2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
11 * This handles all read/write requests to block devices
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
37 #include <scsi/scsi_cmnd.h>
39 static void blk_unplug_work(struct work_struct
*work
);
40 static void blk_unplug_timeout(unsigned long data
);
41 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
);
42 static void init_request_from_bio(struct request
*req
, struct bio
*bio
);
43 static int __make_request(struct request_queue
*q
, struct bio
*bio
);
44 static struct io_context
*current_io_context(gfp_t gfp_flags
, int node
);
45 static void blk_recalc_rq_segments(struct request
*rq
);
48 * For the allocated request tables
50 static struct kmem_cache
*request_cachep
;
53 * For queue allocation
55 static struct kmem_cache
*requestq_cachep
;
58 * For io context allocations
60 static struct kmem_cache
*iocontext_cachep
;
63 * Controlling structure to kblockd
65 static struct workqueue_struct
*kblockd_workqueue
;
67 unsigned long blk_max_low_pfn
, blk_max_pfn
;
69 EXPORT_SYMBOL(blk_max_low_pfn
);
70 EXPORT_SYMBOL(blk_max_pfn
);
72 static DEFINE_PER_CPU(struct list_head
, blk_cpu_done
);
74 /* Amount of time in which a process may batch requests */
75 #define BLK_BATCH_TIME (HZ/50UL)
77 /* Number of requests a "batching" process may submit */
78 #define BLK_BATCH_REQ 32
81 * Return the threshold (number of used requests) at which the queue is
82 * considered to be congested. It include a little hysteresis to keep the
83 * context switch rate down.
85 static inline int queue_congestion_on_threshold(struct request_queue
*q
)
87 return q
->nr_congestion_on
;
91 * The threshold at which a queue is considered to be uncongested
93 static inline int queue_congestion_off_threshold(struct request_queue
*q
)
95 return q
->nr_congestion_off
;
98 static void blk_queue_congestion_threshold(struct request_queue
*q
)
102 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
103 if (nr
> q
->nr_requests
)
105 q
->nr_congestion_on
= nr
;
107 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
110 q
->nr_congestion_off
= nr
;
114 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
117 * Locates the passed device's request queue and returns the address of its
120 * Will return NULL if the request queue cannot be located.
122 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
124 struct backing_dev_info
*ret
= NULL
;
125 struct request_queue
*q
= bdev_get_queue(bdev
);
128 ret
= &q
->backing_dev_info
;
131 EXPORT_SYMBOL(blk_get_backing_dev_info
);
134 * blk_queue_prep_rq - set a prepare_request function for queue
136 * @pfn: prepare_request function
138 * It's possible for a queue to register a prepare_request callback which
139 * is invoked before the request is handed to the request_fn. The goal of
140 * the function is to prepare a request for I/O, it can be used to build a
141 * cdb from the request data for instance.
144 void blk_queue_prep_rq(struct request_queue
*q
, prep_rq_fn
*pfn
)
149 EXPORT_SYMBOL(blk_queue_prep_rq
);
152 * blk_queue_merge_bvec - set a merge_bvec function for queue
154 * @mbfn: merge_bvec_fn
156 * Usually queues have static limitations on the max sectors or segments that
157 * we can put in a request. Stacking drivers may have some settings that
158 * are dynamic, and thus we have to query the queue whether it is ok to
159 * add a new bio_vec to a bio at a given offset or not. If the block device
160 * has such limitations, it needs to register a merge_bvec_fn to control
161 * the size of bio's sent to it. Note that a block device *must* allow a
162 * single page to be added to an empty bio. The block device driver may want
163 * to use the bio_split() function to deal with these bio's. By default
164 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
167 void blk_queue_merge_bvec(struct request_queue
*q
, merge_bvec_fn
*mbfn
)
169 q
->merge_bvec_fn
= mbfn
;
172 EXPORT_SYMBOL(blk_queue_merge_bvec
);
174 void blk_queue_softirq_done(struct request_queue
*q
, softirq_done_fn
*fn
)
176 q
->softirq_done_fn
= fn
;
179 EXPORT_SYMBOL(blk_queue_softirq_done
);
182 * blk_queue_make_request - define an alternate make_request function for a device
183 * @q: the request queue for the device to be affected
184 * @mfn: the alternate make_request function
187 * The normal way for &struct bios to be passed to a device
188 * driver is for them to be collected into requests on a request
189 * queue, and then to allow the device driver to select requests
190 * off that queue when it is ready. This works well for many block
191 * devices. However some block devices (typically virtual devices
192 * such as md or lvm) do not benefit from the processing on the
193 * request queue, and are served best by having the requests passed
194 * directly to them. This can be achieved by providing a function
195 * to blk_queue_make_request().
198 * The driver that does this *must* be able to deal appropriately
199 * with buffers in "highmemory". This can be accomplished by either calling
200 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
201 * blk_queue_bounce() to create a buffer in normal memory.
203 void blk_queue_make_request(struct request_queue
* q
, make_request_fn
* mfn
)
208 q
->nr_requests
= BLKDEV_MAX_RQ
;
209 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
210 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
211 q
->make_request_fn
= mfn
;
212 q
->backing_dev_info
.ra_pages
= (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
213 q
->backing_dev_info
.state
= 0;
214 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
215 blk_queue_max_sectors(q
, SAFE_MAX_SECTORS
);
216 blk_queue_hardsect_size(q
, 512);
217 blk_queue_dma_alignment(q
, 511);
218 blk_queue_congestion_threshold(q
);
219 q
->nr_batching
= BLK_BATCH_REQ
;
221 q
->unplug_thresh
= 4; /* hmm */
222 q
->unplug_delay
= (3 * HZ
) / 1000; /* 3 milliseconds */
223 if (q
->unplug_delay
== 0)
226 INIT_WORK(&q
->unplug_work
, blk_unplug_work
);
228 q
->unplug_timer
.function
= blk_unplug_timeout
;
229 q
->unplug_timer
.data
= (unsigned long)q
;
232 * by default assume old behaviour and bounce for any highmem page
234 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
237 EXPORT_SYMBOL(blk_queue_make_request
);
239 static void rq_init(struct request_queue
*q
, struct request
*rq
)
241 INIT_LIST_HEAD(&rq
->queuelist
);
242 INIT_LIST_HEAD(&rq
->donelist
);
245 rq
->bio
= rq
->biotail
= NULL
;
246 INIT_HLIST_NODE(&rq
->hash
);
247 RB_CLEAR_NODE(&rq
->rb_node
);
255 rq
->nr_phys_segments
= 0;
258 rq
->end_io_data
= NULL
;
259 rq
->completion_data
= NULL
;
264 * blk_queue_ordered - does this queue support ordered writes
265 * @q: the request queue
266 * @ordered: one of QUEUE_ORDERED_*
267 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
270 * For journalled file systems, doing ordered writes on a commit
271 * block instead of explicitly doing wait_on_buffer (which is bad
272 * for performance) can be a big win. Block drivers supporting this
273 * feature should call this function and indicate so.
276 int blk_queue_ordered(struct request_queue
*q
, unsigned ordered
,
277 prepare_flush_fn
*prepare_flush_fn
)
279 if (ordered
& (QUEUE_ORDERED_PREFLUSH
| QUEUE_ORDERED_POSTFLUSH
) &&
280 prepare_flush_fn
== NULL
) {
281 printk(KERN_ERR
"blk_queue_ordered: prepare_flush_fn required\n");
285 if (ordered
!= QUEUE_ORDERED_NONE
&&
286 ordered
!= QUEUE_ORDERED_DRAIN
&&
287 ordered
!= QUEUE_ORDERED_DRAIN_FLUSH
&&
288 ordered
!= QUEUE_ORDERED_DRAIN_FUA
&&
289 ordered
!= QUEUE_ORDERED_TAG
&&
290 ordered
!= QUEUE_ORDERED_TAG_FLUSH
&&
291 ordered
!= QUEUE_ORDERED_TAG_FUA
) {
292 printk(KERN_ERR
"blk_queue_ordered: bad value %d\n", ordered
);
296 q
->ordered
= ordered
;
297 q
->next_ordered
= ordered
;
298 q
->prepare_flush_fn
= prepare_flush_fn
;
303 EXPORT_SYMBOL(blk_queue_ordered
);
306 * blk_queue_issue_flush_fn - set function for issuing a flush
307 * @q: the request queue
308 * @iff: the function to be called issuing the flush
311 * If a driver supports issuing a flush command, the support is notified
312 * to the block layer by defining it through this call.
315 void blk_queue_issue_flush_fn(struct request_queue
*q
, issue_flush_fn
*iff
)
317 q
->issue_flush_fn
= iff
;
320 EXPORT_SYMBOL(blk_queue_issue_flush_fn
);
323 * Cache flushing for ordered writes handling
325 inline unsigned blk_ordered_cur_seq(struct request_queue
*q
)
329 return 1 << ffz(q
->ordseq
);
332 unsigned blk_ordered_req_seq(struct request
*rq
)
334 struct request_queue
*q
= rq
->q
;
336 BUG_ON(q
->ordseq
== 0);
338 if (rq
== &q
->pre_flush_rq
)
339 return QUEUE_ORDSEQ_PREFLUSH
;
340 if (rq
== &q
->bar_rq
)
341 return QUEUE_ORDSEQ_BAR
;
342 if (rq
== &q
->post_flush_rq
)
343 return QUEUE_ORDSEQ_POSTFLUSH
;
346 * !fs requests don't need to follow barrier ordering. Always
347 * put them at the front. This fixes the following deadlock.
349 * http://thread.gmane.org/gmane.linux.kernel/537473
351 if (!blk_fs_request(rq
))
352 return QUEUE_ORDSEQ_DRAIN
;
354 if ((rq
->cmd_flags
& REQ_ORDERED_COLOR
) ==
355 (q
->orig_bar_rq
->cmd_flags
& REQ_ORDERED_COLOR
))
356 return QUEUE_ORDSEQ_DRAIN
;
358 return QUEUE_ORDSEQ_DONE
;
361 void blk_ordered_complete_seq(struct request_queue
*q
, unsigned seq
, int error
)
366 if (error
&& !q
->orderr
)
369 BUG_ON(q
->ordseq
& seq
);
372 if (blk_ordered_cur_seq(q
) != QUEUE_ORDSEQ_DONE
)
376 * Okay, sequence complete.
379 uptodate
= q
->orderr
? q
->orderr
: 1;
383 end_that_request_first(rq
, uptodate
, rq
->hard_nr_sectors
);
384 end_that_request_last(rq
, uptodate
);
387 static void pre_flush_end_io(struct request
*rq
, int error
)
389 elv_completed_request(rq
->q
, rq
);
390 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_PREFLUSH
, error
);
393 static void bar_end_io(struct request
*rq
, int error
)
395 elv_completed_request(rq
->q
, rq
);
396 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_BAR
, error
);
399 static void post_flush_end_io(struct request
*rq
, int error
)
401 elv_completed_request(rq
->q
, rq
);
402 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_POSTFLUSH
, error
);
405 static void queue_flush(struct request_queue
*q
, unsigned which
)
408 rq_end_io_fn
*end_io
;
410 if (which
== QUEUE_ORDERED_PREFLUSH
) {
411 rq
= &q
->pre_flush_rq
;
412 end_io
= pre_flush_end_io
;
414 rq
= &q
->post_flush_rq
;
415 end_io
= post_flush_end_io
;
418 rq
->cmd_flags
= REQ_HARDBARRIER
;
420 rq
->elevator_private
= NULL
;
421 rq
->elevator_private2
= NULL
;
422 rq
->rq_disk
= q
->bar_rq
.rq_disk
;
424 q
->prepare_flush_fn(q
, rq
);
426 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
429 static inline struct request
*start_ordered(struct request_queue
*q
,
434 q
->ordered
= q
->next_ordered
;
435 q
->ordseq
|= QUEUE_ORDSEQ_STARTED
;
438 * Prep proxy barrier request.
440 blkdev_dequeue_request(rq
);
445 if (bio_data_dir(q
->orig_bar_rq
->bio
) == WRITE
)
446 rq
->cmd_flags
|= REQ_RW
;
447 rq
->cmd_flags
|= q
->ordered
& QUEUE_ORDERED_FUA
? REQ_FUA
: 0;
448 rq
->elevator_private
= NULL
;
449 rq
->elevator_private2
= NULL
;
450 init_request_from_bio(rq
, q
->orig_bar_rq
->bio
);
451 rq
->end_io
= bar_end_io
;
454 * Queue ordered sequence. As we stack them at the head, we
455 * need to queue in reverse order. Note that we rely on that
456 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
457 * request gets inbetween ordered sequence.
459 if (q
->ordered
& QUEUE_ORDERED_POSTFLUSH
)
460 queue_flush(q
, QUEUE_ORDERED_POSTFLUSH
);
462 q
->ordseq
|= QUEUE_ORDSEQ_POSTFLUSH
;
464 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
466 if (q
->ordered
& QUEUE_ORDERED_PREFLUSH
) {
467 queue_flush(q
, QUEUE_ORDERED_PREFLUSH
);
468 rq
= &q
->pre_flush_rq
;
470 q
->ordseq
|= QUEUE_ORDSEQ_PREFLUSH
;
472 if ((q
->ordered
& QUEUE_ORDERED_TAG
) || q
->in_flight
== 0)
473 q
->ordseq
|= QUEUE_ORDSEQ_DRAIN
;
480 int blk_do_ordered(struct request_queue
*q
, struct request
**rqp
)
482 struct request
*rq
= *rqp
;
483 int is_barrier
= blk_fs_request(rq
) && blk_barrier_rq(rq
);
489 if (q
->next_ordered
!= QUEUE_ORDERED_NONE
) {
490 *rqp
= start_ordered(q
, rq
);
494 * This can happen when the queue switches to
495 * ORDERED_NONE while this request is on it.
497 blkdev_dequeue_request(rq
);
498 end_that_request_first(rq
, -EOPNOTSUPP
,
499 rq
->hard_nr_sectors
);
500 end_that_request_last(rq
, -EOPNOTSUPP
);
507 * Ordered sequence in progress
510 /* Special requests are not subject to ordering rules. */
511 if (!blk_fs_request(rq
) &&
512 rq
!= &q
->pre_flush_rq
&& rq
!= &q
->post_flush_rq
)
515 if (q
->ordered
& QUEUE_ORDERED_TAG
) {
516 /* Ordered by tag. Blocking the next barrier is enough. */
517 if (is_barrier
&& rq
!= &q
->bar_rq
)
520 /* Ordered by draining. Wait for turn. */
521 WARN_ON(blk_ordered_req_seq(rq
) < blk_ordered_cur_seq(q
));
522 if (blk_ordered_req_seq(rq
) > blk_ordered_cur_seq(q
))
529 static int flush_dry_bio_endio(struct bio
*bio
, unsigned int bytes
, int error
)
531 struct request_queue
*q
= bio
->bi_private
;
534 * This is dry run, restore bio_sector and size. We'll finish
535 * this request again with the original bi_end_io after an
536 * error occurs or post flush is complete.
544 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
545 bio
->bi_size
= q
->bi_size
;
546 bio
->bi_sector
-= (q
->bi_size
>> 9);
552 static int ordered_bio_endio(struct request
*rq
, struct bio
*bio
,
553 unsigned int nbytes
, int error
)
555 struct request_queue
*q
= rq
->q
;
559 if (&q
->bar_rq
!= rq
)
563 * Okay, this is the barrier request in progress, dry finish it.
565 if (error
&& !q
->orderr
)
568 endio
= bio
->bi_end_io
;
569 private = bio
->bi_private
;
570 bio
->bi_end_io
= flush_dry_bio_endio
;
573 bio_endio(bio
, nbytes
, error
);
575 bio
->bi_end_io
= endio
;
576 bio
->bi_private
= private;
582 * blk_queue_bounce_limit - set bounce buffer limit for queue
583 * @q: the request queue for the device
584 * @dma_addr: bus address limit
587 * Different hardware can have different requirements as to what pages
588 * it can do I/O directly to. A low level driver can call
589 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
590 * buffers for doing I/O to pages residing above @page.
592 void blk_queue_bounce_limit(struct request_queue
*q
, u64 dma_addr
)
594 unsigned long bounce_pfn
= dma_addr
>> PAGE_SHIFT
;
597 q
->bounce_gfp
= GFP_NOIO
;
598 #if BITS_PER_LONG == 64
599 /* Assume anything <= 4GB can be handled by IOMMU.
600 Actually some IOMMUs can handle everything, but I don't
601 know of a way to test this here. */
602 if (bounce_pfn
< (min_t(u64
,0xffffffff,BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
604 q
->bounce_pfn
= max_low_pfn
;
606 if (bounce_pfn
< blk_max_low_pfn
)
608 q
->bounce_pfn
= bounce_pfn
;
611 init_emergency_isa_pool();
612 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
613 q
->bounce_pfn
= bounce_pfn
;
617 EXPORT_SYMBOL(blk_queue_bounce_limit
);
620 * blk_queue_max_sectors - set max sectors for a request for this queue
621 * @q: the request queue for the device
622 * @max_sectors: max sectors in the usual 512b unit
625 * Enables a low level driver to set an upper limit on the size of
628 void blk_queue_max_sectors(struct request_queue
*q
, unsigned int max_sectors
)
630 if ((max_sectors
<< 9) < PAGE_CACHE_SIZE
) {
631 max_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
632 printk("%s: set to minimum %d\n", __FUNCTION__
, max_sectors
);
635 if (BLK_DEF_MAX_SECTORS
> max_sectors
)
636 q
->max_hw_sectors
= q
->max_sectors
= max_sectors
;
638 q
->max_sectors
= BLK_DEF_MAX_SECTORS
;
639 q
->max_hw_sectors
= max_sectors
;
643 EXPORT_SYMBOL(blk_queue_max_sectors
);
646 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
647 * @q: the request queue for the device
648 * @max_segments: max number of segments
651 * Enables a low level driver to set an upper limit on the number of
652 * physical data segments in a request. This would be the largest sized
653 * scatter list the driver could handle.
655 void blk_queue_max_phys_segments(struct request_queue
*q
,
656 unsigned short max_segments
)
660 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
663 q
->max_phys_segments
= max_segments
;
666 EXPORT_SYMBOL(blk_queue_max_phys_segments
);
669 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
670 * @q: the request queue for the device
671 * @max_segments: max number of segments
674 * Enables a low level driver to set an upper limit on the number of
675 * hw data segments in a request. This would be the largest number of
676 * address/length pairs the host adapter can actually give as once
679 void blk_queue_max_hw_segments(struct request_queue
*q
,
680 unsigned short max_segments
)
684 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
687 q
->max_hw_segments
= max_segments
;
690 EXPORT_SYMBOL(blk_queue_max_hw_segments
);
693 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
694 * @q: the request queue for the device
695 * @max_size: max size of segment in bytes
698 * Enables a low level driver to set an upper limit on the size of a
701 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
703 if (max_size
< PAGE_CACHE_SIZE
) {
704 max_size
= PAGE_CACHE_SIZE
;
705 printk("%s: set to minimum %d\n", __FUNCTION__
, max_size
);
708 q
->max_segment_size
= max_size
;
711 EXPORT_SYMBOL(blk_queue_max_segment_size
);
714 * blk_queue_hardsect_size - set hardware sector size for the queue
715 * @q: the request queue for the device
716 * @size: the hardware sector size, in bytes
719 * This should typically be set to the lowest possible sector size
720 * that the hardware can operate on (possible without reverting to
721 * even internal read-modify-write operations). Usually the default
722 * of 512 covers most hardware.
724 void blk_queue_hardsect_size(struct request_queue
*q
, unsigned short size
)
726 q
->hardsect_size
= size
;
729 EXPORT_SYMBOL(blk_queue_hardsect_size
);
732 * Returns the minimum that is _not_ zero, unless both are zero.
734 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
737 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
738 * @t: the stacking driver (top)
739 * @b: the underlying device (bottom)
741 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
743 /* zero is "infinity" */
744 t
->max_sectors
= min_not_zero(t
->max_sectors
,b
->max_sectors
);
745 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
,b
->max_hw_sectors
);
747 t
->max_phys_segments
= min(t
->max_phys_segments
,b
->max_phys_segments
);
748 t
->max_hw_segments
= min(t
->max_hw_segments
,b
->max_hw_segments
);
749 t
->max_segment_size
= min(t
->max_segment_size
,b
->max_segment_size
);
750 t
->hardsect_size
= max(t
->hardsect_size
,b
->hardsect_size
);
751 if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
))
752 clear_bit(QUEUE_FLAG_CLUSTER
, &t
->queue_flags
);
755 EXPORT_SYMBOL(blk_queue_stack_limits
);
758 * blk_queue_segment_boundary - set boundary rules for segment merging
759 * @q: the request queue for the device
760 * @mask: the memory boundary mask
762 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
764 if (mask
< PAGE_CACHE_SIZE
- 1) {
765 mask
= PAGE_CACHE_SIZE
- 1;
766 printk("%s: set to minimum %lx\n", __FUNCTION__
, mask
);
769 q
->seg_boundary_mask
= mask
;
772 EXPORT_SYMBOL(blk_queue_segment_boundary
);
775 * blk_queue_dma_alignment - set dma length and memory alignment
776 * @q: the request queue for the device
777 * @mask: alignment mask
780 * set required memory and length aligment for direct dma transactions.
781 * this is used when buiding direct io requests for the queue.
784 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
786 q
->dma_alignment
= mask
;
789 EXPORT_SYMBOL(blk_queue_dma_alignment
);
792 * blk_queue_find_tag - find a request by its tag and queue
793 * @q: The request queue for the device
794 * @tag: The tag of the request
797 * Should be used when a device returns a tag and you want to match
800 * no locks need be held.
802 struct request
*blk_queue_find_tag(struct request_queue
*q
, int tag
)
804 return blk_map_queue_find_tag(q
->queue_tags
, tag
);
807 EXPORT_SYMBOL(blk_queue_find_tag
);
810 * __blk_free_tags - release a given set of tag maintenance info
811 * @bqt: the tag map to free
813 * Tries to free the specified @bqt@. Returns true if it was
814 * actually freed and false if there are still references using it
816 static int __blk_free_tags(struct blk_queue_tag
*bqt
)
820 retval
= atomic_dec_and_test(&bqt
->refcnt
);
823 BUG_ON(!list_empty(&bqt
->busy_list
));
825 kfree(bqt
->tag_index
);
826 bqt
->tag_index
= NULL
;
839 * __blk_queue_free_tags - release tag maintenance info
840 * @q: the request queue for the device
843 * blk_cleanup_queue() will take care of calling this function, if tagging
844 * has been used. So there's no need to call this directly.
846 static void __blk_queue_free_tags(struct request_queue
*q
)
848 struct blk_queue_tag
*bqt
= q
->queue_tags
;
853 __blk_free_tags(bqt
);
855 q
->queue_tags
= NULL
;
856 q
->queue_flags
&= ~(1 << QUEUE_FLAG_QUEUED
);
861 * blk_free_tags - release a given set of tag maintenance info
862 * @bqt: the tag map to free
864 * For externally managed @bqt@ frees the map. Callers of this
865 * function must guarantee to have released all the queues that
866 * might have been using this tag map.
868 void blk_free_tags(struct blk_queue_tag
*bqt
)
870 if (unlikely(!__blk_free_tags(bqt
)))
873 EXPORT_SYMBOL(blk_free_tags
);
876 * blk_queue_free_tags - release tag maintenance info
877 * @q: the request queue for the device
880 * This is used to disabled tagged queuing to a device, yet leave
883 void blk_queue_free_tags(struct request_queue
*q
)
885 clear_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
888 EXPORT_SYMBOL(blk_queue_free_tags
);
891 init_tag_map(struct request_queue
*q
, struct blk_queue_tag
*tags
, int depth
)
893 struct request
**tag_index
;
894 unsigned long *tag_map
;
897 if (q
&& depth
> q
->nr_requests
* 2) {
898 depth
= q
->nr_requests
* 2;
899 printk(KERN_ERR
"%s: adjusted depth to %d\n",
900 __FUNCTION__
, depth
);
903 tag_index
= kzalloc(depth
* sizeof(struct request
*), GFP_ATOMIC
);
907 nr_ulongs
= ALIGN(depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
908 tag_map
= kzalloc(nr_ulongs
* sizeof(unsigned long), GFP_ATOMIC
);
912 tags
->real_max_depth
= depth
;
913 tags
->max_depth
= depth
;
914 tags
->tag_index
= tag_index
;
915 tags
->tag_map
= tag_map
;
923 static struct blk_queue_tag
*__blk_queue_init_tags(struct request_queue
*q
,
926 struct blk_queue_tag
*tags
;
928 tags
= kmalloc(sizeof(struct blk_queue_tag
), GFP_ATOMIC
);
932 if (init_tag_map(q
, tags
, depth
))
935 INIT_LIST_HEAD(&tags
->busy_list
);
937 atomic_set(&tags
->refcnt
, 1);
945 * blk_init_tags - initialize the tag info for an external tag map
946 * @depth: the maximum queue depth supported
947 * @tags: the tag to use
949 struct blk_queue_tag
*blk_init_tags(int depth
)
951 return __blk_queue_init_tags(NULL
, depth
);
953 EXPORT_SYMBOL(blk_init_tags
);
956 * blk_queue_init_tags - initialize the queue tag info
957 * @q: the request queue for the device
958 * @depth: the maximum queue depth supported
959 * @tags: the tag to use
961 int blk_queue_init_tags(struct request_queue
*q
, int depth
,
962 struct blk_queue_tag
*tags
)
966 BUG_ON(tags
&& q
->queue_tags
&& tags
!= q
->queue_tags
);
968 if (!tags
&& !q
->queue_tags
) {
969 tags
= __blk_queue_init_tags(q
, depth
);
973 } else if (q
->queue_tags
) {
974 if ((rc
= blk_queue_resize_tags(q
, depth
)))
976 set_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
979 atomic_inc(&tags
->refcnt
);
982 * assign it, all done
984 q
->queue_tags
= tags
;
985 q
->queue_flags
|= (1 << QUEUE_FLAG_QUEUED
);
992 EXPORT_SYMBOL(blk_queue_init_tags
);
995 * blk_queue_resize_tags - change the queueing depth
996 * @q: the request queue for the device
997 * @new_depth: the new max command queueing depth
1000 * Must be called with the queue lock held.
1002 int blk_queue_resize_tags(struct request_queue
*q
, int new_depth
)
1004 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1005 struct request
**tag_index
;
1006 unsigned long *tag_map
;
1007 int max_depth
, nr_ulongs
;
1013 * if we already have large enough real_max_depth. just
1014 * adjust max_depth. *NOTE* as requests with tag value
1015 * between new_depth and real_max_depth can be in-flight, tag
1016 * map can not be shrunk blindly here.
1018 if (new_depth
<= bqt
->real_max_depth
) {
1019 bqt
->max_depth
= new_depth
;
1024 * Currently cannot replace a shared tag map with a new
1025 * one, so error out if this is the case
1027 if (atomic_read(&bqt
->refcnt
) != 1)
1031 * save the old state info, so we can copy it back
1033 tag_index
= bqt
->tag_index
;
1034 tag_map
= bqt
->tag_map
;
1035 max_depth
= bqt
->real_max_depth
;
1037 if (init_tag_map(q
, bqt
, new_depth
))
1040 memcpy(bqt
->tag_index
, tag_index
, max_depth
* sizeof(struct request
*));
1041 nr_ulongs
= ALIGN(max_depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
1042 memcpy(bqt
->tag_map
, tag_map
, nr_ulongs
* sizeof(unsigned long));
1049 EXPORT_SYMBOL(blk_queue_resize_tags
);
1052 * blk_queue_end_tag - end tag operations for a request
1053 * @q: the request queue for the device
1054 * @rq: the request that has completed
1057 * Typically called when end_that_request_first() returns 0, meaning
1058 * all transfers have been done for a request. It's important to call
1059 * this function before end_that_request_last(), as that will put the
1060 * request back on the free list thus corrupting the internal tag list.
1063 * queue lock must be held.
1065 void blk_queue_end_tag(struct request_queue
*q
, struct request
*rq
)
1067 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1072 if (unlikely(tag
>= bqt
->real_max_depth
))
1074 * This can happen after tag depth has been reduced.
1075 * FIXME: how about a warning or info message here?
1079 list_del_init(&rq
->queuelist
);
1080 rq
->cmd_flags
&= ~REQ_QUEUED
;
1083 if (unlikely(bqt
->tag_index
[tag
] == NULL
))
1084 printk(KERN_ERR
"%s: tag %d is missing\n",
1087 bqt
->tag_index
[tag
] = NULL
;
1090 * We use test_and_clear_bit's memory ordering properties here.
1091 * The tag_map bit acts as a lock for tag_index[bit], so we need
1092 * a barrer before clearing the bit (precisely: release semantics).
1093 * Could use clear_bit_unlock when it is merged.
1095 if (unlikely(!test_and_clear_bit(tag
, bqt
->tag_map
))) {
1096 printk(KERN_ERR
"%s: attempt to clear non-busy tag (%d)\n",
1104 EXPORT_SYMBOL(blk_queue_end_tag
);
1107 * blk_queue_start_tag - find a free tag and assign it
1108 * @q: the request queue for the device
1109 * @rq: the block request that needs tagging
1112 * This can either be used as a stand-alone helper, or possibly be
1113 * assigned as the queue &prep_rq_fn (in which case &struct request
1114 * automagically gets a tag assigned). Note that this function
1115 * assumes that any type of request can be queued! if this is not
1116 * true for your device, you must check the request type before
1117 * calling this function. The request will also be removed from
1118 * the request queue, so it's the drivers responsibility to readd
1119 * it if it should need to be restarted for some reason.
1122 * queue lock must be held.
1124 int blk_queue_start_tag(struct request_queue
*q
, struct request
*rq
)
1126 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1129 if (unlikely((rq
->cmd_flags
& REQ_QUEUED
))) {
1131 "%s: request %p for device [%s] already tagged %d",
1133 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->tag
);
1138 * Protect against shared tag maps, as we may not have exclusive
1139 * access to the tag map.
1142 tag
= find_first_zero_bit(bqt
->tag_map
, bqt
->max_depth
);
1143 if (tag
>= bqt
->max_depth
)
1146 } while (test_and_set_bit(tag
, bqt
->tag_map
));
1148 * We rely on test_and_set_bit providing lock memory ordering semantics
1149 * (could use test_and_set_bit_lock when it is merged).
1152 rq
->cmd_flags
|= REQ_QUEUED
;
1154 bqt
->tag_index
[tag
] = rq
;
1155 blkdev_dequeue_request(rq
);
1156 list_add(&rq
->queuelist
, &bqt
->busy_list
);
1161 EXPORT_SYMBOL(blk_queue_start_tag
);
1164 * blk_queue_invalidate_tags - invalidate all pending tags
1165 * @q: the request queue for the device
1168 * Hardware conditions may dictate a need to stop all pending requests.
1169 * In this case, we will safely clear the block side of the tag queue and
1170 * readd all requests to the request queue in the right order.
1173 * queue lock must be held.
1175 void blk_queue_invalidate_tags(struct request_queue
*q
)
1177 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1178 struct list_head
*tmp
, *n
;
1181 list_for_each_safe(tmp
, n
, &bqt
->busy_list
) {
1182 rq
= list_entry_rq(tmp
);
1184 if (rq
->tag
== -1) {
1186 "%s: bad tag found on list\n", __FUNCTION__
);
1187 list_del_init(&rq
->queuelist
);
1188 rq
->cmd_flags
&= ~REQ_QUEUED
;
1190 blk_queue_end_tag(q
, rq
);
1192 rq
->cmd_flags
&= ~REQ_STARTED
;
1193 __elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 0);
1197 EXPORT_SYMBOL(blk_queue_invalidate_tags
);
1199 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
1203 printk("%s: dev %s: type=%x, flags=%x\n", msg
,
1204 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
1207 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq
->sector
,
1209 rq
->current_nr_sectors
);
1210 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq
->bio
, rq
->biotail
, rq
->buffer
, rq
->data
, rq
->data_len
);
1212 if (blk_pc_request(rq
)) {
1214 for (bit
= 0; bit
< sizeof(rq
->cmd
); bit
++)
1215 printk("%02x ", rq
->cmd
[bit
]);
1220 EXPORT_SYMBOL(blk_dump_rq_flags
);
1222 void blk_recount_segments(struct request_queue
*q
, struct bio
*bio
)
1225 struct bio
*nxt
= bio
->bi_next
;
1227 rq
.bio
= rq
.biotail
= bio
;
1228 bio
->bi_next
= NULL
;
1229 blk_recalc_rq_segments(&rq
);
1231 bio
->bi_phys_segments
= rq
.nr_phys_segments
;
1232 bio
->bi_hw_segments
= rq
.nr_hw_segments
;
1233 bio
->bi_flags
|= (1 << BIO_SEG_VALID
);
1235 EXPORT_SYMBOL(blk_recount_segments
);
1237 static void blk_recalc_rq_segments(struct request
*rq
)
1241 unsigned int phys_size
;
1242 unsigned int hw_size
;
1243 struct bio_vec
*bv
, *bvprv
= NULL
;
1247 struct req_iterator iter
;
1248 int high
, highprv
= 1;
1249 struct request_queue
*q
= rq
->q
;
1254 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1255 hw_seg_size
= seg_size
= 0;
1256 phys_size
= hw_size
= nr_phys_segs
= nr_hw_segs
= 0;
1257 rq_for_each_segment(bv
, rq
, iter
) {
1259 * the trick here is making sure that a high page is never
1260 * considered part of another segment, since that might
1261 * change with the bounce page.
1263 high
= page_to_pfn(bv
->bv_page
) > q
->bounce_pfn
;
1264 if (high
|| highprv
)
1265 goto new_hw_segment
;
1267 if (seg_size
+ bv
->bv_len
> q
->max_segment_size
)
1269 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bv
))
1271 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bv
))
1273 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
))
1274 goto new_hw_segment
;
1276 seg_size
+= bv
->bv_len
;
1277 hw_seg_size
+= bv
->bv_len
;
1282 if (BIOVEC_VIRT_MERGEABLE(bvprv
, bv
) &&
1283 !BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
))
1284 hw_seg_size
+= bv
->bv_len
;
1287 if (nr_hw_segs
== 1 &&
1288 hw_seg_size
> rq
->bio
->bi_hw_front_size
)
1289 rq
->bio
->bi_hw_front_size
= hw_seg_size
;
1290 hw_seg_size
= BIOVEC_VIRT_START_SIZE(bv
) + bv
->bv_len
;
1296 seg_size
= bv
->bv_len
;
1300 if (nr_hw_segs
== 1 &&
1301 hw_seg_size
> rq
->bio
->bi_hw_front_size
)
1302 rq
->bio
->bi_hw_front_size
= hw_seg_size
;
1303 if (hw_seg_size
> rq
->biotail
->bi_hw_back_size
)
1304 rq
->biotail
->bi_hw_back_size
= hw_seg_size
;
1305 rq
->nr_phys_segments
= nr_phys_segs
;
1306 rq
->nr_hw_segments
= nr_hw_segs
;
1309 static int blk_phys_contig_segment(struct request_queue
*q
, struct bio
*bio
,
1312 if (!(q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
)))
1315 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)))
1317 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1321 * bio and nxt are contigous in memory, check if the queue allows
1322 * these two to be merged into one
1324 if (BIO_SEG_BOUNDARY(q
, bio
, nxt
))
1330 static int blk_hw_contig_segment(struct request_queue
*q
, struct bio
*bio
,
1333 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1334 blk_recount_segments(q
, bio
);
1335 if (unlikely(!bio_flagged(nxt
, BIO_SEG_VALID
)))
1336 blk_recount_segments(q
, nxt
);
1337 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)) ||
1338 BIOVEC_VIRT_OVERSIZE(bio
->bi_hw_back_size
+ nxt
->bi_hw_front_size
))
1340 if (bio
->bi_hw_back_size
+ nxt
->bi_hw_front_size
> q
->max_segment_size
)
1347 * map a request to scatterlist, return number of sg entries setup. Caller
1348 * must make sure sg can hold rq->nr_phys_segments entries
1350 int blk_rq_map_sg(struct request_queue
*q
, struct request
*rq
,
1351 struct scatterlist
*sg
)
1353 struct bio_vec
*bvec
, *bvprv
;
1354 struct req_iterator iter
;
1358 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1361 * for each bio in rq
1364 rq_for_each_segment(bvec
, rq
, iter
) {
1365 int nbytes
= bvec
->bv_len
;
1367 if (bvprv
&& cluster
) {
1368 if (sg
[nsegs
- 1].length
+ nbytes
> q
->max_segment_size
)
1371 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bvec
))
1373 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bvec
))
1376 sg
[nsegs
- 1].length
+= nbytes
;
1379 memset(&sg
[nsegs
],0,sizeof(struct scatterlist
));
1380 sg
[nsegs
].page
= bvec
->bv_page
;
1381 sg
[nsegs
].length
= nbytes
;
1382 sg
[nsegs
].offset
= bvec
->bv_offset
;
1387 } /* segments in rq */
1392 EXPORT_SYMBOL(blk_rq_map_sg
);
1395 * the standard queue merge functions, can be overridden with device
1396 * specific ones if so desired
1399 static inline int ll_new_mergeable(struct request_queue
*q
,
1400 struct request
*req
,
1403 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1405 if (req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1406 req
->cmd_flags
|= REQ_NOMERGE
;
1407 if (req
== q
->last_merge
)
1408 q
->last_merge
= NULL
;
1413 * A hw segment is just getting larger, bump just the phys
1416 req
->nr_phys_segments
+= nr_phys_segs
;
1420 static inline int ll_new_hw_segment(struct request_queue
*q
,
1421 struct request
*req
,
1424 int nr_hw_segs
= bio_hw_segments(q
, bio
);
1425 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1427 if (req
->nr_hw_segments
+ nr_hw_segs
> q
->max_hw_segments
1428 || req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1429 req
->cmd_flags
|= REQ_NOMERGE
;
1430 if (req
== q
->last_merge
)
1431 q
->last_merge
= NULL
;
1436 * This will form the start of a new hw segment. Bump both
1439 req
->nr_hw_segments
+= nr_hw_segs
;
1440 req
->nr_phys_segments
+= nr_phys_segs
;
1444 int ll_back_merge_fn(struct request_queue
*q
, struct request
*req
, struct bio
*bio
)
1446 unsigned short max_sectors
;
1449 if (unlikely(blk_pc_request(req
)))
1450 max_sectors
= q
->max_hw_sectors
;
1452 max_sectors
= q
->max_sectors
;
1454 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1455 req
->cmd_flags
|= REQ_NOMERGE
;
1456 if (req
== q
->last_merge
)
1457 q
->last_merge
= NULL
;
1460 if (unlikely(!bio_flagged(req
->biotail
, BIO_SEG_VALID
)))
1461 blk_recount_segments(q
, req
->biotail
);
1462 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1463 blk_recount_segments(q
, bio
);
1464 len
= req
->biotail
->bi_hw_back_size
+ bio
->bi_hw_front_size
;
1465 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req
->biotail
), __BVEC_START(bio
)) &&
1466 !BIOVEC_VIRT_OVERSIZE(len
)) {
1467 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1470 if (req
->nr_hw_segments
== 1)
1471 req
->bio
->bi_hw_front_size
= len
;
1472 if (bio
->bi_hw_segments
== 1)
1473 bio
->bi_hw_back_size
= len
;
1478 return ll_new_hw_segment(q
, req
, bio
);
1480 EXPORT_SYMBOL(ll_back_merge_fn
);
1482 static int ll_front_merge_fn(struct request_queue
*q
, struct request
*req
,
1485 unsigned short max_sectors
;
1488 if (unlikely(blk_pc_request(req
)))
1489 max_sectors
= q
->max_hw_sectors
;
1491 max_sectors
= q
->max_sectors
;
1494 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1495 req
->cmd_flags
|= REQ_NOMERGE
;
1496 if (req
== q
->last_merge
)
1497 q
->last_merge
= NULL
;
1500 len
= bio
->bi_hw_back_size
+ req
->bio
->bi_hw_front_size
;
1501 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1502 blk_recount_segments(q
, bio
);
1503 if (unlikely(!bio_flagged(req
->bio
, BIO_SEG_VALID
)))
1504 blk_recount_segments(q
, req
->bio
);
1505 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(req
->bio
)) &&
1506 !BIOVEC_VIRT_OVERSIZE(len
)) {
1507 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1510 if (bio
->bi_hw_segments
== 1)
1511 bio
->bi_hw_front_size
= len
;
1512 if (req
->nr_hw_segments
== 1)
1513 req
->biotail
->bi_hw_back_size
= len
;
1518 return ll_new_hw_segment(q
, req
, bio
);
1521 static int ll_merge_requests_fn(struct request_queue
*q
, struct request
*req
,
1522 struct request
*next
)
1524 int total_phys_segments
;
1525 int total_hw_segments
;
1528 * First check if the either of the requests are re-queued
1529 * requests. Can't merge them if they are.
1531 if (req
->special
|| next
->special
)
1535 * Will it become too large?
1537 if ((req
->nr_sectors
+ next
->nr_sectors
) > q
->max_sectors
)
1540 total_phys_segments
= req
->nr_phys_segments
+ next
->nr_phys_segments
;
1541 if (blk_phys_contig_segment(q
, req
->biotail
, next
->bio
))
1542 total_phys_segments
--;
1544 if (total_phys_segments
> q
->max_phys_segments
)
1547 total_hw_segments
= req
->nr_hw_segments
+ next
->nr_hw_segments
;
1548 if (blk_hw_contig_segment(q
, req
->biotail
, next
->bio
)) {
1549 int len
= req
->biotail
->bi_hw_back_size
+ next
->bio
->bi_hw_front_size
;
1551 * propagate the combined length to the end of the requests
1553 if (req
->nr_hw_segments
== 1)
1554 req
->bio
->bi_hw_front_size
= len
;
1555 if (next
->nr_hw_segments
== 1)
1556 next
->biotail
->bi_hw_back_size
= len
;
1557 total_hw_segments
--;
1560 if (total_hw_segments
> q
->max_hw_segments
)
1563 /* Merge is OK... */
1564 req
->nr_phys_segments
= total_phys_segments
;
1565 req
->nr_hw_segments
= total_hw_segments
;
1570 * "plug" the device if there are no outstanding requests: this will
1571 * force the transfer to start only after we have put all the requests
1574 * This is called with interrupts off and no requests on the queue and
1575 * with the queue lock held.
1577 void blk_plug_device(struct request_queue
*q
)
1579 WARN_ON(!irqs_disabled());
1582 * don't plug a stopped queue, it must be paired with blk_start_queue()
1583 * which will restart the queueing
1585 if (blk_queue_stopped(q
))
1588 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
)) {
1589 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
1590 blk_add_trace_generic(q
, NULL
, 0, BLK_TA_PLUG
);
1594 EXPORT_SYMBOL(blk_plug_device
);
1597 * remove the queue from the plugged list, if present. called with
1598 * queue lock held and interrupts disabled.
1600 int blk_remove_plug(struct request_queue
*q
)
1602 WARN_ON(!irqs_disabled());
1604 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1607 del_timer(&q
->unplug_timer
);
1611 EXPORT_SYMBOL(blk_remove_plug
);
1614 * remove the plug and let it rip..
1616 void __generic_unplug_device(struct request_queue
*q
)
1618 if (unlikely(blk_queue_stopped(q
)))
1621 if (!blk_remove_plug(q
))
1626 EXPORT_SYMBOL(__generic_unplug_device
);
1629 * generic_unplug_device - fire a request queue
1630 * @q: The &struct request_queue in question
1633 * Linux uses plugging to build bigger requests queues before letting
1634 * the device have at them. If a queue is plugged, the I/O scheduler
1635 * is still adding and merging requests on the queue. Once the queue
1636 * gets unplugged, the request_fn defined for the queue is invoked and
1637 * transfers started.
1639 void generic_unplug_device(struct request_queue
*q
)
1641 spin_lock_irq(q
->queue_lock
);
1642 __generic_unplug_device(q
);
1643 spin_unlock_irq(q
->queue_lock
);
1645 EXPORT_SYMBOL(generic_unplug_device
);
1647 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
1650 struct request_queue
*q
= bdi
->unplug_io_data
;
1653 * devices don't necessarily have an ->unplug_fn defined
1656 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
1657 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1663 static void blk_unplug_work(struct work_struct
*work
)
1665 struct request_queue
*q
=
1666 container_of(work
, struct request_queue
, unplug_work
);
1668 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
1669 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1674 static void blk_unplug_timeout(unsigned long data
)
1676 struct request_queue
*q
= (struct request_queue
*)data
;
1678 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_TIMER
, NULL
,
1679 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1681 kblockd_schedule_work(&q
->unplug_work
);
1685 * blk_start_queue - restart a previously stopped queue
1686 * @q: The &struct request_queue in question
1689 * blk_start_queue() will clear the stop flag on the queue, and call
1690 * the request_fn for the queue if it was in a stopped state when
1691 * entered. Also see blk_stop_queue(). Queue lock must be held.
1693 void blk_start_queue(struct request_queue
*q
)
1695 WARN_ON(!irqs_disabled());
1697 clear_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1700 * one level of recursion is ok and is much faster than kicking
1701 * the unplug handling
1703 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1705 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1708 kblockd_schedule_work(&q
->unplug_work
);
1712 EXPORT_SYMBOL(blk_start_queue
);
1715 * blk_stop_queue - stop a queue
1716 * @q: The &struct request_queue in question
1719 * The Linux block layer assumes that a block driver will consume all
1720 * entries on the request queue when the request_fn strategy is called.
1721 * Often this will not happen, because of hardware limitations (queue
1722 * depth settings). If a device driver gets a 'queue full' response,
1723 * or if it simply chooses not to queue more I/O at one point, it can
1724 * call this function to prevent the request_fn from being called until
1725 * the driver has signalled it's ready to go again. This happens by calling
1726 * blk_start_queue() to restart queue operations. Queue lock must be held.
1728 void blk_stop_queue(struct request_queue
*q
)
1731 set_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1733 EXPORT_SYMBOL(blk_stop_queue
);
1736 * blk_sync_queue - cancel any pending callbacks on a queue
1740 * The block layer may perform asynchronous callback activity
1741 * on a queue, such as calling the unplug function after a timeout.
1742 * A block device may call blk_sync_queue to ensure that any
1743 * such activity is cancelled, thus allowing it to release resources
1744 * that the callbacks might use. The caller must already have made sure
1745 * that its ->make_request_fn will not re-add plugging prior to calling
1749 void blk_sync_queue(struct request_queue
*q
)
1751 del_timer_sync(&q
->unplug_timer
);
1753 EXPORT_SYMBOL(blk_sync_queue
);
1756 * blk_run_queue - run a single device queue
1757 * @q: The queue to run
1759 void blk_run_queue(struct request_queue
*q
)
1761 unsigned long flags
;
1763 spin_lock_irqsave(q
->queue_lock
, flags
);
1767 * Only recurse once to avoid overrunning the stack, let the unplug
1768 * handling reinvoke the handler shortly if we already got there.
1770 if (!elv_queue_empty(q
)) {
1771 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1773 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1776 kblockd_schedule_work(&q
->unplug_work
);
1780 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1782 EXPORT_SYMBOL(blk_run_queue
);
1785 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
1786 * @kobj: the kobj belonging of the request queue to be released
1789 * blk_cleanup_queue is the pair to blk_init_queue() or
1790 * blk_queue_make_request(). It should be called when a request queue is
1791 * being released; typically when a block device is being de-registered.
1792 * Currently, its primary task it to free all the &struct request
1793 * structures that were allocated to the queue and the queue itself.
1796 * Hopefully the low level driver will have finished any
1797 * outstanding requests first...
1799 static void blk_release_queue(struct kobject
*kobj
)
1801 struct request_queue
*q
=
1802 container_of(kobj
, struct request_queue
, kobj
);
1803 struct request_list
*rl
= &q
->rq
;
1808 mempool_destroy(rl
->rq_pool
);
1811 __blk_queue_free_tags(q
);
1813 blk_trace_shutdown(q
);
1815 kmem_cache_free(requestq_cachep
, q
);
1818 void blk_put_queue(struct request_queue
*q
)
1820 kobject_put(&q
->kobj
);
1822 EXPORT_SYMBOL(blk_put_queue
);
1824 void blk_cleanup_queue(struct request_queue
* q
)
1826 mutex_lock(&q
->sysfs_lock
);
1827 set_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
);
1828 mutex_unlock(&q
->sysfs_lock
);
1831 elevator_exit(q
->elevator
);
1836 EXPORT_SYMBOL(blk_cleanup_queue
);
1838 static int blk_init_free_list(struct request_queue
*q
)
1840 struct request_list
*rl
= &q
->rq
;
1842 rl
->count
[READ
] = rl
->count
[WRITE
] = 0;
1843 rl
->starved
[READ
] = rl
->starved
[WRITE
] = 0;
1845 init_waitqueue_head(&rl
->wait
[READ
]);
1846 init_waitqueue_head(&rl
->wait
[WRITE
]);
1848 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
1849 mempool_free_slab
, request_cachep
, q
->node
);
1857 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
1859 return blk_alloc_queue_node(gfp_mask
, -1);
1861 EXPORT_SYMBOL(blk_alloc_queue
);
1863 static struct kobj_type queue_ktype
;
1865 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
1867 struct request_queue
*q
;
1869 q
= kmem_cache_alloc_node(requestq_cachep
,
1870 gfp_mask
| __GFP_ZERO
, node_id
);
1874 init_timer(&q
->unplug_timer
);
1876 snprintf(q
->kobj
.name
, KOBJ_NAME_LEN
, "%s", "queue");
1877 q
->kobj
.ktype
= &queue_ktype
;
1878 kobject_init(&q
->kobj
);
1880 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
1881 q
->backing_dev_info
.unplug_io_data
= q
;
1883 mutex_init(&q
->sysfs_lock
);
1887 EXPORT_SYMBOL(blk_alloc_queue_node
);
1890 * blk_init_queue - prepare a request queue for use with a block device
1891 * @rfn: The function to be called to process requests that have been
1892 * placed on the queue.
1893 * @lock: Request queue spin lock
1896 * If a block device wishes to use the standard request handling procedures,
1897 * which sorts requests and coalesces adjacent requests, then it must
1898 * call blk_init_queue(). The function @rfn will be called when there
1899 * are requests on the queue that need to be processed. If the device
1900 * supports plugging, then @rfn may not be called immediately when requests
1901 * are available on the queue, but may be called at some time later instead.
1902 * Plugged queues are generally unplugged when a buffer belonging to one
1903 * of the requests on the queue is needed, or due to memory pressure.
1905 * @rfn is not required, or even expected, to remove all requests off the
1906 * queue, but only as many as it can handle at a time. If it does leave
1907 * requests on the queue, it is responsible for arranging that the requests
1908 * get dealt with eventually.
1910 * The queue spin lock must be held while manipulating the requests on the
1911 * request queue; this lock will be taken also from interrupt context, so irq
1912 * disabling is needed for it.
1914 * Function returns a pointer to the initialized request queue, or NULL if
1915 * it didn't succeed.
1918 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1919 * when the block device is deactivated (such as at module unload).
1922 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
1924 return blk_init_queue_node(rfn
, lock
, -1);
1926 EXPORT_SYMBOL(blk_init_queue
);
1928 struct request_queue
*
1929 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
1931 struct request_queue
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
1937 if (blk_init_free_list(q
)) {
1938 kmem_cache_free(requestq_cachep
, q
);
1943 * if caller didn't supply a lock, they get per-queue locking with
1947 spin_lock_init(&q
->__queue_lock
);
1948 lock
= &q
->__queue_lock
;
1951 q
->request_fn
= rfn
;
1952 q
->prep_rq_fn
= NULL
;
1953 q
->unplug_fn
= generic_unplug_device
;
1954 q
->queue_flags
= (1 << QUEUE_FLAG_CLUSTER
);
1955 q
->queue_lock
= lock
;
1957 blk_queue_segment_boundary(q
, 0xffffffff);
1959 blk_queue_make_request(q
, __make_request
);
1960 blk_queue_max_segment_size(q
, MAX_SEGMENT_SIZE
);
1962 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
1963 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
1965 q
->sg_reserved_size
= INT_MAX
;
1970 if (!elevator_init(q
, NULL
)) {
1971 blk_queue_congestion_threshold(q
);
1978 EXPORT_SYMBOL(blk_init_queue_node
);
1980 int blk_get_queue(struct request_queue
*q
)
1982 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
1983 kobject_get(&q
->kobj
);
1990 EXPORT_SYMBOL(blk_get_queue
);
1992 static inline void blk_free_request(struct request_queue
*q
, struct request
*rq
)
1994 if (rq
->cmd_flags
& REQ_ELVPRIV
)
1995 elv_put_request(q
, rq
);
1996 mempool_free(rq
, q
->rq
.rq_pool
);
1999 static struct request
*
2000 blk_alloc_request(struct request_queue
*q
, int rw
, int priv
, gfp_t gfp_mask
)
2002 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
2008 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
2009 * see bio.h and blkdev.h
2011 rq
->cmd_flags
= rw
| REQ_ALLOCED
;
2014 if (unlikely(elv_set_request(q
, rq
, gfp_mask
))) {
2015 mempool_free(rq
, q
->rq
.rq_pool
);
2018 rq
->cmd_flags
|= REQ_ELVPRIV
;
2025 * ioc_batching returns true if the ioc is a valid batching request and
2026 * should be given priority access to a request.
2028 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
2034 * Make sure the process is able to allocate at least 1 request
2035 * even if the batch times out, otherwise we could theoretically
2038 return ioc
->nr_batch_requests
== q
->nr_batching
||
2039 (ioc
->nr_batch_requests
> 0
2040 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
2044 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2045 * will cause the process to be a "batcher" on all queues in the system. This
2046 * is the behaviour we want though - once it gets a wakeup it should be given
2049 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
2051 if (!ioc
|| ioc_batching(q
, ioc
))
2054 ioc
->nr_batch_requests
= q
->nr_batching
;
2055 ioc
->last_waited
= jiffies
;
2058 static void __freed_request(struct request_queue
*q
, int rw
)
2060 struct request_list
*rl
= &q
->rq
;
2062 if (rl
->count
[rw
] < queue_congestion_off_threshold(q
))
2063 blk_clear_queue_congested(q
, rw
);
2065 if (rl
->count
[rw
] + 1 <= q
->nr_requests
) {
2066 if (waitqueue_active(&rl
->wait
[rw
]))
2067 wake_up(&rl
->wait
[rw
]);
2069 blk_clear_queue_full(q
, rw
);
2074 * A request has just been released. Account for it, update the full and
2075 * congestion status, wake up any waiters. Called under q->queue_lock.
2077 static void freed_request(struct request_queue
*q
, int rw
, int priv
)
2079 struct request_list
*rl
= &q
->rq
;
2085 __freed_request(q
, rw
);
2087 if (unlikely(rl
->starved
[rw
^ 1]))
2088 __freed_request(q
, rw
^ 1);
2091 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2093 * Get a free request, queue_lock must be held.
2094 * Returns NULL on failure, with queue_lock held.
2095 * Returns !NULL on success, with queue_lock *not held*.
2097 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
2098 struct bio
*bio
, gfp_t gfp_mask
)
2100 struct request
*rq
= NULL
;
2101 struct request_list
*rl
= &q
->rq
;
2102 struct io_context
*ioc
= NULL
;
2103 const int rw
= rw_flags
& 0x01;
2104 int may_queue
, priv
;
2106 may_queue
= elv_may_queue(q
, rw_flags
);
2107 if (may_queue
== ELV_MQUEUE_NO
)
2110 if (rl
->count
[rw
]+1 >= queue_congestion_on_threshold(q
)) {
2111 if (rl
->count
[rw
]+1 >= q
->nr_requests
) {
2112 ioc
= current_io_context(GFP_ATOMIC
, q
->node
);
2114 * The queue will fill after this allocation, so set
2115 * it as full, and mark this process as "batching".
2116 * This process will be allowed to complete a batch of
2117 * requests, others will be blocked.
2119 if (!blk_queue_full(q
, rw
)) {
2120 ioc_set_batching(q
, ioc
);
2121 blk_set_queue_full(q
, rw
);
2123 if (may_queue
!= ELV_MQUEUE_MUST
2124 && !ioc_batching(q
, ioc
)) {
2126 * The queue is full and the allocating
2127 * process is not a "batcher", and not
2128 * exempted by the IO scheduler
2134 blk_set_queue_congested(q
, rw
);
2138 * Only allow batching queuers to allocate up to 50% over the defined
2139 * limit of requests, otherwise we could have thousands of requests
2140 * allocated with any setting of ->nr_requests
2142 if (rl
->count
[rw
] >= (3 * q
->nr_requests
/ 2))
2146 rl
->starved
[rw
] = 0;
2148 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
2152 spin_unlock_irq(q
->queue_lock
);
2154 rq
= blk_alloc_request(q
, rw_flags
, priv
, gfp_mask
);
2155 if (unlikely(!rq
)) {
2157 * Allocation failed presumably due to memory. Undo anything
2158 * we might have messed up.
2160 * Allocating task should really be put onto the front of the
2161 * wait queue, but this is pretty rare.
2163 spin_lock_irq(q
->queue_lock
);
2164 freed_request(q
, rw
, priv
);
2167 * in the very unlikely event that allocation failed and no
2168 * requests for this direction was pending, mark us starved
2169 * so that freeing of a request in the other direction will
2170 * notice us. another possible fix would be to split the
2171 * rq mempool into READ and WRITE
2174 if (unlikely(rl
->count
[rw
] == 0))
2175 rl
->starved
[rw
] = 1;
2181 * ioc may be NULL here, and ioc_batching will be false. That's
2182 * OK, if the queue is under the request limit then requests need
2183 * not count toward the nr_batch_requests limit. There will always
2184 * be some limit enforced by BLK_BATCH_TIME.
2186 if (ioc_batching(q
, ioc
))
2187 ioc
->nr_batch_requests
--;
2191 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_GETRQ
);
2197 * No available requests for this queue, unplug the device and wait for some
2198 * requests to become available.
2200 * Called with q->queue_lock held, and returns with it unlocked.
2202 static struct request
*get_request_wait(struct request_queue
*q
, int rw_flags
,
2205 const int rw
= rw_flags
& 0x01;
2208 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
2211 struct request_list
*rl
= &q
->rq
;
2213 prepare_to_wait_exclusive(&rl
->wait
[rw
], &wait
,
2214 TASK_UNINTERRUPTIBLE
);
2216 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
2219 struct io_context
*ioc
;
2221 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_SLEEPRQ
);
2223 __generic_unplug_device(q
);
2224 spin_unlock_irq(q
->queue_lock
);
2228 * After sleeping, we become a "batching" process and
2229 * will be able to allocate at least one request, and
2230 * up to a big batch of them for a small period time.
2231 * See ioc_batching, ioc_set_batching
2233 ioc
= current_io_context(GFP_NOIO
, q
->node
);
2234 ioc_set_batching(q
, ioc
);
2236 spin_lock_irq(q
->queue_lock
);
2238 finish_wait(&rl
->wait
[rw
], &wait
);
2244 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
2248 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
2250 spin_lock_irq(q
->queue_lock
);
2251 if (gfp_mask
& __GFP_WAIT
) {
2252 rq
= get_request_wait(q
, rw
, NULL
);
2254 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
2256 spin_unlock_irq(q
->queue_lock
);
2258 /* q->queue_lock is unlocked at this point */
2262 EXPORT_SYMBOL(blk_get_request
);
2265 * blk_start_queueing - initiate dispatch of requests to device
2266 * @q: request queue to kick into gear
2268 * This is basically a helper to remove the need to know whether a queue
2269 * is plugged or not if someone just wants to initiate dispatch of requests
2272 * The queue lock must be held with interrupts disabled.
2274 void blk_start_queueing(struct request_queue
*q
)
2276 if (!blk_queue_plugged(q
))
2279 __generic_unplug_device(q
);
2281 EXPORT_SYMBOL(blk_start_queueing
);
2284 * blk_requeue_request - put a request back on queue
2285 * @q: request queue where request should be inserted
2286 * @rq: request to be inserted
2289 * Drivers often keep queueing requests until the hardware cannot accept
2290 * more, when that condition happens we need to put the request back
2291 * on the queue. Must be called with queue lock held.
2293 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
2295 blk_add_trace_rq(q
, rq
, BLK_TA_REQUEUE
);
2297 if (blk_rq_tagged(rq
))
2298 blk_queue_end_tag(q
, rq
);
2300 elv_requeue_request(q
, rq
);
2303 EXPORT_SYMBOL(blk_requeue_request
);
2306 * blk_insert_request - insert a special request in to a request queue
2307 * @q: request queue where request should be inserted
2308 * @rq: request to be inserted
2309 * @at_head: insert request at head or tail of queue
2310 * @data: private data
2313 * Many block devices need to execute commands asynchronously, so they don't
2314 * block the whole kernel from preemption during request execution. This is
2315 * accomplished normally by inserting aritficial requests tagged as
2316 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2317 * scheduled for actual execution by the request queue.
2319 * We have the option of inserting the head or the tail of the queue.
2320 * Typically we use the tail for new ioctls and so forth. We use the head
2321 * of the queue for things like a QUEUE_FULL message from a device, or a
2322 * host that is unable to accept a particular command.
2324 void blk_insert_request(struct request_queue
*q
, struct request
*rq
,
2325 int at_head
, void *data
)
2327 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2328 unsigned long flags
;
2331 * tell I/O scheduler that this isn't a regular read/write (ie it
2332 * must not attempt merges on this) and that it acts as a soft
2335 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
2336 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
2340 spin_lock_irqsave(q
->queue_lock
, flags
);
2343 * If command is tagged, release the tag
2345 if (blk_rq_tagged(rq
))
2346 blk_queue_end_tag(q
, rq
);
2348 drive_stat_acct(rq
, rq
->nr_sectors
, 1);
2349 __elv_add_request(q
, rq
, where
, 0);
2350 blk_start_queueing(q
);
2351 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2354 EXPORT_SYMBOL(blk_insert_request
);
2356 static int __blk_rq_unmap_user(struct bio
*bio
)
2361 if (bio_flagged(bio
, BIO_USER_MAPPED
))
2362 bio_unmap_user(bio
);
2364 ret
= bio_uncopy_user(bio
);
2370 static int __blk_rq_map_user(struct request_queue
*q
, struct request
*rq
,
2371 void __user
*ubuf
, unsigned int len
)
2373 unsigned long uaddr
;
2374 struct bio
*bio
, *orig_bio
;
2377 reading
= rq_data_dir(rq
) == READ
;
2380 * if alignment requirement is satisfied, map in user pages for
2381 * direct dma. else, set up kernel bounce buffers
2383 uaddr
= (unsigned long) ubuf
;
2384 if (!(uaddr
& queue_dma_alignment(q
)) && !(len
& queue_dma_alignment(q
)))
2385 bio
= bio_map_user(q
, NULL
, uaddr
, len
, reading
);
2387 bio
= bio_copy_user(q
, uaddr
, len
, reading
);
2390 return PTR_ERR(bio
);
2393 blk_queue_bounce(q
, &bio
);
2396 * We link the bounce buffer in and could have to traverse it
2397 * later so we have to get a ref to prevent it from being freed
2402 blk_rq_bio_prep(q
, rq
, bio
);
2403 else if (!ll_back_merge_fn(q
, rq
, bio
)) {
2407 rq
->biotail
->bi_next
= bio
;
2410 rq
->data_len
+= bio
->bi_size
;
2413 return bio
->bi_size
;
2416 /* if it was boucned we must call the end io function */
2417 bio_endio(bio
, bio
->bi_size
, 0);
2418 __blk_rq_unmap_user(orig_bio
);
2424 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2425 * @q: request queue where request should be inserted
2426 * @rq: request structure to fill
2427 * @ubuf: the user buffer
2428 * @len: length of user data
2431 * Data will be mapped directly for zero copy io, if possible. Otherwise
2432 * a kernel bounce buffer is used.
2434 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2435 * still in process context.
2437 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2438 * before being submitted to the device, as pages mapped may be out of
2439 * reach. It's the callers responsibility to make sure this happens. The
2440 * original bio must be passed back in to blk_rq_unmap_user() for proper
2443 int blk_rq_map_user(struct request_queue
*q
, struct request
*rq
,
2444 void __user
*ubuf
, unsigned long len
)
2446 unsigned long bytes_read
= 0;
2447 struct bio
*bio
= NULL
;
2450 if (len
> (q
->max_hw_sectors
<< 9))
2455 while (bytes_read
!= len
) {
2456 unsigned long map_len
, end
, start
;
2458 map_len
= min_t(unsigned long, len
- bytes_read
, BIO_MAX_SIZE
);
2459 end
= ((unsigned long)ubuf
+ map_len
+ PAGE_SIZE
- 1)
2461 start
= (unsigned long)ubuf
>> PAGE_SHIFT
;
2464 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2465 * pages. If this happens we just lower the requested
2466 * mapping len by a page so that we can fit
2468 if (end
- start
> BIO_MAX_PAGES
)
2469 map_len
-= PAGE_SIZE
;
2471 ret
= __blk_rq_map_user(q
, rq
, ubuf
, map_len
);
2480 rq
->buffer
= rq
->data
= NULL
;
2483 blk_rq_unmap_user(bio
);
2487 EXPORT_SYMBOL(blk_rq_map_user
);
2490 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2491 * @q: request queue where request should be inserted
2492 * @rq: request to map data to
2493 * @iov: pointer to the iovec
2494 * @iov_count: number of elements in the iovec
2495 * @len: I/O byte count
2498 * Data will be mapped directly for zero copy io, if possible. Otherwise
2499 * a kernel bounce buffer is used.
2501 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2502 * still in process context.
2504 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2505 * before being submitted to the device, as pages mapped may be out of
2506 * reach. It's the callers responsibility to make sure this happens. The
2507 * original bio must be passed back in to blk_rq_unmap_user() for proper
2510 int blk_rq_map_user_iov(struct request_queue
*q
, struct request
*rq
,
2511 struct sg_iovec
*iov
, int iov_count
, unsigned int len
)
2515 if (!iov
|| iov_count
<= 0)
2518 /* we don't allow misaligned data like bio_map_user() does. If the
2519 * user is using sg, they're expected to know the alignment constraints
2520 * and respect them accordingly */
2521 bio
= bio_map_user_iov(q
, NULL
, iov
, iov_count
, rq_data_dir(rq
)== READ
);
2523 return PTR_ERR(bio
);
2525 if (bio
->bi_size
!= len
) {
2526 bio_endio(bio
, bio
->bi_size
, 0);
2527 bio_unmap_user(bio
);
2532 blk_rq_bio_prep(q
, rq
, bio
);
2533 rq
->buffer
= rq
->data
= NULL
;
2537 EXPORT_SYMBOL(blk_rq_map_user_iov
);
2540 * blk_rq_unmap_user - unmap a request with user data
2541 * @bio: start of bio list
2544 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2545 * supply the original rq->bio from the blk_rq_map_user() return, since
2546 * the io completion may have changed rq->bio.
2548 int blk_rq_unmap_user(struct bio
*bio
)
2550 struct bio
*mapped_bio
;
2555 if (unlikely(bio_flagged(bio
, BIO_BOUNCED
)))
2556 mapped_bio
= bio
->bi_private
;
2558 ret2
= __blk_rq_unmap_user(mapped_bio
);
2564 bio_put(mapped_bio
);
2570 EXPORT_SYMBOL(blk_rq_unmap_user
);
2573 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2574 * @q: request queue where request should be inserted
2575 * @rq: request to fill
2576 * @kbuf: the kernel buffer
2577 * @len: length of user data
2578 * @gfp_mask: memory allocation flags
2580 int blk_rq_map_kern(struct request_queue
*q
, struct request
*rq
, void *kbuf
,
2581 unsigned int len
, gfp_t gfp_mask
)
2585 if (len
> (q
->max_hw_sectors
<< 9))
2590 bio
= bio_map_kern(q
, kbuf
, len
, gfp_mask
);
2592 return PTR_ERR(bio
);
2594 if (rq_data_dir(rq
) == WRITE
)
2595 bio
->bi_rw
|= (1 << BIO_RW
);
2597 blk_rq_bio_prep(q
, rq
, bio
);
2598 blk_queue_bounce(q
, &rq
->bio
);
2599 rq
->buffer
= rq
->data
= NULL
;
2603 EXPORT_SYMBOL(blk_rq_map_kern
);
2606 * blk_execute_rq_nowait - insert a request into queue for execution
2607 * @q: queue to insert the request in
2608 * @bd_disk: matching gendisk
2609 * @rq: request to insert
2610 * @at_head: insert request at head or tail of queue
2611 * @done: I/O completion handler
2614 * Insert a fully prepared request at the back of the io scheduler queue
2615 * for execution. Don't wait for completion.
2617 void blk_execute_rq_nowait(struct request_queue
*q
, struct gendisk
*bd_disk
,
2618 struct request
*rq
, int at_head
,
2621 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2623 rq
->rq_disk
= bd_disk
;
2624 rq
->cmd_flags
|= REQ_NOMERGE
;
2626 WARN_ON(irqs_disabled());
2627 spin_lock_irq(q
->queue_lock
);
2628 __elv_add_request(q
, rq
, where
, 1);
2629 __generic_unplug_device(q
);
2630 spin_unlock_irq(q
->queue_lock
);
2632 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait
);
2635 * blk_execute_rq - insert a request into queue for execution
2636 * @q: queue to insert the request in
2637 * @bd_disk: matching gendisk
2638 * @rq: request to insert
2639 * @at_head: insert request at head or tail of queue
2642 * Insert a fully prepared request at the back of the io scheduler queue
2643 * for execution and wait for completion.
2645 int blk_execute_rq(struct request_queue
*q
, struct gendisk
*bd_disk
,
2646 struct request
*rq
, int at_head
)
2648 DECLARE_COMPLETION_ONSTACK(wait
);
2649 char sense
[SCSI_SENSE_BUFFERSIZE
];
2653 * we need an extra reference to the request, so we can look at
2654 * it after io completion
2659 memset(sense
, 0, sizeof(sense
));
2664 rq
->end_io_data
= &wait
;
2665 blk_execute_rq_nowait(q
, bd_disk
, rq
, at_head
, blk_end_sync_rq
);
2666 wait_for_completion(&wait
);
2674 EXPORT_SYMBOL(blk_execute_rq
);
2677 * blkdev_issue_flush - queue a flush
2678 * @bdev: blockdev to issue flush for
2679 * @error_sector: error sector
2682 * Issue a flush for the block device in question. Caller can supply
2683 * room for storing the error offset in case of a flush error, if they
2684 * wish to. Caller must run wait_for_completion() on its own.
2686 int blkdev_issue_flush(struct block_device
*bdev
, sector_t
*error_sector
)
2688 struct request_queue
*q
;
2690 if (bdev
->bd_disk
== NULL
)
2693 q
= bdev_get_queue(bdev
);
2696 if (!q
->issue_flush_fn
)
2699 return q
->issue_flush_fn(q
, bdev
->bd_disk
, error_sector
);
2702 EXPORT_SYMBOL(blkdev_issue_flush
);
2704 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
)
2706 int rw
= rq_data_dir(rq
);
2708 if (!blk_fs_request(rq
) || !rq
->rq_disk
)
2712 __disk_stat_inc(rq
->rq_disk
, merges
[rw
]);
2714 disk_round_stats(rq
->rq_disk
);
2715 rq
->rq_disk
->in_flight
++;
2720 * add-request adds a request to the linked list.
2721 * queue lock is held and interrupts disabled, as we muck with the
2722 * request queue list.
2724 static inline void add_request(struct request_queue
* q
, struct request
* req
)
2726 drive_stat_acct(req
, req
->nr_sectors
, 1);
2729 * elevator indicated where it wants this request to be
2730 * inserted at elevator_merge time
2732 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
2736 * disk_round_stats() - Round off the performance stats on a struct
2739 * The average IO queue length and utilisation statistics are maintained
2740 * by observing the current state of the queue length and the amount of
2741 * time it has been in this state for.
2743 * Normally, that accounting is done on IO completion, but that can result
2744 * in more than a second's worth of IO being accounted for within any one
2745 * second, leading to >100% utilisation. To deal with that, we call this
2746 * function to do a round-off before returning the results when reading
2747 * /proc/diskstats. This accounts immediately for all queue usage up to
2748 * the current jiffies and restarts the counters again.
2750 void disk_round_stats(struct gendisk
*disk
)
2752 unsigned long now
= jiffies
;
2754 if (now
== disk
->stamp
)
2757 if (disk
->in_flight
) {
2758 __disk_stat_add(disk
, time_in_queue
,
2759 disk
->in_flight
* (now
- disk
->stamp
));
2760 __disk_stat_add(disk
, io_ticks
, (now
- disk
->stamp
));
2765 EXPORT_SYMBOL_GPL(disk_round_stats
);
2768 * queue lock must be held
2770 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
2774 if (unlikely(--req
->ref_count
))
2777 elv_completed_request(q
, req
);
2780 * Request may not have originated from ll_rw_blk. if not,
2781 * it didn't come out of our reserved rq pools
2783 if (req
->cmd_flags
& REQ_ALLOCED
) {
2784 int rw
= rq_data_dir(req
);
2785 int priv
= req
->cmd_flags
& REQ_ELVPRIV
;
2787 BUG_ON(!list_empty(&req
->queuelist
));
2788 BUG_ON(!hlist_unhashed(&req
->hash
));
2790 blk_free_request(q
, req
);
2791 freed_request(q
, rw
, priv
);
2795 EXPORT_SYMBOL_GPL(__blk_put_request
);
2797 void blk_put_request(struct request
*req
)
2799 unsigned long flags
;
2800 struct request_queue
*q
= req
->q
;
2803 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2804 * following if (q) test.
2807 spin_lock_irqsave(q
->queue_lock
, flags
);
2808 __blk_put_request(q
, req
);
2809 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2813 EXPORT_SYMBOL(blk_put_request
);
2816 * blk_end_sync_rq - executes a completion event on a request
2817 * @rq: request to complete
2818 * @error: end io status of the request
2820 void blk_end_sync_rq(struct request
*rq
, int error
)
2822 struct completion
*waiting
= rq
->end_io_data
;
2824 rq
->end_io_data
= NULL
;
2825 __blk_put_request(rq
->q
, rq
);
2828 * complete last, if this is a stack request the process (and thus
2829 * the rq pointer) could be invalid right after this complete()
2833 EXPORT_SYMBOL(blk_end_sync_rq
);
2836 * Has to be called with the request spinlock acquired
2838 static int attempt_merge(struct request_queue
*q
, struct request
*req
,
2839 struct request
*next
)
2841 if (!rq_mergeable(req
) || !rq_mergeable(next
))
2847 if (req
->sector
+ req
->nr_sectors
!= next
->sector
)
2850 if (rq_data_dir(req
) != rq_data_dir(next
)
2851 || req
->rq_disk
!= next
->rq_disk
2856 * If we are allowed to merge, then append bio list
2857 * from next to rq and release next. merge_requests_fn
2858 * will have updated segment counts, update sector
2861 if (!ll_merge_requests_fn(q
, req
, next
))
2865 * At this point we have either done a back merge
2866 * or front merge. We need the smaller start_time of
2867 * the merged requests to be the current request
2868 * for accounting purposes.
2870 if (time_after(req
->start_time
, next
->start_time
))
2871 req
->start_time
= next
->start_time
;
2873 req
->biotail
->bi_next
= next
->bio
;
2874 req
->biotail
= next
->biotail
;
2876 req
->nr_sectors
= req
->hard_nr_sectors
+= next
->hard_nr_sectors
;
2878 elv_merge_requests(q
, req
, next
);
2881 disk_round_stats(req
->rq_disk
);
2882 req
->rq_disk
->in_flight
--;
2885 req
->ioprio
= ioprio_best(req
->ioprio
, next
->ioprio
);
2887 __blk_put_request(q
, next
);
2891 static inline int attempt_back_merge(struct request_queue
*q
,
2894 struct request
*next
= elv_latter_request(q
, rq
);
2897 return attempt_merge(q
, rq
, next
);
2902 static inline int attempt_front_merge(struct request_queue
*q
,
2905 struct request
*prev
= elv_former_request(q
, rq
);
2908 return attempt_merge(q
, prev
, rq
);
2913 static void init_request_from_bio(struct request
*req
, struct bio
*bio
)
2915 req
->cmd_type
= REQ_TYPE_FS
;
2918 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2920 if (bio_rw_ahead(bio
) || bio_failfast(bio
))
2921 req
->cmd_flags
|= REQ_FAILFAST
;
2924 * REQ_BARRIER implies no merging, but lets make it explicit
2926 if (unlikely(bio_barrier(bio
)))
2927 req
->cmd_flags
|= (REQ_HARDBARRIER
| REQ_NOMERGE
);
2930 req
->cmd_flags
|= REQ_RW_SYNC
;
2931 if (bio_rw_meta(bio
))
2932 req
->cmd_flags
|= REQ_RW_META
;
2935 req
->hard_sector
= req
->sector
= bio
->bi_sector
;
2936 req
->hard_nr_sectors
= req
->nr_sectors
= bio_sectors(bio
);
2937 req
->current_nr_sectors
= req
->hard_cur_sectors
= bio_cur_sectors(bio
);
2938 req
->nr_phys_segments
= bio_phys_segments(req
->q
, bio
);
2939 req
->nr_hw_segments
= bio_hw_segments(req
->q
, bio
);
2940 req
->buffer
= bio_data(bio
); /* see ->buffer comment above */
2941 req
->bio
= req
->biotail
= bio
;
2942 req
->ioprio
= bio_prio(bio
);
2943 req
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2944 req
->start_time
= jiffies
;
2947 static int __make_request(struct request_queue
*q
, struct bio
*bio
)
2949 struct request
*req
;
2950 int el_ret
, nr_sectors
, barrier
, err
;
2951 const unsigned short prio
= bio_prio(bio
);
2952 const int sync
= bio_sync(bio
);
2955 nr_sectors
= bio_sectors(bio
);
2958 * low level driver can indicate that it wants pages above a
2959 * certain limit bounced to low memory (ie for highmem, or even
2960 * ISA dma in theory)
2962 blk_queue_bounce(q
, &bio
);
2964 barrier
= bio_barrier(bio
);
2965 if (unlikely(barrier
) && (q
->next_ordered
== QUEUE_ORDERED_NONE
)) {
2970 spin_lock_irq(q
->queue_lock
);
2972 if (unlikely(barrier
) || elv_queue_empty(q
))
2975 el_ret
= elv_merge(q
, &req
, bio
);
2977 case ELEVATOR_BACK_MERGE
:
2978 BUG_ON(!rq_mergeable(req
));
2980 if (!ll_back_merge_fn(q
, req
, bio
))
2983 blk_add_trace_bio(q
, bio
, BLK_TA_BACKMERGE
);
2985 req
->biotail
->bi_next
= bio
;
2987 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2988 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2989 drive_stat_acct(req
, nr_sectors
, 0);
2990 if (!attempt_back_merge(q
, req
))
2991 elv_merged_request(q
, req
, el_ret
);
2994 case ELEVATOR_FRONT_MERGE
:
2995 BUG_ON(!rq_mergeable(req
));
2997 if (!ll_front_merge_fn(q
, req
, bio
))
3000 blk_add_trace_bio(q
, bio
, BLK_TA_FRONTMERGE
);
3002 bio
->bi_next
= req
->bio
;
3006 * may not be valid. if the low level driver said
3007 * it didn't need a bounce buffer then it better
3008 * not touch req->buffer either...
3010 req
->buffer
= bio_data(bio
);
3011 req
->current_nr_sectors
= bio_cur_sectors(bio
);
3012 req
->hard_cur_sectors
= req
->current_nr_sectors
;
3013 req
->sector
= req
->hard_sector
= bio
->bi_sector
;
3014 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
3015 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
3016 drive_stat_acct(req
, nr_sectors
, 0);
3017 if (!attempt_front_merge(q
, req
))
3018 elv_merged_request(q
, req
, el_ret
);
3021 /* ELV_NO_MERGE: elevator says don't/can't merge. */
3028 * This sync check and mask will be re-done in init_request_from_bio(),
3029 * but we need to set it earlier to expose the sync flag to the
3030 * rq allocator and io schedulers.
3032 rw_flags
= bio_data_dir(bio
);
3034 rw_flags
|= REQ_RW_SYNC
;
3037 * Grab a free request. This is might sleep but can not fail.
3038 * Returns with the queue unlocked.
3040 req
= get_request_wait(q
, rw_flags
, bio
);
3043 * After dropping the lock and possibly sleeping here, our request
3044 * may now be mergeable after it had proven unmergeable (above).
3045 * We don't worry about that case for efficiency. It won't happen
3046 * often, and the elevators are able to handle it.
3048 init_request_from_bio(req
, bio
);
3050 spin_lock_irq(q
->queue_lock
);
3051 if (elv_queue_empty(q
))
3053 add_request(q
, req
);
3056 __generic_unplug_device(q
);
3058 spin_unlock_irq(q
->queue_lock
);
3062 bio_endio(bio
, nr_sectors
<< 9, err
);
3067 * If bio->bi_dev is a partition, remap the location
3069 static inline void blk_partition_remap(struct bio
*bio
)
3071 struct block_device
*bdev
= bio
->bi_bdev
;
3073 if (bdev
!= bdev
->bd_contains
) {
3074 struct hd_struct
*p
= bdev
->bd_part
;
3075 const int rw
= bio_data_dir(bio
);
3077 p
->sectors
[rw
] += bio_sectors(bio
);
3080 bio
->bi_sector
+= p
->start_sect
;
3081 bio
->bi_bdev
= bdev
->bd_contains
;
3083 blk_add_trace_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
3084 bdev
->bd_dev
, bio
->bi_sector
,
3085 bio
->bi_sector
- p
->start_sect
);
3089 static void handle_bad_sector(struct bio
*bio
)
3091 char b
[BDEVNAME_SIZE
];
3093 printk(KERN_INFO
"attempt to access beyond end of device\n");
3094 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
3095 bdevname(bio
->bi_bdev
, b
),
3097 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
3098 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
3100 set_bit(BIO_EOF
, &bio
->bi_flags
);
3103 #ifdef CONFIG_FAIL_MAKE_REQUEST
3105 static DECLARE_FAULT_ATTR(fail_make_request
);
3107 static int __init
setup_fail_make_request(char *str
)
3109 return setup_fault_attr(&fail_make_request
, str
);
3111 __setup("fail_make_request=", setup_fail_make_request
);
3113 static int should_fail_request(struct bio
*bio
)
3115 if ((bio
->bi_bdev
->bd_disk
->flags
& GENHD_FL_FAIL
) ||
3116 (bio
->bi_bdev
->bd_part
&& bio
->bi_bdev
->bd_part
->make_it_fail
))
3117 return should_fail(&fail_make_request
, bio
->bi_size
);
3122 static int __init
fail_make_request_debugfs(void)
3124 return init_fault_attr_dentries(&fail_make_request
,
3125 "fail_make_request");
3128 late_initcall(fail_make_request_debugfs
);
3130 #else /* CONFIG_FAIL_MAKE_REQUEST */
3132 static inline int should_fail_request(struct bio
*bio
)
3137 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3140 * generic_make_request: hand a buffer to its device driver for I/O
3141 * @bio: The bio describing the location in memory and on the device.
3143 * generic_make_request() is used to make I/O requests of block
3144 * devices. It is passed a &struct bio, which describes the I/O that needs
3147 * generic_make_request() does not return any status. The
3148 * success/failure status of the request, along with notification of
3149 * completion, is delivered asynchronously through the bio->bi_end_io
3150 * function described (one day) else where.
3152 * The caller of generic_make_request must make sure that bi_io_vec
3153 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3154 * set to describe the device address, and the
3155 * bi_end_io and optionally bi_private are set to describe how
3156 * completion notification should be signaled.
3158 * generic_make_request and the drivers it calls may use bi_next if this
3159 * bio happens to be merged with someone else, and may change bi_dev and
3160 * bi_sector for remaps as it sees fit. So the values of these fields
3161 * should NOT be depended on after the call to generic_make_request.
3163 static inline void __generic_make_request(struct bio
*bio
)
3165 struct request_queue
*q
;
3167 sector_t old_sector
;
3168 int ret
, nr_sectors
= bio_sectors(bio
);
3172 /* Test device or partition size, when known. */
3173 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
3175 sector_t sector
= bio
->bi_sector
;
3177 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
3179 * This may well happen - the kernel calls bread()
3180 * without checking the size of the device, e.g., when
3181 * mounting a device.
3183 handle_bad_sector(bio
);
3189 * Resolve the mapping until finished. (drivers are
3190 * still free to implement/resolve their own stacking
3191 * by explicitly returning 0)
3193 * NOTE: we don't repeat the blk_size check for each new device.
3194 * Stacking drivers are expected to know what they are doing.
3199 char b
[BDEVNAME_SIZE
];
3201 q
= bdev_get_queue(bio
->bi_bdev
);
3204 "generic_make_request: Trying to access "
3205 "nonexistent block-device %s (%Lu)\n",
3206 bdevname(bio
->bi_bdev
, b
),
3207 (long long) bio
->bi_sector
);
3209 bio_endio(bio
, bio
->bi_size
, -EIO
);
3213 if (unlikely(bio_sectors(bio
) > q
->max_hw_sectors
)) {
3214 printk("bio too big device %s (%u > %u)\n",
3215 bdevname(bio
->bi_bdev
, b
),
3221 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
3224 if (should_fail_request(bio
))
3228 * If this device has partitions, remap block n
3229 * of partition p to block n+start(p) of the disk.
3231 blk_partition_remap(bio
);
3233 if (old_sector
!= -1)
3234 blk_add_trace_remap(q
, bio
, old_dev
, bio
->bi_sector
,
3237 blk_add_trace_bio(q
, bio
, BLK_TA_QUEUE
);
3239 old_sector
= bio
->bi_sector
;
3240 old_dev
= bio
->bi_bdev
->bd_dev
;
3242 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
3244 sector_t sector
= bio
->bi_sector
;
3246 if (maxsector
< nr_sectors
||
3247 maxsector
- nr_sectors
< sector
) {
3249 * This may well happen - partitions are not
3250 * checked to make sure they are within the size
3251 * of the whole device.
3253 handle_bad_sector(bio
);
3258 ret
= q
->make_request_fn(q
, bio
);
3263 * We only want one ->make_request_fn to be active at a time,
3264 * else stack usage with stacked devices could be a problem.
3265 * So use current->bio_{list,tail} to keep a list of requests
3266 * submited by a make_request_fn function.
3267 * current->bio_tail is also used as a flag to say if
3268 * generic_make_request is currently active in this task or not.
3269 * If it is NULL, then no make_request is active. If it is non-NULL,
3270 * then a make_request is active, and new requests should be added
3273 void generic_make_request(struct bio
*bio
)
3275 if (current
->bio_tail
) {
3276 /* make_request is active */
3277 *(current
->bio_tail
) = bio
;
3278 bio
->bi_next
= NULL
;
3279 current
->bio_tail
= &bio
->bi_next
;
3282 /* following loop may be a bit non-obvious, and so deserves some
3284 * Before entering the loop, bio->bi_next is NULL (as all callers
3285 * ensure that) so we have a list with a single bio.
3286 * We pretend that we have just taken it off a longer list, so
3287 * we assign bio_list to the next (which is NULL) and bio_tail
3288 * to &bio_list, thus initialising the bio_list of new bios to be
3289 * added. __generic_make_request may indeed add some more bios
3290 * through a recursive call to generic_make_request. If it
3291 * did, we find a non-NULL value in bio_list and re-enter the loop
3292 * from the top. In this case we really did just take the bio
3293 * of the top of the list (no pretending) and so fixup bio_list and
3294 * bio_tail or bi_next, and call into __generic_make_request again.
3296 * The loop was structured like this to make only one call to
3297 * __generic_make_request (which is important as it is large and
3298 * inlined) and to keep the structure simple.
3300 BUG_ON(bio
->bi_next
);
3302 current
->bio_list
= bio
->bi_next
;
3303 if (bio
->bi_next
== NULL
)
3304 current
->bio_tail
= ¤t
->bio_list
;
3306 bio
->bi_next
= NULL
;
3307 __generic_make_request(bio
);
3308 bio
= current
->bio_list
;
3310 current
->bio_tail
= NULL
; /* deactivate */
3313 EXPORT_SYMBOL(generic_make_request
);
3316 * submit_bio: submit a bio to the block device layer for I/O
3317 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3318 * @bio: The &struct bio which describes the I/O
3320 * submit_bio() is very similar in purpose to generic_make_request(), and
3321 * uses that function to do most of the work. Both are fairly rough
3322 * interfaces, @bio must be presetup and ready for I/O.
3325 void submit_bio(int rw
, struct bio
*bio
)
3327 int count
= bio_sectors(bio
);
3329 BIO_BUG_ON(!bio
->bi_size
);
3330 BIO_BUG_ON(!bio
->bi_io_vec
);
3333 count_vm_events(PGPGOUT
, count
);
3335 task_io_account_read(bio
->bi_size
);
3336 count_vm_events(PGPGIN
, count
);
3339 if (unlikely(block_dump
)) {
3340 char b
[BDEVNAME_SIZE
];
3341 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
3342 current
->comm
, current
->pid
,
3343 (rw
& WRITE
) ? "WRITE" : "READ",
3344 (unsigned long long)bio
->bi_sector
,
3345 bdevname(bio
->bi_bdev
,b
));
3348 generic_make_request(bio
);
3351 EXPORT_SYMBOL(submit_bio
);
3353 static void blk_recalc_rq_sectors(struct request
*rq
, int nsect
)
3355 if (blk_fs_request(rq
)) {
3356 rq
->hard_sector
+= nsect
;
3357 rq
->hard_nr_sectors
-= nsect
;
3360 * Move the I/O submission pointers ahead if required.
3362 if ((rq
->nr_sectors
>= rq
->hard_nr_sectors
) &&
3363 (rq
->sector
<= rq
->hard_sector
)) {
3364 rq
->sector
= rq
->hard_sector
;
3365 rq
->nr_sectors
= rq
->hard_nr_sectors
;
3366 rq
->hard_cur_sectors
= bio_cur_sectors(rq
->bio
);
3367 rq
->current_nr_sectors
= rq
->hard_cur_sectors
;
3368 rq
->buffer
= bio_data(rq
->bio
);
3372 * if total number of sectors is less than the first segment
3373 * size, something has gone terribly wrong
3375 if (rq
->nr_sectors
< rq
->current_nr_sectors
) {
3376 printk("blk: request botched\n");
3377 rq
->nr_sectors
= rq
->current_nr_sectors
;
3382 static int __end_that_request_first(struct request
*req
, int uptodate
,
3385 int total_bytes
, bio_nbytes
, error
, next_idx
= 0;
3388 blk_add_trace_rq(req
->q
, req
, BLK_TA_COMPLETE
);
3391 * extend uptodate bool to allow < 0 value to be direct io error
3394 if (end_io_error(uptodate
))
3395 error
= !uptodate
? -EIO
: uptodate
;
3398 * for a REQ_BLOCK_PC request, we want to carry any eventual
3399 * sense key with us all the way through
3401 if (!blk_pc_request(req
))
3405 if (blk_fs_request(req
) && !(req
->cmd_flags
& REQ_QUIET
))
3406 printk("end_request: I/O error, dev %s, sector %llu\n",
3407 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
3408 (unsigned long long)req
->sector
);
3411 if (blk_fs_request(req
) && req
->rq_disk
) {
3412 const int rw
= rq_data_dir(req
);
3414 disk_stat_add(req
->rq_disk
, sectors
[rw
], nr_bytes
>> 9);
3417 total_bytes
= bio_nbytes
= 0;
3418 while ((bio
= req
->bio
) != NULL
) {
3421 if (nr_bytes
>= bio
->bi_size
) {
3422 req
->bio
= bio
->bi_next
;
3423 nbytes
= bio
->bi_size
;
3424 if (!ordered_bio_endio(req
, bio
, nbytes
, error
))
3425 bio_endio(bio
, nbytes
, error
);
3429 int idx
= bio
->bi_idx
+ next_idx
;
3431 if (unlikely(bio
->bi_idx
>= bio
->bi_vcnt
)) {
3432 blk_dump_rq_flags(req
, "__end_that");
3433 printk("%s: bio idx %d >= vcnt %d\n",
3435 bio
->bi_idx
, bio
->bi_vcnt
);
3439 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
3440 BIO_BUG_ON(nbytes
> bio
->bi_size
);
3443 * not a complete bvec done
3445 if (unlikely(nbytes
> nr_bytes
)) {
3446 bio_nbytes
+= nr_bytes
;
3447 total_bytes
+= nr_bytes
;
3452 * advance to the next vector
3455 bio_nbytes
+= nbytes
;
3458 total_bytes
+= nbytes
;
3461 if ((bio
= req
->bio
)) {
3463 * end more in this run, or just return 'not-done'
3465 if (unlikely(nr_bytes
<= 0))
3477 * if the request wasn't completed, update state
3480 if (!ordered_bio_endio(req
, bio
, bio_nbytes
, error
))
3481 bio_endio(bio
, bio_nbytes
, error
);
3482 bio
->bi_idx
+= next_idx
;
3483 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
3484 bio_iovec(bio
)->bv_len
-= nr_bytes
;
3487 blk_recalc_rq_sectors(req
, total_bytes
>> 9);
3488 blk_recalc_rq_segments(req
);
3493 * end_that_request_first - end I/O on a request
3494 * @req: the request being processed
3495 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3496 * @nr_sectors: number of sectors to end I/O on
3499 * Ends I/O on a number of sectors attached to @req, and sets it up
3500 * for the next range of segments (if any) in the cluster.
3503 * 0 - we are done with this request, call end_that_request_last()
3504 * 1 - still buffers pending for this request
3506 int end_that_request_first(struct request
*req
, int uptodate
, int nr_sectors
)
3508 return __end_that_request_first(req
, uptodate
, nr_sectors
<< 9);
3511 EXPORT_SYMBOL(end_that_request_first
);
3514 * end_that_request_chunk - end I/O on a request
3515 * @req: the request being processed
3516 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3517 * @nr_bytes: number of bytes to complete
3520 * Ends I/O on a number of bytes attached to @req, and sets it up
3521 * for the next range of segments (if any). Like end_that_request_first(),
3522 * but deals with bytes instead of sectors.
3525 * 0 - we are done with this request, call end_that_request_last()
3526 * 1 - still buffers pending for this request
3528 int end_that_request_chunk(struct request
*req
, int uptodate
, int nr_bytes
)
3530 return __end_that_request_first(req
, uptodate
, nr_bytes
);
3533 EXPORT_SYMBOL(end_that_request_chunk
);
3536 * splice the completion data to a local structure and hand off to
3537 * process_completion_queue() to complete the requests
3539 static void blk_done_softirq(struct softirq_action
*h
)
3541 struct list_head
*cpu_list
, local_list
;
3543 local_irq_disable();
3544 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3545 list_replace_init(cpu_list
, &local_list
);
3548 while (!list_empty(&local_list
)) {
3549 struct request
*rq
= list_entry(local_list
.next
, struct request
, donelist
);
3551 list_del_init(&rq
->donelist
);
3552 rq
->q
->softirq_done_fn(rq
);
3556 static int blk_cpu_notify(struct notifier_block
*self
, unsigned long action
,
3560 * If a CPU goes away, splice its entries to the current CPU
3561 * and trigger a run of the softirq
3563 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
3564 int cpu
= (unsigned long) hcpu
;
3566 local_irq_disable();
3567 list_splice_init(&per_cpu(blk_cpu_done
, cpu
),
3568 &__get_cpu_var(blk_cpu_done
));
3569 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3577 static struct notifier_block __devinitdata blk_cpu_notifier
= {
3578 .notifier_call
= blk_cpu_notify
,
3582 * blk_complete_request - end I/O on a request
3583 * @req: the request being processed
3586 * Ends all I/O on a request. It does not handle partial completions,
3587 * unless the driver actually implements this in its completion callback
3588 * through requeueing. Theh actual completion happens out-of-order,
3589 * through a softirq handler. The user must have registered a completion
3590 * callback through blk_queue_softirq_done().
3593 void blk_complete_request(struct request
*req
)
3595 struct list_head
*cpu_list
;
3596 unsigned long flags
;
3598 BUG_ON(!req
->q
->softirq_done_fn
);
3600 local_irq_save(flags
);
3602 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3603 list_add_tail(&req
->donelist
, cpu_list
);
3604 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3606 local_irq_restore(flags
);
3609 EXPORT_SYMBOL(blk_complete_request
);
3612 * queue lock must be held
3614 void end_that_request_last(struct request
*req
, int uptodate
)
3616 struct gendisk
*disk
= req
->rq_disk
;
3620 * extend uptodate bool to allow < 0 value to be direct io error
3623 if (end_io_error(uptodate
))
3624 error
= !uptodate
? -EIO
: uptodate
;
3626 if (unlikely(laptop_mode
) && blk_fs_request(req
))
3627 laptop_io_completion();
3630 * Account IO completion. bar_rq isn't accounted as a normal
3631 * IO on queueing nor completion. Accounting the containing
3632 * request is enough.
3634 if (disk
&& blk_fs_request(req
) && req
!= &req
->q
->bar_rq
) {
3635 unsigned long duration
= jiffies
- req
->start_time
;
3636 const int rw
= rq_data_dir(req
);
3638 __disk_stat_inc(disk
, ios
[rw
]);
3639 __disk_stat_add(disk
, ticks
[rw
], duration
);
3640 disk_round_stats(disk
);
3644 req
->end_io(req
, error
);
3646 __blk_put_request(req
->q
, req
);
3649 EXPORT_SYMBOL(end_that_request_last
);
3651 void end_request(struct request
*req
, int uptodate
)
3653 if (!end_that_request_first(req
, uptodate
, req
->hard_cur_sectors
)) {
3654 add_disk_randomness(req
->rq_disk
);
3655 blkdev_dequeue_request(req
);
3656 end_that_request_last(req
, uptodate
);
3660 EXPORT_SYMBOL(end_request
);
3662 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
3665 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3666 rq
->cmd_flags
|= (bio
->bi_rw
& 3);
3668 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3669 rq
->nr_hw_segments
= bio_hw_segments(q
, bio
);
3670 rq
->current_nr_sectors
= bio_cur_sectors(bio
);
3671 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
3672 rq
->hard_nr_sectors
= rq
->nr_sectors
= bio_sectors(bio
);
3673 rq
->buffer
= bio_data(bio
);
3674 rq
->data_len
= bio
->bi_size
;
3676 rq
->bio
= rq
->biotail
= bio
;
3679 EXPORT_SYMBOL(blk_rq_bio_prep
);
3681 int kblockd_schedule_work(struct work_struct
*work
)
3683 return queue_work(kblockd_workqueue
, work
);
3686 EXPORT_SYMBOL(kblockd_schedule_work
);
3688 void kblockd_flush_work(struct work_struct
*work
)
3690 cancel_work_sync(work
);
3692 EXPORT_SYMBOL(kblockd_flush_work
);
3694 int __init
blk_dev_init(void)
3698 kblockd_workqueue
= create_workqueue("kblockd");
3699 if (!kblockd_workqueue
)
3700 panic("Failed to create kblockd\n");
3702 request_cachep
= kmem_cache_create("blkdev_requests",
3703 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
3705 requestq_cachep
= kmem_cache_create("blkdev_queue",
3706 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);
3708 iocontext_cachep
= kmem_cache_create("blkdev_ioc",
3709 sizeof(struct io_context
), 0, SLAB_PANIC
, NULL
);
3711 for_each_possible_cpu(i
)
3712 INIT_LIST_HEAD(&per_cpu(blk_cpu_done
, i
));
3714 open_softirq(BLOCK_SOFTIRQ
, blk_done_softirq
, NULL
);
3715 register_hotcpu_notifier(&blk_cpu_notifier
);
3717 blk_max_low_pfn
= max_low_pfn
- 1;
3718 blk_max_pfn
= max_pfn
- 1;
3724 * IO Context helper functions
3726 void put_io_context(struct io_context
*ioc
)
3731 BUG_ON(atomic_read(&ioc
->refcount
) == 0);
3733 if (atomic_dec_and_test(&ioc
->refcount
)) {
3734 struct cfq_io_context
*cic
;
3737 if (ioc
->aic
&& ioc
->aic
->dtor
)
3738 ioc
->aic
->dtor(ioc
->aic
);
3739 if (ioc
->cic_root
.rb_node
!= NULL
) {
3740 struct rb_node
*n
= rb_first(&ioc
->cic_root
);
3742 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
3747 kmem_cache_free(iocontext_cachep
, ioc
);
3750 EXPORT_SYMBOL(put_io_context
);
3752 /* Called by the exitting task */
3753 void exit_io_context(void)
3755 struct io_context
*ioc
;
3756 struct cfq_io_context
*cic
;
3759 ioc
= current
->io_context
;
3760 current
->io_context
= NULL
;
3761 task_unlock(current
);
3764 if (ioc
->aic
&& ioc
->aic
->exit
)
3765 ioc
->aic
->exit(ioc
->aic
);
3766 if (ioc
->cic_root
.rb_node
!= NULL
) {
3767 cic
= rb_entry(rb_first(&ioc
->cic_root
), struct cfq_io_context
, rb_node
);
3771 put_io_context(ioc
);
3775 * If the current task has no IO context then create one and initialise it.
3776 * Otherwise, return its existing IO context.
3778 * This returned IO context doesn't have a specifically elevated refcount,
3779 * but since the current task itself holds a reference, the context can be
3780 * used in general code, so long as it stays within `current` context.
3782 static struct io_context
*current_io_context(gfp_t gfp_flags
, int node
)
3784 struct task_struct
*tsk
= current
;
3785 struct io_context
*ret
;
3787 ret
= tsk
->io_context
;
3791 ret
= kmem_cache_alloc_node(iocontext_cachep
, gfp_flags
, node
);
3793 atomic_set(&ret
->refcount
, 1);
3794 ret
->task
= current
;
3795 ret
->ioprio_changed
= 0;
3796 ret
->last_waited
= jiffies
; /* doesn't matter... */
3797 ret
->nr_batch_requests
= 0; /* because this is 0 */
3799 ret
->cic_root
.rb_node
= NULL
;
3800 ret
->ioc_data
= NULL
;
3801 /* make sure set_task_ioprio() sees the settings above */
3803 tsk
->io_context
= ret
;
3810 * If the current task has no IO context then create one and initialise it.
3811 * If it does have a context, take a ref on it.
3813 * This is always called in the context of the task which submitted the I/O.
3815 struct io_context
*get_io_context(gfp_t gfp_flags
, int node
)
3817 struct io_context
*ret
;
3818 ret
= current_io_context(gfp_flags
, node
);
3820 atomic_inc(&ret
->refcount
);
3823 EXPORT_SYMBOL(get_io_context
);
3825 void copy_io_context(struct io_context
**pdst
, struct io_context
**psrc
)
3827 struct io_context
*src
= *psrc
;
3828 struct io_context
*dst
= *pdst
;
3831 BUG_ON(atomic_read(&src
->refcount
) == 0);
3832 atomic_inc(&src
->refcount
);
3833 put_io_context(dst
);
3837 EXPORT_SYMBOL(copy_io_context
);
3839 void swap_io_context(struct io_context
**ioc1
, struct io_context
**ioc2
)
3841 struct io_context
*temp
;
3846 EXPORT_SYMBOL(swap_io_context
);
3851 struct queue_sysfs_entry
{
3852 struct attribute attr
;
3853 ssize_t (*show
)(struct request_queue
*, char *);
3854 ssize_t (*store
)(struct request_queue
*, const char *, size_t);
3858 queue_var_show(unsigned int var
, char *page
)
3860 return sprintf(page
, "%d\n", var
);
3864 queue_var_store(unsigned long *var
, const char *page
, size_t count
)
3866 char *p
= (char *) page
;
3868 *var
= simple_strtoul(p
, &p
, 10);
3872 static ssize_t
queue_requests_show(struct request_queue
*q
, char *page
)
3874 return queue_var_show(q
->nr_requests
, (page
));
3878 queue_requests_store(struct request_queue
*q
, const char *page
, size_t count
)
3880 struct request_list
*rl
= &q
->rq
;
3882 int ret
= queue_var_store(&nr
, page
, count
);
3883 if (nr
< BLKDEV_MIN_RQ
)
3886 spin_lock_irq(q
->queue_lock
);
3887 q
->nr_requests
= nr
;
3888 blk_queue_congestion_threshold(q
);
3890 if (rl
->count
[READ
] >= queue_congestion_on_threshold(q
))
3891 blk_set_queue_congested(q
, READ
);
3892 else if (rl
->count
[READ
] < queue_congestion_off_threshold(q
))
3893 blk_clear_queue_congested(q
, READ
);
3895 if (rl
->count
[WRITE
] >= queue_congestion_on_threshold(q
))
3896 blk_set_queue_congested(q
, WRITE
);
3897 else if (rl
->count
[WRITE
] < queue_congestion_off_threshold(q
))
3898 blk_clear_queue_congested(q
, WRITE
);
3900 if (rl
->count
[READ
] >= q
->nr_requests
) {
3901 blk_set_queue_full(q
, READ
);
3902 } else if (rl
->count
[READ
]+1 <= q
->nr_requests
) {
3903 blk_clear_queue_full(q
, READ
);
3904 wake_up(&rl
->wait
[READ
]);
3907 if (rl
->count
[WRITE
] >= q
->nr_requests
) {
3908 blk_set_queue_full(q
, WRITE
);
3909 } else if (rl
->count
[WRITE
]+1 <= q
->nr_requests
) {
3910 blk_clear_queue_full(q
, WRITE
);
3911 wake_up(&rl
->wait
[WRITE
]);
3913 spin_unlock_irq(q
->queue_lock
);
3917 static ssize_t
queue_ra_show(struct request_queue
*q
, char *page
)
3919 int ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3921 return queue_var_show(ra_kb
, (page
));
3925 queue_ra_store(struct request_queue
*q
, const char *page
, size_t count
)
3927 unsigned long ra_kb
;
3928 ssize_t ret
= queue_var_store(&ra_kb
, page
, count
);
3930 spin_lock_irq(q
->queue_lock
);
3931 q
->backing_dev_info
.ra_pages
= ra_kb
>> (PAGE_CACHE_SHIFT
- 10);
3932 spin_unlock_irq(q
->queue_lock
);
3937 static ssize_t
queue_max_sectors_show(struct request_queue
*q
, char *page
)
3939 int max_sectors_kb
= q
->max_sectors
>> 1;
3941 return queue_var_show(max_sectors_kb
, (page
));
3945 queue_max_sectors_store(struct request_queue
*q
, const char *page
, size_t count
)
3947 unsigned long max_sectors_kb
,
3948 max_hw_sectors_kb
= q
->max_hw_sectors
>> 1,
3949 page_kb
= 1 << (PAGE_CACHE_SHIFT
- 10);
3950 ssize_t ret
= queue_var_store(&max_sectors_kb
, page
, count
);
3953 if (max_sectors_kb
> max_hw_sectors_kb
|| max_sectors_kb
< page_kb
)
3956 * Take the queue lock to update the readahead and max_sectors
3957 * values synchronously:
3959 spin_lock_irq(q
->queue_lock
);
3961 * Trim readahead window as well, if necessary:
3963 ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3964 if (ra_kb
> max_sectors_kb
)
3965 q
->backing_dev_info
.ra_pages
=
3966 max_sectors_kb
>> (PAGE_CACHE_SHIFT
- 10);
3968 q
->max_sectors
= max_sectors_kb
<< 1;
3969 spin_unlock_irq(q
->queue_lock
);
3974 static ssize_t
queue_max_hw_sectors_show(struct request_queue
*q
, char *page
)
3976 int max_hw_sectors_kb
= q
->max_hw_sectors
>> 1;
3978 return queue_var_show(max_hw_sectors_kb
, (page
));
3982 static struct queue_sysfs_entry queue_requests_entry
= {
3983 .attr
= {.name
= "nr_requests", .mode
= S_IRUGO
| S_IWUSR
},
3984 .show
= queue_requests_show
,
3985 .store
= queue_requests_store
,
3988 static struct queue_sysfs_entry queue_ra_entry
= {
3989 .attr
= {.name
= "read_ahead_kb", .mode
= S_IRUGO
| S_IWUSR
},
3990 .show
= queue_ra_show
,
3991 .store
= queue_ra_store
,
3994 static struct queue_sysfs_entry queue_max_sectors_entry
= {
3995 .attr
= {.name
= "max_sectors_kb", .mode
= S_IRUGO
| S_IWUSR
},
3996 .show
= queue_max_sectors_show
,
3997 .store
= queue_max_sectors_store
,
4000 static struct queue_sysfs_entry queue_max_hw_sectors_entry
= {
4001 .attr
= {.name
= "max_hw_sectors_kb", .mode
= S_IRUGO
},
4002 .show
= queue_max_hw_sectors_show
,
4005 static struct queue_sysfs_entry queue_iosched_entry
= {
4006 .attr
= {.name
= "scheduler", .mode
= S_IRUGO
| S_IWUSR
},
4007 .show
= elv_iosched_show
,
4008 .store
= elv_iosched_store
,
4011 static struct attribute
*default_attrs
[] = {
4012 &queue_requests_entry
.attr
,
4013 &queue_ra_entry
.attr
,
4014 &queue_max_hw_sectors_entry
.attr
,
4015 &queue_max_sectors_entry
.attr
,
4016 &queue_iosched_entry
.attr
,
4020 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4023 queue_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
4025 struct queue_sysfs_entry
*entry
= to_queue(attr
);
4026 struct request_queue
*q
=
4027 container_of(kobj
, struct request_queue
, kobj
);
4032 mutex_lock(&q
->sysfs_lock
);
4033 if (test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)) {
4034 mutex_unlock(&q
->sysfs_lock
);
4037 res
= entry
->show(q
, page
);
4038 mutex_unlock(&q
->sysfs_lock
);
4043 queue_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
4044 const char *page
, size_t length
)
4046 struct queue_sysfs_entry
*entry
= to_queue(attr
);
4047 struct request_queue
*q
= container_of(kobj
, struct request_queue
, kobj
);
4053 mutex_lock(&q
->sysfs_lock
);
4054 if (test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)) {
4055 mutex_unlock(&q
->sysfs_lock
);
4058 res
= entry
->store(q
, page
, length
);
4059 mutex_unlock(&q
->sysfs_lock
);
4063 static struct sysfs_ops queue_sysfs_ops
= {
4064 .show
= queue_attr_show
,
4065 .store
= queue_attr_store
,
4068 static struct kobj_type queue_ktype
= {
4069 .sysfs_ops
= &queue_sysfs_ops
,
4070 .default_attrs
= default_attrs
,
4071 .release
= blk_release_queue
,
4074 int blk_register_queue(struct gendisk
*disk
)
4078 struct request_queue
*q
= disk
->queue
;
4080 if (!q
|| !q
->request_fn
)
4083 q
->kobj
.parent
= kobject_get(&disk
->kobj
);
4085 ret
= kobject_add(&q
->kobj
);
4089 kobject_uevent(&q
->kobj
, KOBJ_ADD
);
4091 ret
= elv_register_queue(q
);
4093 kobject_uevent(&q
->kobj
, KOBJ_REMOVE
);
4094 kobject_del(&q
->kobj
);
4101 void blk_unregister_queue(struct gendisk
*disk
)
4103 struct request_queue
*q
= disk
->queue
;
4105 if (q
&& q
->request_fn
) {
4106 elv_unregister_queue(q
);
4108 kobject_uevent(&q
->kobj
, KOBJ_REMOVE
);
4109 kobject_del(&q
->kobj
);
4110 kobject_put(&disk
->kobj
);