2 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
3 * Copyright (C) 2003 Red Hat
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/ide.h>
22 #include <linux/bitops.h>
23 #include <linux/nmi.h>
25 #include <asm/byteorder.h>
27 #include <asm/uaccess.h>
31 * Conventional PIO operations for ATA devices
34 static u8
ide_inb (unsigned long port
)
36 return (u8
) inb(port
);
39 static void ide_outb (u8 val
, unsigned long port
)
45 * MMIO operations, typically used for SATA controllers
48 static u8
ide_mm_inb (unsigned long port
)
50 return (u8
) readb((void __iomem
*) port
);
53 static void ide_mm_outb (u8 value
, unsigned long port
)
55 writeb(value
, (void __iomem
*) port
);
58 void SELECT_DRIVE (ide_drive_t
*drive
)
60 ide_hwif_t
*hwif
= drive
->hwif
;
61 const struct ide_port_ops
*port_ops
= hwif
->port_ops
;
64 if (port_ops
&& port_ops
->selectproc
)
65 port_ops
->selectproc(drive
);
67 memset(&task
, 0, sizeof(task
));
68 task
.tf_flags
= IDE_TFLAG_OUT_DEVICE
;
70 drive
->hwif
->tp_ops
->tf_load(drive
, &task
);
73 void SELECT_MASK(ide_drive_t
*drive
, int mask
)
75 const struct ide_port_ops
*port_ops
= drive
->hwif
->port_ops
;
77 if (port_ops
&& port_ops
->maskproc
)
78 port_ops
->maskproc(drive
, mask
);
81 void ide_exec_command(ide_hwif_t
*hwif
, u8 cmd
)
83 if (hwif
->host_flags
& IDE_HFLAG_MMIO
)
84 writeb(cmd
, (void __iomem
*)hwif
->io_ports
.command_addr
);
86 outb(cmd
, hwif
->io_ports
.command_addr
);
88 EXPORT_SYMBOL_GPL(ide_exec_command
);
90 u8
ide_read_status(ide_hwif_t
*hwif
)
92 if (hwif
->host_flags
& IDE_HFLAG_MMIO
)
93 return readb((void __iomem
*)hwif
->io_ports
.status_addr
);
95 return inb(hwif
->io_ports
.status_addr
);
97 EXPORT_SYMBOL_GPL(ide_read_status
);
99 u8
ide_read_altstatus(ide_hwif_t
*hwif
)
101 if (hwif
->host_flags
& IDE_HFLAG_MMIO
)
102 return readb((void __iomem
*)hwif
->io_ports
.ctl_addr
);
104 return inb(hwif
->io_ports
.ctl_addr
);
106 EXPORT_SYMBOL_GPL(ide_read_altstatus
);
108 void ide_set_irq(ide_hwif_t
*hwif
, int on
)
110 u8 ctl
= ATA_DEVCTL_OBS
;
112 if (on
== 4) { /* hack for SRST */
119 if (hwif
->host_flags
& IDE_HFLAG_MMIO
)
120 writeb(ctl
, (void __iomem
*)hwif
->io_ports
.ctl_addr
);
122 outb(ctl
, hwif
->io_ports
.ctl_addr
);
124 EXPORT_SYMBOL_GPL(ide_set_irq
);
126 void ide_tf_load(ide_drive_t
*drive
, ide_task_t
*task
)
128 ide_hwif_t
*hwif
= drive
->hwif
;
129 struct ide_io_ports
*io_ports
= &hwif
->io_ports
;
130 struct ide_taskfile
*tf
= &task
->tf
;
131 void (*tf_outb
)(u8 addr
, unsigned long port
);
132 u8 mmio
= (hwif
->host_flags
& IDE_HFLAG_MMIO
) ? 1 : 0;
133 u8 HIHI
= (task
->tf_flags
& IDE_TFLAG_LBA48
) ? 0xE0 : 0xEF;
136 tf_outb
= ide_mm_outb
;
140 if (task
->tf_flags
& IDE_TFLAG_FLAGGED
)
143 if (task
->tf_flags
& IDE_TFLAG_OUT_DATA
) {
144 u16 data
= (tf
->hob_data
<< 8) | tf
->data
;
147 writew(data
, (void __iomem
*)io_ports
->data_addr
);
149 outw(data
, io_ports
->data_addr
);
152 if (task
->tf_flags
& IDE_TFLAG_OUT_HOB_FEATURE
)
153 tf_outb(tf
->hob_feature
, io_ports
->feature_addr
);
154 if (task
->tf_flags
& IDE_TFLAG_OUT_HOB_NSECT
)
155 tf_outb(tf
->hob_nsect
, io_ports
->nsect_addr
);
156 if (task
->tf_flags
& IDE_TFLAG_OUT_HOB_LBAL
)
157 tf_outb(tf
->hob_lbal
, io_ports
->lbal_addr
);
158 if (task
->tf_flags
& IDE_TFLAG_OUT_HOB_LBAM
)
159 tf_outb(tf
->hob_lbam
, io_ports
->lbam_addr
);
160 if (task
->tf_flags
& IDE_TFLAG_OUT_HOB_LBAH
)
161 tf_outb(tf
->hob_lbah
, io_ports
->lbah_addr
);
163 if (task
->tf_flags
& IDE_TFLAG_OUT_FEATURE
)
164 tf_outb(tf
->feature
, io_ports
->feature_addr
);
165 if (task
->tf_flags
& IDE_TFLAG_OUT_NSECT
)
166 tf_outb(tf
->nsect
, io_ports
->nsect_addr
);
167 if (task
->tf_flags
& IDE_TFLAG_OUT_LBAL
)
168 tf_outb(tf
->lbal
, io_ports
->lbal_addr
);
169 if (task
->tf_flags
& IDE_TFLAG_OUT_LBAM
)
170 tf_outb(tf
->lbam
, io_ports
->lbam_addr
);
171 if (task
->tf_flags
& IDE_TFLAG_OUT_LBAH
)
172 tf_outb(tf
->lbah
, io_ports
->lbah_addr
);
174 if (task
->tf_flags
& IDE_TFLAG_OUT_DEVICE
)
175 tf_outb((tf
->device
& HIHI
) | drive
->select
,
176 io_ports
->device_addr
);
178 EXPORT_SYMBOL_GPL(ide_tf_load
);
180 void ide_tf_read(ide_drive_t
*drive
, ide_task_t
*task
)
182 ide_hwif_t
*hwif
= drive
->hwif
;
183 struct ide_io_ports
*io_ports
= &hwif
->io_ports
;
184 struct ide_taskfile
*tf
= &task
->tf
;
185 void (*tf_outb
)(u8 addr
, unsigned long port
);
186 u8 (*tf_inb
)(unsigned long port
);
187 u8 mmio
= (hwif
->host_flags
& IDE_HFLAG_MMIO
) ? 1 : 0;
190 tf_outb
= ide_mm_outb
;
197 if (task
->tf_flags
& IDE_TFLAG_IN_DATA
) {
201 data
= readw((void __iomem
*)io_ports
->data_addr
);
203 data
= inw(io_ports
->data_addr
);
205 tf
->data
= data
& 0xff;
206 tf
->hob_data
= (data
>> 8) & 0xff;
209 /* be sure we're looking at the low order bits */
210 tf_outb(ATA_DEVCTL_OBS
& ~0x80, io_ports
->ctl_addr
);
212 if (task
->tf_flags
& IDE_TFLAG_IN_FEATURE
)
213 tf
->feature
= tf_inb(io_ports
->feature_addr
);
214 if (task
->tf_flags
& IDE_TFLAG_IN_NSECT
)
215 tf
->nsect
= tf_inb(io_ports
->nsect_addr
);
216 if (task
->tf_flags
& IDE_TFLAG_IN_LBAL
)
217 tf
->lbal
= tf_inb(io_ports
->lbal_addr
);
218 if (task
->tf_flags
& IDE_TFLAG_IN_LBAM
)
219 tf
->lbam
= tf_inb(io_ports
->lbam_addr
);
220 if (task
->tf_flags
& IDE_TFLAG_IN_LBAH
)
221 tf
->lbah
= tf_inb(io_ports
->lbah_addr
);
222 if (task
->tf_flags
& IDE_TFLAG_IN_DEVICE
)
223 tf
->device
= tf_inb(io_ports
->device_addr
);
225 if (task
->tf_flags
& IDE_TFLAG_LBA48
) {
226 tf_outb(ATA_DEVCTL_OBS
| 0x80, io_ports
->ctl_addr
);
228 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_FEATURE
)
229 tf
->hob_feature
= tf_inb(io_ports
->feature_addr
);
230 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_NSECT
)
231 tf
->hob_nsect
= tf_inb(io_ports
->nsect_addr
);
232 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_LBAL
)
233 tf
->hob_lbal
= tf_inb(io_ports
->lbal_addr
);
234 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_LBAM
)
235 tf
->hob_lbam
= tf_inb(io_ports
->lbam_addr
);
236 if (task
->tf_flags
& IDE_TFLAG_IN_HOB_LBAH
)
237 tf
->hob_lbah
= tf_inb(io_ports
->lbah_addr
);
240 EXPORT_SYMBOL_GPL(ide_tf_read
);
243 * Some localbus EIDE interfaces require a special access sequence
244 * when using 32-bit I/O instructions to transfer data. We call this
245 * the "vlb_sync" sequence, which consists of three successive reads
246 * of the sector count register location, with interrupts disabled
247 * to ensure that the reads all happen together.
249 static void ata_vlb_sync(unsigned long port
)
257 * This is used for most PIO data transfers *from* the IDE interface
259 * These routines will round up any request for an odd number of bytes,
260 * so if an odd len is specified, be sure that there's at least one
261 * extra byte allocated for the buffer.
263 void ide_input_data(ide_drive_t
*drive
, struct request
*rq
, void *buf
,
266 ide_hwif_t
*hwif
= drive
->hwif
;
267 struct ide_io_ports
*io_ports
= &hwif
->io_ports
;
268 unsigned long data_addr
= io_ports
->data_addr
;
269 u8 io_32bit
= drive
->io_32bit
;
270 u8 mmio
= (hwif
->host_flags
& IDE_HFLAG_MMIO
) ? 1 : 0;
275 unsigned long uninitialized_var(flags
);
277 if ((io_32bit
& 2) && !mmio
) {
278 local_irq_save(flags
);
279 ata_vlb_sync(io_ports
->nsect_addr
);
283 __ide_mm_insl((void __iomem
*)data_addr
, buf
, len
/ 4);
285 insl(data_addr
, buf
, len
/ 4);
287 if ((io_32bit
& 2) && !mmio
)
288 local_irq_restore(flags
);
290 if ((len
& 3) >= 2) {
292 __ide_mm_insw((void __iomem
*)data_addr
,
293 (u8
*)buf
+ (len
& ~3), 1);
295 insw(data_addr
, (u8
*)buf
+ (len
& ~3), 1);
299 __ide_mm_insw((void __iomem
*)data_addr
, buf
, len
/ 2);
301 insw(data_addr
, buf
, len
/ 2);
304 EXPORT_SYMBOL_GPL(ide_input_data
);
307 * This is used for most PIO data transfers *to* the IDE interface
309 void ide_output_data(ide_drive_t
*drive
, struct request
*rq
, void *buf
,
312 ide_hwif_t
*hwif
= drive
->hwif
;
313 struct ide_io_ports
*io_ports
= &hwif
->io_ports
;
314 unsigned long data_addr
= io_ports
->data_addr
;
315 u8 io_32bit
= drive
->io_32bit
;
316 u8 mmio
= (hwif
->host_flags
& IDE_HFLAG_MMIO
) ? 1 : 0;
319 unsigned long uninitialized_var(flags
);
321 if ((io_32bit
& 2) && !mmio
) {
322 local_irq_save(flags
);
323 ata_vlb_sync(io_ports
->nsect_addr
);
327 __ide_mm_outsl((void __iomem
*)data_addr
, buf
, len
/ 4);
329 outsl(data_addr
, buf
, len
/ 4);
331 if ((io_32bit
& 2) && !mmio
)
332 local_irq_restore(flags
);
334 if ((len
& 3) >= 2) {
336 __ide_mm_outsw((void __iomem
*)data_addr
,
337 (u8
*)buf
+ (len
& ~3), 1);
339 outsw(data_addr
, (u8
*)buf
+ (len
& ~3), 1);
343 __ide_mm_outsw((void __iomem
*)data_addr
, buf
, len
/ 2);
345 outsw(data_addr
, buf
, len
/ 2);
348 EXPORT_SYMBOL_GPL(ide_output_data
);
350 u8
ide_read_error(ide_drive_t
*drive
)
354 memset(&task
, 0, sizeof(task
));
355 task
.tf_flags
= IDE_TFLAG_IN_FEATURE
;
357 drive
->hwif
->tp_ops
->tf_read(drive
, &task
);
359 return task
.tf
.error
;
361 EXPORT_SYMBOL_GPL(ide_read_error
);
363 void ide_read_bcount_and_ireason(ide_drive_t
*drive
, u16
*bcount
, u8
*ireason
)
367 memset(&task
, 0, sizeof(task
));
368 task
.tf_flags
= IDE_TFLAG_IN_LBAH
| IDE_TFLAG_IN_LBAM
|
371 drive
->hwif
->tp_ops
->tf_read(drive
, &task
);
373 *bcount
= (task
.tf
.lbah
<< 8) | task
.tf
.lbam
;
374 *ireason
= task
.tf
.nsect
& 3;
376 EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason
);
378 const struct ide_tp_ops default_tp_ops
= {
379 .exec_command
= ide_exec_command
,
380 .read_status
= ide_read_status
,
381 .read_altstatus
= ide_read_altstatus
,
383 .set_irq
= ide_set_irq
,
385 .tf_load
= ide_tf_load
,
386 .tf_read
= ide_tf_read
,
388 .input_data
= ide_input_data
,
389 .output_data
= ide_output_data
,
392 void ide_fix_driveid(u16
*id
)
394 #ifndef __LITTLE_ENDIAN
398 for (i
= 0; i
< 256; i
++)
399 id
[i
] = __le16_to_cpu(id
[i
]);
401 # error "Please fix <asm/byteorder.h>"
407 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
408 * removing leading/trailing blanks and compressing internal blanks.
409 * It is primarily used to tidy up the model name/number fields as
410 * returned by the ATA_CMD_ID_ATA[PI] commands.
413 void ide_fixstring (u8
*s
, const int bytecount
, const int byteswap
)
415 u8
*p
, *end
= &s
[bytecount
& ~1]; /* bytecount must be even */
418 /* convert from big-endian to host byte order */
419 for (p
= s
; p
!= end
; p
+= 2)
420 be16_to_cpus((u16
*) p
);
423 /* strip leading blanks */
425 while (s
!= end
&& *s
== ' ')
427 /* compress internal blanks and strip trailing blanks */
428 while (s
!= end
&& *s
) {
429 if (*s
++ != ' ' || (s
!= end
&& *s
&& *s
!= ' '))
432 /* wipe out trailing garbage */
437 EXPORT_SYMBOL(ide_fixstring
);
440 * Needed for PCI irq sharing
442 int drive_is_ready (ide_drive_t
*drive
)
444 ide_hwif_t
*hwif
= drive
->hwif
;
447 if (drive
->waiting_for_dma
)
448 return hwif
->dma_ops
->dma_test_irq(drive
);
451 * We do a passive status test under shared PCI interrupts on
452 * cards that truly share the ATA side interrupt, but may also share
453 * an interrupt with another pci card/device. We make no assumptions
454 * about possible isa-pnp and pci-pnp issues yet.
456 if (hwif
->io_ports
.ctl_addr
&&
457 (hwif
->host_flags
& IDE_HFLAG_BROKEN_ALTSTATUS
) == 0)
458 stat
= hwif
->tp_ops
->read_altstatus(hwif
);
460 /* Note: this may clear a pending IRQ!! */
461 stat
= hwif
->tp_ops
->read_status(hwif
);
464 /* drive busy: definitely not interrupting */
467 /* drive ready: *might* be interrupting */
471 EXPORT_SYMBOL(drive_is_ready
);
474 * This routine busy-waits for the drive status to be not "busy".
475 * It then checks the status for all of the "good" bits and none
476 * of the "bad" bits, and if all is okay it returns 0. All other
477 * cases return error -- caller may then invoke ide_error().
479 * This routine should get fixed to not hog the cpu during extra long waits..
480 * That could be done by busy-waiting for the first jiffy or two, and then
481 * setting a timer to wake up at half second intervals thereafter,
482 * until timeout is achieved, before timing out.
484 static int __ide_wait_stat(ide_drive_t
*drive
, u8 good
, u8 bad
, unsigned long timeout
, u8
*rstat
)
486 ide_hwif_t
*hwif
= drive
->hwif
;
487 const struct ide_tp_ops
*tp_ops
= hwif
->tp_ops
;
492 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
493 stat
= tp_ops
->read_status(hwif
);
495 if (stat
& ATA_BUSY
) {
496 local_save_flags(flags
);
497 local_irq_enable_in_hardirq();
499 while ((stat
= tp_ops
->read_status(hwif
)) & ATA_BUSY
) {
500 if (time_after(jiffies
, timeout
)) {
502 * One last read after the timeout in case
503 * heavy interrupt load made us not make any
504 * progress during the timeout..
506 stat
= tp_ops
->read_status(hwif
);
507 if ((stat
& ATA_BUSY
) == 0)
510 local_irq_restore(flags
);
515 local_irq_restore(flags
);
518 * Allow status to settle, then read it again.
519 * A few rare drives vastly violate the 400ns spec here,
520 * so we'll wait up to 10usec for a "good" status
521 * rather than expensively fail things immediately.
522 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
524 for (i
= 0; i
< 10; i
++) {
526 stat
= tp_ops
->read_status(hwif
);
528 if (OK_STAT(stat
, good
, bad
)) {
538 * In case of error returns error value after doing "*startstop = ide_error()".
539 * The caller should return the updated value of "startstop" in this case,
540 * "startstop" is unchanged when the function returns 0.
542 int ide_wait_stat(ide_startstop_t
*startstop
, ide_drive_t
*drive
, u8 good
, u8 bad
, unsigned long timeout
)
547 /* bail early if we've exceeded max_failures */
548 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
549 *startstop
= ide_stopped
;
553 err
= __ide_wait_stat(drive
, good
, bad
, timeout
, &stat
);
556 char *s
= (err
== -EBUSY
) ? "status timeout" : "status error";
557 *startstop
= ide_error(drive
, s
, stat
);
563 EXPORT_SYMBOL(ide_wait_stat
);
566 * ide_in_drive_list - look for drive in black/white list
567 * @id: drive identifier
568 * @table: list to inspect
570 * Look for a drive in the blacklist and the whitelist tables
571 * Returns 1 if the drive is found in the table.
574 int ide_in_drive_list(u16
*id
, const struct drive_list_entry
*table
)
576 for ( ; table
->id_model
; table
++)
577 if ((!strcmp(table
->id_model
, (char *)&id
[ATA_ID_PROD
])) &&
578 (!table
->id_firmware
||
579 strstr((char *)&id
[ATA_ID_FW_REV
], table
->id_firmware
)))
584 EXPORT_SYMBOL_GPL(ide_in_drive_list
);
587 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
588 * We list them here and depend on the device side cable detection for them.
590 * Some optical devices with the buggy firmwares have the same problem.
592 static const struct drive_list_entry ivb_list
[] = {
593 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
594 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
595 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
596 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
597 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
598 { "TSSTcorp CDDVDW SH-S202H" , "SB00" },
599 { "TSSTcorp CDDVDW SH-S202H" , "SB01" },
600 { "SAMSUNG SP0822N" , "WA100-10" },
605 * All hosts that use the 80c ribbon must use!
606 * The name is derived from upper byte of word 93 and the 80c ribbon.
608 u8
eighty_ninty_three (ide_drive_t
*drive
)
610 ide_hwif_t
*hwif
= drive
->hwif
;
612 int ivb
= ide_in_drive_list(id
, ivb_list
);
614 if (hwif
->cbl
== ATA_CBL_PATA40_SHORT
)
618 printk(KERN_DEBUG
"%s: skipping word 93 validity check\n",
621 if (ata_id_is_sata(id
) && !ivb
)
624 if (hwif
->cbl
!= ATA_CBL_PATA80
&& !ivb
)
629 * - change master/slave IDENTIFY order
630 * - force bit13 (80c cable present) check also for !ivb devices
631 * (unless the slave device is pre-ATA3)
633 if ((id
[ATA_ID_HW_CONFIG
] & 0x4000) ||
634 (ivb
&& (id
[ATA_ID_HW_CONFIG
] & 0x2000)))
638 if (drive
->dev_flags
& IDE_DFLAG_UDMA33_WARNED
)
641 printk(KERN_WARNING
"%s: %s side 80-wire cable detection failed, "
642 "limiting max speed to UDMA33\n",
644 hwif
->cbl
== ATA_CBL_PATA80
? "drive" : "host");
646 drive
->dev_flags
|= IDE_DFLAG_UDMA33_WARNED
;
651 int ide_driveid_update(ide_drive_t
*drive
)
653 ide_hwif_t
*hwif
= drive
->hwif
;
654 const struct ide_tp_ops
*tp_ops
= hwif
->tp_ops
;
660 * Re-read drive->id for possible DMA mode
661 * change (copied from ide-probe.c)
664 SELECT_MASK(drive
, 1);
665 tp_ops
->set_irq(hwif
, 0);
667 tp_ops
->exec_command(hwif
, ATA_CMD_ID_ATA
);
669 if (ide_busy_sleep(hwif
, WAIT_WORSTCASE
, 1)) {
670 SELECT_MASK(drive
, 0);
674 msleep(50); /* wait for IRQ and ATA_DRQ */
675 stat
= tp_ops
->read_status(hwif
);
677 if (!OK_STAT(stat
, ATA_DRQ
, BAD_R_STAT
)) {
678 SELECT_MASK(drive
, 0);
679 printk("%s: CHECK for good STATUS\n", drive
->name
);
682 local_irq_save(flags
);
683 SELECT_MASK(drive
, 0);
684 id
= kmalloc(SECTOR_SIZE
, GFP_ATOMIC
);
686 local_irq_restore(flags
);
689 tp_ops
->input_data(drive
, NULL
, id
, SECTOR_SIZE
);
690 (void)tp_ops
->read_status(hwif
); /* clear drive IRQ */
692 local_irq_restore(flags
);
695 drive
->id
[ATA_ID_UDMA_MODES
] = id
[ATA_ID_UDMA_MODES
];
696 drive
->id
[ATA_ID_MWDMA_MODES
] = id
[ATA_ID_MWDMA_MODES
];
697 drive
->id
[ATA_ID_SWDMA_MODES
] = id
[ATA_ID_SWDMA_MODES
];
698 /* anything more ? */
702 if ((drive
->dev_flags
& IDE_DFLAG_USING_DMA
) && ide_id_dma_bug(drive
))
708 int ide_config_drive_speed(ide_drive_t
*drive
, u8 speed
)
710 ide_hwif_t
*hwif
= drive
->hwif
;
711 const struct ide_tp_ops
*tp_ops
= hwif
->tp_ops
;
712 u16
*id
= drive
->id
, i
;
717 #ifdef CONFIG_BLK_DEV_IDEDMA
718 if (hwif
->dma_ops
) /* check if host supports DMA */
719 hwif
->dma_ops
->dma_host_set(drive
, 0);
722 /* Skip setting PIO flow-control modes on pre-EIDE drives */
723 if ((speed
& 0xf8) == XFER_PIO_0
&& ata_id_has_iordy(drive
->id
) == 0)
727 * Don't use ide_wait_cmd here - it will
728 * attempt to set_geometry and recalibrate,
729 * but for some reason these don't work at
730 * this point (lost interrupt).
733 * Select the drive, and issue the SETFEATURES command
735 disable_irq_nosync(hwif
->irq
);
738 * FIXME: we race against the running IRQ here if
739 * this is called from non IRQ context. If we use
740 * disable_irq() we hang on the error path. Work
746 SELECT_MASK(drive
, 1);
748 tp_ops
->set_irq(hwif
, 0);
750 memset(&task
, 0, sizeof(task
));
751 task
.tf_flags
= IDE_TFLAG_OUT_FEATURE
| IDE_TFLAG_OUT_NSECT
;
752 task
.tf
.feature
= SETFEATURES_XFER
;
753 task
.tf
.nsect
= speed
;
755 tp_ops
->tf_load(drive
, &task
);
757 tp_ops
->exec_command(hwif
, ATA_CMD_SET_FEATURES
);
759 if (drive
->quirk_list
== 2)
760 tp_ops
->set_irq(hwif
, 1);
762 error
= __ide_wait_stat(drive
, drive
->ready_stat
,
763 ATA_BUSY
| ATA_DRQ
| ATA_ERR
,
766 SELECT_MASK(drive
, 0);
768 enable_irq(hwif
->irq
);
771 (void) ide_dump_status(drive
, "set_drive_speed_status", stat
);
775 id
[ATA_ID_UDMA_MODES
] &= ~0xFF00;
776 id
[ATA_ID_MWDMA_MODES
] &= ~0x0F00;
777 id
[ATA_ID_SWDMA_MODES
] &= ~0x0F00;
780 #ifdef CONFIG_BLK_DEV_IDEDMA
781 if (speed
>= XFER_SW_DMA_0
&& (drive
->dev_flags
& IDE_DFLAG_USING_DMA
))
782 hwif
->dma_ops
->dma_host_set(drive
, 1);
783 else if (hwif
->dma_ops
) /* check if host supports DMA */
784 ide_dma_off_quietly(drive
);
787 if (speed
>= XFER_UDMA_0
) {
788 i
= 1 << (speed
- XFER_UDMA_0
);
789 id
[ATA_ID_UDMA_MODES
] |= (i
<< 8 | i
);
790 } else if (speed
>= XFER_MW_DMA_0
) {
791 i
= 1 << (speed
- XFER_MW_DMA_0
);
792 id
[ATA_ID_MWDMA_MODES
] |= (i
<< 8 | i
);
793 } else if (speed
>= XFER_SW_DMA_0
) {
794 i
= 1 << (speed
- XFER_SW_DMA_0
);
795 id
[ATA_ID_SWDMA_MODES
] |= (i
<< 8 | i
);
798 if (!drive
->init_speed
)
799 drive
->init_speed
= speed
;
800 drive
->current_speed
= speed
;
805 * This should get invoked any time we exit the driver to
806 * wait for an interrupt response from a drive. handler() points
807 * at the appropriate code to handle the next interrupt, and a
808 * timer is started to prevent us from waiting forever in case
809 * something goes wrong (see the ide_timer_expiry() handler later on).
811 * See also ide_execute_command
813 static void __ide_set_handler (ide_drive_t
*drive
, ide_handler_t
*handler
,
814 unsigned int timeout
, ide_expiry_t
*expiry
)
816 ide_hwif_t
*hwif
= drive
->hwif
;
818 BUG_ON(hwif
->handler
);
819 hwif
->handler
= handler
;
820 hwif
->expiry
= expiry
;
821 hwif
->timer
.expires
= jiffies
+ timeout
;
822 hwif
->req_gen_timer
= hwif
->req_gen
;
823 add_timer(&hwif
->timer
);
826 void ide_set_handler (ide_drive_t
*drive
, ide_handler_t
*handler
,
827 unsigned int timeout
, ide_expiry_t
*expiry
)
829 ide_hwif_t
*hwif
= drive
->hwif
;
832 spin_lock_irqsave(&hwif
->lock
, flags
);
833 __ide_set_handler(drive
, handler
, timeout
, expiry
);
834 spin_unlock_irqrestore(&hwif
->lock
, flags
);
837 EXPORT_SYMBOL(ide_set_handler
);
840 * ide_execute_command - execute an IDE command
841 * @drive: IDE drive to issue the command against
842 * @command: command byte to write
843 * @handler: handler for next phase
844 * @timeout: timeout for command
845 * @expiry: handler to run on timeout
847 * Helper function to issue an IDE command. This handles the
848 * atomicity requirements, command timing and ensures that the
849 * handler and IRQ setup do not race. All IDE command kick off
850 * should go via this function or do equivalent locking.
853 void ide_execute_command(ide_drive_t
*drive
, u8 cmd
, ide_handler_t
*handler
,
854 unsigned timeout
, ide_expiry_t
*expiry
)
856 ide_hwif_t
*hwif
= drive
->hwif
;
859 spin_lock_irqsave(&hwif
->lock
, flags
);
860 __ide_set_handler(drive
, handler
, timeout
, expiry
);
861 hwif
->tp_ops
->exec_command(hwif
, cmd
);
863 * Drive takes 400nS to respond, we must avoid the IRQ being
864 * serviced before that.
866 * FIXME: we could skip this delay with care on non shared devices
869 spin_unlock_irqrestore(&hwif
->lock
, flags
);
871 EXPORT_SYMBOL(ide_execute_command
);
873 void ide_execute_pkt_cmd(ide_drive_t
*drive
)
875 ide_hwif_t
*hwif
= drive
->hwif
;
878 spin_lock_irqsave(&hwif
->lock
, flags
);
879 hwif
->tp_ops
->exec_command(hwif
, ATA_CMD_PACKET
);
881 spin_unlock_irqrestore(&hwif
->lock
, flags
);
883 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd
);
885 static inline void ide_complete_drive_reset(ide_drive_t
*drive
, int err
)
887 struct request
*rq
= drive
->hwif
->rq
;
889 if (rq
&& blk_special_request(rq
) && rq
->cmd
[0] == REQ_DRIVE_RESET
)
890 ide_end_request(drive
, err
? err
: 1, 0);
894 static ide_startstop_t
do_reset1 (ide_drive_t
*, int);
897 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
898 * during an atapi drive reset operation. If the drive has not yet responded,
899 * and we have not yet hit our maximum waiting time, then the timer is restarted
902 static ide_startstop_t
atapi_reset_pollfunc (ide_drive_t
*drive
)
904 ide_hwif_t
*hwif
= drive
->hwif
;
909 stat
= hwif
->tp_ops
->read_status(hwif
);
911 if (OK_STAT(stat
, 0, ATA_BUSY
))
912 printk("%s: ATAPI reset complete\n", drive
->name
);
914 if (time_before(jiffies
, hwif
->poll_timeout
)) {
915 ide_set_handler(drive
, &atapi_reset_pollfunc
, HZ
/20, NULL
);
916 /* continue polling */
921 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
923 /* do it the old fashioned way */
924 return do_reset1(drive
, 1);
928 ide_complete_drive_reset(drive
, 0);
932 static void ide_reset_report_error(ide_hwif_t
*hwif
, u8 err
)
934 static const char *err_master_vals
[] =
935 { NULL
, "passed", "formatter device error",
936 "sector buffer error", "ECC circuitry error",
937 "controlling MPU error" };
939 u8 err_master
= err
& 0x7f;
941 printk(KERN_ERR
"%s: reset: master: ", hwif
->name
);
942 if (err_master
&& err_master
< 6)
943 printk(KERN_CONT
"%s", err_master_vals
[err_master
]);
945 printk(KERN_CONT
"error (0x%02x?)", err
);
947 printk(KERN_CONT
"; slave: failed");
948 printk(KERN_CONT
"\n");
952 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
953 * during an ide reset operation. If the drives have not yet responded,
954 * and we have not yet hit our maximum waiting time, then the timer is restarted
957 static ide_startstop_t
reset_pollfunc (ide_drive_t
*drive
)
959 ide_hwif_t
*hwif
= drive
->hwif
;
960 const struct ide_port_ops
*port_ops
= hwif
->port_ops
;
964 if (port_ops
&& port_ops
->reset_poll
) {
965 err
= port_ops
->reset_poll(drive
);
967 printk(KERN_ERR
"%s: host reset_poll failure for %s.\n",
968 hwif
->name
, drive
->name
);
973 tmp
= hwif
->tp_ops
->read_status(hwif
);
975 if (!OK_STAT(tmp
, 0, ATA_BUSY
)) {
976 if (time_before(jiffies
, hwif
->poll_timeout
)) {
977 ide_set_handler(drive
, &reset_pollfunc
, HZ
/20, NULL
);
978 /* continue polling */
981 printk("%s: reset timed-out, status=0x%02x\n", hwif
->name
, tmp
);
985 tmp
= ide_read_error(drive
);
988 printk(KERN_INFO
"%s: reset: success\n", hwif
->name
);
991 ide_reset_report_error(hwif
, tmp
);
997 hwif
->polling
= 0; /* done polling */
998 ide_complete_drive_reset(drive
, err
);
1002 static void ide_disk_pre_reset(ide_drive_t
*drive
)
1004 int legacy
= (drive
->id
[ATA_ID_CFS_ENABLE_2
] & 0x0400) ? 0 : 1;
1006 drive
->special
.all
= 0;
1007 drive
->special
.b
.set_geometry
= legacy
;
1008 drive
->special
.b
.recalibrate
= legacy
;
1010 drive
->mult_count
= 0;
1011 drive
->dev_flags
&= ~IDE_DFLAG_PARKED
;
1013 if ((drive
->dev_flags
& IDE_DFLAG_KEEP_SETTINGS
) == 0 &&
1014 (drive
->dev_flags
& IDE_DFLAG_USING_DMA
) == 0)
1015 drive
->mult_req
= 0;
1017 if (drive
->mult_req
!= drive
->mult_count
)
1018 drive
->special
.b
.set_multmode
= 1;
1021 static void pre_reset(ide_drive_t
*drive
)
1023 const struct ide_port_ops
*port_ops
= drive
->hwif
->port_ops
;
1025 if (drive
->media
== ide_disk
)
1026 ide_disk_pre_reset(drive
);
1028 drive
->dev_flags
|= IDE_DFLAG_POST_RESET
;
1030 if (drive
->dev_flags
& IDE_DFLAG_USING_DMA
) {
1031 if (drive
->crc_count
)
1032 ide_check_dma_crc(drive
);
1037 if ((drive
->dev_flags
& IDE_DFLAG_KEEP_SETTINGS
) == 0) {
1038 if ((drive
->dev_flags
& IDE_DFLAG_USING_DMA
) == 0) {
1039 drive
->dev_flags
&= ~IDE_DFLAG_UNMASK
;
1040 drive
->io_32bit
= 0;
1045 if (port_ops
&& port_ops
->pre_reset
)
1046 port_ops
->pre_reset(drive
);
1048 if (drive
->current_speed
!= 0xff)
1049 drive
->desired_speed
= drive
->current_speed
;
1050 drive
->current_speed
= 0xff;
1054 * do_reset1() attempts to recover a confused drive by resetting it.
1055 * Unfortunately, resetting a disk drive actually resets all devices on
1056 * the same interface, so it can really be thought of as resetting the
1057 * interface rather than resetting the drive.
1059 * ATAPI devices have their own reset mechanism which allows them to be
1060 * individually reset without clobbering other devices on the same interface.
1062 * Unfortunately, the IDE interface does not generate an interrupt to let
1063 * us know when the reset operation has finished, so we must poll for this.
1064 * Equally poor, though, is the fact that this may a very long time to complete,
1065 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1066 * we set a timer to poll at 50ms intervals.
1068 static ide_startstop_t
do_reset1 (ide_drive_t
*drive
, int do_not_try_atapi
)
1070 ide_hwif_t
*hwif
= drive
->hwif
;
1071 struct ide_io_ports
*io_ports
= &hwif
->io_ports
;
1072 const struct ide_tp_ops
*tp_ops
= hwif
->tp_ops
;
1073 const struct ide_port_ops
*port_ops
;
1074 ide_drive_t
*tdrive
;
1075 unsigned long flags
, timeout
;
1079 spin_lock_irqsave(&hwif
->lock
, flags
);
1081 /* We must not reset with running handlers */
1082 BUG_ON(hwif
->handler
!= NULL
);
1084 /* For an ATAPI device, first try an ATAPI SRST. */
1085 if (drive
->media
!= ide_disk
&& !do_not_try_atapi
) {
1087 SELECT_DRIVE(drive
);
1089 tp_ops
->exec_command(hwif
, ATA_CMD_DEV_RESET
);
1091 hwif
->poll_timeout
= jiffies
+ WAIT_WORSTCASE
;
1093 __ide_set_handler(drive
, &atapi_reset_pollfunc
, HZ
/20, NULL
);
1094 spin_unlock_irqrestore(&hwif
->lock
, flags
);
1098 /* We must not disturb devices in the IDE_DFLAG_PARKED state. */
1102 prepare_to_wait(&ide_park_wq
, &wait
, TASK_UNINTERRUPTIBLE
);
1104 ide_port_for_each_dev(i
, tdrive
, hwif
) {
1105 if (tdrive
->dev_flags
& IDE_DFLAG_PRESENT
&&
1106 tdrive
->dev_flags
& IDE_DFLAG_PARKED
&&
1107 time_after(tdrive
->sleep
, timeout
))
1108 timeout
= tdrive
->sleep
;
1112 if (time_before_eq(timeout
, now
))
1115 spin_unlock_irqrestore(&hwif
->lock
, flags
);
1116 timeout
= schedule_timeout_uninterruptible(timeout
- now
);
1117 spin_lock_irqsave(&hwif
->lock
, flags
);
1119 finish_wait(&ide_park_wq
, &wait
);
1122 * First, reset any device state data we were maintaining
1123 * for any of the drives on this interface.
1125 ide_port_for_each_dev(i
, tdrive
, hwif
)
1128 if (io_ports
->ctl_addr
== 0) {
1129 spin_unlock_irqrestore(&hwif
->lock
, flags
);
1130 ide_complete_drive_reset(drive
, -ENXIO
);
1135 * Note that we also set nIEN while resetting the device,
1136 * to mask unwanted interrupts from the interface during the reset.
1137 * However, due to the design of PC hardware, this will cause an
1138 * immediate interrupt due to the edge transition it produces.
1139 * This single interrupt gives us a "fast poll" for drives that
1140 * recover from reset very quickly, saving us the first 50ms wait time.
1142 * TODO: add ->softreset method and stop abusing ->set_irq
1144 /* set SRST and nIEN */
1145 tp_ops
->set_irq(hwif
, 4);
1146 /* more than enough time */
1148 /* clear SRST, leave nIEN (unless device is on the quirk list) */
1149 tp_ops
->set_irq(hwif
, drive
->quirk_list
== 2);
1150 /* more than enough time */
1152 hwif
->poll_timeout
= jiffies
+ WAIT_WORSTCASE
;
1154 __ide_set_handler(drive
, &reset_pollfunc
, HZ
/20, NULL
);
1157 * Some weird controller like resetting themselves to a strange
1158 * state when the disks are reset this way. At least, the Winbond
1159 * 553 documentation says that
1161 port_ops
= hwif
->port_ops
;
1162 if (port_ops
&& port_ops
->resetproc
)
1163 port_ops
->resetproc(drive
);
1165 spin_unlock_irqrestore(&hwif
->lock
, flags
);
1170 * ide_do_reset() is the entry point to the drive/interface reset code.
1173 ide_startstop_t
ide_do_reset (ide_drive_t
*drive
)
1175 return do_reset1(drive
, 0);
1178 EXPORT_SYMBOL(ide_do_reset
);
1181 * ide_wait_not_busy() waits for the currently selected device on the hwif
1182 * to report a non-busy status, see comments in ide_probe_port().
1184 int ide_wait_not_busy(ide_hwif_t
*hwif
, unsigned long timeout
)
1190 * Turn this into a schedule() sleep once I'm sure
1191 * about locking issues (2.5 work ?).
1194 stat
= hwif
->tp_ops
->read_status(hwif
);
1195 if ((stat
& ATA_BUSY
) == 0)
1198 * Assume a value of 0xff means nothing is connected to
1199 * the interface and it doesn't implement the pull-down
1204 touch_softlockup_watchdog();
1205 touch_nmi_watchdog();