2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
8 static inline int rt_overloaded(struct rq
*rq
)
10 return atomic_read(&rq
->rd
->rto_count
);
13 static inline void rt_set_overload(struct rq
*rq
)
18 cpu_set(rq
->cpu
, rq
->rd
->rto_mask
);
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
27 atomic_inc(&rq
->rd
->rto_count
);
30 static inline void rt_clear_overload(struct rq
*rq
)
35 /* the order here really doesn't matter */
36 atomic_dec(&rq
->rd
->rto_count
);
37 cpu_clear(rq
->cpu
, rq
->rd
->rto_mask
);
40 static void update_rt_migration(struct rq
*rq
)
42 if (rq
->rt
.rt_nr_migratory
&& (rq
->rt
.rt_nr_running
> 1)) {
43 if (!rq
->rt
.overloaded
) {
45 rq
->rt
.overloaded
= 1;
47 } else if (rq
->rt
.overloaded
) {
48 rt_clear_overload(rq
);
49 rq
->rt
.overloaded
= 0;
52 #endif /* CONFIG_SMP */
54 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
56 return container_of(rt_se
, struct task_struct
, rt
);
59 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
61 return !list_empty(&rt_se
->run_list
);
64 #ifdef CONFIG_RT_GROUP_SCHED
66 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
71 return rt_rq
->rt_runtime
;
74 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
76 return ktime_to_ns(rt_rq
->tg
->rt_bandwidth
.rt_period
);
79 #define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
82 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
87 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
92 #define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
95 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
100 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
);
101 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
);
103 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
105 struct sched_rt_entity
*rt_se
= rt_rq
->rt_se
;
107 if (rt_se
&& !on_rt_rq(rt_se
) && rt_rq
->rt_nr_running
) {
108 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
110 enqueue_rt_entity(rt_se
);
111 if (rt_rq
->highest_prio
< curr
->prio
)
116 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
118 struct sched_rt_entity
*rt_se
= rt_rq
->rt_se
;
120 if (rt_se
&& on_rt_rq(rt_se
))
121 dequeue_rt_entity(rt_se
);
124 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
126 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
129 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
131 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
132 struct task_struct
*p
;
135 return !!rt_rq
->rt_nr_boosted
;
137 p
= rt_task_of(rt_se
);
138 return p
->prio
!= p
->normal_prio
;
142 static inline cpumask_t
sched_rt_period_mask(void)
144 return cpu_rq(smp_processor_id())->rd
->span
;
147 static inline cpumask_t
sched_rt_period_mask(void)
149 return cpu_online_map
;
154 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
156 return container_of(rt_b
, struct task_group
, rt_bandwidth
)->rt_rq
[cpu
];
159 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
161 return &rt_rq
->tg
->rt_bandwidth
;
164 #else /* !CONFIG_RT_GROUP_SCHED */
166 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
168 return rt_rq
->rt_runtime
;
171 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
173 return ktime_to_ns(def_rt_bandwidth
.rt_period
);
176 #define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
179 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
181 return container_of(rt_rq
, struct rq
, rt
);
184 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
186 struct task_struct
*p
= rt_task_of(rt_se
);
187 struct rq
*rq
= task_rq(p
);
192 #define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
195 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
200 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
202 if (rt_rq
->rt_nr_running
)
203 resched_task(rq_of_rt_rq(rt_rq
)->curr
);
206 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
210 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
212 return rt_rq
->rt_throttled
;
215 static inline cpumask_t
sched_rt_period_mask(void)
217 return cpu_online_map
;
221 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
223 return &cpu_rq(cpu
)->rt
;
226 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
228 return &def_rt_bandwidth
;
231 #endif /* CONFIG_RT_GROUP_SCHED */
234 static int do_balance_runtime(struct rt_rq
*rt_rq
)
236 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
237 struct root_domain
*rd
= cpu_rq(smp_processor_id())->rd
;
238 int i
, weight
, more
= 0;
241 weight
= cpus_weight(rd
->span
);
243 spin_lock(&rt_b
->rt_runtime_lock
);
244 rt_period
= ktime_to_ns(rt_b
->rt_period
);
245 for_each_cpu_mask_nr(i
, rd
->span
) {
246 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
252 spin_lock(&iter
->rt_runtime_lock
);
253 if (iter
->rt_runtime
== RUNTIME_INF
)
256 diff
= iter
->rt_runtime
- iter
->rt_time
;
258 diff
= div_u64((u64
)diff
, weight
);
259 if (rt_rq
->rt_runtime
+ diff
> rt_period
)
260 diff
= rt_period
- rt_rq
->rt_runtime
;
261 iter
->rt_runtime
-= diff
;
262 rt_rq
->rt_runtime
+= diff
;
264 if (rt_rq
->rt_runtime
== rt_period
) {
265 spin_unlock(&iter
->rt_runtime_lock
);
270 spin_unlock(&iter
->rt_runtime_lock
);
272 spin_unlock(&rt_b
->rt_runtime_lock
);
277 static void __disable_runtime(struct rq
*rq
)
279 struct root_domain
*rd
= rq
->rd
;
282 if (unlikely(!scheduler_running
))
285 for_each_leaf_rt_rq(rt_rq
, rq
) {
286 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
290 spin_lock(&rt_b
->rt_runtime_lock
);
291 spin_lock(&rt_rq
->rt_runtime_lock
);
292 if (rt_rq
->rt_runtime
== RUNTIME_INF
||
293 rt_rq
->rt_runtime
== rt_b
->rt_runtime
)
295 spin_unlock(&rt_rq
->rt_runtime_lock
);
297 want
= rt_b
->rt_runtime
- rt_rq
->rt_runtime
;
299 for_each_cpu_mask(i
, rd
->span
) {
300 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
303 if (iter
== rt_rq
|| iter
->rt_runtime
== RUNTIME_INF
)
306 spin_lock(&iter
->rt_runtime_lock
);
308 diff
= min_t(s64
, iter
->rt_runtime
, want
);
309 iter
->rt_runtime
-= diff
;
312 iter
->rt_runtime
-= want
;
315 spin_unlock(&iter
->rt_runtime_lock
);
321 spin_lock(&rt_rq
->rt_runtime_lock
);
324 rt_rq
->rt_runtime
= RUNTIME_INF
;
325 spin_unlock(&rt_rq
->rt_runtime_lock
);
326 spin_unlock(&rt_b
->rt_runtime_lock
);
330 static void disable_runtime(struct rq
*rq
)
334 spin_lock_irqsave(&rq
->lock
, flags
);
335 __disable_runtime(rq
);
336 spin_unlock_irqrestore(&rq
->lock
, flags
);
339 static void __enable_runtime(struct rq
*rq
)
343 if (unlikely(!scheduler_running
))
346 for_each_leaf_rt_rq(rt_rq
, rq
) {
347 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
349 spin_lock(&rt_b
->rt_runtime_lock
);
350 spin_lock(&rt_rq
->rt_runtime_lock
);
351 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
353 spin_unlock(&rt_rq
->rt_runtime_lock
);
354 spin_unlock(&rt_b
->rt_runtime_lock
);
358 static void enable_runtime(struct rq
*rq
)
362 spin_lock_irqsave(&rq
->lock
, flags
);
363 __enable_runtime(rq
);
364 spin_unlock_irqrestore(&rq
->lock
, flags
);
367 static int balance_runtime(struct rt_rq
*rt_rq
)
371 if (rt_rq
->rt_time
> rt_rq
->rt_runtime
) {
372 spin_unlock(&rt_rq
->rt_runtime_lock
);
373 more
= do_balance_runtime(rt_rq
);
374 spin_lock(&rt_rq
->rt_runtime_lock
);
379 #else /* !CONFIG_SMP */
380 static inline int balance_runtime(struct rt_rq
*rt_rq
)
384 #endif /* CONFIG_SMP */
386 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
)
391 if (rt_b
->rt_runtime
== RUNTIME_INF
)
394 span
= sched_rt_period_mask();
395 for_each_cpu_mask(i
, span
) {
397 struct rt_rq
*rt_rq
= sched_rt_period_rt_rq(rt_b
, i
);
398 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
400 spin_lock(&rq
->lock
);
401 if (rt_rq
->rt_time
) {
404 spin_lock(&rt_rq
->rt_runtime_lock
);
405 if (rt_rq
->rt_throttled
)
406 balance_runtime(rt_rq
);
407 runtime
= rt_rq
->rt_runtime
;
408 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, overrun
*runtime
);
409 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
410 rt_rq
->rt_throttled
= 0;
413 if (rt_rq
->rt_time
|| rt_rq
->rt_nr_running
)
415 spin_unlock(&rt_rq
->rt_runtime_lock
);
416 } else if (rt_rq
->rt_nr_running
)
420 sched_rt_rq_enqueue(rt_rq
);
421 spin_unlock(&rq
->lock
);
427 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
429 #ifdef CONFIG_RT_GROUP_SCHED
430 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
433 return rt_rq
->highest_prio
;
436 return rt_task_of(rt_se
)->prio
;
439 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
441 u64 runtime
= sched_rt_runtime(rt_rq
);
443 if (rt_rq
->rt_throttled
)
444 return rt_rq_throttled(rt_rq
);
446 if (sched_rt_runtime(rt_rq
) >= sched_rt_period(rt_rq
))
449 balance_runtime(rt_rq
);
450 runtime
= sched_rt_runtime(rt_rq
);
451 if (runtime
== RUNTIME_INF
)
454 if (rt_rq
->rt_time
> runtime
) {
455 rt_rq
->rt_throttled
= 1;
456 if (rt_rq_throttled(rt_rq
)) {
457 sched_rt_rq_dequeue(rt_rq
);
466 * Update the current task's runtime statistics. Skip current tasks that
467 * are not in our scheduling class.
469 static void update_curr_rt(struct rq
*rq
)
471 struct task_struct
*curr
= rq
->curr
;
472 struct sched_rt_entity
*rt_se
= &curr
->rt
;
473 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
476 if (!task_has_rt_policy(curr
))
479 delta_exec
= rq
->clock
- curr
->se
.exec_start
;
480 if (unlikely((s64
)delta_exec
< 0))
483 schedstat_set(curr
->se
.exec_max
, max(curr
->se
.exec_max
, delta_exec
));
485 curr
->se
.sum_exec_runtime
+= delta_exec
;
486 account_group_exec_runtime(curr
, delta_exec
);
488 curr
->se
.exec_start
= rq
->clock
;
489 cpuacct_charge(curr
, delta_exec
);
491 for_each_sched_rt_entity(rt_se
) {
492 rt_rq
= rt_rq_of_se(rt_se
);
494 spin_lock(&rt_rq
->rt_runtime_lock
);
495 if (sched_rt_runtime(rt_rq
) != RUNTIME_INF
) {
496 rt_rq
->rt_time
+= delta_exec
;
497 if (sched_rt_runtime_exceeded(rt_rq
))
500 spin_unlock(&rt_rq
->rt_runtime_lock
);
505 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
507 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
508 rt_rq
->rt_nr_running
++;
509 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
510 if (rt_se_prio(rt_se
) < rt_rq
->highest_prio
) {
512 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
515 rt_rq
->highest_prio
= rt_se_prio(rt_se
);
518 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
,
524 if (rt_se
->nr_cpus_allowed
> 1) {
525 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
527 rq
->rt
.rt_nr_migratory
++;
530 update_rt_migration(rq_of_rt_rq(rt_rq
));
532 #ifdef CONFIG_RT_GROUP_SCHED
533 if (rt_se_boosted(rt_se
))
534 rt_rq
->rt_nr_boosted
++;
537 start_rt_bandwidth(&rt_rq
->tg
->rt_bandwidth
);
539 start_rt_bandwidth(&def_rt_bandwidth
);
544 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
547 int highest_prio
= rt_rq
->highest_prio
;
550 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
551 WARN_ON(!rt_rq
->rt_nr_running
);
552 rt_rq
->rt_nr_running
--;
553 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
554 if (rt_rq
->rt_nr_running
) {
555 struct rt_prio_array
*array
;
557 WARN_ON(rt_se_prio(rt_se
) < rt_rq
->highest_prio
);
558 if (rt_se_prio(rt_se
) == rt_rq
->highest_prio
) {
560 array
= &rt_rq
->active
;
561 rt_rq
->highest_prio
=
562 sched_find_first_bit(array
->bitmap
);
563 } /* otherwise leave rq->highest prio alone */
565 rt_rq
->highest_prio
= MAX_RT_PRIO
;
568 if (rt_se
->nr_cpus_allowed
> 1) {
569 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
570 rq
->rt
.rt_nr_migratory
--;
573 if (rt_rq
->highest_prio
!= highest_prio
) {
574 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
577 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
,
578 rt_rq
->highest_prio
);
581 update_rt_migration(rq_of_rt_rq(rt_rq
));
582 #endif /* CONFIG_SMP */
583 #ifdef CONFIG_RT_GROUP_SCHED
584 if (rt_se_boosted(rt_se
))
585 rt_rq
->rt_nr_boosted
--;
587 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
591 static void __enqueue_rt_entity(struct sched_rt_entity
*rt_se
)
593 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
594 struct rt_prio_array
*array
= &rt_rq
->active
;
595 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
596 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
599 * Don't enqueue the group if its throttled, or when empty.
600 * The latter is a consequence of the former when a child group
601 * get throttled and the current group doesn't have any other
604 if (group_rq
&& (rt_rq_throttled(group_rq
) || !group_rq
->rt_nr_running
))
607 list_add_tail(&rt_se
->run_list
, queue
);
608 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
610 inc_rt_tasks(rt_se
, rt_rq
);
613 static void __dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
615 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
616 struct rt_prio_array
*array
= &rt_rq
->active
;
618 list_del_init(&rt_se
->run_list
);
619 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
620 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
622 dec_rt_tasks(rt_se
, rt_rq
);
626 * Because the prio of an upper entry depends on the lower
627 * entries, we must remove entries top - down.
629 static void dequeue_rt_stack(struct sched_rt_entity
*rt_se
)
631 struct sched_rt_entity
*back
= NULL
;
633 for_each_sched_rt_entity(rt_se
) {
638 for (rt_se
= back
; rt_se
; rt_se
= rt_se
->back
) {
640 __dequeue_rt_entity(rt_se
);
644 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
)
646 dequeue_rt_stack(rt_se
);
647 for_each_sched_rt_entity(rt_se
)
648 __enqueue_rt_entity(rt_se
);
651 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
653 dequeue_rt_stack(rt_se
);
655 for_each_sched_rt_entity(rt_se
) {
656 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
658 if (rt_rq
&& rt_rq
->rt_nr_running
)
659 __enqueue_rt_entity(rt_se
);
664 * Adding/removing a task to/from a priority array:
666 static void enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
668 struct sched_rt_entity
*rt_se
= &p
->rt
;
673 enqueue_rt_entity(rt_se
);
675 inc_cpu_load(rq
, p
->se
.load
.weight
);
678 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int sleep
)
680 struct sched_rt_entity
*rt_se
= &p
->rt
;
683 dequeue_rt_entity(rt_se
);
685 dec_cpu_load(rq
, p
->se
.load
.weight
);
689 * Put task to the end of the run list without the overhead of dequeue
690 * followed by enqueue.
693 requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
, int head
)
695 if (on_rt_rq(rt_se
)) {
696 struct rt_prio_array
*array
= &rt_rq
->active
;
697 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
700 list_move(&rt_se
->run_list
, queue
);
702 list_move_tail(&rt_se
->run_list
, queue
);
706 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int head
)
708 struct sched_rt_entity
*rt_se
= &p
->rt
;
711 for_each_sched_rt_entity(rt_se
) {
712 rt_rq
= rt_rq_of_se(rt_se
);
713 requeue_rt_entity(rt_rq
, rt_se
, head
);
717 static void yield_task_rt(struct rq
*rq
)
719 requeue_task_rt(rq
, rq
->curr
, 0);
723 static int find_lowest_rq(struct task_struct
*task
);
725 static int select_task_rq_rt(struct task_struct
*p
, int sync
)
727 struct rq
*rq
= task_rq(p
);
730 * If the current task is an RT task, then
731 * try to see if we can wake this RT task up on another
732 * runqueue. Otherwise simply start this RT task
733 * on its current runqueue.
735 * We want to avoid overloading runqueues. Even if
736 * the RT task is of higher priority than the current RT task.
737 * RT tasks behave differently than other tasks. If
738 * one gets preempted, we try to push it off to another queue.
739 * So trying to keep a preempting RT task on the same
740 * cache hot CPU will force the running RT task to
741 * a cold CPU. So we waste all the cache for the lower
742 * RT task in hopes of saving some of a RT task
743 * that is just being woken and probably will have
746 if (unlikely(rt_task(rq
->curr
)) &&
747 (p
->rt
.nr_cpus_allowed
> 1)) {
748 int cpu
= find_lowest_rq(p
);
750 return (cpu
== -1) ? task_cpu(p
) : cpu
;
754 * Otherwise, just let it ride on the affined RQ and the
755 * post-schedule router will push the preempted task away
760 static void check_preempt_equal_prio(struct rq
*rq
, struct task_struct
*p
)
764 if (rq
->curr
->rt
.nr_cpus_allowed
== 1)
767 if (p
->rt
.nr_cpus_allowed
!= 1
768 && cpupri_find(&rq
->rd
->cpupri
, p
, &mask
))
771 if (!cpupri_find(&rq
->rd
->cpupri
, rq
->curr
, &mask
))
775 * There appears to be other cpus that can accept
776 * current and none to run 'p', so lets reschedule
777 * to try and push current away:
779 requeue_task_rt(rq
, p
, 1);
780 resched_task(rq
->curr
);
783 #endif /* CONFIG_SMP */
786 * Preempt the current task with a newly woken task if needed:
788 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
)
790 if (p
->prio
< rq
->curr
->prio
) {
791 resched_task(rq
->curr
);
799 * - the newly woken task is of equal priority to the current task
800 * - the newly woken task is non-migratable while current is migratable
801 * - current will be preempted on the next reschedule
803 * we should check to see if current can readily move to a different
804 * cpu. If so, we will reschedule to allow the push logic to try
805 * to move current somewhere else, making room for our non-migratable
808 if (p
->prio
== rq
->curr
->prio
&& !need_resched())
809 check_preempt_equal_prio(rq
, p
);
813 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
816 struct rt_prio_array
*array
= &rt_rq
->active
;
817 struct sched_rt_entity
*next
= NULL
;
818 struct list_head
*queue
;
821 idx
= sched_find_first_bit(array
->bitmap
);
822 BUG_ON(idx
>= MAX_RT_PRIO
);
824 queue
= array
->queue
+ idx
;
825 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
830 static struct task_struct
*pick_next_task_rt(struct rq
*rq
)
832 struct sched_rt_entity
*rt_se
;
833 struct task_struct
*p
;
838 if (unlikely(!rt_rq
->rt_nr_running
))
841 if (rt_rq_throttled(rt_rq
))
845 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
847 rt_rq
= group_rt_rq(rt_se
);
850 p
= rt_task_of(rt_se
);
851 p
->se
.exec_start
= rq
->clock
;
855 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
858 p
->se
.exec_start
= 0;
863 /* Only try algorithms three times */
864 #define RT_MAX_TRIES 3
866 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
);
867 static void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
);
869 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
);
871 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
873 if (!task_running(rq
, p
) &&
874 (cpu
< 0 || cpu_isset(cpu
, p
->cpus_allowed
)) &&
875 (p
->rt
.nr_cpus_allowed
> 1))
880 /* Return the second highest RT task, NULL otherwise */
881 static struct task_struct
*pick_next_highest_task_rt(struct rq
*rq
, int cpu
)
883 struct task_struct
*next
= NULL
;
884 struct sched_rt_entity
*rt_se
;
885 struct rt_prio_array
*array
;
889 for_each_leaf_rt_rq(rt_rq
, rq
) {
890 array
= &rt_rq
->active
;
891 idx
= sched_find_first_bit(array
->bitmap
);
893 if (idx
>= MAX_RT_PRIO
)
895 if (next
&& next
->prio
< idx
)
897 list_for_each_entry(rt_se
, array
->queue
+ idx
, run_list
) {
898 struct task_struct
*p
= rt_task_of(rt_se
);
899 if (pick_rt_task(rq
, p
, cpu
)) {
905 idx
= find_next_bit(array
->bitmap
, MAX_RT_PRIO
, idx
+1);
913 static DEFINE_PER_CPU(cpumask_t
, local_cpu_mask
);
915 static inline int pick_optimal_cpu(int this_cpu
, cpumask_t
*mask
)
919 /* "this_cpu" is cheaper to preempt than a remote processor */
920 if ((this_cpu
!= -1) && cpu_isset(this_cpu
, *mask
))
923 first
= first_cpu(*mask
);
924 if (first
!= NR_CPUS
)
930 static int find_lowest_rq(struct task_struct
*task
)
932 struct sched_domain
*sd
;
933 cpumask_t
*lowest_mask
= &__get_cpu_var(local_cpu_mask
);
934 int this_cpu
= smp_processor_id();
935 int cpu
= task_cpu(task
);
937 if (task
->rt
.nr_cpus_allowed
== 1)
938 return -1; /* No other targets possible */
940 if (!cpupri_find(&task_rq(task
)->rd
->cpupri
, task
, lowest_mask
))
941 return -1; /* No targets found */
944 * Only consider CPUs that are usable for migration.
945 * I guess we might want to change cpupri_find() to ignore those
946 * in the first place.
948 cpus_and(*lowest_mask
, *lowest_mask
, cpu_active_map
);
951 * At this point we have built a mask of cpus representing the
952 * lowest priority tasks in the system. Now we want to elect
953 * the best one based on our affinity and topology.
955 * We prioritize the last cpu that the task executed on since
956 * it is most likely cache-hot in that location.
958 if (cpu_isset(cpu
, *lowest_mask
))
962 * Otherwise, we consult the sched_domains span maps to figure
963 * out which cpu is logically closest to our hot cache data.
966 this_cpu
= -1; /* Skip this_cpu opt if the same */
968 for_each_domain(cpu
, sd
) {
969 if (sd
->flags
& SD_WAKE_AFFINE
) {
970 cpumask_t domain_mask
;
973 cpus_and(domain_mask
, sd
->span
, *lowest_mask
);
975 best_cpu
= pick_optimal_cpu(this_cpu
,
983 * And finally, if there were no matches within the domains
984 * just give the caller *something* to work with from the compatible
987 return pick_optimal_cpu(this_cpu
, lowest_mask
);
990 /* Will lock the rq it finds */
991 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
993 struct rq
*lowest_rq
= NULL
;
997 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
998 cpu
= find_lowest_rq(task
);
1000 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1003 lowest_rq
= cpu_rq(cpu
);
1005 /* if the prio of this runqueue changed, try again */
1006 if (double_lock_balance(rq
, lowest_rq
)) {
1008 * We had to unlock the run queue. In
1009 * the mean time, task could have
1010 * migrated already or had its affinity changed.
1011 * Also make sure that it wasn't scheduled on its rq.
1013 if (unlikely(task_rq(task
) != rq
||
1014 !cpu_isset(lowest_rq
->cpu
,
1015 task
->cpus_allowed
) ||
1016 task_running(rq
, task
) ||
1019 spin_unlock(&lowest_rq
->lock
);
1025 /* If this rq is still suitable use it. */
1026 if (lowest_rq
->rt
.highest_prio
> task
->prio
)
1030 double_unlock_balance(rq
, lowest_rq
);
1038 * If the current CPU has more than one RT task, see if the non
1039 * running task can migrate over to a CPU that is running a task
1040 * of lesser priority.
1042 static int push_rt_task(struct rq
*rq
)
1044 struct task_struct
*next_task
;
1045 struct rq
*lowest_rq
;
1047 int paranoid
= RT_MAX_TRIES
;
1049 if (!rq
->rt
.overloaded
)
1052 next_task
= pick_next_highest_task_rt(rq
, -1);
1057 if (unlikely(next_task
== rq
->curr
)) {
1063 * It's possible that the next_task slipped in of
1064 * higher priority than current. If that's the case
1065 * just reschedule current.
1067 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
1068 resched_task(rq
->curr
);
1072 /* We might release rq lock */
1073 get_task_struct(next_task
);
1075 /* find_lock_lowest_rq locks the rq if found */
1076 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
1078 struct task_struct
*task
;
1080 * find lock_lowest_rq releases rq->lock
1081 * so it is possible that next_task has changed.
1082 * If it has, then try again.
1084 task
= pick_next_highest_task_rt(rq
, -1);
1085 if (unlikely(task
!= next_task
) && task
&& paranoid
--) {
1086 put_task_struct(next_task
);
1093 deactivate_task(rq
, next_task
, 0);
1094 set_task_cpu(next_task
, lowest_rq
->cpu
);
1095 activate_task(lowest_rq
, next_task
, 0);
1097 resched_task(lowest_rq
->curr
);
1099 double_unlock_balance(rq
, lowest_rq
);
1103 put_task_struct(next_task
);
1109 * TODO: Currently we just use the second highest prio task on
1110 * the queue, and stop when it can't migrate (or there's
1111 * no more RT tasks). There may be a case where a lower
1112 * priority RT task has a different affinity than the
1113 * higher RT task. In this case the lower RT task could
1114 * possibly be able to migrate where as the higher priority
1115 * RT task could not. We currently ignore this issue.
1116 * Enhancements are welcome!
1118 static void push_rt_tasks(struct rq
*rq
)
1120 /* push_rt_task will return true if it moved an RT */
1121 while (push_rt_task(rq
))
1125 static int pull_rt_task(struct rq
*this_rq
)
1127 int this_cpu
= this_rq
->cpu
, ret
= 0, cpu
;
1128 struct task_struct
*p
, *next
;
1131 if (likely(!rt_overloaded(this_rq
)))
1134 next
= pick_next_task_rt(this_rq
);
1136 for_each_cpu_mask_nr(cpu
, this_rq
->rd
->rto_mask
) {
1137 if (this_cpu
== cpu
)
1140 src_rq
= cpu_rq(cpu
);
1142 * We can potentially drop this_rq's lock in
1143 * double_lock_balance, and another CPU could
1144 * steal our next task - hence we must cause
1145 * the caller to recalculate the next task
1148 if (double_lock_balance(this_rq
, src_rq
)) {
1149 struct task_struct
*old_next
= next
;
1151 next
= pick_next_task_rt(this_rq
);
1152 if (next
!= old_next
)
1157 * Are there still pullable RT tasks?
1159 if (src_rq
->rt
.rt_nr_running
<= 1)
1162 p
= pick_next_highest_task_rt(src_rq
, this_cpu
);
1165 * Do we have an RT task that preempts
1166 * the to-be-scheduled task?
1168 if (p
&& (!next
|| (p
->prio
< next
->prio
))) {
1169 WARN_ON(p
== src_rq
->curr
);
1170 WARN_ON(!p
->se
.on_rq
);
1173 * There's a chance that p is higher in priority
1174 * than what's currently running on its cpu.
1175 * This is just that p is wakeing up and hasn't
1176 * had a chance to schedule. We only pull
1177 * p if it is lower in priority than the
1178 * current task on the run queue or
1179 * this_rq next task is lower in prio than
1180 * the current task on that rq.
1182 if (p
->prio
< src_rq
->curr
->prio
||
1183 (next
&& next
->prio
< src_rq
->curr
->prio
))
1188 deactivate_task(src_rq
, p
, 0);
1189 set_task_cpu(p
, this_cpu
);
1190 activate_task(this_rq
, p
, 0);
1192 * We continue with the search, just in
1193 * case there's an even higher prio task
1194 * in another runqueue. (low likelyhood
1197 * Update next so that we won't pick a task
1198 * on another cpu with a priority lower (or equal)
1199 * than the one we just picked.
1205 double_unlock_balance(this_rq
, src_rq
);
1211 static void pre_schedule_rt(struct rq
*rq
, struct task_struct
*prev
)
1213 /* Try to pull RT tasks here if we lower this rq's prio */
1214 if (unlikely(rt_task(prev
)) && rq
->rt
.highest_prio
> prev
->prio
)
1218 static void post_schedule_rt(struct rq
*rq
)
1221 * If we have more than one rt_task queued, then
1222 * see if we can push the other rt_tasks off to other CPUS.
1223 * Note we may release the rq lock, and since
1224 * the lock was owned by prev, we need to release it
1225 * first via finish_lock_switch and then reaquire it here.
1227 if (unlikely(rq
->rt
.overloaded
)) {
1228 spin_lock_irq(&rq
->lock
);
1230 spin_unlock_irq(&rq
->lock
);
1235 * If we are not running and we are not going to reschedule soon, we should
1236 * try to push tasks away now
1238 static void task_wake_up_rt(struct rq
*rq
, struct task_struct
*p
)
1240 if (!task_running(rq
, p
) &&
1241 !test_tsk_need_resched(rq
->curr
) &&
1246 static unsigned long
1247 load_balance_rt(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1248 unsigned long max_load_move
,
1249 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1250 int *all_pinned
, int *this_best_prio
)
1252 /* don't touch RT tasks */
1257 move_one_task_rt(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1258 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1260 /* don't touch RT tasks */
1264 static void set_cpus_allowed_rt(struct task_struct
*p
,
1265 const cpumask_t
*new_mask
)
1267 int weight
= cpus_weight(*new_mask
);
1269 BUG_ON(!rt_task(p
));
1272 * Update the migration status of the RQ if we have an RT task
1273 * which is running AND changing its weight value.
1275 if (p
->se
.on_rq
&& (weight
!= p
->rt
.nr_cpus_allowed
)) {
1276 struct rq
*rq
= task_rq(p
);
1278 if ((p
->rt
.nr_cpus_allowed
<= 1) && (weight
> 1)) {
1279 rq
->rt
.rt_nr_migratory
++;
1280 } else if ((p
->rt
.nr_cpus_allowed
> 1) && (weight
<= 1)) {
1281 BUG_ON(!rq
->rt
.rt_nr_migratory
);
1282 rq
->rt
.rt_nr_migratory
--;
1285 update_rt_migration(rq
);
1288 p
->cpus_allowed
= *new_mask
;
1289 p
->rt
.nr_cpus_allowed
= weight
;
1292 /* Assumes rq->lock is held */
1293 static void rq_online_rt(struct rq
*rq
)
1295 if (rq
->rt
.overloaded
)
1296 rt_set_overload(rq
);
1298 __enable_runtime(rq
);
1300 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
);
1303 /* Assumes rq->lock is held */
1304 static void rq_offline_rt(struct rq
*rq
)
1306 if (rq
->rt
.overloaded
)
1307 rt_clear_overload(rq
);
1309 __disable_runtime(rq
);
1311 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_INVALID
);
1315 * When switch from the rt queue, we bring ourselves to a position
1316 * that we might want to pull RT tasks from other runqueues.
1318 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
,
1322 * If there are other RT tasks then we will reschedule
1323 * and the scheduling of the other RT tasks will handle
1324 * the balancing. But if we are the last RT task
1325 * we may need to handle the pulling of RT tasks
1328 if (!rq
->rt
.rt_nr_running
)
1331 #endif /* CONFIG_SMP */
1334 * When switching a task to RT, we may overload the runqueue
1335 * with RT tasks. In this case we try to push them off to
1338 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
,
1341 int check_resched
= 1;
1344 * If we are already running, then there's nothing
1345 * that needs to be done. But if we are not running
1346 * we may need to preempt the current running task.
1347 * If that current running task is also an RT task
1348 * then see if we can move to another run queue.
1352 if (rq
->rt
.overloaded
&& push_rt_task(rq
) &&
1353 /* Don't resched if we changed runqueues */
1356 #endif /* CONFIG_SMP */
1357 if (check_resched
&& p
->prio
< rq
->curr
->prio
)
1358 resched_task(rq
->curr
);
1363 * Priority of the task has changed. This may cause
1364 * us to initiate a push or pull.
1366 static void prio_changed_rt(struct rq
*rq
, struct task_struct
*p
,
1367 int oldprio
, int running
)
1372 * If our priority decreases while running, we
1373 * may need to pull tasks to this runqueue.
1375 if (oldprio
< p
->prio
)
1378 * If there's a higher priority task waiting to run
1379 * then reschedule. Note, the above pull_rt_task
1380 * can release the rq lock and p could migrate.
1381 * Only reschedule if p is still on the same runqueue.
1383 if (p
->prio
> rq
->rt
.highest_prio
&& rq
->curr
== p
)
1386 /* For UP simply resched on drop of prio */
1387 if (oldprio
< p
->prio
)
1389 #endif /* CONFIG_SMP */
1392 * This task is not running, but if it is
1393 * greater than the current running task
1396 if (p
->prio
< rq
->curr
->prio
)
1397 resched_task(rq
->curr
);
1401 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
1403 unsigned long soft
, hard
;
1408 soft
= p
->signal
->rlim
[RLIMIT_RTTIME
].rlim_cur
;
1409 hard
= p
->signal
->rlim
[RLIMIT_RTTIME
].rlim_max
;
1411 if (soft
!= RLIM_INFINITY
) {
1415 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
1416 if (p
->rt
.timeout
> next
)
1417 p
->cputime_expires
.sched_exp
= p
->se
.sum_exec_runtime
;
1421 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
1428 * RR tasks need a special form of timeslice management.
1429 * FIFO tasks have no timeslices.
1431 if (p
->policy
!= SCHED_RR
)
1434 if (--p
->rt
.time_slice
)
1437 p
->rt
.time_slice
= DEF_TIMESLICE
;
1440 * Requeue to the end of queue if we are not the only element
1443 if (p
->rt
.run_list
.prev
!= p
->rt
.run_list
.next
) {
1444 requeue_task_rt(rq
, p
, 0);
1445 set_tsk_need_resched(p
);
1449 static void set_curr_task_rt(struct rq
*rq
)
1451 struct task_struct
*p
= rq
->curr
;
1453 p
->se
.exec_start
= rq
->clock
;
1456 static const struct sched_class rt_sched_class
= {
1457 .next
= &fair_sched_class
,
1458 .enqueue_task
= enqueue_task_rt
,
1459 .dequeue_task
= dequeue_task_rt
,
1460 .yield_task
= yield_task_rt
,
1462 .select_task_rq
= select_task_rq_rt
,
1463 #endif /* CONFIG_SMP */
1465 .check_preempt_curr
= check_preempt_curr_rt
,
1467 .pick_next_task
= pick_next_task_rt
,
1468 .put_prev_task
= put_prev_task_rt
,
1471 .load_balance
= load_balance_rt
,
1472 .move_one_task
= move_one_task_rt
,
1473 .set_cpus_allowed
= set_cpus_allowed_rt
,
1474 .rq_online
= rq_online_rt
,
1475 .rq_offline
= rq_offline_rt
,
1476 .pre_schedule
= pre_schedule_rt
,
1477 .post_schedule
= post_schedule_rt
,
1478 .task_wake_up
= task_wake_up_rt
,
1479 .switched_from
= switched_from_rt
,
1482 .set_curr_task
= set_curr_task_rt
,
1483 .task_tick
= task_tick_rt
,
1485 .prio_changed
= prio_changed_rt
,
1486 .switched_to
= switched_to_rt
,
1489 #ifdef CONFIG_SCHED_DEBUG
1490 extern void print_rt_rq(struct seq_file
*m
, int cpu
, struct rt_rq
*rt_rq
);
1492 static void print_rt_stats(struct seq_file
*m
, int cpu
)
1494 struct rt_rq
*rt_rq
;
1497 for_each_leaf_rt_rq(rt_rq
, cpu_rq(cpu
))
1498 print_rt_rq(m
, cpu
, rt_rq
);
1501 #endif /* CONFIG_SCHED_DEBUG */