one_old(file_name) \
193 static ssize_t show_##file_name##_old \
194 (struct cpufreq_policy *unused, char *buf) \
196 printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs " \
197 "interface is deprecated - " #file_name "\n"); \
198 return show_##file_name(NULL, NULL, buf); \
200 show_one_old(sampling_rate);
201 show_one_old(sampling_down_factor);
202 show_one_old(up_threshold);
203 show_one_old(down_threshold);
204 show_one_old(ignore_nice_load);
205 show_one_old(freq_step);
206 show_one_old(sampling_rate_min);
208 cpufreq_freq_attr_ro_old(sampling_rate_min);
210 /*** delete after deprecation time ***/
212 static ssize_t store_sampling_down_factor(struct kobject *a,
213 struct attribute *b,
214 const char *buf, size_t count)
216 unsigned int input;
217 int ret;
218 ret = sscanf(buf, "%u", &input);
220 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
221 return -EINVAL;
223 mutex_lock(&dbs_mutex);
224 dbs_tuners_ins.sampling_down_factor = input;
225 mutex_unlock(&dbs_mutex);
227 return count;
230 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
231 const char *buf, size_t count)
233 unsigned int input;
234 int ret;
235 ret = sscanf(buf, "%u", &input);
237 if (ret != 1)
238 return -EINVAL;
240 mutex_lock(&dbs_mutex);
241 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
242 mutex_unlock(&dbs_mutex);
244 return count;
247 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
248 const char *buf, size_t count)
250 unsigned int input;
251 int ret;
252 ret = sscanf(buf, "%u", &input);
254 mutex_lock(&dbs_mutex);
255 if (ret != 1 || input > 100 ||
256 input <= dbs_tuners_ins.down_threshold) {
257 mutex_unlock(&dbs_mutex);
258 return -EINVAL;
261 dbs_tuners_ins.up_threshold = input;
262 mutex_unlock(&dbs_mutex);
264 return count;
267 static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
268 const char *buf, size_t count)
270 unsigned int input;
271 int ret;
272 ret = sscanf(buf, "%u", &input);
274 mutex_lock(&dbs_mutex);
275 /* cannot be lower than 11 otherwise freq will not fall */
276 if (ret != 1 || input < 11 || input > 100 ||
277 input >= dbs_tuners_ins.up_threshold) {
278 mutex_unlock(&dbs_mutex);
279 return -EINVAL;
282 dbs_tuners_ins.down_threshold = input;
283 mutex_unlock(&dbs_mutex);
285 return count;
288 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
289 const char *buf, size_t count)
291 unsigned int input;
292 int ret;
294 unsigned int j;
296 ret = sscanf(buf, "%u", &input);
297 if (ret != 1)
298 return -EINVAL;
300 if (input > 1)
301 input = 1;
303 mutex_lock(&dbs_mutex);
304 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
305 mutex_unlock(&dbs_mutex);
306 return count;
308 dbs_tuners_ins.ignore_nice = input;
310 /* we need to re-evaluate prev_cpu_idle */
311 for_each_online_cpu(j) {
312 struct cpu_dbs_info_s *dbs_info;
313 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
314 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
315 &dbs_info->prev_cpu_wall);
316 if (dbs_tuners_ins.ignore_nice)
317 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
319 mutex_unlock(&dbs_mutex);
321 return count;
324 static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
325 const char *buf, size_t count)
327 unsigned int input;
328 int ret;
329 ret = sscanf(buf, "%u", &input);
331 if (ret != 1)
332 return -EINVAL;
334 if (input > 100)
335 input = 100;
337 /* no need to test here if freq_step is zero as the user might actually
338 * want this, they would be crazy though :) */
339 mutex_lock(&dbs_mutex);
340 dbs_tuners_ins.freq_step = input;
341 mutex_unlock(&dbs_mutex);
343 return count;
346 define_one_global_rw(sampling_rate);
347 define_one_global_rw(sampling_down_factor);
348 define_one_global_rw(up_threshold);
349 define_one_global_rw(down_threshold);
350 define_one_global_rw(ignore_nice_load);
351 define_one_global_rw(freq_step);
353 static struct attribute *dbs_attributes[] = {
354 &sampling_rate_min.attr,
355 &sampling_rate.attr,
356 &sampling_down_factor.attr,
357 &up_threshold.attr,
358 &down_threshold.attr,
359 &ignore_nice_load.attr,
360 &freq_step.attr,
361 NULL
364 static struct attribute_group dbs_attr_group = {
365 .attrs = dbs_attributes,
366 .name = "conservative",
369 /*** delete after deprecation time ***/
371 #define write_one_old(file_name) \
372 static ssize_t store_##file_name##_old \
373 (struct cpufreq_policy *unused, const char *buf, size_t count) \
375 printk_once(KERN_INFO "CPUFREQ: Per core conservative sysfs " \
376 "interface is deprecated - " #file_name "\n"); \
377 return store_##file_name(NULL, NULL, buf, count); \
379 write_one_old(sampling_rate);
380 write_one_old(sampling_down_factor);
381 write_one_old(up_threshold);
382 write_one_old(down_threshold);
383 write_one_old(ignore_nice_load);
384 write_one_old(freq_step);
386 cpufreq_freq_attr_rw_old(sampling_rate);
387 cpufreq_freq_attr_rw_old(sampling_down_factor);
388 cpufreq_freq_attr_rw_old(up_threshold);
389 cpufreq_freq_attr_rw_old(down_threshold);
390 cpufreq_freq_attr_rw_old(ignore_nice_load);
391 cpufreq_freq_attr_rw_old(freq_step);
393 static struct attribute *dbs_attributes_old[] = {
394 &sampling_rate_min_old.attr,
395 &sampling_rate_old.attr,
396 &sampling_down_factor_old.attr,
397 &up_threshold_old.attr,
398 &down_threshold_old.attr,
399 &ignore_nice_load_old.attr,
400 &freq_step_old.attr,
401 NULL
404 static struct attribute_group dbs_attr_group_old = {
405 .attrs = dbs_attributes_old,
406 .name = "conservative",
409 /*** delete after deprecation time ***/
411 /************************** sysfs end ************************/
413 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
415 unsigned int load = 0;
416 unsigned int max_load = 0;
417 unsigned int freq_target;
419 struct cpufreq_policy *policy;
420 unsigned int j;
422 policy = this_dbs_info->cur_policy;
425 * Every sampling_rate, we check, if current idle time is less
426 * than 20% (default), then we try to increase frequency
427 * Every sampling_rate*sampling_down_factor, we check, if current
428 * idle time is more than 80%, then we try to decrease frequency
430 * Any frequency increase takes it to the maximum frequency.
431 * Frequency reduction happens at minimum steps of
432 * 5% (default) of maximum frequency
435 /* Get Absolute Load */
436 for_each_cpu(j, policy->cpus) {
437 struct cpu_dbs_info_s *j_dbs_info;
438 cputime64_t cur_wall_time, cur_idle_time;
439 unsigned int idle_time, wall_time;
441 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
443 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
445 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
446 j_dbs_info->prev_cpu_wall);
447 j_dbs_info->prev_cpu_wall = cur_wall_time;
449 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
450 j_dbs_info->prev_cpu_idle);
451 j_dbs_info->prev_cpu_idle = cur_idle_time;
453 if (dbs_tuners_ins.ignore_nice) {
454 cputime64_t cur_nice;
455 unsigned long cur_nice_jiffies;
457 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
458 j_dbs_info->prev_cpu_nice);
460 * Assumption: nice time between sampling periods will
461 * be less than 2^32 jiffies for 32 bit sys
463 cur_nice_jiffies = (unsigned long)
464 cputime64_to_jiffies64(cur_nice);
466 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
467 idle_time += jiffies_to_usecs(cur_nice_jiffies);
470 if (unlikely(!wall_time || wall_time < idle_time))
471 continue;
473 load = 100 * (wall_time - idle_time) / wall_time;
475 if (load > max_load)
476 max_load = load;
480 * break out if we 'cannot' reduce the speed as the user might
481 * want freq_step to be zero
483 if (dbs_tuners_ins.freq_step == 0)
484 return;
486 /* Check for frequency increase */
487 if (max_load > dbs_tuners_ins.up_threshold) {
488 this_dbs_info->down_skip = 0;
490 /* if we are already at full speed then break out early */
491 if (this_dbs_info->requested_freq == policy->max)
492 return;
494 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
496 /* max freq cannot be less than 100. But who knows.... */
497 if (unlikely(freq_target == 0))
498 freq_target = 5;
500 this_dbs_info->requested_freq += freq_target;
501 if (this_dbs_info->requested_freq > policy->max)
502 this_dbs_info->requested_freq = policy->max;
504 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
505 CPUFREQ_RELATION_H);
506 return;
510 * The optimal frequency is the frequency that is the lowest that
511 * can support the current CPU usage without triggering the up
512 * policy. To be safe, we focus 10 points under the threshold.
514 if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
515 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
517 this_dbs_info->requested_freq -= freq_target;
518 if (this_dbs_info->requested_freq < policy->min)
519 this_dbs_info->requested_freq = policy->min;
522 * if we cannot reduce the frequency anymore, break out early
524 if (policy->cur == policy->min)
525 return;
527 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
528 CPUFREQ_RELATION_H);
529 return;
533 static void do_dbs_timer(struct work_struct *work)
535 struct cpu_dbs_info_s *dbs_info =
536 container_of(work, struct cpu_dbs_info_s, work.work);
537 unsigned int cpu = dbs_info->cpu;
539 /* We want all CPUs to do sampling nearly on same jiffy */
540 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
542 delay -= jiffies % delay;
544 mutex_lock(&dbs_info->timer_mutex);
546 dbs_check_cpu(dbs_info);
548 schedule_delayed_work_on(cpu, &dbs_info->work, delay);
549 mutex_unlock(&dbs_info->timer_mutex);
552 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
554 /* We want all CPUs to do sampling nearly on same jiffy */
555 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
556 delay -= jiffies % delay;
558 dbs_info->enable = 1;
559 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
560 schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
563 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
565 dbs_info->enable = 0;
566 cancel_delayed_work_sync(&dbs_info->work);
569 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
570 unsigned int event)
572 unsigned int cpu = policy->cpu;
573 struct cpu_dbs_info_s *this_dbs_info;
574 unsigned int j;
575 int rc;
577 this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
579 switch (event) {
580 case CPUFREQ_GOV_START:
581 if ((!cpu_online(cpu)) || (!policy->cur))
582 return -EINVAL;
584 mutex_lock(&dbs_mutex);
586 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
587 if (rc) {
588 mutex_unlock(&dbs_mutex);
589 return rc;
592 for_each_cpu(j, policy->cpus) {
593 struct cpu_dbs_info_s *j_dbs_info;
594 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
595 j_dbs_info->cur_policy = policy;
597 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
598 &j_dbs_info->prev_cpu_wall);
599 if (dbs_tuners_ins.ignore_nice) {
600 j_dbs_info->prev_cpu_nice =
601 kstat_cpu(j).cpustat.nice;
604 this_dbs_info->down_skip = 0;
605 this_dbs_info->requested_freq = policy->cur;
607 mutex_init(&this_dbs_info->timer_mutex);
608 dbs_enable++;
610 * Start the timerschedule work, when this governor
611 * is used for first time
613 if (dbs_enable == 1) {
614 unsigned int latency;
615 /* policy latency is in nS. Convert it to uS first */
616 latency = policy->cpuinfo.transition_latency / 1000;
617 if (latency == 0)
618 latency = 1;
620 rc = sysfs_create_group(cpufreq_global_kobject,
621 &dbs_attr_group);
622 if (rc) {
623 mutex_unlock(&dbs_mutex);
624 return rc;
628 * conservative does not implement micro like ondemand
629 * governor, thus we are bound to jiffes/HZ
631 min_sampling_rate =
632 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
633 /* Bring kernel and HW constraints together */
634 min_sampling_rate = max(min_sampling_rate,
635 MIN_LATENCY_MULTIPLIER * latency);
636 dbs_tuners_ins.sampling_rate =
637 max(min_sampling_rate,
638 latency * LATENCY_MULTIPLIER);
640 cpufreq_register_notifier(
641 &dbs_cpufreq_notifier_block,
642 CPUFREQ_TRANSITION_NOTIFIER);
644 mutex_unlock(&dbs_mutex);
646 dbs_timer_init(this_dbs_info);
648 break;
650 case CPUFREQ_GOV_STOP:
651 dbs_timer_exit(this_dbs_info);
653 mutex_lock(&dbs_mutex);
654 sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
655 dbs_enable--;
656 mutex_destroy(&this_dbs_info->timer_mutex);
659 * Stop the timerschedule work, when this governor
660 * is used for first time
662 if (dbs_enable == 0)
663 cpufreq_unregister_notifier(
664 &dbs_cpufreq_notifier_block,
665 CPUFREQ_TRANSITION_NOTIFIER);
667 mutex_unlock(&dbs_mutex);
668 if (!dbs_enable)
669 sysfs_remove_group(cpufreq_global_kobject,
670 &dbs_attr_group);
672 break;
674 case CPUFREQ_GOV_LIMITS:
675 mutex_lock(&this_dbs_info->timer_mutex);
676 if (policy->max < this_dbs_info->cur_policy->cur)
677 __cpufreq_driver_target(
678 this_dbs_info->cur_policy,
679 policy->max, CPUFREQ_RELATION_H);
680 else if (policy->min > this_dbs_info->cur_policy->cur)
681 __cpufreq_driver_target(
682 this_dbs_info->cur_policy,
683 policy->min, CPUFREQ_RELATION_L);
684 mutex_unlock(&this_dbs_info->timer_mutex);
686 break;
688 return 0;
691 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
692 static
693 #endif
694 struct cpufreq_governor cpufreq_gov_conservative = {
695 .name = "conservative",
696 .governor = cpufreq_governor_dbs,
697 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
698 .owner = THIS_MODULE,
701 static int __init cpufreq_gov_dbs_init(void)
703 return cpufreq_register_governor(&cpufreq_gov_conservative);
706 static void __exit cpufreq_gov_dbs_exit(void)
708 cpufreq_unregister_governor(&cpufreq_gov_conservative);
712 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
713 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
714 "Low Latency Frequency Transition capable processors "
715 "optimised for use in a battery environment");
716 MODULE_LICENSE("GPL");
718 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
719 fs_initcall(cpufreq_gov_dbs_init);
720 #else
721 module_init(cpufreq_gov_dbs_init);
722 #endif
723 module_exit(cpufreq_gov_dbs_exit);