1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2010 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
17 #include <linux/kernel.h>
18 #include <linux/timer.h>
19 #include <linux/errno.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/interrupt.h>
24 #include <linux/pci.h>
25 #include <linux/init.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/skbuff.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/bitops.h>
33 #include <linux/delay.h>
34 #include <asm/byteorder.h>
36 #include <linux/time.h>
37 #include <linux/ethtool.h>
38 #include <linux/mii.h>
39 #include <linux/if_vlan.h>
42 #include <net/checksum.h>
43 #include <linux/workqueue.h>
44 #include <linux/crc32.h>
45 #include <linux/prefetch.h>
46 #include <linux/cache.h>
47 #include <linux/firmware.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
51 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
58 #define DRV_MODULE_NAME "bnx2"
59 #define DRV_MODULE_VERSION "2.0.18"
60 #define DRV_MODULE_RELDATE "Oct 7, 2010"
61 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.0.15.fw"
62 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
63 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.0.17.fw"
64 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
65 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
67 #define RUN_AT(x) (jiffies + (x))
69 /* Time in jiffies before concluding the transmitter is hung. */
70 #define TX_TIMEOUT (5*HZ)
72 static char version
[] __devinitdata
=
73 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
75 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
76 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
77 MODULE_LICENSE("GPL");
78 MODULE_VERSION(DRV_MODULE_VERSION
);
79 MODULE_FIRMWARE(FW_MIPS_FILE_06
);
80 MODULE_FIRMWARE(FW_RV2P_FILE_06
);
81 MODULE_FIRMWARE(FW_MIPS_FILE_09
);
82 MODULE_FIRMWARE(FW_RV2P_FILE_09
);
83 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax
);
85 static int disable_msi
= 0;
87 module_param(disable_msi
, int, 0);
88 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
104 /* indexed by board_t, above */
107 } board_info
[] __devinitdata
= {
108 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
109 { "HP NC370T Multifunction Gigabit Server Adapter" },
110 { "HP NC370i Multifunction Gigabit Server Adapter" },
111 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
112 { "HP NC370F Multifunction Gigabit Server Adapter" },
113 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
114 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
115 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
116 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
117 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
118 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
121 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl
) = {
122 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
123 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
124 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
125 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
126 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
127 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
128 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
129 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
130 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
131 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
132 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
133 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
134 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
135 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
136 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
137 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
138 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
139 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
140 { PCI_VENDOR_ID_BROADCOM
, 0x163b,
141 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716
},
142 { PCI_VENDOR_ID_BROADCOM
, 0x163c,
143 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716S
},
147 static const struct flash_spec flash_table
[] =
149 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
150 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
152 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
153 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
154 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
156 /* Expansion entry 0001 */
157 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
158 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
159 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
161 /* Saifun SA25F010 (non-buffered flash) */
162 /* strap, cfg1, & write1 need updates */
163 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
164 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
165 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
166 "Non-buffered flash (128kB)"},
167 /* Saifun SA25F020 (non-buffered flash) */
168 /* strap, cfg1, & write1 need updates */
169 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
170 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
171 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
172 "Non-buffered flash (256kB)"},
173 /* Expansion entry 0100 */
174 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
175 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
176 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
178 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
179 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
180 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
181 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
182 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
183 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
184 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
185 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
186 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
187 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
188 /* Saifun SA25F005 (non-buffered flash) */
189 /* strap, cfg1, & write1 need updates */
190 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
191 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
192 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
193 "Non-buffered flash (64kB)"},
195 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
196 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
197 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
199 /* Expansion entry 1001 */
200 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
201 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
202 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
204 /* Expansion entry 1010 */
205 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
206 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
207 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
209 /* ATMEL AT45DB011B (buffered flash) */
210 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
211 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
212 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
213 "Buffered flash (128kB)"},
214 /* Expansion entry 1100 */
215 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
216 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
217 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
219 /* Expansion entry 1101 */
220 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
221 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
222 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
224 /* Ateml Expansion entry 1110 */
225 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
226 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
227 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
228 "Entry 1110 (Atmel)"},
229 /* ATMEL AT45DB021B (buffered flash) */
230 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
231 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
232 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
233 "Buffered flash (256kB)"},
236 static const struct flash_spec flash_5709
= {
237 .flags
= BNX2_NV_BUFFERED
,
238 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
239 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
240 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
241 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
242 .name
= "5709 Buffered flash (256kB)",
245 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
247 static void bnx2_init_napi(struct bnx2
*bp
);
248 static void bnx2_del_napi(struct bnx2
*bp
);
250 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_tx_ring_info
*txr
)
254 /* Tell compiler to fetch tx_prod and tx_cons from memory. */
257 /* The ring uses 256 indices for 255 entries, one of them
258 * needs to be skipped.
260 diff
= txr
->tx_prod
- txr
->tx_cons
;
261 if (unlikely(diff
>= TX_DESC_CNT
)) {
263 if (diff
== TX_DESC_CNT
)
264 diff
= MAX_TX_DESC_CNT
;
266 return bp
->tx_ring_size
- diff
;
270 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
274 spin_lock_bh(&bp
->indirect_lock
);
275 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
276 val
= REG_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
277 spin_unlock_bh(&bp
->indirect_lock
);
282 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
284 spin_lock_bh(&bp
->indirect_lock
);
285 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
286 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
287 spin_unlock_bh(&bp
->indirect_lock
);
291 bnx2_shmem_wr(struct bnx2
*bp
, u32 offset
, u32 val
)
293 bnx2_reg_wr_ind(bp
, bp
->shmem_base
+ offset
, val
);
297 bnx2_shmem_rd(struct bnx2
*bp
, u32 offset
)
299 return bnx2_reg_rd_ind(bp
, bp
->shmem_base
+ offset
);
303 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
306 spin_lock_bh(&bp
->indirect_lock
);
307 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
310 REG_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
311 REG_WR(bp
, BNX2_CTX_CTX_CTRL
,
312 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
313 for (i
= 0; i
< 5; i
++) {
314 val
= REG_RD(bp
, BNX2_CTX_CTX_CTRL
);
315 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
320 REG_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
321 REG_WR(bp
, BNX2_CTX_DATA
, val
);
323 spin_unlock_bh(&bp
->indirect_lock
);
328 bnx2_drv_ctl(struct net_device
*dev
, struct drv_ctl_info
*info
)
330 struct bnx2
*bp
= netdev_priv(dev
);
331 struct drv_ctl_io
*io
= &info
->data
.io
;
334 case DRV_CTL_IO_WR_CMD
:
335 bnx2_reg_wr_ind(bp
, io
->offset
, io
->data
);
337 case DRV_CTL_IO_RD_CMD
:
338 io
->data
= bnx2_reg_rd_ind(bp
, io
->offset
);
340 case DRV_CTL_CTX_WR_CMD
:
341 bnx2_ctx_wr(bp
, io
->cid_addr
, io
->offset
, io
->data
);
349 static void bnx2_setup_cnic_irq_info(struct bnx2
*bp
)
351 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
352 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
355 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
356 cp
->drv_state
|= CNIC_DRV_STATE_USING_MSIX
;
357 bnapi
->cnic_present
= 0;
358 sb_id
= bp
->irq_nvecs
;
359 cp
->irq_arr
[0].irq_flags
|= CNIC_IRQ_FL_MSIX
;
361 cp
->drv_state
&= ~CNIC_DRV_STATE_USING_MSIX
;
362 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
363 bnapi
->cnic_present
= 1;
365 cp
->irq_arr
[0].irq_flags
&= ~CNIC_IRQ_FL_MSIX
;
368 cp
->irq_arr
[0].vector
= bp
->irq_tbl
[sb_id
].vector
;
369 cp
->irq_arr
[0].status_blk
= (void *)
370 ((unsigned long) bnapi
->status_blk
.msi
+
371 (BNX2_SBLK_MSIX_ALIGN_SIZE
* sb_id
));
372 cp
->irq_arr
[0].status_blk_num
= sb_id
;
376 static int bnx2_register_cnic(struct net_device
*dev
, struct cnic_ops
*ops
,
379 struct bnx2
*bp
= netdev_priv(dev
);
380 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
385 if (cp
->drv_state
& CNIC_DRV_STATE_REGD
)
388 bp
->cnic_data
= data
;
389 rcu_assign_pointer(bp
->cnic_ops
, ops
);
392 cp
->drv_state
= CNIC_DRV_STATE_REGD
;
394 bnx2_setup_cnic_irq_info(bp
);
399 static int bnx2_unregister_cnic(struct net_device
*dev
)
401 struct bnx2
*bp
= netdev_priv(dev
);
402 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
403 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
405 mutex_lock(&bp
->cnic_lock
);
407 bnapi
->cnic_present
= 0;
408 rcu_assign_pointer(bp
->cnic_ops
, NULL
);
409 mutex_unlock(&bp
->cnic_lock
);
414 struct cnic_eth_dev
*bnx2_cnic_probe(struct net_device
*dev
)
416 struct bnx2
*bp
= netdev_priv(dev
);
417 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
419 cp
->drv_owner
= THIS_MODULE
;
420 cp
->chip_id
= bp
->chip_id
;
422 cp
->io_base
= bp
->regview
;
423 cp
->drv_ctl
= bnx2_drv_ctl
;
424 cp
->drv_register_cnic
= bnx2_register_cnic
;
425 cp
->drv_unregister_cnic
= bnx2_unregister_cnic
;
429 EXPORT_SYMBOL(bnx2_cnic_probe
);
432 bnx2_cnic_stop(struct bnx2
*bp
)
434 struct cnic_ops
*c_ops
;
435 struct cnic_ctl_info info
;
437 mutex_lock(&bp
->cnic_lock
);
438 c_ops
= bp
->cnic_ops
;
440 info
.cmd
= CNIC_CTL_STOP_CMD
;
441 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
443 mutex_unlock(&bp
->cnic_lock
);
447 bnx2_cnic_start(struct bnx2
*bp
)
449 struct cnic_ops
*c_ops
;
450 struct cnic_ctl_info info
;
452 mutex_lock(&bp
->cnic_lock
);
453 c_ops
= bp
->cnic_ops
;
455 if (!(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
456 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
458 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
460 info
.cmd
= CNIC_CTL_START_CMD
;
461 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
463 mutex_unlock(&bp
->cnic_lock
);
469 bnx2_cnic_stop(struct bnx2
*bp
)
474 bnx2_cnic_start(struct bnx2
*bp
)
481 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
486 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
487 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
488 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
490 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
491 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
496 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
497 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
498 BNX2_EMAC_MDIO_COMM_START_BUSY
;
499 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
501 for (i
= 0; i
< 50; i
++) {
504 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
505 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
508 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
509 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
515 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
524 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
525 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
526 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
528 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
529 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
538 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
543 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
544 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
545 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
547 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
548 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
553 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
554 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
555 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
556 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
558 for (i
= 0; i
< 50; i
++) {
561 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
562 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
568 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
573 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
574 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
575 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
577 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
578 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
587 bnx2_disable_int(struct bnx2
*bp
)
590 struct bnx2_napi
*bnapi
;
592 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
593 bnapi
= &bp
->bnx2_napi
[i
];
594 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
595 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
597 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
601 bnx2_enable_int(struct bnx2
*bp
)
604 struct bnx2_napi
*bnapi
;
606 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
607 bnapi
= &bp
->bnx2_napi
[i
];
609 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
610 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
611 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
612 bnapi
->last_status_idx
);
614 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
615 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
616 bnapi
->last_status_idx
);
618 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
622 bnx2_disable_int_sync(struct bnx2
*bp
)
626 atomic_inc(&bp
->intr_sem
);
627 if (!netif_running(bp
->dev
))
630 bnx2_disable_int(bp
);
631 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
632 synchronize_irq(bp
->irq_tbl
[i
].vector
);
636 bnx2_napi_disable(struct bnx2
*bp
)
640 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
641 napi_disable(&bp
->bnx2_napi
[i
].napi
);
645 bnx2_napi_enable(struct bnx2
*bp
)
649 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
650 napi_enable(&bp
->bnx2_napi
[i
].napi
);
654 bnx2_netif_stop(struct bnx2
*bp
, bool stop_cnic
)
658 if (netif_running(bp
->dev
)) {
659 bnx2_napi_disable(bp
);
660 netif_tx_disable(bp
->dev
);
662 bnx2_disable_int_sync(bp
);
663 netif_carrier_off(bp
->dev
); /* prevent tx timeout */
667 bnx2_netif_start(struct bnx2
*bp
, bool start_cnic
)
669 if (atomic_dec_and_test(&bp
->intr_sem
)) {
670 if (netif_running(bp
->dev
)) {
671 netif_tx_wake_all_queues(bp
->dev
);
672 spin_lock_bh(&bp
->phy_lock
);
674 netif_carrier_on(bp
->dev
);
675 spin_unlock_bh(&bp
->phy_lock
);
676 bnx2_napi_enable(bp
);
685 bnx2_free_tx_mem(struct bnx2
*bp
)
689 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
690 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
691 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
693 if (txr
->tx_desc_ring
) {
694 dma_free_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
696 txr
->tx_desc_mapping
);
697 txr
->tx_desc_ring
= NULL
;
699 kfree(txr
->tx_buf_ring
);
700 txr
->tx_buf_ring
= NULL
;
705 bnx2_free_rx_mem(struct bnx2
*bp
)
709 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
710 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
711 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
714 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
715 if (rxr
->rx_desc_ring
[j
])
716 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
717 rxr
->rx_desc_ring
[j
],
718 rxr
->rx_desc_mapping
[j
]);
719 rxr
->rx_desc_ring
[j
] = NULL
;
721 vfree(rxr
->rx_buf_ring
);
722 rxr
->rx_buf_ring
= NULL
;
724 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
725 if (rxr
->rx_pg_desc_ring
[j
])
726 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
727 rxr
->rx_pg_desc_ring
[j
],
728 rxr
->rx_pg_desc_mapping
[j
]);
729 rxr
->rx_pg_desc_ring
[j
] = NULL
;
731 vfree(rxr
->rx_pg_ring
);
732 rxr
->rx_pg_ring
= NULL
;
737 bnx2_alloc_tx_mem(struct bnx2
*bp
)
741 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
742 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
743 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
745 txr
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
746 if (txr
->tx_buf_ring
== NULL
)
750 dma_alloc_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
751 &txr
->tx_desc_mapping
, GFP_KERNEL
);
752 if (txr
->tx_desc_ring
== NULL
)
759 bnx2_alloc_rx_mem(struct bnx2
*bp
)
763 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
764 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
765 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
769 vmalloc(SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
770 if (rxr
->rx_buf_ring
== NULL
)
773 memset(rxr
->rx_buf_ring
, 0,
774 SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
776 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
777 rxr
->rx_desc_ring
[j
] =
778 dma_alloc_coherent(&bp
->pdev
->dev
,
780 &rxr
->rx_desc_mapping
[j
],
782 if (rxr
->rx_desc_ring
[j
] == NULL
)
787 if (bp
->rx_pg_ring_size
) {
788 rxr
->rx_pg_ring
= vmalloc(SW_RXPG_RING_SIZE
*
790 if (rxr
->rx_pg_ring
== NULL
)
793 memset(rxr
->rx_pg_ring
, 0, SW_RXPG_RING_SIZE
*
797 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
798 rxr
->rx_pg_desc_ring
[j
] =
799 dma_alloc_coherent(&bp
->pdev
->dev
,
801 &rxr
->rx_pg_desc_mapping
[j
],
803 if (rxr
->rx_pg_desc_ring
[j
] == NULL
)
812 bnx2_free_mem(struct bnx2
*bp
)
815 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
817 bnx2_free_tx_mem(bp
);
818 bnx2_free_rx_mem(bp
);
820 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
821 if (bp
->ctx_blk
[i
]) {
822 dma_free_coherent(&bp
->pdev
->dev
, BCM_PAGE_SIZE
,
824 bp
->ctx_blk_mapping
[i
]);
825 bp
->ctx_blk
[i
] = NULL
;
828 if (bnapi
->status_blk
.msi
) {
829 dma_free_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
830 bnapi
->status_blk
.msi
,
831 bp
->status_blk_mapping
);
832 bnapi
->status_blk
.msi
= NULL
;
833 bp
->stats_blk
= NULL
;
838 bnx2_alloc_mem(struct bnx2
*bp
)
840 int i
, status_blk_size
, err
;
841 struct bnx2_napi
*bnapi
;
844 /* Combine status and statistics blocks into one allocation. */
845 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
846 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
847 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
848 BNX2_SBLK_MSIX_ALIGN_SIZE
);
849 bp
->status_stats_size
= status_blk_size
+
850 sizeof(struct statistics_block
);
852 status_blk
= dma_alloc_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
853 &bp
->status_blk_mapping
, GFP_KERNEL
);
854 if (status_blk
== NULL
)
857 memset(status_blk
, 0, bp
->status_stats_size
);
859 bnapi
= &bp
->bnx2_napi
[0];
860 bnapi
->status_blk
.msi
= status_blk
;
861 bnapi
->hw_tx_cons_ptr
=
862 &bnapi
->status_blk
.msi
->status_tx_quick_consumer_index0
;
863 bnapi
->hw_rx_cons_ptr
=
864 &bnapi
->status_blk
.msi
->status_rx_quick_consumer_index0
;
865 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
866 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
867 struct status_block_msix
*sblk
;
869 bnapi
= &bp
->bnx2_napi
[i
];
871 sblk
= (void *) (status_blk
+
872 BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
873 bnapi
->status_blk
.msix
= sblk
;
874 bnapi
->hw_tx_cons_ptr
=
875 &sblk
->status_tx_quick_consumer_index
;
876 bnapi
->hw_rx_cons_ptr
=
877 &sblk
->status_rx_quick_consumer_index
;
878 bnapi
->int_num
= i
<< 24;
882 bp
->stats_blk
= status_blk
+ status_blk_size
;
884 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
886 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
887 bp
->ctx_pages
= 0x2000 / BCM_PAGE_SIZE
;
888 if (bp
->ctx_pages
== 0)
890 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
891 bp
->ctx_blk
[i
] = dma_alloc_coherent(&bp
->pdev
->dev
,
893 &bp
->ctx_blk_mapping
[i
],
895 if (bp
->ctx_blk
[i
] == NULL
)
900 err
= bnx2_alloc_rx_mem(bp
);
904 err
= bnx2_alloc_tx_mem(bp
);
916 bnx2_report_fw_link(struct bnx2
*bp
)
918 u32 fw_link_status
= 0;
920 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
926 switch (bp
->line_speed
) {
928 if (bp
->duplex
== DUPLEX_HALF
)
929 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
931 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
934 if (bp
->duplex
== DUPLEX_HALF
)
935 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
937 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
940 if (bp
->duplex
== DUPLEX_HALF
)
941 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
943 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
946 if (bp
->duplex
== DUPLEX_HALF
)
947 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
949 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
953 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
956 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
958 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
959 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
961 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
962 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
963 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
965 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
969 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
971 bnx2_shmem_wr(bp
, BNX2_LINK_STATUS
, fw_link_status
);
975 bnx2_xceiver_str(struct bnx2
*bp
)
977 return (bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
978 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
983 bnx2_report_link(struct bnx2
*bp
)
986 netif_carrier_on(bp
->dev
);
987 netdev_info(bp
->dev
, "NIC %s Link is Up, %d Mbps %s duplex",
988 bnx2_xceiver_str(bp
),
990 bp
->duplex
== DUPLEX_FULL
? "full" : "half");
993 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
994 pr_cont(", receive ");
995 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
996 pr_cont("& transmit ");
999 pr_cont(", transmit ");
1001 pr_cont("flow control ON");
1005 netif_carrier_off(bp
->dev
);
1006 netdev_err(bp
->dev
, "NIC %s Link is Down\n",
1007 bnx2_xceiver_str(bp
));
1010 bnx2_report_fw_link(bp
);
1014 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
1016 u32 local_adv
, remote_adv
;
1019 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1020 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1022 if (bp
->duplex
== DUPLEX_FULL
) {
1023 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1028 if (bp
->duplex
!= DUPLEX_FULL
) {
1032 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1033 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
1036 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1037 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
1038 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1039 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
1040 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1044 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1045 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1047 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1048 u32 new_local_adv
= 0;
1049 u32 new_remote_adv
= 0;
1051 if (local_adv
& ADVERTISE_1000XPAUSE
)
1052 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
1053 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
1054 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
1055 if (remote_adv
& ADVERTISE_1000XPAUSE
)
1056 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
1057 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
1058 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
1060 local_adv
= new_local_adv
;
1061 remote_adv
= new_remote_adv
;
1064 /* See Table 28B-3 of 802.3ab-1999 spec. */
1065 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
1066 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
1067 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1068 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1070 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
1071 bp
->flow_ctrl
= FLOW_CTRL_RX
;
1075 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1076 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1080 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
1081 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
1082 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
1084 bp
->flow_ctrl
= FLOW_CTRL_TX
;
1090 bnx2_5709s_linkup(struct bnx2
*bp
)
1096 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
1097 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
1098 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1100 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
1101 bp
->line_speed
= bp
->req_line_speed
;
1102 bp
->duplex
= bp
->req_duplex
;
1105 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
1107 case MII_BNX2_GP_TOP_AN_SPEED_10
:
1108 bp
->line_speed
= SPEED_10
;
1110 case MII_BNX2_GP_TOP_AN_SPEED_100
:
1111 bp
->line_speed
= SPEED_100
;
1113 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
1114 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
1115 bp
->line_speed
= SPEED_1000
;
1117 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
1118 bp
->line_speed
= SPEED_2500
;
1121 if (val
& MII_BNX2_GP_TOP_AN_FD
)
1122 bp
->duplex
= DUPLEX_FULL
;
1124 bp
->duplex
= DUPLEX_HALF
;
1129 bnx2_5708s_linkup(struct bnx2
*bp
)
1134 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1135 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
1136 case BCM5708S_1000X_STAT1_SPEED_10
:
1137 bp
->line_speed
= SPEED_10
;
1139 case BCM5708S_1000X_STAT1_SPEED_100
:
1140 bp
->line_speed
= SPEED_100
;
1142 case BCM5708S_1000X_STAT1_SPEED_1G
:
1143 bp
->line_speed
= SPEED_1000
;
1145 case BCM5708S_1000X_STAT1_SPEED_2G5
:
1146 bp
->line_speed
= SPEED_2500
;
1149 if (val
& BCM5708S_1000X_STAT1_FD
)
1150 bp
->duplex
= DUPLEX_FULL
;
1152 bp
->duplex
= DUPLEX_HALF
;
1158 bnx2_5706s_linkup(struct bnx2
*bp
)
1160 u32 bmcr
, local_adv
, remote_adv
, common
;
1163 bp
->line_speed
= SPEED_1000
;
1165 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1166 if (bmcr
& BMCR_FULLDPLX
) {
1167 bp
->duplex
= DUPLEX_FULL
;
1170 bp
->duplex
= DUPLEX_HALF
;
1173 if (!(bmcr
& BMCR_ANENABLE
)) {
1177 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1178 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1180 common
= local_adv
& remote_adv
;
1181 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
1183 if (common
& ADVERTISE_1000XFULL
) {
1184 bp
->duplex
= DUPLEX_FULL
;
1187 bp
->duplex
= DUPLEX_HALF
;
1195 bnx2_copper_linkup(struct bnx2
*bp
)
1199 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1200 if (bmcr
& BMCR_ANENABLE
) {
1201 u32 local_adv
, remote_adv
, common
;
1203 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
1204 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
1206 common
= local_adv
& (remote_adv
>> 2);
1207 if (common
& ADVERTISE_1000FULL
) {
1208 bp
->line_speed
= SPEED_1000
;
1209 bp
->duplex
= DUPLEX_FULL
;
1211 else if (common
& ADVERTISE_1000HALF
) {
1212 bp
->line_speed
= SPEED_1000
;
1213 bp
->duplex
= DUPLEX_HALF
;
1216 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1217 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1219 common
= local_adv
& remote_adv
;
1220 if (common
& ADVERTISE_100FULL
) {
1221 bp
->line_speed
= SPEED_100
;
1222 bp
->duplex
= DUPLEX_FULL
;
1224 else if (common
& ADVERTISE_100HALF
) {
1225 bp
->line_speed
= SPEED_100
;
1226 bp
->duplex
= DUPLEX_HALF
;
1228 else if (common
& ADVERTISE_10FULL
) {
1229 bp
->line_speed
= SPEED_10
;
1230 bp
->duplex
= DUPLEX_FULL
;
1232 else if (common
& ADVERTISE_10HALF
) {
1233 bp
->line_speed
= SPEED_10
;
1234 bp
->duplex
= DUPLEX_HALF
;
1243 if (bmcr
& BMCR_SPEED100
) {
1244 bp
->line_speed
= SPEED_100
;
1247 bp
->line_speed
= SPEED_10
;
1249 if (bmcr
& BMCR_FULLDPLX
) {
1250 bp
->duplex
= DUPLEX_FULL
;
1253 bp
->duplex
= DUPLEX_HALF
;
1261 bnx2_init_rx_context(struct bnx2
*bp
, u32 cid
)
1263 u32 val
, rx_cid_addr
= GET_CID_ADDR(cid
);
1265 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
1266 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
1269 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1270 val
|= BNX2_L2CTX_FLOW_CTRL_ENABLE
;
1272 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
1276 bnx2_init_all_rx_contexts(struct bnx2
*bp
)
1281 for (i
= 0, cid
= RX_CID
; i
< bp
->num_rx_rings
; i
++, cid
++) {
1284 bnx2_init_rx_context(bp
, cid
);
1289 bnx2_set_mac_link(struct bnx2
*bp
)
1293 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
1294 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
1295 (bp
->duplex
== DUPLEX_HALF
)) {
1296 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
1299 /* Configure the EMAC mode register. */
1300 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
1302 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1303 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1304 BNX2_EMAC_MODE_25G_MODE
);
1307 switch (bp
->line_speed
) {
1309 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
1310 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1315 val
|= BNX2_EMAC_MODE_PORT_MII
;
1318 val
|= BNX2_EMAC_MODE_25G_MODE
;
1321 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1326 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1329 /* Set the MAC to operate in the appropriate duplex mode. */
1330 if (bp
->duplex
== DUPLEX_HALF
)
1331 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1332 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
1334 /* Enable/disable rx PAUSE. */
1335 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1337 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1338 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1339 REG_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1341 /* Enable/disable tx PAUSE. */
1342 val
= REG_RD(bp
, BNX2_EMAC_TX_MODE
);
1343 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1345 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1346 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1347 REG_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1349 /* Acknowledge the interrupt. */
1350 REG_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1352 bnx2_init_all_rx_contexts(bp
);
1356 bnx2_enable_bmsr1(struct bnx2
*bp
)
1358 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1359 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1360 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1361 MII_BNX2_BLK_ADDR_GP_STATUS
);
1365 bnx2_disable_bmsr1(struct bnx2
*bp
)
1367 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1368 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1369 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1370 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1374 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1379 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1382 if (bp
->autoneg
& AUTONEG_SPEED
)
1383 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1385 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1386 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1388 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1389 if (!(up1
& BCM5708S_UP1_2G5
)) {
1390 up1
|= BCM5708S_UP1_2G5
;
1391 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1395 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1396 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1397 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1403 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1408 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1411 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1412 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1414 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1415 if (up1
& BCM5708S_UP1_2G5
) {
1416 up1
&= ~BCM5708S_UP1_2G5
;
1417 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1421 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1422 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1423 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1429 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1431 u32
uninitialized_var(bmcr
);
1434 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1437 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1440 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1441 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1442 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1443 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1444 val
|= MII_BNX2_SD_MISC1_FORCE
|
1445 MII_BNX2_SD_MISC1_FORCE_2_5G
;
1446 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1449 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1450 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1451 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1453 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1454 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1456 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1464 if (bp
->autoneg
& AUTONEG_SPEED
) {
1465 bmcr
&= ~BMCR_ANENABLE
;
1466 if (bp
->req_duplex
== DUPLEX_FULL
)
1467 bmcr
|= BMCR_FULLDPLX
;
1469 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1473 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1475 u32
uninitialized_var(bmcr
);
1478 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1481 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1484 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1485 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1486 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1487 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1488 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1491 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1492 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1493 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1495 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1496 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1498 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1506 if (bp
->autoneg
& AUTONEG_SPEED
)
1507 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1508 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1512 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1516 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1517 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1519 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1521 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1525 bnx2_set_link(struct bnx2
*bp
)
1530 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1535 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1538 link_up
= bp
->link_up
;
1540 bnx2_enable_bmsr1(bp
);
1541 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1542 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1543 bnx2_disable_bmsr1(bp
);
1545 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1546 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
1549 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1550 bnx2_5706s_force_link_dn(bp
, 0);
1551 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1553 val
= REG_RD(bp
, BNX2_EMAC_STATUS
);
1555 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
1556 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1557 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1559 if ((val
& BNX2_EMAC_STATUS_LINK
) &&
1560 !(an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
))
1561 bmsr
|= BMSR_LSTATUS
;
1563 bmsr
&= ~BMSR_LSTATUS
;
1566 if (bmsr
& BMSR_LSTATUS
) {
1569 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1570 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1571 bnx2_5706s_linkup(bp
);
1572 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
1573 bnx2_5708s_linkup(bp
);
1574 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1575 bnx2_5709s_linkup(bp
);
1578 bnx2_copper_linkup(bp
);
1580 bnx2_resolve_flow_ctrl(bp
);
1583 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1584 (bp
->autoneg
& AUTONEG_SPEED
))
1585 bnx2_disable_forced_2g5(bp
);
1587 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1590 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1591 bmcr
|= BMCR_ANENABLE
;
1592 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1594 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1599 if (bp
->link_up
!= link_up
) {
1600 bnx2_report_link(bp
);
1603 bnx2_set_mac_link(bp
);
1609 bnx2_reset_phy(struct bnx2
*bp
)
1614 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1616 #define PHY_RESET_MAX_WAIT 100
1617 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1620 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1621 if (!(reg
& BMCR_RESET
)) {
1626 if (i
== PHY_RESET_MAX_WAIT
) {
1633 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1637 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1638 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1640 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1641 adv
= ADVERTISE_1000XPAUSE
;
1644 adv
= ADVERTISE_PAUSE_CAP
;
1647 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1648 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1649 adv
= ADVERTISE_1000XPSE_ASYM
;
1652 adv
= ADVERTISE_PAUSE_ASYM
;
1655 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1656 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1657 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1660 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1666 static int bnx2_fw_sync(struct bnx2
*, u32
, int, int);
1669 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1670 __releases(&bp
->phy_lock
)
1671 __acquires(&bp
->phy_lock
)
1673 u32 speed_arg
= 0, pause_adv
;
1675 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1677 if (bp
->autoneg
& AUTONEG_SPEED
) {
1678 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1679 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1680 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1681 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1682 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1683 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1684 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1685 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1686 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1687 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1688 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1689 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1690 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1692 if (bp
->req_line_speed
== SPEED_2500
)
1693 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1694 else if (bp
->req_line_speed
== SPEED_1000
)
1695 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1696 else if (bp
->req_line_speed
== SPEED_100
) {
1697 if (bp
->req_duplex
== DUPLEX_FULL
)
1698 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1700 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1701 } else if (bp
->req_line_speed
== SPEED_10
) {
1702 if (bp
->req_duplex
== DUPLEX_FULL
)
1703 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1705 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1709 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1710 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1711 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_PAUSE_ASYM
))
1712 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1714 if (port
== PORT_TP
)
1715 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1716 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1718 bnx2_shmem_wr(bp
, BNX2_DRV_MB_ARG0
, speed_arg
);
1720 spin_unlock_bh(&bp
->phy_lock
);
1721 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 1, 0);
1722 spin_lock_bh(&bp
->phy_lock
);
1728 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1729 __releases(&bp
->phy_lock
)
1730 __acquires(&bp
->phy_lock
)
1735 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1736 return bnx2_setup_remote_phy(bp
, port
);
1738 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1740 int force_link_down
= 0;
1742 if (bp
->req_line_speed
== SPEED_2500
) {
1743 if (!bnx2_test_and_enable_2g5(bp
))
1744 force_link_down
= 1;
1745 } else if (bp
->req_line_speed
== SPEED_1000
) {
1746 if (bnx2_test_and_disable_2g5(bp
))
1747 force_link_down
= 1;
1749 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1750 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1752 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1753 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1754 new_bmcr
|= BMCR_SPEED1000
;
1756 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1757 if (bp
->req_line_speed
== SPEED_2500
)
1758 bnx2_enable_forced_2g5(bp
);
1759 else if (bp
->req_line_speed
== SPEED_1000
) {
1760 bnx2_disable_forced_2g5(bp
);
1761 new_bmcr
&= ~0x2000;
1764 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1765 if (bp
->req_line_speed
== SPEED_2500
)
1766 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1768 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1771 if (bp
->req_duplex
== DUPLEX_FULL
) {
1772 adv
|= ADVERTISE_1000XFULL
;
1773 new_bmcr
|= BMCR_FULLDPLX
;
1776 adv
|= ADVERTISE_1000XHALF
;
1777 new_bmcr
&= ~BMCR_FULLDPLX
;
1779 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1780 /* Force a link down visible on the other side */
1782 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1783 ~(ADVERTISE_1000XFULL
|
1784 ADVERTISE_1000XHALF
));
1785 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1786 BMCR_ANRESTART
| BMCR_ANENABLE
);
1789 netif_carrier_off(bp
->dev
);
1790 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1791 bnx2_report_link(bp
);
1793 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1794 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1796 bnx2_resolve_flow_ctrl(bp
);
1797 bnx2_set_mac_link(bp
);
1802 bnx2_test_and_enable_2g5(bp
);
1804 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1805 new_adv
|= ADVERTISE_1000XFULL
;
1807 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1809 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1810 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1812 bp
->serdes_an_pending
= 0;
1813 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1814 /* Force a link down visible on the other side */
1816 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1817 spin_unlock_bh(&bp
->phy_lock
);
1819 spin_lock_bh(&bp
->phy_lock
);
1822 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1823 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1825 /* Speed up link-up time when the link partner
1826 * does not autonegotiate which is very common
1827 * in blade servers. Some blade servers use
1828 * IPMI for kerboard input and it's important
1829 * to minimize link disruptions. Autoneg. involves
1830 * exchanging base pages plus 3 next pages and
1831 * normally completes in about 120 msec.
1833 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
1834 bp
->serdes_an_pending
= 1;
1835 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1837 bnx2_resolve_flow_ctrl(bp
);
1838 bnx2_set_mac_link(bp
);
1844 #define ETHTOOL_ALL_FIBRE_SPEED \
1845 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1846 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1847 (ADVERTISED_1000baseT_Full)
1849 #define ETHTOOL_ALL_COPPER_SPEED \
1850 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1851 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1852 ADVERTISED_1000baseT_Full)
1854 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1855 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1857 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1860 bnx2_set_default_remote_link(struct bnx2
*bp
)
1864 if (bp
->phy_port
== PORT_TP
)
1865 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_COPPER_LINK
);
1867 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_SERDES_LINK
);
1869 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1870 bp
->req_line_speed
= 0;
1871 bp
->autoneg
|= AUTONEG_SPEED
;
1872 bp
->advertising
= ADVERTISED_Autoneg
;
1873 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1874 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1875 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1876 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1877 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1878 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1879 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1880 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1881 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1882 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1883 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1884 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1887 bp
->advertising
= 0;
1888 bp
->req_duplex
= DUPLEX_FULL
;
1889 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1890 bp
->req_line_speed
= SPEED_10
;
1891 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1892 bp
->req_duplex
= DUPLEX_HALF
;
1894 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1895 bp
->req_line_speed
= SPEED_100
;
1896 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1897 bp
->req_duplex
= DUPLEX_HALF
;
1899 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1900 bp
->req_line_speed
= SPEED_1000
;
1901 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1902 bp
->req_line_speed
= SPEED_2500
;
1907 bnx2_set_default_link(struct bnx2
*bp
)
1909 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
1910 bnx2_set_default_remote_link(bp
);
1914 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1915 bp
->req_line_speed
= 0;
1916 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1919 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1921 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
);
1922 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1923 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1925 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1926 bp
->req_duplex
= DUPLEX_FULL
;
1929 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1933 bnx2_send_heart_beat(struct bnx2
*bp
)
1938 spin_lock(&bp
->indirect_lock
);
1939 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1940 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1941 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1942 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1943 spin_unlock(&bp
->indirect_lock
);
1947 bnx2_remote_phy_event(struct bnx2
*bp
)
1950 u8 link_up
= bp
->link_up
;
1953 msg
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
1955 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1956 bnx2_send_heart_beat(bp
);
1958 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1960 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1966 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1967 bp
->duplex
= DUPLEX_FULL
;
1969 case BNX2_LINK_STATUS_10HALF
:
1970 bp
->duplex
= DUPLEX_HALF
;
1971 case BNX2_LINK_STATUS_10FULL
:
1972 bp
->line_speed
= SPEED_10
;
1974 case BNX2_LINK_STATUS_100HALF
:
1975 bp
->duplex
= DUPLEX_HALF
;
1976 case BNX2_LINK_STATUS_100BASE_T4
:
1977 case BNX2_LINK_STATUS_100FULL
:
1978 bp
->line_speed
= SPEED_100
;
1980 case BNX2_LINK_STATUS_1000HALF
:
1981 bp
->duplex
= DUPLEX_HALF
;
1982 case BNX2_LINK_STATUS_1000FULL
:
1983 bp
->line_speed
= SPEED_1000
;
1985 case BNX2_LINK_STATUS_2500HALF
:
1986 bp
->duplex
= DUPLEX_HALF
;
1987 case BNX2_LINK_STATUS_2500FULL
:
1988 bp
->line_speed
= SPEED_2500
;
1996 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1997 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1998 if (bp
->duplex
== DUPLEX_FULL
)
1999 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
2001 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
2002 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
2003 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
2004 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
2007 old_port
= bp
->phy_port
;
2008 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
2009 bp
->phy_port
= PORT_FIBRE
;
2011 bp
->phy_port
= PORT_TP
;
2013 if (old_port
!= bp
->phy_port
)
2014 bnx2_set_default_link(bp
);
2017 if (bp
->link_up
!= link_up
)
2018 bnx2_report_link(bp
);
2020 bnx2_set_mac_link(bp
);
2024 bnx2_set_remote_link(struct bnx2
*bp
)
2028 evt_code
= bnx2_shmem_rd(bp
, BNX2_FW_EVT_CODE_MB
);
2030 case BNX2_FW_EVT_CODE_LINK_EVENT
:
2031 bnx2_remote_phy_event(bp
);
2033 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
2035 bnx2_send_heart_beat(bp
);
2042 bnx2_setup_copper_phy(struct bnx2
*bp
)
2043 __releases(&bp
->phy_lock
)
2044 __acquires(&bp
->phy_lock
)
2049 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
2051 if (bp
->autoneg
& AUTONEG_SPEED
) {
2052 u32 adv_reg
, adv1000_reg
;
2053 u32 new_adv_reg
= 0;
2054 u32 new_adv1000_reg
= 0;
2056 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
2057 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
2058 ADVERTISE_PAUSE_ASYM
);
2060 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
2061 adv1000_reg
&= PHY_ALL_1000_SPEED
;
2063 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
2064 new_adv_reg
|= ADVERTISE_10HALF
;
2065 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
2066 new_adv_reg
|= ADVERTISE_10FULL
;
2067 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
2068 new_adv_reg
|= ADVERTISE_100HALF
;
2069 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
2070 new_adv_reg
|= ADVERTISE_100FULL
;
2071 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
2072 new_adv1000_reg
|= ADVERTISE_1000FULL
;
2074 new_adv_reg
|= ADVERTISE_CSMA
;
2076 new_adv_reg
|= bnx2_phy_get_pause_adv(bp
);
2078 if ((adv1000_reg
!= new_adv1000_reg
) ||
2079 (adv_reg
!= new_adv_reg
) ||
2080 ((bmcr
& BMCR_ANENABLE
) == 0)) {
2082 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv_reg
);
2083 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000_reg
);
2084 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
2087 else if (bp
->link_up
) {
2088 /* Flow ctrl may have changed from auto to forced */
2089 /* or vice-versa. */
2091 bnx2_resolve_flow_ctrl(bp
);
2092 bnx2_set_mac_link(bp
);
2098 if (bp
->req_line_speed
== SPEED_100
) {
2099 new_bmcr
|= BMCR_SPEED100
;
2101 if (bp
->req_duplex
== DUPLEX_FULL
) {
2102 new_bmcr
|= BMCR_FULLDPLX
;
2104 if (new_bmcr
!= bmcr
) {
2107 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2108 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2110 if (bmsr
& BMSR_LSTATUS
) {
2111 /* Force link down */
2112 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
2113 spin_unlock_bh(&bp
->phy_lock
);
2115 spin_lock_bh(&bp
->phy_lock
);
2117 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2118 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2121 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
2123 /* Normally, the new speed is setup after the link has
2124 * gone down and up again. In some cases, link will not go
2125 * down so we need to set up the new speed here.
2127 if (bmsr
& BMSR_LSTATUS
) {
2128 bp
->line_speed
= bp
->req_line_speed
;
2129 bp
->duplex
= bp
->req_duplex
;
2130 bnx2_resolve_flow_ctrl(bp
);
2131 bnx2_set_mac_link(bp
);
2134 bnx2_resolve_flow_ctrl(bp
);
2135 bnx2_set_mac_link(bp
);
2141 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
2142 __releases(&bp
->phy_lock
)
2143 __acquires(&bp
->phy_lock
)
2145 if (bp
->loopback
== MAC_LOOPBACK
)
2148 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2149 return bnx2_setup_serdes_phy(bp
, port
);
2152 return bnx2_setup_copper_phy(bp
);
2157 bnx2_init_5709s_phy(struct bnx2
*bp
, int reset_phy
)
2161 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
2162 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
2163 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
2164 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
2165 bp
->mii_lpa
= MII_LPA
+ 0x10;
2166 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
2168 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
2169 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
2171 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2175 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
2177 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
2178 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
2179 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
2180 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
2182 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
2183 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
2184 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
2185 val
|= BCM5708S_UP1_2G5
;
2187 val
&= ~BCM5708S_UP1_2G5
;
2188 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
2190 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
2191 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
2192 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
2193 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
2195 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
2197 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
2198 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
2199 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
2201 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2207 bnx2_init_5708s_phy(struct bnx2
*bp
, int reset_phy
)
2214 bp
->mii_up1
= BCM5708S_UP1
;
2216 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
2217 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
2218 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2220 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
2221 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
2222 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
2224 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
2225 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
2226 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
2228 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
2229 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
2230 val
|= BCM5708S_UP1_2G5
;
2231 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
2234 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
2235 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
2236 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
2237 /* increase tx signal amplitude */
2238 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2239 BCM5708S_BLK_ADDR_TX_MISC
);
2240 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
2241 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
2242 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
2243 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2246 val
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
) &
2247 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
2252 is_backplane
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
2253 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
2254 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2255 BCM5708S_BLK_ADDR_TX_MISC
);
2256 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
2257 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2258 BCM5708S_BLK_ADDR_DIG
);
2265 bnx2_init_5706s_phy(struct bnx2
*bp
, int reset_phy
)
2270 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
2272 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2273 REG_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
2275 if (bp
->dev
->mtu
> 1500) {
2278 /* Set extended packet length bit */
2279 bnx2_write_phy(bp
, 0x18, 0x7);
2280 bnx2_read_phy(bp
, 0x18, &val
);
2281 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
2283 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2284 bnx2_read_phy(bp
, 0x1c, &val
);
2285 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
2290 bnx2_write_phy(bp
, 0x18, 0x7);
2291 bnx2_read_phy(bp
, 0x18, &val
);
2292 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2294 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2295 bnx2_read_phy(bp
, 0x1c, &val
);
2296 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
2303 bnx2_init_copper_phy(struct bnx2
*bp
, int reset_phy
)
2310 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
2311 bnx2_write_phy(bp
, 0x18, 0x0c00);
2312 bnx2_write_phy(bp
, 0x17, 0x000a);
2313 bnx2_write_phy(bp
, 0x15, 0x310b);
2314 bnx2_write_phy(bp
, 0x17, 0x201f);
2315 bnx2_write_phy(bp
, 0x15, 0x9506);
2316 bnx2_write_phy(bp
, 0x17, 0x401f);
2317 bnx2_write_phy(bp
, 0x15, 0x14e2);
2318 bnx2_write_phy(bp
, 0x18, 0x0400);
2321 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
2322 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
2323 MII_BNX2_DSP_EXPAND_REG
| 0x8);
2324 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
2326 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
2329 if (bp
->dev
->mtu
> 1500) {
2330 /* Set extended packet length bit */
2331 bnx2_write_phy(bp
, 0x18, 0x7);
2332 bnx2_read_phy(bp
, 0x18, &val
);
2333 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
2335 bnx2_read_phy(bp
, 0x10, &val
);
2336 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2339 bnx2_write_phy(bp
, 0x18, 0x7);
2340 bnx2_read_phy(bp
, 0x18, &val
);
2341 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2343 bnx2_read_phy(bp
, 0x10, &val
);
2344 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2347 /* ethernet@wirespeed */
2348 bnx2_write_phy(bp
, 0x18, 0x7007);
2349 bnx2_read_phy(bp
, 0x18, &val
);
2350 bnx2_write_phy(bp
, 0x18, val
| (1 << 15) | (1 << 4));
2356 bnx2_init_phy(struct bnx2
*bp
, int reset_phy
)
2357 __releases(&bp
->phy_lock
)
2358 __acquires(&bp
->phy_lock
)
2363 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2364 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2366 bp
->mii_bmcr
= MII_BMCR
;
2367 bp
->mii_bmsr
= MII_BMSR
;
2368 bp
->mii_bmsr1
= MII_BMSR
;
2369 bp
->mii_adv
= MII_ADVERTISE
;
2370 bp
->mii_lpa
= MII_LPA
;
2372 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2374 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2377 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2378 bp
->phy_id
= val
<< 16;
2379 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2380 bp
->phy_id
|= val
& 0xffff;
2382 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2383 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2384 rc
= bnx2_init_5706s_phy(bp
, reset_phy
);
2385 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
2386 rc
= bnx2_init_5708s_phy(bp
, reset_phy
);
2387 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2388 rc
= bnx2_init_5709s_phy(bp
, reset_phy
);
2391 rc
= bnx2_init_copper_phy(bp
, reset_phy
);
2396 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2402 bnx2_set_mac_loopback(struct bnx2
*bp
)
2406 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2407 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2408 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2409 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2414 static int bnx2_test_link(struct bnx2
*);
2417 bnx2_set_phy_loopback(struct bnx2
*bp
)
2422 spin_lock_bh(&bp
->phy_lock
);
2423 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2425 spin_unlock_bh(&bp
->phy_lock
);
2429 for (i
= 0; i
< 10; i
++) {
2430 if (bnx2_test_link(bp
) == 0)
2435 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2436 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2437 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2438 BNX2_EMAC_MODE_25G_MODE
);
2440 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2441 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2447 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int ack
, int silent
)
2453 msg_data
|= bp
->fw_wr_seq
;
2455 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2460 /* wait for an acknowledgement. */
2461 for (i
= 0; i
< (BNX2_FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2464 val
= bnx2_shmem_rd(bp
, BNX2_FW_MB
);
2466 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2469 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2472 /* If we timed out, inform the firmware that this is the case. */
2473 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2475 pr_err("fw sync timeout, reset code = %x\n", msg_data
);
2477 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2478 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2480 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2485 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2492 bnx2_init_5709_context(struct bnx2
*bp
)
2497 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2498 val
|= (BCM_PAGE_BITS
- 8) << 16;
2499 REG_WR(bp
, BNX2_CTX_COMMAND
, val
);
2500 for (i
= 0; i
< 10; i
++) {
2501 val
= REG_RD(bp
, BNX2_CTX_COMMAND
);
2502 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2506 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2509 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2513 memset(bp
->ctx_blk
[i
], 0, BCM_PAGE_SIZE
);
2517 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2518 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2519 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2520 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2521 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2522 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2523 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2524 for (j
= 0; j
< 10; j
++) {
2526 val
= REG_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2527 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2531 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2540 bnx2_init_context(struct bnx2
*bp
)
2546 u32 vcid_addr
, pcid_addr
, offset
;
2551 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2554 vcid_addr
= GET_PCID_ADDR(vcid
);
2556 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2561 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2564 vcid_addr
= GET_CID_ADDR(vcid
);
2565 pcid_addr
= vcid_addr
;
2568 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2569 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2570 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2572 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2573 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2575 /* Zero out the context. */
2576 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2577 bnx2_ctx_wr(bp
, vcid_addr
, offset
, 0);
2583 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2589 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
2590 if (good_mbuf
== NULL
) {
2591 pr_err("Failed to allocate memory in %s\n", __func__
);
2595 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2596 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2600 /* Allocate a bunch of mbufs and save the good ones in an array. */
2601 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2602 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2603 bnx2_reg_wr_ind(bp
, BNX2_RBUF_COMMAND
,
2604 BNX2_RBUF_COMMAND_ALLOC_REQ
);
2606 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2608 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2610 /* The addresses with Bit 9 set are bad memory blocks. */
2611 if (!(val
& (1 << 9))) {
2612 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2616 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2619 /* Free the good ones back to the mbuf pool thus discarding
2620 * all the bad ones. */
2621 while (good_mbuf_cnt
) {
2624 val
= good_mbuf
[good_mbuf_cnt
];
2625 val
= (val
<< 9) | val
| 1;
2627 bnx2_reg_wr_ind(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2634 bnx2_set_mac_addr(struct bnx2
*bp
, u8
*mac_addr
, u32 pos
)
2638 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2640 REG_WR(bp
, BNX2_EMAC_MAC_MATCH0
+ (pos
* 8), val
);
2642 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2643 (mac_addr
[4] << 8) | mac_addr
[5];
2645 REG_WR(bp
, BNX2_EMAC_MAC_MATCH1
+ (pos
* 8), val
);
2649 bnx2_alloc_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2652 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2653 struct rx_bd
*rxbd
=
2654 &rxr
->rx_pg_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2655 struct page
*page
= alloc_page(gfp
);
2659 mapping
= dma_map_page(&bp
->pdev
->dev
, page
, 0, PAGE_SIZE
,
2660 PCI_DMA_FROMDEVICE
);
2661 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2667 dma_unmap_addr_set(rx_pg
, mapping
, mapping
);
2668 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2669 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2674 bnx2_free_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2676 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2677 struct page
*page
= rx_pg
->page
;
2682 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(rx_pg
, mapping
),
2683 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2690 bnx2_alloc_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2692 struct sk_buff
*skb
;
2693 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[index
];
2695 struct rx_bd
*rxbd
= &rxr
->rx_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2696 unsigned long align
;
2698 skb
= __netdev_alloc_skb(bp
->dev
, bp
->rx_buf_size
, gfp
);
2703 if (unlikely((align
= (unsigned long) skb
->data
& (BNX2_RX_ALIGN
- 1))))
2704 skb_reserve(skb
, BNX2_RX_ALIGN
- align
);
2706 mapping
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, bp
->rx_buf_use_size
,
2707 PCI_DMA_FROMDEVICE
);
2708 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2714 rx_buf
->desc
= (struct l2_fhdr
*) skb
->data
;
2715 dma_unmap_addr_set(rx_buf
, mapping
, mapping
);
2717 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2718 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2720 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2726 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2728 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
2729 u32 new_link_state
, old_link_state
;
2732 new_link_state
= sblk
->status_attn_bits
& event
;
2733 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2734 if (new_link_state
!= old_link_state
) {
2736 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2738 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2746 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2748 spin_lock(&bp
->phy_lock
);
2750 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
))
2752 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2753 bnx2_set_remote_link(bp
);
2755 spin_unlock(&bp
->phy_lock
);
2760 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2764 /* Tell compiler that status block fields can change. */
2766 cons
= *bnapi
->hw_tx_cons_ptr
;
2768 if (unlikely((cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
))
2774 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2776 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
2777 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2778 int tx_pkt
= 0, index
;
2779 struct netdev_queue
*txq
;
2781 index
= (bnapi
- bp
->bnx2_napi
);
2782 txq
= netdev_get_tx_queue(bp
->dev
, index
);
2784 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2785 sw_cons
= txr
->tx_cons
;
2787 while (sw_cons
!= hw_cons
) {
2788 struct sw_tx_bd
*tx_buf
;
2789 struct sk_buff
*skb
;
2792 sw_ring_cons
= TX_RING_IDX(sw_cons
);
2794 tx_buf
= &txr
->tx_buf_ring
[sw_ring_cons
];
2797 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2798 prefetch(&skb
->end
);
2800 /* partial BD completions possible with TSO packets */
2801 if (tx_buf
->is_gso
) {
2802 u16 last_idx
, last_ring_idx
;
2804 last_idx
= sw_cons
+ tx_buf
->nr_frags
+ 1;
2805 last_ring_idx
= sw_ring_cons
+ tx_buf
->nr_frags
+ 1;
2806 if (unlikely(last_ring_idx
>= MAX_TX_DESC_CNT
)) {
2809 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2814 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
2815 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2818 last
= tx_buf
->nr_frags
;
2820 for (i
= 0; i
< last
; i
++) {
2821 sw_cons
= NEXT_TX_BD(sw_cons
);
2823 dma_unmap_page(&bp
->pdev
->dev
,
2825 &txr
->tx_buf_ring
[TX_RING_IDX(sw_cons
)],
2827 skb_shinfo(skb
)->frags
[i
].size
,
2831 sw_cons
= NEXT_TX_BD(sw_cons
);
2835 if (tx_pkt
== budget
)
2838 if (hw_cons
== sw_cons
)
2839 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2842 txr
->hw_tx_cons
= hw_cons
;
2843 txr
->tx_cons
= sw_cons
;
2845 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2846 * before checking for netif_tx_queue_stopped(). Without the
2847 * memory barrier, there is a small possibility that bnx2_start_xmit()
2848 * will miss it and cause the queue to be stopped forever.
2852 if (unlikely(netif_tx_queue_stopped(txq
)) &&
2853 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
2854 __netif_tx_lock(txq
, smp_processor_id());
2855 if ((netif_tx_queue_stopped(txq
)) &&
2856 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
))
2857 netif_tx_wake_queue(txq
);
2858 __netif_tx_unlock(txq
);
2865 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2866 struct sk_buff
*skb
, int count
)
2868 struct sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2869 struct rx_bd
*cons_bd
, *prod_bd
;
2872 u16 cons
= rxr
->rx_pg_cons
;
2874 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2876 /* The caller was unable to allocate a new page to replace the
2877 * last one in the frags array, so we need to recycle that page
2878 * and then free the skb.
2882 struct skb_shared_info
*shinfo
;
2884 shinfo
= skb_shinfo(skb
);
2886 page
= shinfo
->frags
[shinfo
->nr_frags
].page
;
2887 shinfo
->frags
[shinfo
->nr_frags
].page
= NULL
;
2889 cons_rx_pg
->page
= page
;
2893 hw_prod
= rxr
->rx_pg_prod
;
2895 for (i
= 0; i
< count
; i
++) {
2896 prod
= RX_PG_RING_IDX(hw_prod
);
2898 prod_rx_pg
= &rxr
->rx_pg_ring
[prod
];
2899 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2900 cons_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2901 prod_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2904 prod_rx_pg
->page
= cons_rx_pg
->page
;
2905 cons_rx_pg
->page
= NULL
;
2906 dma_unmap_addr_set(prod_rx_pg
, mapping
,
2907 dma_unmap_addr(cons_rx_pg
, mapping
));
2909 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2910 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2913 cons
= RX_PG_RING_IDX(NEXT_RX_BD(cons
));
2914 hw_prod
= NEXT_RX_BD(hw_prod
);
2916 rxr
->rx_pg_prod
= hw_prod
;
2917 rxr
->rx_pg_cons
= cons
;
2921 bnx2_reuse_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2922 struct sk_buff
*skb
, u16 cons
, u16 prod
)
2924 struct sw_bd
*cons_rx_buf
, *prod_rx_buf
;
2925 struct rx_bd
*cons_bd
, *prod_bd
;
2927 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
2928 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
2930 dma_sync_single_for_device(&bp
->pdev
->dev
,
2931 dma_unmap_addr(cons_rx_buf
, mapping
),
2932 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
2934 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2936 prod_rx_buf
->skb
= skb
;
2937 prod_rx_buf
->desc
= (struct l2_fhdr
*) skb
->data
;
2942 dma_unmap_addr_set(prod_rx_buf
, mapping
,
2943 dma_unmap_addr(cons_rx_buf
, mapping
));
2945 cons_bd
= &rxr
->rx_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2946 prod_bd
= &rxr
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2947 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2948 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2952 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, struct sk_buff
*skb
,
2953 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
2957 u16 prod
= ring_idx
& 0xffff;
2959 err
= bnx2_alloc_rx_skb(bp
, rxr
, prod
, GFP_ATOMIC
);
2960 if (unlikely(err
)) {
2961 bnx2_reuse_rx_skb(bp
, rxr
, skb
, (u16
) (ring_idx
>> 16), prod
);
2963 unsigned int raw_len
= len
+ 4;
2964 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
2966 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
2971 skb_reserve(skb
, BNX2_RX_OFFSET
);
2972 dma_unmap_single(&bp
->pdev
->dev
, dma_addr
, bp
->rx_buf_use_size
,
2973 PCI_DMA_FROMDEVICE
);
2979 unsigned int i
, frag_len
, frag_size
, pages
;
2980 struct sw_pg
*rx_pg
;
2981 u16 pg_cons
= rxr
->rx_pg_cons
;
2982 u16 pg_prod
= rxr
->rx_pg_prod
;
2984 frag_size
= len
+ 4 - hdr_len
;
2985 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
2986 skb_put(skb
, hdr_len
);
2988 for (i
= 0; i
< pages
; i
++) {
2989 dma_addr_t mapping_old
;
2991 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
2992 if (unlikely(frag_len
<= 4)) {
2993 unsigned int tail
= 4 - frag_len
;
2995 rxr
->rx_pg_cons
= pg_cons
;
2996 rxr
->rx_pg_prod
= pg_prod
;
2997 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
,
3004 &skb_shinfo(skb
)->frags
[i
- 1];
3006 skb
->data_len
-= tail
;
3007 skb
->truesize
-= tail
;
3011 rx_pg
= &rxr
->rx_pg_ring
[pg_cons
];
3013 /* Don't unmap yet. If we're unable to allocate a new
3014 * page, we need to recycle the page and the DMA addr.
3016 mapping_old
= dma_unmap_addr(rx_pg
, mapping
);
3020 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
3023 err
= bnx2_alloc_rx_page(bp
, rxr
,
3024 RX_PG_RING_IDX(pg_prod
),
3026 if (unlikely(err
)) {
3027 rxr
->rx_pg_cons
= pg_cons
;
3028 rxr
->rx_pg_prod
= pg_prod
;
3029 bnx2_reuse_rx_skb_pages(bp
, rxr
, skb
,
3034 dma_unmap_page(&bp
->pdev
->dev
, mapping_old
,
3035 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3037 frag_size
-= frag_len
;
3038 skb
->data_len
+= frag_len
;
3039 skb
->truesize
+= frag_len
;
3040 skb
->len
+= frag_len
;
3042 pg_prod
= NEXT_RX_BD(pg_prod
);
3043 pg_cons
= RX_PG_RING_IDX(NEXT_RX_BD(pg_cons
));
3045 rxr
->rx_pg_prod
= pg_prod
;
3046 rxr
->rx_pg_cons
= pg_cons
;
3052 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
3056 /* Tell compiler that status block fields can change. */
3058 cons
= *bnapi
->hw_rx_cons_ptr
;
3060 if (unlikely((cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
))
3066 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
3068 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3069 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
3070 struct l2_fhdr
*rx_hdr
;
3071 int rx_pkt
= 0, pg_ring_used
= 0;
3073 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3074 sw_cons
= rxr
->rx_cons
;
3075 sw_prod
= rxr
->rx_prod
;
3077 /* Memory barrier necessary as speculative reads of the rx
3078 * buffer can be ahead of the index in the status block
3081 while (sw_cons
!= hw_cons
) {
3082 unsigned int len
, hdr_len
;
3084 struct sw_bd
*rx_buf
, *next_rx_buf
;
3085 struct sk_buff
*skb
;
3086 dma_addr_t dma_addr
;
3088 sw_ring_cons
= RX_RING_IDX(sw_cons
);
3089 sw_ring_prod
= RX_RING_IDX(sw_prod
);
3091 rx_buf
= &rxr
->rx_buf_ring
[sw_ring_cons
];
3096 &rxr
->rx_buf_ring
[RX_RING_IDX(NEXT_RX_BD(sw_cons
))];
3097 prefetch(next_rx_buf
->desc
);
3101 dma_addr
= dma_unmap_addr(rx_buf
, mapping
);
3103 dma_sync_single_for_cpu(&bp
->pdev
->dev
, dma_addr
,
3104 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
,
3105 PCI_DMA_FROMDEVICE
);
3107 rx_hdr
= rx_buf
->desc
;
3108 len
= rx_hdr
->l2_fhdr_pkt_len
;
3109 status
= rx_hdr
->l2_fhdr_status
;
3112 if (status
& L2_FHDR_STATUS_SPLIT
) {
3113 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
3115 } else if (len
> bp
->rx_jumbo_thresh
) {
3116 hdr_len
= bp
->rx_jumbo_thresh
;
3120 if (unlikely(status
& (L2_FHDR_ERRORS_BAD_CRC
|
3121 L2_FHDR_ERRORS_PHY_DECODE
|
3122 L2_FHDR_ERRORS_ALIGNMENT
|
3123 L2_FHDR_ERRORS_TOO_SHORT
|
3124 L2_FHDR_ERRORS_GIANT_FRAME
))) {
3126 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
3131 pages
= PAGE_ALIGN(len
- hdr_len
) >> PAGE_SHIFT
;
3133 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3140 if (len
<= bp
->rx_copy_thresh
) {
3141 struct sk_buff
*new_skb
;
3143 new_skb
= netdev_alloc_skb(bp
->dev
, len
+ 6);
3144 if (new_skb
== NULL
) {
3145 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
3151 skb_copy_from_linear_data_offset(skb
,
3153 new_skb
->data
, len
+ 6);
3154 skb_reserve(new_skb
, 6);
3155 skb_put(new_skb
, len
);
3157 bnx2_reuse_rx_skb(bp
, rxr
, skb
,
3158 sw_ring_cons
, sw_ring_prod
);
3161 } else if (unlikely(bnx2_rx_skb(bp
, rxr
, skb
, len
, hdr_len
,
3162 dma_addr
, (sw_ring_cons
<< 16) | sw_ring_prod
)))
3165 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) &&
3166 !(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
))
3167 __vlan_hwaccel_put_tag(skb
, rx_hdr
->l2_fhdr_vlan_tag
);
3169 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
3171 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
3172 (ntohs(skb
->protocol
) != 0x8100)) {
3179 skb_checksum_none_assert(skb
);
3181 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
3182 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
3184 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
3185 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
3186 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3188 if ((bp
->dev
->features
& NETIF_F_RXHASH
) &&
3189 ((status
& L2_FHDR_STATUS_USE_RXHASH
) ==
3190 L2_FHDR_STATUS_USE_RXHASH
))
3191 skb
->rxhash
= rx_hdr
->l2_fhdr_hash
;
3193 skb_record_rx_queue(skb
, bnapi
- &bp
->bnx2_napi
[0]);
3194 napi_gro_receive(&bnapi
->napi
, skb
);
3198 sw_cons
= NEXT_RX_BD(sw_cons
);
3199 sw_prod
= NEXT_RX_BD(sw_prod
);
3201 if ((rx_pkt
== budget
))
3204 /* Refresh hw_cons to see if there is new work */
3205 if (sw_cons
== hw_cons
) {
3206 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3210 rxr
->rx_cons
= sw_cons
;
3211 rxr
->rx_prod
= sw_prod
;
3214 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
3216 REG_WR16(bp
, rxr
->rx_bidx_addr
, sw_prod
);
3218 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
3226 /* MSI ISR - The only difference between this and the INTx ISR
3227 * is that the MSI interrupt is always serviced.
3230 bnx2_msi(int irq
, void *dev_instance
)
3232 struct bnx2_napi
*bnapi
= dev_instance
;
3233 struct bnx2
*bp
= bnapi
->bp
;
3235 prefetch(bnapi
->status_blk
.msi
);
3236 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3237 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3238 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3240 /* Return here if interrupt is disabled. */
3241 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3244 napi_schedule(&bnapi
->napi
);
3250 bnx2_msi_1shot(int irq
, void *dev_instance
)
3252 struct bnx2_napi
*bnapi
= dev_instance
;
3253 struct bnx2
*bp
= bnapi
->bp
;
3255 prefetch(bnapi
->status_blk
.msi
);
3257 /* Return here if interrupt is disabled. */
3258 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3261 napi_schedule(&bnapi
->napi
);
3267 bnx2_interrupt(int irq
, void *dev_instance
)
3269 struct bnx2_napi
*bnapi
= dev_instance
;
3270 struct bnx2
*bp
= bnapi
->bp
;
3271 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3273 /* When using INTx, it is possible for the interrupt to arrive
3274 * at the CPU before the status block posted prior to the
3275 * interrupt. Reading a register will flush the status block.
3276 * When using MSI, the MSI message will always complete after
3277 * the status block write.
3279 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
3280 (REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
3281 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
3284 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3285 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3286 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3288 /* Read back to deassert IRQ immediately to avoid too many
3289 * spurious interrupts.
3291 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
3293 /* Return here if interrupt is shared and is disabled. */
3294 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3297 if (napi_schedule_prep(&bnapi
->napi
)) {
3298 bnapi
->last_status_idx
= sblk
->status_idx
;
3299 __napi_schedule(&bnapi
->napi
);
3306 bnx2_has_fast_work(struct bnx2_napi
*bnapi
)
3308 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3309 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3311 if ((bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
) ||
3312 (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
))
3317 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3318 STATUS_ATTN_BITS_TIMER_ABORT)
3321 bnx2_has_work(struct bnx2_napi
*bnapi
)
3323 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3325 if (bnx2_has_fast_work(bnapi
))
3329 if (bnapi
->cnic_present
&& (bnapi
->cnic_tag
!= sblk
->status_idx
))
3333 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3334 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
3341 bnx2_chk_missed_msi(struct bnx2
*bp
)
3343 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
3346 if (bnx2_has_work(bnapi
)) {
3347 msi_ctrl
= REG_RD(bp
, BNX2_PCICFG_MSI_CONTROL
);
3348 if (!(msi_ctrl
& BNX2_PCICFG_MSI_CONTROL_ENABLE
))
3351 if (bnapi
->last_status_idx
== bp
->idle_chk_status_idx
) {
3352 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
&
3353 ~BNX2_PCICFG_MSI_CONTROL_ENABLE
);
3354 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
);
3355 bnx2_msi(bp
->irq_tbl
[0].vector
, bnapi
);
3359 bp
->idle_chk_status_idx
= bnapi
->last_status_idx
;
3363 static void bnx2_poll_cnic(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3365 struct cnic_ops
*c_ops
;
3367 if (!bnapi
->cnic_present
)
3371 c_ops
= rcu_dereference(bp
->cnic_ops
);
3373 bnapi
->cnic_tag
= c_ops
->cnic_handler(bp
->cnic_data
,
3374 bnapi
->status_blk
.msi
);
3379 static void bnx2_poll_link(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3381 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3382 u32 status_attn_bits
= sblk
->status_attn_bits
;
3383 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
3385 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3386 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
3388 bnx2_phy_int(bp
, bnapi
);
3390 /* This is needed to take care of transient status
3391 * during link changes.
3393 REG_WR(bp
, BNX2_HC_COMMAND
,
3394 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3395 REG_RD(bp
, BNX2_HC_COMMAND
);
3399 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
3400 int work_done
, int budget
)
3402 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3403 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3405 if (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
)
3406 bnx2_tx_int(bp
, bnapi
, 0);
3408 if (bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
)
3409 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
3414 static int bnx2_poll_msix(struct napi_struct
*napi
, int budget
)
3416 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3417 struct bnx2
*bp
= bnapi
->bp
;
3419 struct status_block_msix
*sblk
= bnapi
->status_blk
.msix
;
3422 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3423 if (unlikely(work_done
>= budget
))
3426 bnapi
->last_status_idx
= sblk
->status_idx
;
3427 /* status idx must be read before checking for more work. */
3429 if (likely(!bnx2_has_fast_work(bnapi
))) {
3431 napi_complete(napi
);
3432 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
3433 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3434 bnapi
->last_status_idx
);
3441 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
3443 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3444 struct bnx2
*bp
= bnapi
->bp
;
3446 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3449 bnx2_poll_link(bp
, bnapi
);
3451 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3454 bnx2_poll_cnic(bp
, bnapi
);
3457 /* bnapi->last_status_idx is used below to tell the hw how
3458 * much work has been processed, so we must read it before
3459 * checking for more work.
3461 bnapi
->last_status_idx
= sblk
->status_idx
;
3463 if (unlikely(work_done
>= budget
))
3467 if (likely(!bnx2_has_work(bnapi
))) {
3468 napi_complete(napi
);
3469 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3470 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3471 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3472 bnapi
->last_status_idx
);
3475 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3476 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3477 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3478 bnapi
->last_status_idx
);
3480 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3481 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3482 bnapi
->last_status_idx
);
3490 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3491 * from set_multicast.
3494 bnx2_set_rx_mode(struct net_device
*dev
)
3496 struct bnx2
*bp
= netdev_priv(dev
);
3497 u32 rx_mode
, sort_mode
;
3498 struct netdev_hw_addr
*ha
;
3501 if (!netif_running(dev
))
3504 spin_lock_bh(&bp
->phy_lock
);
3506 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3507 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3508 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3509 if (!(dev
->features
& NETIF_F_HW_VLAN_RX
) &&
3510 (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
3511 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3512 if (dev
->flags
& IFF_PROMISC
) {
3513 /* Promiscuous mode. */
3514 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3515 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3516 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3518 else if (dev
->flags
& IFF_ALLMULTI
) {
3519 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3520 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3523 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3526 /* Accept one or more multicast(s). */
3527 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3532 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3534 netdev_for_each_mc_addr(ha
, dev
) {
3535 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
3537 regidx
= (bit
& 0xe0) >> 5;
3539 mc_filter
[regidx
] |= (1 << bit
);
3542 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3543 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3547 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3550 if (netdev_uc_count(dev
) > BNX2_MAX_UNICAST_ADDRESSES
) {
3551 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3552 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3553 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3554 } else if (!(dev
->flags
& IFF_PROMISC
)) {
3555 /* Add all entries into to the match filter list */
3557 netdev_for_each_uc_addr(ha
, dev
) {
3558 bnx2_set_mac_addr(bp
, ha
->addr
,
3559 i
+ BNX2_START_UNICAST_ADDRESS_INDEX
);
3561 (i
+ BNX2_START_UNICAST_ADDRESS_INDEX
));
3567 if (rx_mode
!= bp
->rx_mode
) {
3568 bp
->rx_mode
= rx_mode
;
3569 REG_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3572 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3573 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3574 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3576 spin_unlock_bh(&bp
->phy_lock
);
3579 static int __devinit
3580 check_fw_section(const struct firmware
*fw
,
3581 const struct bnx2_fw_file_section
*section
,
3582 u32 alignment
, bool non_empty
)
3584 u32 offset
= be32_to_cpu(section
->offset
);
3585 u32 len
= be32_to_cpu(section
->len
);
3587 if ((offset
== 0 && len
!= 0) || offset
>= fw
->size
|| offset
& 3)
3589 if ((non_empty
&& len
== 0) || len
> fw
->size
- offset
||
3590 len
& (alignment
- 1))
3595 static int __devinit
3596 check_mips_fw_entry(const struct firmware
*fw
,
3597 const struct bnx2_mips_fw_file_entry
*entry
)
3599 if (check_fw_section(fw
, &entry
->text
, 4, true) ||
3600 check_fw_section(fw
, &entry
->data
, 4, false) ||
3601 check_fw_section(fw
, &entry
->rodata
, 4, false))
3606 static int __devinit
3607 bnx2_request_firmware(struct bnx2
*bp
)
3609 const char *mips_fw_file
, *rv2p_fw_file
;
3610 const struct bnx2_mips_fw_file
*mips_fw
;
3611 const struct bnx2_rv2p_fw_file
*rv2p_fw
;
3614 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3615 mips_fw_file
= FW_MIPS_FILE_09
;
3616 if ((CHIP_ID(bp
) == CHIP_ID_5709_A0
) ||
3617 (CHIP_ID(bp
) == CHIP_ID_5709_A1
))
3618 rv2p_fw_file
= FW_RV2P_FILE_09_Ax
;
3620 rv2p_fw_file
= FW_RV2P_FILE_09
;
3622 mips_fw_file
= FW_MIPS_FILE_06
;
3623 rv2p_fw_file
= FW_RV2P_FILE_06
;
3626 rc
= request_firmware(&bp
->mips_firmware
, mips_fw_file
, &bp
->pdev
->dev
);
3628 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file
);
3632 rc
= request_firmware(&bp
->rv2p_firmware
, rv2p_fw_file
, &bp
->pdev
->dev
);
3634 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file
);
3637 mips_fw
= (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3638 rv2p_fw
= (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3639 if (bp
->mips_firmware
->size
< sizeof(*mips_fw
) ||
3640 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->com
) ||
3641 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->cp
) ||
3642 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->rxp
) ||
3643 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->tpat
) ||
3644 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->txp
)) {
3645 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file
);
3648 if (bp
->rv2p_firmware
->size
< sizeof(*rv2p_fw
) ||
3649 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc1
.rv2p
, 8, true) ||
3650 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc2
.rv2p
, 8, true)) {
3651 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file
);
3659 rv2p_fw_fixup(u32 rv2p_proc
, int idx
, u32 loc
, u32 rv2p_code
)
3662 case RV2P_P1_FIXUP_PAGE_SIZE_IDX
:
3663 rv2p_code
&= ~RV2P_BD_PAGE_SIZE_MSK
;
3664 rv2p_code
|= RV2P_BD_PAGE_SIZE
;
3671 load_rv2p_fw(struct bnx2
*bp
, u32 rv2p_proc
,
3672 const struct bnx2_rv2p_fw_file_entry
*fw_entry
)
3674 u32 rv2p_code_len
, file_offset
;
3679 rv2p_code_len
= be32_to_cpu(fw_entry
->rv2p
.len
);
3680 file_offset
= be32_to_cpu(fw_entry
->rv2p
.offset
);
3682 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3684 if (rv2p_proc
== RV2P_PROC1
) {
3685 cmd
= BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3686 addr
= BNX2_RV2P_PROC1_ADDR_CMD
;
3688 cmd
= BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3689 addr
= BNX2_RV2P_PROC2_ADDR_CMD
;
3692 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3693 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, be32_to_cpu(*rv2p_code
));
3695 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, be32_to_cpu(*rv2p_code
));
3698 val
= (i
/ 8) | cmd
;
3699 REG_WR(bp
, addr
, val
);
3702 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3703 for (i
= 0; i
< 8; i
++) {
3706 loc
= be32_to_cpu(fw_entry
->fixup
[i
]);
3707 if (loc
&& ((loc
* 4) < rv2p_code_len
)) {
3708 code
= be32_to_cpu(*(rv2p_code
+ loc
- 1));
3709 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, code
);
3710 code
= be32_to_cpu(*(rv2p_code
+ loc
));
3711 code
= rv2p_fw_fixup(rv2p_proc
, i
, loc
, code
);
3712 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, code
);
3714 val
= (loc
/ 2) | cmd
;
3715 REG_WR(bp
, addr
, val
);
3719 /* Reset the processor, un-stall is done later. */
3720 if (rv2p_proc
== RV2P_PROC1
) {
3721 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3724 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3731 load_cpu_fw(struct bnx2
*bp
, const struct cpu_reg
*cpu_reg
,
3732 const struct bnx2_mips_fw_file_entry
*fw_entry
)
3734 u32 addr
, len
, file_offset
;
3740 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3741 val
|= cpu_reg
->mode_value_halt
;
3742 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3743 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3745 /* Load the Text area. */
3746 addr
= be32_to_cpu(fw_entry
->text
.addr
);
3747 len
= be32_to_cpu(fw_entry
->text
.len
);
3748 file_offset
= be32_to_cpu(fw_entry
->text
.offset
);
3749 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3751 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3755 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3756 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3759 /* Load the Data area. */
3760 addr
= be32_to_cpu(fw_entry
->data
.addr
);
3761 len
= be32_to_cpu(fw_entry
->data
.len
);
3762 file_offset
= be32_to_cpu(fw_entry
->data
.offset
);
3763 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3765 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3769 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3770 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3773 /* Load the Read-Only area. */
3774 addr
= be32_to_cpu(fw_entry
->rodata
.addr
);
3775 len
= be32_to_cpu(fw_entry
->rodata
.len
);
3776 file_offset
= be32_to_cpu(fw_entry
->rodata
.offset
);
3777 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3779 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3783 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3784 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3787 /* Clear the pre-fetch instruction. */
3788 bnx2_reg_wr_ind(bp
, cpu_reg
->inst
, 0);
3790 val
= be32_to_cpu(fw_entry
->start_addr
);
3791 bnx2_reg_wr_ind(bp
, cpu_reg
->pc
, val
);
3793 /* Start the CPU. */
3794 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3795 val
&= ~cpu_reg
->mode_value_halt
;
3796 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3797 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3803 bnx2_init_cpus(struct bnx2
*bp
)
3805 const struct bnx2_mips_fw_file
*mips_fw
=
3806 (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3807 const struct bnx2_rv2p_fw_file
*rv2p_fw
=
3808 (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3811 /* Initialize the RV2P processor. */
3812 load_rv2p_fw(bp
, RV2P_PROC1
, &rv2p_fw
->proc1
);
3813 load_rv2p_fw(bp
, RV2P_PROC2
, &rv2p_fw
->proc2
);
3815 /* Initialize the RX Processor. */
3816 rc
= load_cpu_fw(bp
, &cpu_reg_rxp
, &mips_fw
->rxp
);
3820 /* Initialize the TX Processor. */
3821 rc
= load_cpu_fw(bp
, &cpu_reg_txp
, &mips_fw
->txp
);
3825 /* Initialize the TX Patch-up Processor. */
3826 rc
= load_cpu_fw(bp
, &cpu_reg_tpat
, &mips_fw
->tpat
);
3830 /* Initialize the Completion Processor. */
3831 rc
= load_cpu_fw(bp
, &cpu_reg_com
, &mips_fw
->com
);
3835 /* Initialize the Command Processor. */
3836 rc
= load_cpu_fw(bp
, &cpu_reg_cp
, &mips_fw
->cp
);
3843 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
3847 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3853 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3854 (pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3855 PCI_PM_CTRL_PME_STATUS
);
3857 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3858 /* delay required during transition out of D3hot */
3861 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3862 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
3863 val
&= ~BNX2_EMAC_MODE_MPKT
;
3864 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3866 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3867 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3868 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3879 autoneg
= bp
->autoneg
;
3880 advertising
= bp
->advertising
;
3882 if (bp
->phy_port
== PORT_TP
) {
3883 bp
->autoneg
= AUTONEG_SPEED
;
3884 bp
->advertising
= ADVERTISED_10baseT_Half
|
3885 ADVERTISED_10baseT_Full
|
3886 ADVERTISED_100baseT_Half
|
3887 ADVERTISED_100baseT_Full
|
3891 spin_lock_bh(&bp
->phy_lock
);
3892 bnx2_setup_phy(bp
, bp
->phy_port
);
3893 spin_unlock_bh(&bp
->phy_lock
);
3895 bp
->autoneg
= autoneg
;
3896 bp
->advertising
= advertising
;
3898 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
3900 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3902 /* Enable port mode. */
3903 val
&= ~BNX2_EMAC_MODE_PORT
;
3904 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3905 BNX2_EMAC_MODE_ACPI_RCVD
|
3906 BNX2_EMAC_MODE_MPKT
;
3907 if (bp
->phy_port
== PORT_TP
)
3908 val
|= BNX2_EMAC_MODE_PORT_MII
;
3910 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3911 if (bp
->line_speed
== SPEED_2500
)
3912 val
|= BNX2_EMAC_MODE_25G_MODE
;
3915 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3917 /* receive all multicast */
3918 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3919 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3922 REG_WR(bp
, BNX2_EMAC_RX_MODE
,
3923 BNX2_EMAC_RX_MODE_SORT_MODE
);
3925 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
|
3926 BNX2_RPM_SORT_USER0_MC_EN
;
3927 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3928 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
3929 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
|
3930 BNX2_RPM_SORT_USER0_ENA
);
3932 /* Need to enable EMAC and RPM for WOL. */
3933 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
3934 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
3935 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
3936 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
3938 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3939 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3940 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3942 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
3945 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
3948 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
))
3949 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
,
3952 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3953 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
3954 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
3963 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
3965 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3968 /* No more memory access after this point until
3969 * device is brought back to D0.
3981 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
3986 /* Request access to the flash interface. */
3987 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
3988 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
3989 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
3990 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
3996 if (j
>= NVRAM_TIMEOUT_COUNT
)
4003 bnx2_release_nvram_lock(struct bnx2
*bp
)
4008 /* Relinquish nvram interface. */
4009 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
4011 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4012 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
4013 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
4019 if (j
>= NVRAM_TIMEOUT_COUNT
)
4027 bnx2_enable_nvram_write(struct bnx2
*bp
)
4031 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4032 REG_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
4034 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
4037 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4038 REG_WR(bp
, BNX2_NVM_COMMAND
,
4039 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
4041 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4044 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4045 if (val
& BNX2_NVM_COMMAND_DONE
)
4049 if (j
>= NVRAM_TIMEOUT_COUNT
)
4056 bnx2_disable_nvram_write(struct bnx2
*bp
)
4060 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4061 REG_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
4066 bnx2_enable_nvram_access(struct bnx2
*bp
)
4070 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4071 /* Enable both bits, even on read. */
4072 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4073 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
4077 bnx2_disable_nvram_access(struct bnx2
*bp
)
4081 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4082 /* Disable both bits, even after read. */
4083 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4084 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
4085 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
4089 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
4094 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
4095 /* Buffered flash, no erase needed */
4098 /* Build an erase command */
4099 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
4100 BNX2_NVM_COMMAND_DOIT
;
4102 /* Need to clear DONE bit separately. */
4103 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4105 /* Address of the NVRAM to read from. */
4106 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4108 /* Issue an erase command. */
4109 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4111 /* Wait for completion. */
4112 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4117 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4118 if (val
& BNX2_NVM_COMMAND_DONE
)
4122 if (j
>= NVRAM_TIMEOUT_COUNT
)
4129 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
4134 /* Build the command word. */
4135 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
4137 /* Calculate an offset of a buffered flash, not needed for 5709. */
4138 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4139 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4140 bp
->flash_info
->page_bits
) +
4141 (offset
% bp
->flash_info
->page_size
);
4144 /* Need to clear DONE bit separately. */
4145 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4147 /* Address of the NVRAM to read from. */
4148 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4150 /* Issue a read command. */
4151 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4153 /* Wait for completion. */
4154 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4159 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4160 if (val
& BNX2_NVM_COMMAND_DONE
) {
4161 __be32 v
= cpu_to_be32(REG_RD(bp
, BNX2_NVM_READ
));
4162 memcpy(ret_val
, &v
, 4);
4166 if (j
>= NVRAM_TIMEOUT_COUNT
)
4174 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
4180 /* Build the command word. */
4181 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
4183 /* Calculate an offset of a buffered flash, not needed for 5709. */
4184 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4185 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4186 bp
->flash_info
->page_bits
) +
4187 (offset
% bp
->flash_info
->page_size
);
4190 /* Need to clear DONE bit separately. */
4191 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4193 memcpy(&val32
, val
, 4);
4195 /* Write the data. */
4196 REG_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
4198 /* Address of the NVRAM to write to. */
4199 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4201 /* Issue the write command. */
4202 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4204 /* Wait for completion. */
4205 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4208 if (REG_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
4211 if (j
>= NVRAM_TIMEOUT_COUNT
)
4218 bnx2_init_nvram(struct bnx2
*bp
)
4221 int j
, entry_count
, rc
= 0;
4222 const struct flash_spec
*flash
;
4224 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4225 bp
->flash_info
= &flash_5709
;
4226 goto get_flash_size
;
4229 /* Determine the selected interface. */
4230 val
= REG_RD(bp
, BNX2_NVM_CFG1
);
4232 entry_count
= ARRAY_SIZE(flash_table
);
4234 if (val
& 0x40000000) {
4236 /* Flash interface has been reconfigured */
4237 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4239 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
4240 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
4241 bp
->flash_info
= flash
;
4248 /* Not yet been reconfigured */
4250 if (val
& (1 << 23))
4251 mask
= FLASH_BACKUP_STRAP_MASK
;
4253 mask
= FLASH_STRAP_MASK
;
4255 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4258 if ((val
& mask
) == (flash
->strapping
& mask
)) {
4259 bp
->flash_info
= flash
;
4261 /* Request access to the flash interface. */
4262 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4265 /* Enable access to flash interface */
4266 bnx2_enable_nvram_access(bp
);
4268 /* Reconfigure the flash interface */
4269 REG_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
4270 REG_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
4271 REG_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
4272 REG_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
4274 /* Disable access to flash interface */
4275 bnx2_disable_nvram_access(bp
);
4276 bnx2_release_nvram_lock(bp
);
4281 } /* if (val & 0x40000000) */
4283 if (j
== entry_count
) {
4284 bp
->flash_info
= NULL
;
4285 pr_alert("Unknown flash/EEPROM type\n");
4290 val
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG2
);
4291 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
4293 bp
->flash_size
= val
;
4295 bp
->flash_size
= bp
->flash_info
->total_size
;
4301 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
4305 u32 cmd_flags
, offset32
, len32
, extra
;
4310 /* Request access to the flash interface. */
4311 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4314 /* Enable access to flash interface */
4315 bnx2_enable_nvram_access(bp
);
4328 pre_len
= 4 - (offset
& 3);
4330 if (pre_len
>= len32
) {
4332 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4333 BNX2_NVM_COMMAND_LAST
;
4336 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4339 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4344 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
4351 extra
= 4 - (len32
& 3);
4352 len32
= (len32
+ 4) & ~3;
4359 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4361 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4362 BNX2_NVM_COMMAND_LAST
;
4364 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4366 memcpy(ret_buf
, buf
, 4 - extra
);
4368 else if (len32
> 0) {
4371 /* Read the first word. */
4375 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4377 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
4379 /* Advance to the next dword. */
4384 while (len32
> 4 && rc
== 0) {
4385 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
4387 /* Advance to the next dword. */
4396 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4397 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4399 memcpy(ret_buf
, buf
, 4 - extra
);
4402 /* Disable access to flash interface */
4403 bnx2_disable_nvram_access(bp
);
4405 bnx2_release_nvram_lock(bp
);
4411 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
4414 u32 written
, offset32
, len32
;
4415 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
4417 int align_start
, align_end
;
4422 align_start
= align_end
= 0;
4424 if ((align_start
= (offset32
& 3))) {
4426 len32
+= align_start
;
4429 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
4434 align_end
= 4 - (len32
& 3);
4436 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
4440 if (align_start
|| align_end
) {
4441 align_buf
= kmalloc(len32
, GFP_KERNEL
);
4442 if (align_buf
== NULL
)
4445 memcpy(align_buf
, start
, 4);
4448 memcpy(align_buf
+ len32
- 4, end
, 4);
4450 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4454 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4455 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4456 if (flash_buffer
== NULL
) {
4458 goto nvram_write_end
;
4463 while ((written
< len32
) && (rc
== 0)) {
4464 u32 page_start
, page_end
, data_start
, data_end
;
4465 u32 addr
, cmd_flags
;
4468 /* Find the page_start addr */
4469 page_start
= offset32
+ written
;
4470 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4471 /* Find the page_end addr */
4472 page_end
= page_start
+ bp
->flash_info
->page_size
;
4473 /* Find the data_start addr */
4474 data_start
= (written
== 0) ? offset32
: page_start
;
4475 /* Find the data_end addr */
4476 data_end
= (page_end
> offset32
+ len32
) ?
4477 (offset32
+ len32
) : page_end
;
4479 /* Request access to the flash interface. */
4480 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4481 goto nvram_write_end
;
4483 /* Enable access to flash interface */
4484 bnx2_enable_nvram_access(bp
);
4486 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4487 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4490 /* Read the whole page into the buffer
4491 * (non-buffer flash only) */
4492 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4493 if (j
== (bp
->flash_info
->page_size
- 4)) {
4494 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4496 rc
= bnx2_nvram_read_dword(bp
,
4502 goto nvram_write_end
;
4508 /* Enable writes to flash interface (unlock write-protect) */
4509 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4510 goto nvram_write_end
;
4512 /* Loop to write back the buffer data from page_start to
4515 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4516 /* Erase the page */
4517 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4518 goto nvram_write_end
;
4520 /* Re-enable the write again for the actual write */
4521 bnx2_enable_nvram_write(bp
);
4523 for (addr
= page_start
; addr
< data_start
;
4524 addr
+= 4, i
+= 4) {
4526 rc
= bnx2_nvram_write_dword(bp
, addr
,
4527 &flash_buffer
[i
], cmd_flags
);
4530 goto nvram_write_end
;
4536 /* Loop to write the new data from data_start to data_end */
4537 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4538 if ((addr
== page_end
- 4) ||
4539 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4540 (addr
== data_end
- 4))) {
4542 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4544 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4548 goto nvram_write_end
;
4554 /* Loop to write back the buffer data from data_end
4556 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4557 for (addr
= data_end
; addr
< page_end
;
4558 addr
+= 4, i
+= 4) {
4560 if (addr
== page_end
-4) {
4561 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4563 rc
= bnx2_nvram_write_dword(bp
, addr
,
4564 &flash_buffer
[i
], cmd_flags
);
4567 goto nvram_write_end
;
4573 /* Disable writes to flash interface (lock write-protect) */
4574 bnx2_disable_nvram_write(bp
);
4576 /* Disable access to flash interface */
4577 bnx2_disable_nvram_access(bp
);
4578 bnx2_release_nvram_lock(bp
);
4580 /* Increment written */
4581 written
+= data_end
- data_start
;
4585 kfree(flash_buffer
);
4591 bnx2_init_fw_cap(struct bnx2
*bp
)
4595 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4596 bp
->flags
&= ~BNX2_FLAG_CAN_KEEP_VLAN
;
4598 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
4599 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4601 val
= bnx2_shmem_rd(bp
, BNX2_FW_CAP_MB
);
4602 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4605 if ((val
& BNX2_FW_CAP_CAN_KEEP_VLAN
) == BNX2_FW_CAP_CAN_KEEP_VLAN
) {
4606 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4607 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
| BNX2_FW_CAP_CAN_KEEP_VLAN
;
4610 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
4611 (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
)) {
4614 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4616 link
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
4617 if (link
& BNX2_LINK_STATUS_SERDES_LINK
)
4618 bp
->phy_port
= PORT_FIBRE
;
4620 bp
->phy_port
= PORT_TP
;
4622 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
|
4623 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4626 if (netif_running(bp
->dev
) && sig
)
4627 bnx2_shmem_wr(bp
, BNX2_DRV_ACK_CAP_MB
, sig
);
4631 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4633 REG_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4635 REG_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4636 REG_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4640 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4646 /* Wait for the current PCI transaction to complete before
4647 * issuing a reset. */
4648 REG_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4649 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4650 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4651 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4652 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4653 val
= REG_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4656 /* Wait for the firmware to tell us it is ok to issue a reset. */
4657 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1, 1);
4659 /* Deposit a driver reset signature so the firmware knows that
4660 * this is a soft reset. */
4661 bnx2_shmem_wr(bp
, BNX2_DRV_RESET_SIGNATURE
,
4662 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4664 /* Do a dummy read to force the chip to complete all current transaction
4665 * before we issue a reset. */
4666 val
= REG_RD(bp
, BNX2_MISC_ID
);
4668 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4669 REG_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4670 REG_RD(bp
, BNX2_MISC_COMMAND
);
4673 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4674 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4676 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, val
);
4679 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4680 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4681 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4684 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4686 /* Reading back any register after chip reset will hang the
4687 * bus on 5706 A0 and A1. The msleep below provides plenty
4688 * of margin for write posting.
4690 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
4691 (CHIP_ID(bp
) == CHIP_ID_5706_A1
))
4694 /* Reset takes approximate 30 usec */
4695 for (i
= 0; i
< 10; i
++) {
4696 val
= REG_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4697 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4698 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4703 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4704 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4705 pr_err("Chip reset did not complete\n");
4710 /* Make sure byte swapping is properly configured. */
4711 val
= REG_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4712 if (val
!= 0x01020304) {
4713 pr_err("Chip not in correct endian mode\n");
4717 /* Wait for the firmware to finish its initialization. */
4718 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 1, 0);
4722 spin_lock_bh(&bp
->phy_lock
);
4723 old_port
= bp
->phy_port
;
4724 bnx2_init_fw_cap(bp
);
4725 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4726 old_port
!= bp
->phy_port
)
4727 bnx2_set_default_remote_link(bp
);
4728 spin_unlock_bh(&bp
->phy_lock
);
4730 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4731 /* Adjust the voltage regular to two steps lower. The default
4732 * of this register is 0x0000000e. */
4733 REG_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4735 /* Remove bad rbuf memory from the free pool. */
4736 rc
= bnx2_alloc_bad_rbuf(bp
);
4739 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4740 bnx2_setup_msix_tbl(bp
);
4741 /* Prevent MSIX table reads and write from timing out */
4742 REG_WR(bp
, BNX2_MISC_ECO_HW_CTL
,
4743 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN
);
4750 bnx2_init_chip(struct bnx2
*bp
)
4755 /* Make sure the interrupt is not active. */
4756 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4758 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4759 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4761 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4763 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4764 DMA_READ_CHANS
<< 12 |
4765 DMA_WRITE_CHANS
<< 16;
4767 val
|= (0x2 << 20) | (1 << 11);
4769 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4772 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) &&
4773 (CHIP_ID(bp
) != CHIP_ID_5706_A0
) && !(bp
->flags
& BNX2_FLAG_PCIX
))
4774 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4776 REG_WR(bp
, BNX2_DMA_CONFIG
, val
);
4778 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4779 val
= REG_RD(bp
, BNX2_TDMA_CONFIG
);
4780 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4781 REG_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4784 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4787 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4789 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4790 val16
& ~PCI_X_CMD_ERO
);
4793 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4794 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4795 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4796 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4798 /* Initialize context mapping and zero out the quick contexts. The
4799 * context block must have already been enabled. */
4800 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4801 rc
= bnx2_init_5709_context(bp
);
4805 bnx2_init_context(bp
);
4807 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4810 bnx2_init_nvram(bp
);
4812 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
4814 val
= REG_RD(bp
, BNX2_MQ_CONFIG
);
4815 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4816 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4817 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4818 val
|= BNX2_MQ_CONFIG_BIN_MQ_MODE
;
4819 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
4820 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4823 REG_WR(bp
, BNX2_MQ_CONFIG
, val
);
4825 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4826 REG_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4827 REG_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4829 val
= (BCM_PAGE_BITS
- 8) << 24;
4830 REG_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4832 /* Configure page size. */
4833 val
= REG_RD(bp
, BNX2_TBDR_CONFIG
);
4834 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4835 val
|= (BCM_PAGE_BITS
- 8) << 24 | 0x40;
4836 REG_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4838 val
= bp
->mac_addr
[0] +
4839 (bp
->mac_addr
[1] << 8) +
4840 (bp
->mac_addr
[2] << 16) +
4842 (bp
->mac_addr
[4] << 8) +
4843 (bp
->mac_addr
[5] << 16);
4844 REG_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
4846 /* Program the MTU. Also include 4 bytes for CRC32. */
4848 val
= mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4849 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
4850 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
4851 REG_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
4856 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG
, BNX2_RBUF_CONFIG_VAL(mtu
));
4857 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG2
, BNX2_RBUF_CONFIG2_VAL(mtu
));
4858 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG3
, BNX2_RBUF_CONFIG3_VAL(mtu
));
4860 memset(bp
->bnx2_napi
[0].status_blk
.msi
, 0, bp
->status_stats_size
);
4861 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
4862 bp
->bnx2_napi
[i
].last_status_idx
= 0;
4864 bp
->idle_chk_status_idx
= 0xffff;
4866 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
4868 /* Set up how to generate a link change interrupt. */
4869 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
4871 REG_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
4872 (u64
) bp
->status_blk_mapping
& 0xffffffff);
4873 REG_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
4875 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
4876 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
4877 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
4878 (u64
) bp
->stats_blk_mapping
>> 32);
4880 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
4881 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
4883 REG_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
4884 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
4886 REG_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
4887 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
4889 REG_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4891 REG_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4893 REG_WR(bp
, BNX2_HC_COM_TICKS
,
4894 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
4896 REG_WR(bp
, BNX2_HC_CMD_TICKS
,
4897 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
4899 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
)
4900 REG_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
4902 REG_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
4903 REG_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
4905 if (CHIP_ID(bp
) == CHIP_ID_5706_A1
)
4906 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
4908 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
4909 BNX2_HC_CONFIG_COLLECT_STATS
;
4912 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4913 REG_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
4914 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
4916 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
4919 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
4920 val
|= BNX2_HC_CONFIG_ONE_SHOT
| BNX2_HC_CONFIG_USE_INT_PARAM
;
4922 REG_WR(bp
, BNX2_HC_CONFIG
, val
);
4924 if (bp
->rx_ticks
< 25)
4925 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 1);
4927 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 0);
4929 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
4930 u32 base
= ((i
- 1) * BNX2_HC_SB_CONFIG_SIZE
) +
4931 BNX2_HC_SB_CONFIG_1
;
4934 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
4935 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE
|
4936 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
4938 REG_WR(bp
, base
+ BNX2_HC_TX_QUICK_CONS_TRIP_OFF
,
4939 (bp
->tx_quick_cons_trip_int
<< 16) |
4940 bp
->tx_quick_cons_trip
);
4942 REG_WR(bp
, base
+ BNX2_HC_TX_TICKS_OFF
,
4943 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4945 REG_WR(bp
, base
+ BNX2_HC_RX_QUICK_CONS_TRIP_OFF
,
4946 (bp
->rx_quick_cons_trip_int
<< 16) |
4947 bp
->rx_quick_cons_trip
);
4949 REG_WR(bp
, base
+ BNX2_HC_RX_TICKS_OFF
,
4950 (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4953 /* Clear internal stats counters. */
4954 REG_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
4956 REG_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
4958 /* Initialize the receive filter. */
4959 bnx2_set_rx_mode(bp
->dev
);
4961 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4962 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4963 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4964 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4966 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
4969 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
4970 REG_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
4974 bp
->hc_cmd
= REG_RD(bp
, BNX2_HC_COMMAND
);
4980 bnx2_clear_ring_states(struct bnx2
*bp
)
4982 struct bnx2_napi
*bnapi
;
4983 struct bnx2_tx_ring_info
*txr
;
4984 struct bnx2_rx_ring_info
*rxr
;
4987 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
4988 bnapi
= &bp
->bnx2_napi
[i
];
4989 txr
= &bnapi
->tx_ring
;
4990 rxr
= &bnapi
->rx_ring
;
4993 txr
->hw_tx_cons
= 0;
4994 rxr
->rx_prod_bseq
= 0;
4997 rxr
->rx_pg_prod
= 0;
4998 rxr
->rx_pg_cons
= 0;
5003 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
, struct bnx2_tx_ring_info
*txr
)
5005 u32 val
, offset0
, offset1
, offset2
, offset3
;
5006 u32 cid_addr
= GET_CID_ADDR(cid
);
5008 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5009 offset0
= BNX2_L2CTX_TYPE_XI
;
5010 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
5011 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
5012 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
5014 offset0
= BNX2_L2CTX_TYPE
;
5015 offset1
= BNX2_L2CTX_CMD_TYPE
;
5016 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
5017 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
5019 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
5020 bnx2_ctx_wr(bp
, cid_addr
, offset0
, val
);
5022 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
5023 bnx2_ctx_wr(bp
, cid_addr
, offset1
, val
);
5025 val
= (u64
) txr
->tx_desc_mapping
>> 32;
5026 bnx2_ctx_wr(bp
, cid_addr
, offset2
, val
);
5028 val
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5029 bnx2_ctx_wr(bp
, cid_addr
, offset3
, val
);
5033 bnx2_init_tx_ring(struct bnx2
*bp
, int ring_num
)
5037 struct bnx2_napi
*bnapi
;
5038 struct bnx2_tx_ring_info
*txr
;
5040 bnapi
= &bp
->bnx2_napi
[ring_num
];
5041 txr
= &bnapi
->tx_ring
;
5046 cid
= TX_TSS_CID
+ ring_num
- 1;
5048 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
5050 txbd
= &txr
->tx_desc_ring
[MAX_TX_DESC_CNT
];
5052 txbd
->tx_bd_haddr_hi
= (u64
) txr
->tx_desc_mapping
>> 32;
5053 txbd
->tx_bd_haddr_lo
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5056 txr
->tx_prod_bseq
= 0;
5058 txr
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
5059 txr
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
5061 bnx2_init_tx_context(bp
, cid
, txr
);
5065 bnx2_init_rxbd_rings(struct rx_bd
*rx_ring
[], dma_addr_t dma
[], u32 buf_size
,
5071 for (i
= 0; i
< num_rings
; i
++) {
5074 rxbd
= &rx_ring
[i
][0];
5075 for (j
= 0; j
< MAX_RX_DESC_CNT
; j
++, rxbd
++) {
5076 rxbd
->rx_bd_len
= buf_size
;
5077 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
5079 if (i
== (num_rings
- 1))
5083 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
5084 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
5089 bnx2_init_rx_ring(struct bnx2
*bp
, int ring_num
)
5092 u16 prod
, ring_prod
;
5093 u32 cid
, rx_cid_addr
, val
;
5094 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[ring_num
];
5095 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5100 cid
= RX_RSS_CID
+ ring_num
- 1;
5102 rx_cid_addr
= GET_CID_ADDR(cid
);
5104 bnx2_init_rxbd_rings(rxr
->rx_desc_ring
, rxr
->rx_desc_mapping
,
5105 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
5107 bnx2_init_rx_context(bp
, cid
);
5109 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5110 val
= REG_RD(bp
, BNX2_MQ_MAP_L2_5
);
5111 REG_WR(bp
, BNX2_MQ_MAP_L2_5
, val
| BNX2_MQ_MAP_L2_5_ARM
);
5114 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
5115 if (bp
->rx_pg_ring_size
) {
5116 bnx2_init_rxbd_rings(rxr
->rx_pg_desc_ring
,
5117 rxr
->rx_pg_desc_mapping
,
5118 PAGE_SIZE
, bp
->rx_max_pg_ring
);
5119 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
5120 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
5121 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
5122 BNX2_L2CTX_RBDC_JUMBO_KEY
- ring_num
);
5124 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] >> 32;
5125 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
5127 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] & 0xffffffff;
5128 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
5130 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5131 REG_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
5134 val
= (u64
) rxr
->rx_desc_mapping
[0] >> 32;
5135 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
5137 val
= (u64
) rxr
->rx_desc_mapping
[0] & 0xffffffff;
5138 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
5140 ring_prod
= prod
= rxr
->rx_pg_prod
;
5141 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
5142 if (bnx2_alloc_rx_page(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5143 netdev_warn(bp
->dev
, "init'ed rx page ring %d with %d/%d pages only\n",
5144 ring_num
, i
, bp
->rx_pg_ring_size
);
5147 prod
= NEXT_RX_BD(prod
);
5148 ring_prod
= RX_PG_RING_IDX(prod
);
5150 rxr
->rx_pg_prod
= prod
;
5152 ring_prod
= prod
= rxr
->rx_prod
;
5153 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
5154 if (bnx2_alloc_rx_skb(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5155 netdev_warn(bp
->dev
, "init'ed rx ring %d with %d/%d skbs only\n",
5156 ring_num
, i
, bp
->rx_ring_size
);
5159 prod
= NEXT_RX_BD(prod
);
5160 ring_prod
= RX_RING_IDX(prod
);
5162 rxr
->rx_prod
= prod
;
5164 rxr
->rx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BDIDX
;
5165 rxr
->rx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BSEQ
;
5166 rxr
->rx_pg_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_PG_BDIDX
;
5168 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
5169 REG_WR16(bp
, rxr
->rx_bidx_addr
, prod
);
5171 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
5175 bnx2_init_all_rings(struct bnx2
*bp
)
5180 bnx2_clear_ring_states(bp
);
5182 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, 0);
5183 for (i
= 0; i
< bp
->num_tx_rings
; i
++)
5184 bnx2_init_tx_ring(bp
, i
);
5186 if (bp
->num_tx_rings
> 1)
5187 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, ((bp
->num_tx_rings
- 1) << 24) |
5190 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, 0);
5191 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
, 0);
5193 for (i
= 0; i
< bp
->num_rx_rings
; i
++)
5194 bnx2_init_rx_ring(bp
, i
);
5196 if (bp
->num_rx_rings
> 1) {
5199 for (i
= 0; i
< BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
; i
++) {
5200 int shift
= (i
% 8) << 2;
5202 tbl_32
|= (i
% (bp
->num_rx_rings
- 1)) << shift
;
5204 REG_WR(bp
, BNX2_RLUP_RSS_DATA
, tbl_32
);
5205 REG_WR(bp
, BNX2_RLUP_RSS_COMMAND
, (i
>> 3) |
5206 BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK
|
5207 BNX2_RLUP_RSS_COMMAND_WRITE
|
5208 BNX2_RLUP_RSS_COMMAND_HASH_MASK
);
5213 val
= BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI
|
5214 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI
;
5216 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, val
);
5221 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
5223 u32 max
, num_rings
= 1;
5225 while (ring_size
> MAX_RX_DESC_CNT
) {
5226 ring_size
-= MAX_RX_DESC_CNT
;
5229 /* round to next power of 2 */
5231 while ((max
& num_rings
) == 0)
5234 if (num_rings
!= max
)
5241 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
5243 u32 rx_size
, rx_space
, jumbo_size
;
5245 /* 8 for CRC and VLAN */
5246 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ BNX2_RX_OFFSET
+ 8;
5248 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
5249 sizeof(struct skb_shared_info
);
5251 bp
->rx_copy_thresh
= BNX2_RX_COPY_THRESH
;
5252 bp
->rx_pg_ring_size
= 0;
5253 bp
->rx_max_pg_ring
= 0;
5254 bp
->rx_max_pg_ring_idx
= 0;
5255 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
5256 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
5258 jumbo_size
= size
* pages
;
5259 if (jumbo_size
> MAX_TOTAL_RX_PG_DESC_CNT
)
5260 jumbo_size
= MAX_TOTAL_RX_PG_DESC_CNT
;
5262 bp
->rx_pg_ring_size
= jumbo_size
;
5263 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
5265 bp
->rx_max_pg_ring_idx
= (bp
->rx_max_pg_ring
* RX_DESC_CNT
) - 1;
5266 rx_size
= BNX2_RX_COPY_THRESH
+ BNX2_RX_OFFSET
;
5267 bp
->rx_copy_thresh
= 0;
5270 bp
->rx_buf_use_size
= rx_size
;
5272 bp
->rx_buf_size
= bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
;
5273 bp
->rx_jumbo_thresh
= rx_size
- BNX2_RX_OFFSET
;
5274 bp
->rx_ring_size
= size
;
5275 bp
->rx_max_ring
= bnx2_find_max_ring(size
, MAX_RX_RINGS
);
5276 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* RX_DESC_CNT
) - 1;
5280 bnx2_free_tx_skbs(struct bnx2
*bp
)
5284 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
5285 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5286 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5289 if (txr
->tx_buf_ring
== NULL
)
5292 for (j
= 0; j
< TX_DESC_CNT
; ) {
5293 struct sw_tx_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
5294 struct sk_buff
*skb
= tx_buf
->skb
;
5302 dma_unmap_single(&bp
->pdev
->dev
,
5303 dma_unmap_addr(tx_buf
, mapping
),
5309 last
= tx_buf
->nr_frags
;
5311 for (k
= 0; k
< last
; k
++, j
++) {
5312 tx_buf
= &txr
->tx_buf_ring
[TX_RING_IDX(j
)];
5313 dma_unmap_page(&bp
->pdev
->dev
,
5314 dma_unmap_addr(tx_buf
, mapping
),
5315 skb_shinfo(skb
)->frags
[k
].size
,
5324 bnx2_free_rx_skbs(struct bnx2
*bp
)
5328 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
5329 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5330 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5333 if (rxr
->rx_buf_ring
== NULL
)
5336 for (j
= 0; j
< bp
->rx_max_ring_idx
; j
++) {
5337 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
5338 struct sk_buff
*skb
= rx_buf
->skb
;
5343 dma_unmap_single(&bp
->pdev
->dev
,
5344 dma_unmap_addr(rx_buf
, mapping
),
5345 bp
->rx_buf_use_size
,
5346 PCI_DMA_FROMDEVICE
);
5352 for (j
= 0; j
< bp
->rx_max_pg_ring_idx
; j
++)
5353 bnx2_free_rx_page(bp
, rxr
, j
);
5358 bnx2_free_skbs(struct bnx2
*bp
)
5360 bnx2_free_tx_skbs(bp
);
5361 bnx2_free_rx_skbs(bp
);
5365 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
5369 rc
= bnx2_reset_chip(bp
, reset_code
);
5374 if ((rc
= bnx2_init_chip(bp
)) != 0)
5377 bnx2_init_all_rings(bp
);
5382 bnx2_init_nic(struct bnx2
*bp
, int reset_phy
)
5386 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
5389 spin_lock_bh(&bp
->phy_lock
);
5390 bnx2_init_phy(bp
, reset_phy
);
5392 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5393 bnx2_remote_phy_event(bp
);
5394 spin_unlock_bh(&bp
->phy_lock
);
5399 bnx2_shutdown_chip(struct bnx2
*bp
)
5403 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
5404 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
5406 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5408 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5410 return bnx2_reset_chip(bp
, reset_code
);
5414 bnx2_test_registers(struct bnx2
*bp
)
5418 static const struct {
5421 #define BNX2_FL_NOT_5709 1
5425 { 0x006c, 0, 0x00000000, 0x0000003f },
5426 { 0x0090, 0, 0xffffffff, 0x00000000 },
5427 { 0x0094, 0, 0x00000000, 0x00000000 },
5429 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
5430 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5431 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5432 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
5433 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
5434 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5435 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
5436 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5437 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5439 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5440 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5441 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5442 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5443 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5444 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5446 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5447 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
5448 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
5450 { 0x1000, 0, 0x00000000, 0x00000001 },
5451 { 0x1004, BNX2_FL_NOT_5709
, 0x00000000, 0x000f0001 },
5453 { 0x1408, 0, 0x01c00800, 0x00000000 },
5454 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5455 { 0x14a8, 0, 0x00000000, 0x000001ff },
5456 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5457 { 0x14b0, 0, 0x00000002, 0x00000001 },
5458 { 0x14b8, 0, 0x00000000, 0x00000000 },
5459 { 0x14c0, 0, 0x00000000, 0x00000009 },
5460 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5461 { 0x14cc, 0, 0x00000000, 0x00000001 },
5462 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5464 { 0x1800, 0, 0x00000000, 0x00000001 },
5465 { 0x1804, 0, 0x00000000, 0x00000003 },
5467 { 0x2800, 0, 0x00000000, 0x00000001 },
5468 { 0x2804, 0, 0x00000000, 0x00003f01 },
5469 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5470 { 0x2810, 0, 0xffff0000, 0x00000000 },
5471 { 0x2814, 0, 0xffff0000, 0x00000000 },
5472 { 0x2818, 0, 0xffff0000, 0x00000000 },
5473 { 0x281c, 0, 0xffff0000, 0x00000000 },
5474 { 0x2834, 0, 0xffffffff, 0x00000000 },
5475 { 0x2840, 0, 0x00000000, 0xffffffff },
5476 { 0x2844, 0, 0x00000000, 0xffffffff },
5477 { 0x2848, 0, 0xffffffff, 0x00000000 },
5478 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5480 { 0x2c00, 0, 0x00000000, 0x00000011 },
5481 { 0x2c04, 0, 0x00000000, 0x00030007 },
5483 { 0x3c00, 0, 0x00000000, 0x00000001 },
5484 { 0x3c04, 0, 0x00000000, 0x00070000 },
5485 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5486 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5487 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5488 { 0x3c14, 0, 0x00000000, 0xffffffff },
5489 { 0x3c18, 0, 0x00000000, 0xffffffff },
5490 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5491 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5493 { 0x5004, 0, 0x00000000, 0x0000007f },
5494 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5496 { 0x5c00, 0, 0x00000000, 0x00000001 },
5497 { 0x5c04, 0, 0x00000000, 0x0003000f },
5498 { 0x5c08, 0, 0x00000003, 0x00000000 },
5499 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5500 { 0x5c10, 0, 0x00000000, 0xffffffff },
5501 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5502 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5503 { 0x5c88, 0, 0x00000000, 0x00077373 },
5504 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5506 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5507 { 0x680c, 0, 0xffffffff, 0x00000000 },
5508 { 0x6810, 0, 0xffffffff, 0x00000000 },
5509 { 0x6814, 0, 0xffffffff, 0x00000000 },
5510 { 0x6818, 0, 0xffffffff, 0x00000000 },
5511 { 0x681c, 0, 0xffffffff, 0x00000000 },
5512 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5513 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5514 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5515 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5516 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5517 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5518 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5519 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5520 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5521 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5522 { 0x684c, 0, 0xffffffff, 0x00000000 },
5523 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5524 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5525 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5526 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5527 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5528 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5530 { 0xffff, 0, 0x00000000, 0x00000000 },
5535 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5538 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
5539 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
5540 u16 flags
= reg_tbl
[i
].flags
;
5542 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
5545 offset
= (u32
) reg_tbl
[i
].offset
;
5546 rw_mask
= reg_tbl
[i
].rw_mask
;
5547 ro_mask
= reg_tbl
[i
].ro_mask
;
5549 save_val
= readl(bp
->regview
+ offset
);
5551 writel(0, bp
->regview
+ offset
);
5553 val
= readl(bp
->regview
+ offset
);
5554 if ((val
& rw_mask
) != 0) {
5558 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5562 writel(0xffffffff, bp
->regview
+ offset
);
5564 val
= readl(bp
->regview
+ offset
);
5565 if ((val
& rw_mask
) != rw_mask
) {
5569 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5573 writel(save_val
, bp
->regview
+ offset
);
5577 writel(save_val
, bp
->regview
+ offset
);
5585 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
5587 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
5588 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5591 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5594 for (offset
= 0; offset
< size
; offset
+= 4) {
5596 bnx2_reg_wr_ind(bp
, start
+ offset
, test_pattern
[i
]);
5598 if (bnx2_reg_rd_ind(bp
, start
+ offset
) !=
5608 bnx2_test_memory(struct bnx2
*bp
)
5612 static struct mem_entry
{
5615 } mem_tbl_5706
[] = {
5616 { 0x60000, 0x4000 },
5617 { 0xa0000, 0x3000 },
5618 { 0xe0000, 0x4000 },
5619 { 0x120000, 0x4000 },
5620 { 0x1a0000, 0x4000 },
5621 { 0x160000, 0x4000 },
5625 { 0x60000, 0x4000 },
5626 { 0xa0000, 0x3000 },
5627 { 0xe0000, 0x4000 },
5628 { 0x120000, 0x4000 },
5629 { 0x1a0000, 0x4000 },
5632 struct mem_entry
*mem_tbl
;
5634 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5635 mem_tbl
= mem_tbl_5709
;
5637 mem_tbl
= mem_tbl_5706
;
5639 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5640 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5641 mem_tbl
[i
].len
)) != 0) {
5649 #define BNX2_MAC_LOOPBACK 0
5650 #define BNX2_PHY_LOOPBACK 1
5653 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5655 unsigned int pkt_size
, num_pkts
, i
;
5656 struct sk_buff
*skb
, *rx_skb
;
5657 unsigned char *packet
;
5658 u16 rx_start_idx
, rx_idx
;
5661 struct sw_bd
*rx_buf
;
5662 struct l2_fhdr
*rx_hdr
;
5664 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5665 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5666 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5670 txr
= &tx_napi
->tx_ring
;
5671 rxr
= &bnapi
->rx_ring
;
5672 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5673 bp
->loopback
= MAC_LOOPBACK
;
5674 bnx2_set_mac_loopback(bp
);
5676 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5677 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5680 bp
->loopback
= PHY_LOOPBACK
;
5681 bnx2_set_phy_loopback(bp
);
5686 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5687 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5690 packet
= skb_put(skb
, pkt_size
);
5691 memcpy(packet
, bp
->dev
->dev_addr
, 6);
5692 memset(packet
+ 6, 0x0, 8);
5693 for (i
= 14; i
< pkt_size
; i
++)
5694 packet
[i
] = (unsigned char) (i
& 0xff);
5696 map
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, pkt_size
,
5698 if (dma_mapping_error(&bp
->pdev
->dev
, map
)) {
5703 REG_WR(bp
, BNX2_HC_COMMAND
,
5704 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5706 REG_RD(bp
, BNX2_HC_COMMAND
);
5709 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5713 txbd
= &txr
->tx_desc_ring
[TX_RING_IDX(txr
->tx_prod
)];
5715 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5716 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5717 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5718 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5721 txr
->tx_prod
= NEXT_TX_BD(txr
->tx_prod
);
5722 txr
->tx_prod_bseq
+= pkt_size
;
5724 REG_WR16(bp
, txr
->tx_bidx_addr
, txr
->tx_prod
);
5725 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
5729 REG_WR(bp
, BNX2_HC_COMMAND
,
5730 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5732 REG_RD(bp
, BNX2_HC_COMMAND
);
5736 dma_unmap_single(&bp
->pdev
->dev
, map
, pkt_size
, PCI_DMA_TODEVICE
);
5739 if (bnx2_get_hw_tx_cons(tx_napi
) != txr
->tx_prod
)
5740 goto loopback_test_done
;
5742 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5743 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5744 goto loopback_test_done
;
5747 rx_buf
= &rxr
->rx_buf_ring
[rx_start_idx
];
5748 rx_skb
= rx_buf
->skb
;
5750 rx_hdr
= rx_buf
->desc
;
5751 skb_reserve(rx_skb
, BNX2_RX_OFFSET
);
5753 dma_sync_single_for_cpu(&bp
->pdev
->dev
,
5754 dma_unmap_addr(rx_buf
, mapping
),
5755 bp
->rx_buf_size
, PCI_DMA_FROMDEVICE
);
5757 if (rx_hdr
->l2_fhdr_status
&
5758 (L2_FHDR_ERRORS_BAD_CRC
|
5759 L2_FHDR_ERRORS_PHY_DECODE
|
5760 L2_FHDR_ERRORS_ALIGNMENT
|
5761 L2_FHDR_ERRORS_TOO_SHORT
|
5762 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5764 goto loopback_test_done
;
5767 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5768 goto loopback_test_done
;
5771 for (i
= 14; i
< pkt_size
; i
++) {
5772 if (*(rx_skb
->data
+ i
) != (unsigned char) (i
& 0xff)) {
5773 goto loopback_test_done
;
5784 #define BNX2_MAC_LOOPBACK_FAILED 1
5785 #define BNX2_PHY_LOOPBACK_FAILED 2
5786 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5787 BNX2_PHY_LOOPBACK_FAILED)
5790 bnx2_test_loopback(struct bnx2
*bp
)
5794 if (!netif_running(bp
->dev
))
5795 return BNX2_LOOPBACK_FAILED
;
5797 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5798 spin_lock_bh(&bp
->phy_lock
);
5799 bnx2_init_phy(bp
, 1);
5800 spin_unlock_bh(&bp
->phy_lock
);
5801 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5802 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5803 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5804 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5808 #define NVRAM_SIZE 0x200
5809 #define CRC32_RESIDUAL 0xdebb20e3
5812 bnx2_test_nvram(struct bnx2
*bp
)
5814 __be32 buf
[NVRAM_SIZE
/ 4];
5815 u8
*data
= (u8
*) buf
;
5819 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5820 goto test_nvram_done
;
5822 magic
= be32_to_cpu(buf
[0]);
5823 if (magic
!= 0x669955aa) {
5825 goto test_nvram_done
;
5828 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5829 goto test_nvram_done
;
5831 csum
= ether_crc_le(0x100, data
);
5832 if (csum
!= CRC32_RESIDUAL
) {
5834 goto test_nvram_done
;
5837 csum
= ether_crc_le(0x100, data
+ 0x100);
5838 if (csum
!= CRC32_RESIDUAL
) {
5847 bnx2_test_link(struct bnx2
*bp
)
5851 if (!netif_running(bp
->dev
))
5854 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
5859 spin_lock_bh(&bp
->phy_lock
);
5860 bnx2_enable_bmsr1(bp
);
5861 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5862 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5863 bnx2_disable_bmsr1(bp
);
5864 spin_unlock_bh(&bp
->phy_lock
);
5866 if (bmsr
& BMSR_LSTATUS
) {
5873 bnx2_test_intr(struct bnx2
*bp
)
5878 if (!netif_running(bp
->dev
))
5881 status_idx
= REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
5883 /* This register is not touched during run-time. */
5884 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
5885 REG_RD(bp
, BNX2_HC_COMMAND
);
5887 for (i
= 0; i
< 10; i
++) {
5888 if ((REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
5894 msleep_interruptible(10);
5902 /* Determining link for parallel detection. */
5904 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
5906 u32 mode_ctl
, an_dbg
, exp
;
5908 if (bp
->phy_flags
& BNX2_PHY_FLAG_NO_PARALLEL
)
5911 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
5912 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
5914 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
5917 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5918 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5919 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5921 if (an_dbg
& (MISC_SHDW_AN_DBG_NOSYNC
| MISC_SHDW_AN_DBG_RUDI_INVALID
))
5924 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
5925 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5926 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5928 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
5935 bnx2_5706_serdes_timer(struct bnx2
*bp
)
5939 spin_lock(&bp
->phy_lock
);
5940 if (bp
->serdes_an_pending
) {
5941 bp
->serdes_an_pending
--;
5943 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
5946 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5948 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5950 if (bmcr
& BMCR_ANENABLE
) {
5951 if (bnx2_5706_serdes_has_link(bp
)) {
5952 bmcr
&= ~BMCR_ANENABLE
;
5953 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
5954 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5955 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
5959 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
5960 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
5963 bnx2_write_phy(bp
, 0x17, 0x0f01);
5964 bnx2_read_phy(bp
, 0x15, &phy2
);
5968 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5969 bmcr
|= BMCR_ANENABLE
;
5970 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5972 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
5975 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5980 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5981 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5982 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
5984 if (bp
->link_up
&& (val
& MISC_SHDW_AN_DBG_NOSYNC
)) {
5985 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
)) {
5986 bnx2_5706s_force_link_dn(bp
, 1);
5987 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
5990 } else if (!bp
->link_up
&& !(val
& MISC_SHDW_AN_DBG_NOSYNC
))
5993 spin_unlock(&bp
->phy_lock
);
5997 bnx2_5708_serdes_timer(struct bnx2
*bp
)
5999 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
6002 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
6003 bp
->serdes_an_pending
= 0;
6007 spin_lock(&bp
->phy_lock
);
6008 if (bp
->serdes_an_pending
)
6009 bp
->serdes_an_pending
--;
6010 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6013 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6014 if (bmcr
& BMCR_ANENABLE
) {
6015 bnx2_enable_forced_2g5(bp
);
6016 bp
->current_interval
= BNX2_SERDES_FORCED_TIMEOUT
;
6018 bnx2_disable_forced_2g5(bp
);
6019 bp
->serdes_an_pending
= 2;
6020 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6024 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6026 spin_unlock(&bp
->phy_lock
);
6030 bnx2_timer(unsigned long data
)
6032 struct bnx2
*bp
= (struct bnx2
*) data
;
6034 if (!netif_running(bp
->dev
))
6037 if (atomic_read(&bp
->intr_sem
) != 0)
6038 goto bnx2_restart_timer
;
6040 if ((bp
->flags
& (BNX2_FLAG_USING_MSI
| BNX2_FLAG_ONE_SHOT_MSI
)) ==
6041 BNX2_FLAG_USING_MSI
)
6042 bnx2_chk_missed_msi(bp
);
6044 bnx2_send_heart_beat(bp
);
6046 bp
->stats_blk
->stat_FwRxDrop
=
6047 bnx2_reg_rd_ind(bp
, BNX2_FW_RX_DROP_COUNT
);
6049 /* workaround occasional corrupted counters */
6050 if ((bp
->flags
& BNX2_FLAG_BROKEN_STATS
) && bp
->stats_ticks
)
6051 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
6052 BNX2_HC_COMMAND_STATS_NOW
);
6054 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6055 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
6056 bnx2_5706_serdes_timer(bp
);
6058 bnx2_5708_serdes_timer(bp
);
6062 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6066 bnx2_request_irq(struct bnx2
*bp
)
6068 unsigned long flags
;
6069 struct bnx2_irq
*irq
;
6072 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
6075 flags
= IRQF_SHARED
;
6077 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6078 irq
= &bp
->irq_tbl
[i
];
6079 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
6089 bnx2_free_irq(struct bnx2
*bp
)
6091 struct bnx2_irq
*irq
;
6094 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6095 irq
= &bp
->irq_tbl
[i
];
6097 free_irq(irq
->vector
, &bp
->bnx2_napi
[i
]);
6100 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6101 pci_disable_msi(bp
->pdev
);
6102 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6103 pci_disable_msix(bp
->pdev
);
6105 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
6109 bnx2_enable_msix(struct bnx2
*bp
, int msix_vecs
)
6111 int i
, total_vecs
, rc
;
6112 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
6113 struct net_device
*dev
= bp
->dev
;
6114 const int len
= sizeof(bp
->irq_tbl
[0].name
);
6116 bnx2_setup_msix_tbl(bp
);
6117 REG_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
6118 REG_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
6119 REG_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
6121 /* Need to flush the previous three writes to ensure MSI-X
6122 * is setup properly */
6123 REG_RD(bp
, BNX2_PCI_MSIX_CONTROL
);
6125 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
6126 msix_ent
[i
].entry
= i
;
6127 msix_ent
[i
].vector
= 0;
6130 total_vecs
= msix_vecs
;
6135 while (total_vecs
>= BNX2_MIN_MSIX_VEC
) {
6136 rc
= pci_enable_msix(bp
->pdev
, msix_ent
, total_vecs
);
6146 msix_vecs
= total_vecs
;
6150 bp
->irq_nvecs
= msix_vecs
;
6151 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
6152 for (i
= 0; i
< total_vecs
; i
++) {
6153 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
6154 snprintf(bp
->irq_tbl
[i
].name
, len
, "%s-%d", dev
->name
, i
);
6155 bp
->irq_tbl
[i
].handler
= bnx2_msi_1shot
;
6160 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
6162 int cpus
= num_online_cpus();
6163 int msix_vecs
= min(cpus
+ 1, RX_MAX_RINGS
);
6165 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
6166 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
6168 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6170 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
)
6171 bnx2_enable_msix(bp
, msix_vecs
);
6173 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
6174 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
6175 if (pci_enable_msi(bp
->pdev
) == 0) {
6176 bp
->flags
|= BNX2_FLAG_USING_MSI
;
6177 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
6178 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
6179 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
6181 bp
->irq_tbl
[0].handler
= bnx2_msi
;
6183 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6187 bp
->num_tx_rings
= rounddown_pow_of_two(bp
->irq_nvecs
);
6188 netif_set_real_num_tx_queues(bp
->dev
, bp
->num_tx_rings
);
6190 bp
->num_rx_rings
= bp
->irq_nvecs
;
6191 return netif_set_real_num_rx_queues(bp
->dev
, bp
->num_rx_rings
);
6194 /* Called with rtnl_lock */
6196 bnx2_open(struct net_device
*dev
)
6198 struct bnx2
*bp
= netdev_priv(dev
);
6201 netif_carrier_off(dev
);
6203 bnx2_set_power_state(bp
, PCI_D0
);
6204 bnx2_disable_int(bp
);
6206 rc
= bnx2_setup_int_mode(bp
, disable_msi
);
6210 bnx2_napi_enable(bp
);
6211 rc
= bnx2_alloc_mem(bp
);
6215 rc
= bnx2_request_irq(bp
);
6219 rc
= bnx2_init_nic(bp
, 1);
6223 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6225 atomic_set(&bp
->intr_sem
, 0);
6227 memset(bp
->temp_stats_blk
, 0, sizeof(struct statistics_block
));
6229 bnx2_enable_int(bp
);
6231 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
6232 /* Test MSI to make sure it is working
6233 * If MSI test fails, go back to INTx mode
6235 if (bnx2_test_intr(bp
) != 0) {
6236 netdev_warn(bp
->dev
, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
6238 bnx2_disable_int(bp
);
6241 bnx2_setup_int_mode(bp
, 1);
6243 rc
= bnx2_init_nic(bp
, 0);
6246 rc
= bnx2_request_irq(bp
);
6249 del_timer_sync(&bp
->timer
);
6252 bnx2_enable_int(bp
);
6255 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6256 netdev_info(dev
, "using MSI\n");
6257 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6258 netdev_info(dev
, "using MSIX\n");
6260 netif_tx_start_all_queues(dev
);
6265 bnx2_napi_disable(bp
);
6274 bnx2_reset_task(struct work_struct
*work
)
6276 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
6279 if (!netif_running(bp
->dev
)) {
6284 bnx2_netif_stop(bp
, true);
6286 bnx2_init_nic(bp
, 1);
6288 atomic_set(&bp
->intr_sem
, 1);
6289 bnx2_netif_start(bp
, true);
6294 bnx2_dump_state(struct bnx2
*bp
)
6296 struct net_device
*dev
= bp
->dev
;
6297 u32 mcp_p0
, mcp_p1
, val1
, val2
;
6299 pci_read_config_dword(bp
->pdev
, PCI_COMMAND
, &val1
);
6300 netdev_err(dev
, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
6301 atomic_read(&bp
->intr_sem
), val1
);
6302 pci_read_config_dword(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &val1
);
6303 pci_read_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, &val2
);
6304 netdev_err(dev
, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1
, val2
);
6305 netdev_err(dev
, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
6306 REG_RD(bp
, BNX2_EMAC_TX_STATUS
),
6307 REG_RD(bp
, BNX2_EMAC_RX_STATUS
));
6308 netdev_err(dev
, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
6309 REG_RD(bp
, BNX2_RPM_MGMT_PKT_CTRL
));
6310 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
6311 mcp_p0
= BNX2_MCP_STATE_P0
;
6312 mcp_p1
= BNX2_MCP_STATE_P1
;
6314 mcp_p0
= BNX2_MCP_STATE_P0_5708
;
6315 mcp_p1
= BNX2_MCP_STATE_P1_5708
;
6317 netdev_err(dev
, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
6318 bnx2_reg_rd_ind(bp
, mcp_p0
), bnx2_reg_rd_ind(bp
, mcp_p1
));
6319 netdev_err(dev
, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6320 REG_RD(bp
, BNX2_HC_STATS_INTERRUPT_STATUS
));
6321 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6322 netdev_err(dev
, "DEBUG: PBA[%08x]\n",
6323 REG_RD(bp
, BNX2_PCI_GRC_WINDOW3_BASE
));
6327 bnx2_tx_timeout(struct net_device
*dev
)
6329 struct bnx2
*bp
= netdev_priv(dev
);
6331 bnx2_dump_state(bp
);
6333 /* This allows the netif to be shutdown gracefully before resetting */
6334 schedule_work(&bp
->reset_task
);
6337 /* Called with netif_tx_lock.
6338 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6339 * netif_wake_queue().
6342 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
6344 struct bnx2
*bp
= netdev_priv(dev
);
6347 struct sw_tx_bd
*tx_buf
;
6348 u32 len
, vlan_tag_flags
, last_frag
, mss
;
6349 u16 prod
, ring_prod
;
6351 struct bnx2_napi
*bnapi
;
6352 struct bnx2_tx_ring_info
*txr
;
6353 struct netdev_queue
*txq
;
6355 /* Determine which tx ring we will be placed on */
6356 i
= skb_get_queue_mapping(skb
);
6357 bnapi
= &bp
->bnx2_napi
[i
];
6358 txr
= &bnapi
->tx_ring
;
6359 txq
= netdev_get_tx_queue(dev
, i
);
6361 if (unlikely(bnx2_tx_avail(bp
, txr
) <
6362 (skb_shinfo(skb
)->nr_frags
+ 1))) {
6363 netif_tx_stop_queue(txq
);
6364 netdev_err(dev
, "BUG! Tx ring full when queue awake!\n");
6366 return NETDEV_TX_BUSY
;
6368 len
= skb_headlen(skb
);
6369 prod
= txr
->tx_prod
;
6370 ring_prod
= TX_RING_IDX(prod
);
6373 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
6374 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
6377 if (vlan_tx_tag_present(skb
)) {
6379 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
6382 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
6386 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
6388 tcp_opt_len
= tcp_optlen(skb
);
6390 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
6391 u32 tcp_off
= skb_transport_offset(skb
) -
6392 sizeof(struct ipv6hdr
) - ETH_HLEN
;
6394 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
6395 TX_BD_FLAGS_SW_FLAGS
;
6396 if (likely(tcp_off
== 0))
6397 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
6400 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
6401 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
6402 ((tcp_off
& 0x10) <<
6403 TX_BD_FLAGS_TCP6_OFF4_SHL
);
6404 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
6408 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
6409 vlan_tag_flags
|= ((iph
->ihl
- 5) +
6410 (tcp_opt_len
>> 2)) << 8;
6416 mapping
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
6417 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
6419 return NETDEV_TX_OK
;
6422 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6424 dma_unmap_addr_set(tx_buf
, mapping
, mapping
);
6426 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6428 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6429 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6430 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6431 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
6433 last_frag
= skb_shinfo(skb
)->nr_frags
;
6434 tx_buf
->nr_frags
= last_frag
;
6435 tx_buf
->is_gso
= skb_is_gso(skb
);
6437 for (i
= 0; i
< last_frag
; i
++) {
6438 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6440 prod
= NEXT_TX_BD(prod
);
6441 ring_prod
= TX_RING_IDX(prod
);
6442 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6445 mapping
= dma_map_page(&bp
->pdev
->dev
, frag
->page
, frag
->page_offset
,
6446 len
, PCI_DMA_TODEVICE
);
6447 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
))
6449 dma_unmap_addr_set(&txr
->tx_buf_ring
[ring_prod
], mapping
,
6452 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6453 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6454 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6455 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
6458 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
6460 prod
= NEXT_TX_BD(prod
);
6461 txr
->tx_prod_bseq
+= skb
->len
;
6463 REG_WR16(bp
, txr
->tx_bidx_addr
, prod
);
6464 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
6468 txr
->tx_prod
= prod
;
6470 if (unlikely(bnx2_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
)) {
6471 netif_tx_stop_queue(txq
);
6473 /* netif_tx_stop_queue() must be done before checking
6474 * tx index in bnx2_tx_avail() below, because in
6475 * bnx2_tx_int(), we update tx index before checking for
6476 * netif_tx_queue_stopped().
6479 if (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
6480 netif_tx_wake_queue(txq
);
6483 return NETDEV_TX_OK
;
6485 /* save value of frag that failed */
6488 /* start back at beginning and unmap skb */
6489 prod
= txr
->tx_prod
;
6490 ring_prod
= TX_RING_IDX(prod
);
6491 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6493 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6494 skb_headlen(skb
), PCI_DMA_TODEVICE
);
6496 /* unmap remaining mapped pages */
6497 for (i
= 0; i
< last_frag
; i
++) {
6498 prod
= NEXT_TX_BD(prod
);
6499 ring_prod
= TX_RING_IDX(prod
);
6500 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6501 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6502 skb_shinfo(skb
)->frags
[i
].size
,
6507 return NETDEV_TX_OK
;
6510 /* Called with rtnl_lock */
6512 bnx2_close(struct net_device
*dev
)
6514 struct bnx2
*bp
= netdev_priv(dev
);
6516 cancel_work_sync(&bp
->reset_task
);
6518 bnx2_disable_int_sync(bp
);
6519 bnx2_napi_disable(bp
);
6520 del_timer_sync(&bp
->timer
);
6521 bnx2_shutdown_chip(bp
);
6527 netif_carrier_off(bp
->dev
);
6528 bnx2_set_power_state(bp
, PCI_D3hot
);
6533 bnx2_save_stats(struct bnx2
*bp
)
6535 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
6536 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
6539 /* The 1st 10 counters are 64-bit counters */
6540 for (i
= 0; i
< 20; i
+= 2) {
6544 hi
= temp_stats
[i
] + hw_stats
[i
];
6545 lo
= (u64
) temp_stats
[i
+ 1] + (u64
) hw_stats
[i
+ 1];
6546 if (lo
> 0xffffffff)
6549 temp_stats
[i
+ 1] = lo
& 0xffffffff;
6552 for ( ; i
< sizeof(struct statistics_block
) / 4; i
++)
6553 temp_stats
[i
] += hw_stats
[i
];
6556 #define GET_64BIT_NET_STATS64(ctr) \
6557 (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
6559 #define GET_64BIT_NET_STATS(ctr) \
6560 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
6561 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6563 #define GET_32BIT_NET_STATS(ctr) \
6564 (unsigned long) (bp->stats_blk->ctr + \
6565 bp->temp_stats_blk->ctr)
6567 static struct rtnl_link_stats64
*
6568 bnx2_get_stats64(struct net_device
*dev
, struct rtnl_link_stats64
*net_stats
)
6570 struct bnx2
*bp
= netdev_priv(dev
);
6572 if (bp
->stats_blk
== NULL
)
6575 net_stats
->rx_packets
=
6576 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts
) +
6577 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
) +
6578 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts
);
6580 net_stats
->tx_packets
=
6581 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts
) +
6582 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts
) +
6583 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts
);
6585 net_stats
->rx_bytes
=
6586 GET_64BIT_NET_STATS(stat_IfHCInOctets
);
6588 net_stats
->tx_bytes
=
6589 GET_64BIT_NET_STATS(stat_IfHCOutOctets
);
6591 net_stats
->multicast
=
6592 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
);
6594 net_stats
->collisions
=
6595 GET_32BIT_NET_STATS(stat_EtherStatsCollisions
);
6597 net_stats
->rx_length_errors
=
6598 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts
) +
6599 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts
);
6601 net_stats
->rx_over_errors
=
6602 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6603 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
);
6605 net_stats
->rx_frame_errors
=
6606 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors
);
6608 net_stats
->rx_crc_errors
=
6609 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors
);
6611 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
6612 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
6613 net_stats
->rx_crc_errors
;
6615 net_stats
->tx_aborted_errors
=
6616 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions
) +
6617 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions
);
6619 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
6620 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
6621 net_stats
->tx_carrier_errors
= 0;
6623 net_stats
->tx_carrier_errors
=
6624 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors
);
6627 net_stats
->tx_errors
=
6628 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
) +
6629 net_stats
->tx_aborted_errors
+
6630 net_stats
->tx_carrier_errors
;
6632 net_stats
->rx_missed_errors
=
6633 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6634 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
) +
6635 GET_32BIT_NET_STATS(stat_FwRxDrop
);
6640 /* All ethtool functions called with rtnl_lock */
6643 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6645 struct bnx2
*bp
= netdev_priv(dev
);
6646 int support_serdes
= 0, support_copper
= 0;
6648 cmd
->supported
= SUPPORTED_Autoneg
;
6649 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6652 } else if (bp
->phy_port
== PORT_FIBRE
)
6657 if (support_serdes
) {
6658 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
6660 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
6661 cmd
->supported
|= SUPPORTED_2500baseX_Full
;
6664 if (support_copper
) {
6665 cmd
->supported
|= SUPPORTED_10baseT_Half
|
6666 SUPPORTED_10baseT_Full
|
6667 SUPPORTED_100baseT_Half
|
6668 SUPPORTED_100baseT_Full
|
6669 SUPPORTED_1000baseT_Full
|
6674 spin_lock_bh(&bp
->phy_lock
);
6675 cmd
->port
= bp
->phy_port
;
6676 cmd
->advertising
= bp
->advertising
;
6678 if (bp
->autoneg
& AUTONEG_SPEED
) {
6679 cmd
->autoneg
= AUTONEG_ENABLE
;
6682 cmd
->autoneg
= AUTONEG_DISABLE
;
6685 if (netif_carrier_ok(dev
)) {
6686 cmd
->speed
= bp
->line_speed
;
6687 cmd
->duplex
= bp
->duplex
;
6693 spin_unlock_bh(&bp
->phy_lock
);
6695 cmd
->transceiver
= XCVR_INTERNAL
;
6696 cmd
->phy_address
= bp
->phy_addr
;
6702 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6704 struct bnx2
*bp
= netdev_priv(dev
);
6705 u8 autoneg
= bp
->autoneg
;
6706 u8 req_duplex
= bp
->req_duplex
;
6707 u16 req_line_speed
= bp
->req_line_speed
;
6708 u32 advertising
= bp
->advertising
;
6711 spin_lock_bh(&bp
->phy_lock
);
6713 if (cmd
->port
!= PORT_TP
&& cmd
->port
!= PORT_FIBRE
)
6714 goto err_out_unlock
;
6716 if (cmd
->port
!= bp
->phy_port
&&
6717 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6718 goto err_out_unlock
;
6720 /* If device is down, we can store the settings only if the user
6721 * is setting the currently active port.
6723 if (!netif_running(dev
) && cmd
->port
!= bp
->phy_port
)
6724 goto err_out_unlock
;
6726 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
6727 autoneg
|= AUTONEG_SPEED
;
6729 advertising
= cmd
->advertising
;
6730 if (cmd
->port
== PORT_TP
) {
6731 advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
6733 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
6735 advertising
&= ETHTOOL_ALL_FIBRE_SPEED
;
6737 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
6739 advertising
|= ADVERTISED_Autoneg
;
6742 if (cmd
->port
== PORT_FIBRE
) {
6743 if ((cmd
->speed
!= SPEED_1000
&&
6744 cmd
->speed
!= SPEED_2500
) ||
6745 (cmd
->duplex
!= DUPLEX_FULL
))
6746 goto err_out_unlock
;
6748 if (cmd
->speed
== SPEED_2500
&&
6749 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
6750 goto err_out_unlock
;
6752 else if (cmd
->speed
== SPEED_1000
|| cmd
->speed
== SPEED_2500
)
6753 goto err_out_unlock
;
6755 autoneg
&= ~AUTONEG_SPEED
;
6756 req_line_speed
= cmd
->speed
;
6757 req_duplex
= cmd
->duplex
;
6761 bp
->autoneg
= autoneg
;
6762 bp
->advertising
= advertising
;
6763 bp
->req_line_speed
= req_line_speed
;
6764 bp
->req_duplex
= req_duplex
;
6767 /* If device is down, the new settings will be picked up when it is
6770 if (netif_running(dev
))
6771 err
= bnx2_setup_phy(bp
, cmd
->port
);
6774 spin_unlock_bh(&bp
->phy_lock
);
6780 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
6782 struct bnx2
*bp
= netdev_priv(dev
);
6784 strcpy(info
->driver
, DRV_MODULE_NAME
);
6785 strcpy(info
->version
, DRV_MODULE_VERSION
);
6786 strcpy(info
->bus_info
, pci_name(bp
->pdev
));
6787 strcpy(info
->fw_version
, bp
->fw_version
);
6790 #define BNX2_REGDUMP_LEN (32 * 1024)
6793 bnx2_get_regs_len(struct net_device
*dev
)
6795 return BNX2_REGDUMP_LEN
;
6799 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
6801 u32
*p
= _p
, i
, offset
;
6803 struct bnx2
*bp
= netdev_priv(dev
);
6804 u32 reg_boundaries
[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6805 0x0800, 0x0880, 0x0c00, 0x0c10,
6806 0x0c30, 0x0d08, 0x1000, 0x101c,
6807 0x1040, 0x1048, 0x1080, 0x10a4,
6808 0x1400, 0x1490, 0x1498, 0x14f0,
6809 0x1500, 0x155c, 0x1580, 0x15dc,
6810 0x1600, 0x1658, 0x1680, 0x16d8,
6811 0x1800, 0x1820, 0x1840, 0x1854,
6812 0x1880, 0x1894, 0x1900, 0x1984,
6813 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6814 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6815 0x2000, 0x2030, 0x23c0, 0x2400,
6816 0x2800, 0x2820, 0x2830, 0x2850,
6817 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6818 0x3c00, 0x3c94, 0x4000, 0x4010,
6819 0x4080, 0x4090, 0x43c0, 0x4458,
6820 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6821 0x4fc0, 0x5010, 0x53c0, 0x5444,
6822 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6823 0x5fc0, 0x6000, 0x6400, 0x6428,
6824 0x6800, 0x6848, 0x684c, 0x6860,
6825 0x6888, 0x6910, 0x8000 };
6829 memset(p
, 0, BNX2_REGDUMP_LEN
);
6831 if (!netif_running(bp
->dev
))
6835 offset
= reg_boundaries
[0];
6837 while (offset
< BNX2_REGDUMP_LEN
) {
6838 *p
++ = REG_RD(bp
, offset
);
6840 if (offset
== reg_boundaries
[i
+ 1]) {
6841 offset
= reg_boundaries
[i
+ 2];
6842 p
= (u32
*) (orig_p
+ offset
);
6849 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6851 struct bnx2
*bp
= netdev_priv(dev
);
6853 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
6858 wol
->supported
= WAKE_MAGIC
;
6860 wol
->wolopts
= WAKE_MAGIC
;
6864 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
6868 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6870 struct bnx2
*bp
= netdev_priv(dev
);
6872 if (wol
->wolopts
& ~WAKE_MAGIC
)
6875 if (wol
->wolopts
& WAKE_MAGIC
) {
6876 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
6888 bnx2_nway_reset(struct net_device
*dev
)
6890 struct bnx2
*bp
= netdev_priv(dev
);
6893 if (!netif_running(dev
))
6896 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
6900 spin_lock_bh(&bp
->phy_lock
);
6902 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6905 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
6906 spin_unlock_bh(&bp
->phy_lock
);
6910 /* Force a link down visible on the other side */
6911 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6912 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
6913 spin_unlock_bh(&bp
->phy_lock
);
6917 spin_lock_bh(&bp
->phy_lock
);
6919 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
6920 bp
->serdes_an_pending
= 1;
6921 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6924 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6925 bmcr
&= ~BMCR_LOOPBACK
;
6926 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
6928 spin_unlock_bh(&bp
->phy_lock
);
6934 bnx2_get_link(struct net_device
*dev
)
6936 struct bnx2
*bp
= netdev_priv(dev
);
6942 bnx2_get_eeprom_len(struct net_device
*dev
)
6944 struct bnx2
*bp
= netdev_priv(dev
);
6946 if (bp
->flash_info
== NULL
)
6949 return (int) bp
->flash_size
;
6953 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6956 struct bnx2
*bp
= netdev_priv(dev
);
6959 if (!netif_running(dev
))
6962 /* parameters already validated in ethtool_get_eeprom */
6964 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6970 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6973 struct bnx2
*bp
= netdev_priv(dev
);
6976 if (!netif_running(dev
))
6979 /* parameters already validated in ethtool_set_eeprom */
6981 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6987 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
6989 struct bnx2
*bp
= netdev_priv(dev
);
6991 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
6993 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
6994 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
6995 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
6996 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
6998 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
6999 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
7000 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
7001 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
7003 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
7009 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7011 struct bnx2
*bp
= netdev_priv(dev
);
7013 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
7014 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
7016 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
7017 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
7019 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
7020 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
7022 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
7023 if (bp
->rx_quick_cons_trip_int
> 0xff)
7024 bp
->rx_quick_cons_trip_int
= 0xff;
7026 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
7027 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
7029 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
7030 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
7032 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
7033 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
7035 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
7036 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
7039 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
7040 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
) {
7041 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
7042 bp
->stats_ticks
= USEC_PER_SEC
;
7044 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
7045 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7046 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7048 if (netif_running(bp
->dev
)) {
7049 bnx2_netif_stop(bp
, true);
7050 bnx2_init_nic(bp
, 0);
7051 bnx2_netif_start(bp
, true);
7058 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7060 struct bnx2
*bp
= netdev_priv(dev
);
7062 ering
->rx_max_pending
= MAX_TOTAL_RX_DESC_CNT
;
7063 ering
->rx_mini_max_pending
= 0;
7064 ering
->rx_jumbo_max_pending
= MAX_TOTAL_RX_PG_DESC_CNT
;
7066 ering
->rx_pending
= bp
->rx_ring_size
;
7067 ering
->rx_mini_pending
= 0;
7068 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
7070 ering
->tx_max_pending
= MAX_TX_DESC_CNT
;
7071 ering
->tx_pending
= bp
->tx_ring_size
;
7075 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
)
7077 if (netif_running(bp
->dev
)) {
7078 /* Reset will erase chipset stats; save them */
7079 bnx2_save_stats(bp
);
7081 bnx2_netif_stop(bp
, true);
7082 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
7087 bnx2_set_rx_ring_size(bp
, rx
);
7088 bp
->tx_ring_size
= tx
;
7090 if (netif_running(bp
->dev
)) {
7093 rc
= bnx2_alloc_mem(bp
);
7095 rc
= bnx2_init_nic(bp
, 0);
7098 bnx2_napi_enable(bp
);
7103 mutex_lock(&bp
->cnic_lock
);
7104 /* Let cnic know about the new status block. */
7105 if (bp
->cnic_eth_dev
.drv_state
& CNIC_DRV_STATE_REGD
)
7106 bnx2_setup_cnic_irq_info(bp
);
7107 mutex_unlock(&bp
->cnic_lock
);
7109 bnx2_netif_start(bp
, true);
7115 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7117 struct bnx2
*bp
= netdev_priv(dev
);
7120 if ((ering
->rx_pending
> MAX_TOTAL_RX_DESC_CNT
) ||
7121 (ering
->tx_pending
> MAX_TX_DESC_CNT
) ||
7122 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
7126 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
);
7131 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7133 struct bnx2
*bp
= netdev_priv(dev
);
7135 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
7136 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
7137 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
7141 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7143 struct bnx2
*bp
= netdev_priv(dev
);
7145 bp
->req_flow_ctrl
= 0;
7146 if (epause
->rx_pause
)
7147 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
7148 if (epause
->tx_pause
)
7149 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
7151 if (epause
->autoneg
) {
7152 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
7155 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
7158 if (netif_running(dev
)) {
7159 spin_lock_bh(&bp
->phy_lock
);
7160 bnx2_setup_phy(bp
, bp
->phy_port
);
7161 spin_unlock_bh(&bp
->phy_lock
);
7168 bnx2_get_rx_csum(struct net_device
*dev
)
7170 struct bnx2
*bp
= netdev_priv(dev
);
7176 bnx2_set_rx_csum(struct net_device
*dev
, u32 data
)
7178 struct bnx2
*bp
= netdev_priv(dev
);
7185 bnx2_set_tso(struct net_device
*dev
, u32 data
)
7187 struct bnx2
*bp
= netdev_priv(dev
);
7190 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
7191 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7192 dev
->features
|= NETIF_F_TSO6
;
7194 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
|
7200 char string
[ETH_GSTRING_LEN
];
7201 } bnx2_stats_str_arr
[] = {
7203 { "rx_error_bytes" },
7205 { "tx_error_bytes" },
7206 { "rx_ucast_packets" },
7207 { "rx_mcast_packets" },
7208 { "rx_bcast_packets" },
7209 { "tx_ucast_packets" },
7210 { "tx_mcast_packets" },
7211 { "tx_bcast_packets" },
7212 { "tx_mac_errors" },
7213 { "tx_carrier_errors" },
7214 { "rx_crc_errors" },
7215 { "rx_align_errors" },
7216 { "tx_single_collisions" },
7217 { "tx_multi_collisions" },
7219 { "tx_excess_collisions" },
7220 { "tx_late_collisions" },
7221 { "tx_total_collisions" },
7224 { "rx_undersize_packets" },
7225 { "rx_oversize_packets" },
7226 { "rx_64_byte_packets" },
7227 { "rx_65_to_127_byte_packets" },
7228 { "rx_128_to_255_byte_packets" },
7229 { "rx_256_to_511_byte_packets" },
7230 { "rx_512_to_1023_byte_packets" },
7231 { "rx_1024_to_1522_byte_packets" },
7232 { "rx_1523_to_9022_byte_packets" },
7233 { "tx_64_byte_packets" },
7234 { "tx_65_to_127_byte_packets" },
7235 { "tx_128_to_255_byte_packets" },
7236 { "tx_256_to_511_byte_packets" },
7237 { "tx_512_to_1023_byte_packets" },
7238 { "tx_1024_to_1522_byte_packets" },
7239 { "tx_1523_to_9022_byte_packets" },
7240 { "rx_xon_frames" },
7241 { "rx_xoff_frames" },
7242 { "tx_xon_frames" },
7243 { "tx_xoff_frames" },
7244 { "rx_mac_ctrl_frames" },
7245 { "rx_filtered_packets" },
7246 { "rx_ftq_discards" },
7248 { "rx_fw_discards" },
7251 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7252 sizeof(bnx2_stats_str_arr[0]))
7254 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7256 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
7257 STATS_OFFSET32(stat_IfHCInOctets_hi
),
7258 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
7259 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
7260 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
7261 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
7262 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
7263 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
7264 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
7265 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
7266 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
7267 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
7268 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
7269 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
7270 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
7271 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
7272 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
7273 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
7274 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
7275 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
7276 STATS_OFFSET32(stat_EtherStatsCollisions
),
7277 STATS_OFFSET32(stat_EtherStatsFragments
),
7278 STATS_OFFSET32(stat_EtherStatsJabbers
),
7279 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
7280 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
7281 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
7282 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
7283 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
7284 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
7285 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
7286 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
7287 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
7288 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
7289 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
7290 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
7291 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
7292 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
7293 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
7294 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
7295 STATS_OFFSET32(stat_XonPauseFramesReceived
),
7296 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
7297 STATS_OFFSET32(stat_OutXonSent
),
7298 STATS_OFFSET32(stat_OutXoffSent
),
7299 STATS_OFFSET32(stat_MacControlFramesReceived
),
7300 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
7301 STATS_OFFSET32(stat_IfInFTQDiscards
),
7302 STATS_OFFSET32(stat_IfInMBUFDiscards
),
7303 STATS_OFFSET32(stat_FwRxDrop
),
7306 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7307 * skipped because of errata.
7309 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
7310 8,0,8,8,8,8,8,8,8,8,
7311 4,0,4,4,4,4,4,4,4,4,
7312 4,4,4,4,4,4,4,4,4,4,
7313 4,4,4,4,4,4,4,4,4,4,
7317 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
7318 8,0,8,8,8,8,8,8,8,8,
7319 4,4,4,4,4,4,4,4,4,4,
7320 4,4,4,4,4,4,4,4,4,4,
7321 4,4,4,4,4,4,4,4,4,4,
7325 #define BNX2_NUM_TESTS 6
7328 char string
[ETH_GSTRING_LEN
];
7329 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
7330 { "register_test (offline)" },
7331 { "memory_test (offline)" },
7332 { "loopback_test (offline)" },
7333 { "nvram_test (online)" },
7334 { "interrupt_test (online)" },
7335 { "link_test (online)" },
7339 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
7343 return BNX2_NUM_TESTS
;
7345 return BNX2_NUM_STATS
;
7352 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
7354 struct bnx2
*bp
= netdev_priv(dev
);
7356 bnx2_set_power_state(bp
, PCI_D0
);
7358 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
7359 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
7362 bnx2_netif_stop(bp
, true);
7363 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
7366 if (bnx2_test_registers(bp
) != 0) {
7368 etest
->flags
|= ETH_TEST_FL_FAILED
;
7370 if (bnx2_test_memory(bp
) != 0) {
7372 etest
->flags
|= ETH_TEST_FL_FAILED
;
7374 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
7375 etest
->flags
|= ETH_TEST_FL_FAILED
;
7377 if (!netif_running(bp
->dev
))
7378 bnx2_shutdown_chip(bp
);
7380 bnx2_init_nic(bp
, 1);
7381 bnx2_netif_start(bp
, true);
7384 /* wait for link up */
7385 for (i
= 0; i
< 7; i
++) {
7388 msleep_interruptible(1000);
7392 if (bnx2_test_nvram(bp
) != 0) {
7394 etest
->flags
|= ETH_TEST_FL_FAILED
;
7396 if (bnx2_test_intr(bp
) != 0) {
7398 etest
->flags
|= ETH_TEST_FL_FAILED
;
7401 if (bnx2_test_link(bp
) != 0) {
7403 etest
->flags
|= ETH_TEST_FL_FAILED
;
7406 if (!netif_running(bp
->dev
))
7407 bnx2_set_power_state(bp
, PCI_D3hot
);
7411 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
7413 switch (stringset
) {
7415 memcpy(buf
, bnx2_stats_str_arr
,
7416 sizeof(bnx2_stats_str_arr
));
7419 memcpy(buf
, bnx2_tests_str_arr
,
7420 sizeof(bnx2_tests_str_arr
));
7426 bnx2_get_ethtool_stats(struct net_device
*dev
,
7427 struct ethtool_stats
*stats
, u64
*buf
)
7429 struct bnx2
*bp
= netdev_priv(dev
);
7431 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
7432 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
7433 u8
*stats_len_arr
= NULL
;
7435 if (hw_stats
== NULL
) {
7436 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
7440 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
7441 (CHIP_ID(bp
) == CHIP_ID_5706_A1
) ||
7442 (CHIP_ID(bp
) == CHIP_ID_5706_A2
) ||
7443 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
7444 stats_len_arr
= bnx2_5706_stats_len_arr
;
7446 stats_len_arr
= bnx2_5708_stats_len_arr
;
7448 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
7449 unsigned long offset
;
7451 if (stats_len_arr
[i
] == 0) {
7452 /* skip this counter */
7457 offset
= bnx2_stats_offset_arr
[i
];
7458 if (stats_len_arr
[i
] == 4) {
7459 /* 4-byte counter */
7460 buf
[i
] = (u64
) *(hw_stats
+ offset
) +
7461 *(temp_stats
+ offset
);
7464 /* 8-byte counter */
7465 buf
[i
] = (((u64
) *(hw_stats
+ offset
)) << 32) +
7466 *(hw_stats
+ offset
+ 1) +
7467 (((u64
) *(temp_stats
+ offset
)) << 32) +
7468 *(temp_stats
+ offset
+ 1);
7473 bnx2_phys_id(struct net_device
*dev
, u32 data
)
7475 struct bnx2
*bp
= netdev_priv(dev
);
7479 bnx2_set_power_state(bp
, PCI_D0
);
7484 save
= REG_RD(bp
, BNX2_MISC_CFG
);
7485 REG_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
7487 for (i
= 0; i
< (data
* 2); i
++) {
7489 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
7492 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
7493 BNX2_EMAC_LED_1000MB_OVERRIDE
|
7494 BNX2_EMAC_LED_100MB_OVERRIDE
|
7495 BNX2_EMAC_LED_10MB_OVERRIDE
|
7496 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
7497 BNX2_EMAC_LED_TRAFFIC
);
7499 msleep_interruptible(500);
7500 if (signal_pending(current
))
7503 REG_WR(bp
, BNX2_EMAC_LED
, 0);
7504 REG_WR(bp
, BNX2_MISC_CFG
, save
);
7506 if (!netif_running(dev
))
7507 bnx2_set_power_state(bp
, PCI_D3hot
);
7513 bnx2_set_tx_csum(struct net_device
*dev
, u32 data
)
7515 struct bnx2
*bp
= netdev_priv(dev
);
7517 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7518 return ethtool_op_set_tx_ipv6_csum(dev
, data
);
7520 return ethtool_op_set_tx_csum(dev
, data
);
7524 bnx2_set_flags(struct net_device
*dev
, u32 data
)
7526 struct bnx2
*bp
= netdev_priv(dev
);
7529 if (!(bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
) &&
7530 !(data
& ETH_FLAG_RXVLAN
))
7533 rc
= ethtool_op_set_flags(dev
, data
, ETH_FLAG_RXHASH
| ETH_FLAG_RXVLAN
|
7538 if ((!!(data
& ETH_FLAG_RXVLAN
) !=
7539 !!(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
)) &&
7540 netif_running(dev
)) {
7541 bnx2_netif_stop(bp
, false);
7542 bnx2_set_rx_mode(dev
);
7543 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE
, 0, 1);
7544 bnx2_netif_start(bp
, false);
7550 static const struct ethtool_ops bnx2_ethtool_ops
= {
7551 .get_settings
= bnx2_get_settings
,
7552 .set_settings
= bnx2_set_settings
,
7553 .get_drvinfo
= bnx2_get_drvinfo
,
7554 .get_regs_len
= bnx2_get_regs_len
,
7555 .get_regs
= bnx2_get_regs
,
7556 .get_wol
= bnx2_get_wol
,
7557 .set_wol
= bnx2_set_wol
,
7558 .nway_reset
= bnx2_nway_reset
,
7559 .get_link
= bnx2_get_link
,
7560 .get_eeprom_len
= bnx2_get_eeprom_len
,
7561 .get_eeprom
= bnx2_get_eeprom
,
7562 .set_eeprom
= bnx2_set_eeprom
,
7563 .get_coalesce
= bnx2_get_coalesce
,
7564 .set_coalesce
= bnx2_set_coalesce
,
7565 .get_ringparam
= bnx2_get_ringparam
,
7566 .set_ringparam
= bnx2_set_ringparam
,
7567 .get_pauseparam
= bnx2_get_pauseparam
,
7568 .set_pauseparam
= bnx2_set_pauseparam
,
7569 .get_rx_csum
= bnx2_get_rx_csum
,
7570 .set_rx_csum
= bnx2_set_rx_csum
,
7571 .set_tx_csum
= bnx2_set_tx_csum
,
7572 .set_sg
= ethtool_op_set_sg
,
7573 .set_tso
= bnx2_set_tso
,
7574 .self_test
= bnx2_self_test
,
7575 .get_strings
= bnx2_get_strings
,
7576 .phys_id
= bnx2_phys_id
,
7577 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
7578 .get_sset_count
= bnx2_get_sset_count
,
7579 .set_flags
= bnx2_set_flags
,
7580 .get_flags
= ethtool_op_get_flags
,
7583 /* Called with rtnl_lock */
7585 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7587 struct mii_ioctl_data
*data
= if_mii(ifr
);
7588 struct bnx2
*bp
= netdev_priv(dev
);
7593 data
->phy_id
= bp
->phy_addr
;
7599 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7602 if (!netif_running(dev
))
7605 spin_lock_bh(&bp
->phy_lock
);
7606 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
7607 spin_unlock_bh(&bp
->phy_lock
);
7609 data
->val_out
= mii_regval
;
7615 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7618 if (!netif_running(dev
))
7621 spin_lock_bh(&bp
->phy_lock
);
7622 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
7623 spin_unlock_bh(&bp
->phy_lock
);
7634 /* Called with rtnl_lock */
7636 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
7638 struct sockaddr
*addr
= p
;
7639 struct bnx2
*bp
= netdev_priv(dev
);
7641 if (!is_valid_ether_addr(addr
->sa_data
))
7644 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
7645 if (netif_running(dev
))
7646 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
7651 /* Called with rtnl_lock */
7653 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
7655 struct bnx2
*bp
= netdev_priv(dev
);
7657 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
7658 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
7662 return bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
);
7665 #ifdef CONFIG_NET_POLL_CONTROLLER
7667 poll_bnx2(struct net_device
*dev
)
7669 struct bnx2
*bp
= netdev_priv(dev
);
7672 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
7673 struct bnx2_irq
*irq
= &bp
->irq_tbl
[i
];
7675 disable_irq(irq
->vector
);
7676 irq
->handler(irq
->vector
, &bp
->bnx2_napi
[i
]);
7677 enable_irq(irq
->vector
);
7682 static void __devinit
7683 bnx2_get_5709_media(struct bnx2
*bp
)
7685 u32 val
= REG_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
7686 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
7689 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
7691 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
7692 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7696 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
7697 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
7699 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
7701 if (PCI_FUNC(bp
->pdev
->devfn
) == 0) {
7706 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7714 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7720 static void __devinit
7721 bnx2_get_pci_speed(struct bnx2
*bp
)
7725 reg
= REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
7726 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
7729 bp
->flags
|= BNX2_FLAG_PCIX
;
7731 clkreg
= REG_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
7733 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
7735 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
7736 bp
->bus_speed_mhz
= 133;
7739 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
7740 bp
->bus_speed_mhz
= 100;
7743 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
7744 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
7745 bp
->bus_speed_mhz
= 66;
7748 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
7749 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
7750 bp
->bus_speed_mhz
= 50;
7753 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
7754 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
7755 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
7756 bp
->bus_speed_mhz
= 33;
7761 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
7762 bp
->bus_speed_mhz
= 66;
7764 bp
->bus_speed_mhz
= 33;
7767 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
7768 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
7772 static void __devinit
7773 bnx2_read_vpd_fw_ver(struct bnx2
*bp
)
7777 unsigned int block_end
, rosize
, len
;
7779 #define BNX2_VPD_NVRAM_OFFSET 0x300
7780 #define BNX2_VPD_LEN 128
7781 #define BNX2_MAX_VER_SLEN 30
7783 data
= kmalloc(256, GFP_KERNEL
);
7787 rc
= bnx2_nvram_read(bp
, BNX2_VPD_NVRAM_OFFSET
, data
+ BNX2_VPD_LEN
,
7792 for (i
= 0; i
< BNX2_VPD_LEN
; i
+= 4) {
7793 data
[i
] = data
[i
+ BNX2_VPD_LEN
+ 3];
7794 data
[i
+ 1] = data
[i
+ BNX2_VPD_LEN
+ 2];
7795 data
[i
+ 2] = data
[i
+ BNX2_VPD_LEN
+ 1];
7796 data
[i
+ 3] = data
[i
+ BNX2_VPD_LEN
];
7799 i
= pci_vpd_find_tag(data
, 0, BNX2_VPD_LEN
, PCI_VPD_LRDT_RO_DATA
);
7803 rosize
= pci_vpd_lrdt_size(&data
[i
]);
7804 i
+= PCI_VPD_LRDT_TAG_SIZE
;
7805 block_end
= i
+ rosize
;
7807 if (block_end
> BNX2_VPD_LEN
)
7810 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
7811 PCI_VPD_RO_KEYWORD_MFR_ID
);
7815 len
= pci_vpd_info_field_size(&data
[j
]);
7817 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
7818 if (j
+ len
> block_end
|| len
!= 4 ||
7819 memcmp(&data
[j
], "1028", 4))
7822 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
7823 PCI_VPD_RO_KEYWORD_VENDOR0
);
7827 len
= pci_vpd_info_field_size(&data
[j
]);
7829 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
7830 if (j
+ len
> block_end
|| len
> BNX2_MAX_VER_SLEN
)
7833 memcpy(bp
->fw_version
, &data
[j
], len
);
7834 bp
->fw_version
[len
] = ' ';
7840 static int __devinit
7841 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
7844 unsigned long mem_len
;
7847 u64 dma_mask
, persist_dma_mask
;
7850 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7851 bp
= netdev_priv(dev
);
7856 bp
->temp_stats_blk
=
7857 kzalloc(sizeof(struct statistics_block
), GFP_KERNEL
);
7859 if (bp
->temp_stats_blk
== NULL
) {
7864 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7865 rc
= pci_enable_device(pdev
);
7867 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
7871 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
7873 "Cannot find PCI device base address, aborting\n");
7875 goto err_out_disable
;
7878 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
7880 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
7881 goto err_out_disable
;
7884 pci_set_master(pdev
);
7886 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
7887 if (bp
->pm_cap
== 0) {
7889 "Cannot find power management capability, aborting\n");
7891 goto err_out_release
;
7897 spin_lock_init(&bp
->phy_lock
);
7898 spin_lock_init(&bp
->indirect_lock
);
7900 mutex_init(&bp
->cnic_lock
);
7902 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
7904 dev
->base_addr
= dev
->mem_start
= pci_resource_start(pdev
, 0);
7905 mem_len
= MB_GET_CID_ADDR(TX_TSS_CID
+ TX_MAX_TSS_RINGS
+ 1);
7906 dev
->mem_end
= dev
->mem_start
+ mem_len
;
7907 dev
->irq
= pdev
->irq
;
7909 bp
->regview
= ioremap_nocache(dev
->base_addr
, mem_len
);
7912 dev_err(&pdev
->dev
, "Cannot map register space, aborting\n");
7914 goto err_out_release
;
7917 /* Configure byte swap and enable write to the reg_window registers.
7918 * Rely on CPU to do target byte swapping on big endian systems
7919 * The chip's target access swapping will not swap all accesses
7921 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
,
7922 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
7923 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
7925 bnx2_set_power_state(bp
, PCI_D0
);
7927 bp
->chip_id
= REG_RD(bp
, BNX2_MISC_ID
);
7929 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
7930 if (pci_find_capability(pdev
, PCI_CAP_ID_EXP
) == 0) {
7932 "Cannot find PCIE capability, aborting\n");
7936 bp
->flags
|= BNX2_FLAG_PCIE
;
7937 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
7938 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
7940 /* AER (Advanced Error Reporting) hooks */
7941 err
= pci_enable_pcie_error_reporting(pdev
);
7943 dev_err(&pdev
->dev
, "pci_enable_pcie_error_reporting "
7944 "failed 0x%x\n", err
);
7945 /* non-fatal, continue */
7949 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
7950 if (bp
->pcix_cap
== 0) {
7952 "Cannot find PCIX capability, aborting\n");
7956 bp
->flags
|= BNX2_FLAG_BROKEN_STATS
;
7959 if (CHIP_NUM(bp
) == CHIP_NUM_5709
&& CHIP_REV(bp
) != CHIP_REV_Ax
) {
7960 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
))
7961 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
7964 if (CHIP_ID(bp
) != CHIP_ID_5706_A0
&& CHIP_ID(bp
) != CHIP_ID_5706_A1
) {
7965 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
))
7966 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
7969 /* 5708 cannot support DMA addresses > 40-bit. */
7970 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
7971 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(40);
7973 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(64);
7975 /* Configure DMA attributes. */
7976 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
7977 dev
->features
|= NETIF_F_HIGHDMA
;
7978 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
7981 "pci_set_consistent_dma_mask failed, aborting\n");
7984 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) != 0) {
7985 dev_err(&pdev
->dev
, "System does not support DMA, aborting\n");
7989 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
7990 bnx2_get_pci_speed(bp
);
7992 /* 5706A0 may falsely detect SERR and PERR. */
7993 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
7994 reg
= REG_RD(bp
, PCI_COMMAND
);
7995 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
7996 REG_WR(bp
, PCI_COMMAND
, reg
);
7998 else if ((CHIP_ID(bp
) == CHIP_ID_5706_A1
) &&
7999 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
8002 "5706 A1 can only be used in a PCIX bus, aborting\n");
8006 bnx2_init_nvram(bp
);
8008 reg
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_SIGNATURE
);
8010 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
8011 BNX2_SHM_HDR_SIGNATURE_SIG
) {
8012 u32 off
= PCI_FUNC(pdev
->devfn
) << 2;
8014 bp
->shmem_base
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
8016 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
8018 /* Get the permanent MAC address. First we need to make sure the
8019 * firmware is actually running.
8021 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
);
8023 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
8024 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
8025 dev_err(&pdev
->dev
, "Firmware not running, aborting\n");
8030 bnx2_read_vpd_fw_ver(bp
);
8032 j
= strlen(bp
->fw_version
);
8033 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_BC_REV
);
8034 for (i
= 0; i
< 3 && j
< 24; i
++) {
8038 bp
->fw_version
[j
++] = 'b';
8039 bp
->fw_version
[j
++] = 'c';
8040 bp
->fw_version
[j
++] = ' ';
8042 num
= (u8
) (reg
>> (24 - (i
* 8)));
8043 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
8044 if (num
>= k
|| !skip0
|| k
== 1) {
8045 bp
->fw_version
[j
++] = (num
/ k
) + '0';
8050 bp
->fw_version
[j
++] = '.';
8052 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
8053 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
8056 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
8057 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
8059 for (i
= 0; i
< 30; i
++) {
8060 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8061 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
8066 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8067 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
8068 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
8069 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
8070 u32 addr
= bnx2_shmem_rd(bp
, BNX2_MFW_VER_PTR
);
8073 bp
->fw_version
[j
++] = ' ';
8074 for (i
= 0; i
< 3 && j
< 28; i
++) {
8075 reg
= bnx2_reg_rd_ind(bp
, addr
+ i
* 4);
8077 memcpy(&bp
->fw_version
[j
], ®
, 4);
8082 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_UPPER
);
8083 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
8084 bp
->mac_addr
[1] = (u8
) reg
;
8086 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_LOWER
);
8087 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
8088 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
8089 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
8090 bp
->mac_addr
[5] = (u8
) reg
;
8092 bp
->tx_ring_size
= MAX_TX_DESC_CNT
;
8093 bnx2_set_rx_ring_size(bp
, 255);
8097 bp
->tx_quick_cons_trip_int
= 2;
8098 bp
->tx_quick_cons_trip
= 20;
8099 bp
->tx_ticks_int
= 18;
8102 bp
->rx_quick_cons_trip_int
= 2;
8103 bp
->rx_quick_cons_trip
= 12;
8104 bp
->rx_ticks_int
= 18;
8107 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
8109 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
8113 /* Disable WOL support if we are running on a SERDES chip. */
8114 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
8115 bnx2_get_5709_media(bp
);
8116 else if (CHIP_BOND_ID(bp
) & CHIP_BOND_ID_SERDES_BIT
)
8117 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
8119 bp
->phy_port
= PORT_TP
;
8120 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
8121 bp
->phy_port
= PORT_FIBRE
;
8122 reg
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
8123 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
8124 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8127 if (CHIP_NUM(bp
) == CHIP_NUM_5706
) {
8128 /* Don't do parallel detect on this board because of
8129 * some board problems. The link will not go down
8130 * if we do parallel detect.
8132 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
&&
8133 pdev
->subsystem_device
== 0x310c)
8134 bp
->phy_flags
|= BNX2_PHY_FLAG_NO_PARALLEL
;
8137 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
8138 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
8140 } else if (CHIP_NUM(bp
) == CHIP_NUM_5706
||
8141 CHIP_NUM(bp
) == CHIP_NUM_5708
)
8142 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
8143 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
&&
8144 (CHIP_REV(bp
) == CHIP_REV_Ax
||
8145 CHIP_REV(bp
) == CHIP_REV_Bx
))
8146 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
8148 bnx2_init_fw_cap(bp
);
8150 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
8151 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
8152 (CHIP_ID(bp
) == CHIP_ID_5708_B1
) ||
8153 !(REG_RD(bp
, BNX2_PCI_CONFIG_3
) & BNX2_PCI_CONFIG_3_VAUX_PRESET
)) {
8154 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8158 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
8159 bp
->tx_quick_cons_trip_int
=
8160 bp
->tx_quick_cons_trip
;
8161 bp
->tx_ticks_int
= bp
->tx_ticks
;
8162 bp
->rx_quick_cons_trip_int
=
8163 bp
->rx_quick_cons_trip
;
8164 bp
->rx_ticks_int
= bp
->rx_ticks
;
8165 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
8166 bp
->com_ticks_int
= bp
->com_ticks
;
8167 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
8170 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8172 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8173 * with byte enables disabled on the unused 32-bit word. This is legal
8174 * but causes problems on the AMD 8132 which will eventually stop
8175 * responding after a while.
8177 * AMD believes this incompatibility is unique to the 5706, and
8178 * prefers to locally disable MSI rather than globally disabling it.
8180 if (CHIP_NUM(bp
) == CHIP_NUM_5706
&& disable_msi
== 0) {
8181 struct pci_dev
*amd_8132
= NULL
;
8183 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
8184 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
8187 if (amd_8132
->revision
>= 0x10 &&
8188 amd_8132
->revision
<= 0x13) {
8190 pci_dev_put(amd_8132
);
8196 bnx2_set_default_link(bp
);
8197 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
8199 init_timer(&bp
->timer
);
8200 bp
->timer
.expires
= RUN_AT(BNX2_TIMER_INTERVAL
);
8201 bp
->timer
.data
= (unsigned long) bp
;
8202 bp
->timer
.function
= bnx2_timer
;
8204 pci_save_state(pdev
);
8209 if (bp
->flags
& BNX2_FLAG_PCIE
)
8210 pci_disable_pcie_error_reporting(pdev
);
8213 iounmap(bp
->regview
);
8218 pci_release_regions(pdev
);
8221 pci_disable_device(pdev
);
8222 pci_set_drvdata(pdev
, NULL
);
8228 static char * __devinit
8229 bnx2_bus_string(struct bnx2
*bp
, char *str
)
8233 if (bp
->flags
& BNX2_FLAG_PCIE
) {
8234 s
+= sprintf(s
, "PCI Express");
8236 s
+= sprintf(s
, "PCI");
8237 if (bp
->flags
& BNX2_FLAG_PCIX
)
8238 s
+= sprintf(s
, "-X");
8239 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
8240 s
+= sprintf(s
, " 32-bit");
8242 s
+= sprintf(s
, " 64-bit");
8243 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
8249 bnx2_del_napi(struct bnx2
*bp
)
8253 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
8254 netif_napi_del(&bp
->bnx2_napi
[i
].napi
);
8258 bnx2_init_napi(struct bnx2
*bp
)
8262 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
8263 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
8264 int (*poll
)(struct napi_struct
*, int);
8269 poll
= bnx2_poll_msix
;
8271 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[i
].napi
, poll
, 64);
8276 static const struct net_device_ops bnx2_netdev_ops
= {
8277 .ndo_open
= bnx2_open
,
8278 .ndo_start_xmit
= bnx2_start_xmit
,
8279 .ndo_stop
= bnx2_close
,
8280 .ndo_get_stats64
= bnx2_get_stats64
,
8281 .ndo_set_rx_mode
= bnx2_set_rx_mode
,
8282 .ndo_do_ioctl
= bnx2_ioctl
,
8283 .ndo_validate_addr
= eth_validate_addr
,
8284 .ndo_set_mac_address
= bnx2_change_mac_addr
,
8285 .ndo_change_mtu
= bnx2_change_mtu
,
8286 .ndo_tx_timeout
= bnx2_tx_timeout
,
8287 #ifdef CONFIG_NET_POLL_CONTROLLER
8288 .ndo_poll_controller
= poll_bnx2
,
8292 static void inline vlan_features_add(struct net_device
*dev
, unsigned long flags
)
8294 dev
->vlan_features
|= flags
;
8297 static int __devinit
8298 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8300 static int version_printed
= 0;
8301 struct net_device
*dev
= NULL
;
8306 if (version_printed
++ == 0)
8307 pr_info("%s", version
);
8309 /* dev zeroed in init_etherdev */
8310 dev
= alloc_etherdev_mq(sizeof(*bp
), TX_MAX_RINGS
);
8315 rc
= bnx2_init_board(pdev
, dev
);
8321 dev
->netdev_ops
= &bnx2_netdev_ops
;
8322 dev
->watchdog_timeo
= TX_TIMEOUT
;
8323 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
8325 bp
= netdev_priv(dev
);
8327 pci_set_drvdata(pdev
, dev
);
8329 rc
= bnx2_request_firmware(bp
);
8333 memcpy(dev
->dev_addr
, bp
->mac_addr
, 6);
8334 memcpy(dev
->perm_addr
, bp
->mac_addr
, 6);
8336 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_GRO
|
8338 vlan_features_add(dev
, NETIF_F_IP_CSUM
| NETIF_F_SG
);
8339 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
8340 dev
->features
|= NETIF_F_IPV6_CSUM
;
8341 vlan_features_add(dev
, NETIF_F_IPV6_CSUM
);
8343 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
8344 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
8345 vlan_features_add(dev
, NETIF_F_TSO
| NETIF_F_TSO_ECN
);
8346 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
8347 dev
->features
|= NETIF_F_TSO6
;
8348 vlan_features_add(dev
, NETIF_F_TSO6
);
8350 if ((rc
= register_netdev(dev
))) {
8351 dev_err(&pdev
->dev
, "Cannot register net device\n");
8355 netdev_info(dev
, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
8356 board_info
[ent
->driver_data
].name
,
8357 ((CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
8358 ((CHIP_ID(bp
) & 0x0ff0) >> 4),
8359 bnx2_bus_string(bp
, str
),
8361 bp
->pdev
->irq
, dev
->dev_addr
);
8366 if (bp
->mips_firmware
)
8367 release_firmware(bp
->mips_firmware
);
8368 if (bp
->rv2p_firmware
)
8369 release_firmware(bp
->rv2p_firmware
);
8372 iounmap(bp
->regview
);
8373 pci_release_regions(pdev
);
8374 pci_disable_device(pdev
);
8375 pci_set_drvdata(pdev
, NULL
);
8380 static void __devexit
8381 bnx2_remove_one(struct pci_dev
*pdev
)
8383 struct net_device
*dev
= pci_get_drvdata(pdev
);
8384 struct bnx2
*bp
= netdev_priv(dev
);
8386 flush_scheduled_work();
8388 unregister_netdev(dev
);
8390 if (bp
->mips_firmware
)
8391 release_firmware(bp
->mips_firmware
);
8392 if (bp
->rv2p_firmware
)
8393 release_firmware(bp
->rv2p_firmware
);
8396 iounmap(bp
->regview
);
8398 kfree(bp
->temp_stats_blk
);
8400 if (bp
->flags
& BNX2_FLAG_PCIE
)
8401 pci_disable_pcie_error_reporting(pdev
);
8405 pci_release_regions(pdev
);
8406 pci_disable_device(pdev
);
8407 pci_set_drvdata(pdev
, NULL
);
8411 bnx2_suspend(struct pci_dev
*pdev
, pm_message_t state
)
8413 struct net_device
*dev
= pci_get_drvdata(pdev
);
8414 struct bnx2
*bp
= netdev_priv(dev
);
8416 /* PCI register 4 needs to be saved whether netif_running() or not.
8417 * MSI address and data need to be saved if using MSI and
8420 pci_save_state(pdev
);
8421 if (!netif_running(dev
))
8424 flush_scheduled_work();
8425 bnx2_netif_stop(bp
, true);
8426 netif_device_detach(dev
);
8427 del_timer_sync(&bp
->timer
);
8428 bnx2_shutdown_chip(bp
);
8430 bnx2_set_power_state(bp
, pci_choose_state(pdev
, state
));
8435 bnx2_resume(struct pci_dev
*pdev
)
8437 struct net_device
*dev
= pci_get_drvdata(pdev
);
8438 struct bnx2
*bp
= netdev_priv(dev
);
8440 pci_restore_state(pdev
);
8441 if (!netif_running(dev
))
8444 bnx2_set_power_state(bp
, PCI_D0
);
8445 netif_device_attach(dev
);
8446 bnx2_init_nic(bp
, 1);
8447 bnx2_netif_start(bp
, true);
8452 * bnx2_io_error_detected - called when PCI error is detected
8453 * @pdev: Pointer to PCI device
8454 * @state: The current pci connection state
8456 * This function is called after a PCI bus error affecting
8457 * this device has been detected.
8459 static pci_ers_result_t
bnx2_io_error_detected(struct pci_dev
*pdev
,
8460 pci_channel_state_t state
)
8462 struct net_device
*dev
= pci_get_drvdata(pdev
);
8463 struct bnx2
*bp
= netdev_priv(dev
);
8466 netif_device_detach(dev
);
8468 if (state
== pci_channel_io_perm_failure
) {
8470 return PCI_ERS_RESULT_DISCONNECT
;
8473 if (netif_running(dev
)) {
8474 bnx2_netif_stop(bp
, true);
8475 del_timer_sync(&bp
->timer
);
8476 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
8479 pci_disable_device(pdev
);
8482 /* Request a slot slot reset. */
8483 return PCI_ERS_RESULT_NEED_RESET
;
8487 * bnx2_io_slot_reset - called after the pci bus has been reset.
8488 * @pdev: Pointer to PCI device
8490 * Restart the card from scratch, as if from a cold-boot.
8492 static pci_ers_result_t
bnx2_io_slot_reset(struct pci_dev
*pdev
)
8494 struct net_device
*dev
= pci_get_drvdata(pdev
);
8495 struct bnx2
*bp
= netdev_priv(dev
);
8496 pci_ers_result_t result
;
8500 if (pci_enable_device(pdev
)) {
8502 "Cannot re-enable PCI device after reset\n");
8503 result
= PCI_ERS_RESULT_DISCONNECT
;
8505 pci_set_master(pdev
);
8506 pci_restore_state(pdev
);
8507 pci_save_state(pdev
);
8509 if (netif_running(dev
)) {
8510 bnx2_set_power_state(bp
, PCI_D0
);
8511 bnx2_init_nic(bp
, 1);
8513 result
= PCI_ERS_RESULT_RECOVERED
;
8517 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
8520 err
= pci_cleanup_aer_uncorrect_error_status(pdev
);
8523 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8524 err
); /* non-fatal, continue */
8531 * bnx2_io_resume - called when traffic can start flowing again.
8532 * @pdev: Pointer to PCI device
8534 * This callback is called when the error recovery driver tells us that
8535 * its OK to resume normal operation.
8537 static void bnx2_io_resume(struct pci_dev
*pdev
)
8539 struct net_device
*dev
= pci_get_drvdata(pdev
);
8540 struct bnx2
*bp
= netdev_priv(dev
);
8543 if (netif_running(dev
))
8544 bnx2_netif_start(bp
, true);
8546 netif_device_attach(dev
);
8550 static struct pci_error_handlers bnx2_err_handler
= {
8551 .error_detected
= bnx2_io_error_detected
,
8552 .slot_reset
= bnx2_io_slot_reset
,
8553 .resume
= bnx2_io_resume
,
8556 static struct pci_driver bnx2_pci_driver
= {
8557 .name
= DRV_MODULE_NAME
,
8558 .id_table
= bnx2_pci_tbl
,
8559 .probe
= bnx2_init_one
,
8560 .remove
= __devexit_p(bnx2_remove_one
),
8561 .suspend
= bnx2_suspend
,
8562 .resume
= bnx2_resume
,
8563 .err_handler
= &bnx2_err_handler
,
8566 static int __init
bnx2_init(void)
8568 return pci_register_driver(&bnx2_pci_driver
);
8571 static void __exit
bnx2_cleanup(void)
8573 pci_unregister_driver(&bnx2_pci_driver
);
8576 module_init(bnx2_init
);
8577 module_exit(bnx2_cleanup
);