2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
34 * Attempt to steal a page from a pipe buffer. This should perhaps go into
35 * a vm helper function, it's already simplified quite a bit by the
36 * addition of remove_mapping(). If success is returned, the caller may
37 * attempt to reuse this page for another destination.
39 static int page_cache_pipe_buf_steal(struct pipe_inode_info
*pipe
,
40 struct pipe_buffer
*buf
)
42 struct page
*page
= buf
->page
;
43 struct address_space
*mapping
;
47 mapping
= page_mapping(page
);
49 WARN_ON(!PageUptodate(page
));
52 * At least for ext2 with nobh option, we need to wait on
53 * writeback completing on this page, since we'll remove it
54 * from the pagecache. Otherwise truncate wont wait on the
55 * page, allowing the disk blocks to be reused by someone else
56 * before we actually wrote our data to them. fs corruption
59 wait_on_page_writeback(page
);
61 if (PagePrivate(page
))
62 try_to_release_page(page
, GFP_KERNEL
);
65 * If we succeeded in removing the mapping, set LRU flag
68 if (remove_mapping(mapping
, page
)) {
69 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
75 * Raced with truncate or failed to remove page from current
76 * address space, unlock and return failure.
82 static void page_cache_pipe_buf_release(struct pipe_inode_info
*pipe
,
83 struct pipe_buffer
*buf
)
85 page_cache_release(buf
->page
);
86 buf
->flags
&= ~PIPE_BUF_FLAG_LRU
;
90 * Check whether the contents of buf is OK to access. Since the content
91 * is a page cache page, IO may be in flight.
93 static int page_cache_pipe_buf_confirm(struct pipe_inode_info
*pipe
,
94 struct pipe_buffer
*buf
)
96 struct page
*page
= buf
->page
;
99 if (!PageUptodate(page
)) {
103 * Page got truncated/unhashed. This will cause a 0-byte
104 * splice, if this is the first page.
106 if (!page
->mapping
) {
112 * Uh oh, read-error from disk.
114 if (!PageUptodate(page
)) {
120 * Page is ok afterall, we are done.
131 static const struct pipe_buf_operations page_cache_pipe_buf_ops
= {
133 .map
= generic_pipe_buf_map
,
134 .unmap
= generic_pipe_buf_unmap
,
135 .confirm
= page_cache_pipe_buf_confirm
,
136 .release
= page_cache_pipe_buf_release
,
137 .steal
= page_cache_pipe_buf_steal
,
138 .get
= generic_pipe_buf_get
,
141 static int user_page_pipe_buf_steal(struct pipe_inode_info
*pipe
,
142 struct pipe_buffer
*buf
)
144 if (!(buf
->flags
& PIPE_BUF_FLAG_GIFT
))
147 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
148 return generic_pipe_buf_steal(pipe
, buf
);
151 static const struct pipe_buf_operations user_page_pipe_buf_ops
= {
153 .map
= generic_pipe_buf_map
,
154 .unmap
= generic_pipe_buf_unmap
,
155 .confirm
= generic_pipe_buf_confirm
,
156 .release
= page_cache_pipe_buf_release
,
157 .steal
= user_page_pipe_buf_steal
,
158 .get
= generic_pipe_buf_get
,
162 * splice_to_pipe - fill passed data into a pipe
163 * @pipe: pipe to fill
167 * @spd contains a map of pages and len/offset tuples, along with
168 * the struct pipe_buf_operations associated with these pages. This
169 * function will link that data to the pipe.
172 ssize_t
splice_to_pipe(struct pipe_inode_info
*pipe
,
173 struct splice_pipe_desc
*spd
)
175 unsigned int spd_pages
= spd
->nr_pages
;
176 int ret
, do_wakeup
, page_nr
;
183 mutex_lock(&pipe
->inode
->i_mutex
);
186 if (!pipe
->readers
) {
187 send_sig(SIGPIPE
, current
, 0);
193 if (pipe
->nrbufs
< PIPE_BUFFERS
) {
194 int newbuf
= (pipe
->curbuf
+ pipe
->nrbufs
) & (PIPE_BUFFERS
- 1);
195 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
197 buf
->page
= spd
->pages
[page_nr
];
198 buf
->offset
= spd
->partial
[page_nr
].offset
;
199 buf
->len
= spd
->partial
[page_nr
].len
;
200 buf
->private = spd
->partial
[page_nr
].private;
202 if (spd
->flags
& SPLICE_F_GIFT
)
203 buf
->flags
|= PIPE_BUF_FLAG_GIFT
;
212 if (!--spd
->nr_pages
)
214 if (pipe
->nrbufs
< PIPE_BUFFERS
)
220 if (spd
->flags
& SPLICE_F_NONBLOCK
) {
226 if (signal_pending(current
)) {
234 if (waitqueue_active(&pipe
->wait
))
235 wake_up_interruptible_sync(&pipe
->wait
);
236 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
240 pipe
->waiting_writers
++;
242 pipe
->waiting_writers
--;
246 mutex_unlock(&pipe
->inode
->i_mutex
);
250 if (waitqueue_active(&pipe
->wait
))
251 wake_up_interruptible(&pipe
->wait
);
252 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
256 while (page_nr
< spd_pages
)
257 spd
->spd_release(spd
, page_nr
++);
262 static void spd_release_page(struct splice_pipe_desc
*spd
, unsigned int i
)
264 page_cache_release(spd
->pages
[i
]);
268 __generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
269 struct pipe_inode_info
*pipe
, size_t len
,
272 struct address_space
*mapping
= in
->f_mapping
;
273 unsigned int loff
, nr_pages
, req_pages
;
274 struct page
*pages
[PIPE_BUFFERS
];
275 struct partial_page partial
[PIPE_BUFFERS
];
277 pgoff_t index
, end_index
;
280 struct splice_pipe_desc spd
= {
284 .ops
= &page_cache_pipe_buf_ops
,
285 .spd_release
= spd_release_page
,
288 index
= *ppos
>> PAGE_CACHE_SHIFT
;
289 loff
= *ppos
& ~PAGE_CACHE_MASK
;
290 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
291 nr_pages
= min(req_pages
, (unsigned)PIPE_BUFFERS
);
294 * Lookup the (hopefully) full range of pages we need.
296 spd
.nr_pages
= find_get_pages_contig(mapping
, index
, nr_pages
, pages
);
297 index
+= spd
.nr_pages
;
300 * If find_get_pages_contig() returned fewer pages than we needed,
301 * readahead/allocate the rest and fill in the holes.
303 if (spd
.nr_pages
< nr_pages
)
304 page_cache_sync_readahead(mapping
, &in
->f_ra
, in
,
305 index
, req_pages
- spd
.nr_pages
);
308 while (spd
.nr_pages
< nr_pages
) {
310 * Page could be there, find_get_pages_contig() breaks on
313 page
= find_get_page(mapping
, index
);
316 * page didn't exist, allocate one.
318 page
= page_cache_alloc_cold(mapping
);
322 error
= add_to_page_cache_lru(page
, mapping
, index
,
324 if (unlikely(error
)) {
325 page_cache_release(page
);
326 if (error
== -EEXIST
)
331 * add_to_page_cache() locks the page, unlock it
332 * to avoid convoluting the logic below even more.
337 pages
[spd
.nr_pages
++] = page
;
342 * Now loop over the map and see if we need to start IO on any
343 * pages, fill in the partial map, etc.
345 index
= *ppos
>> PAGE_CACHE_SHIFT
;
346 nr_pages
= spd
.nr_pages
;
348 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
349 unsigned int this_len
;
355 * this_len is the max we'll use from this page
357 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
358 page
= pages
[page_nr
];
360 if (PageReadahead(page
))
361 page_cache_async_readahead(mapping
, &in
->f_ra
, in
,
362 page
, index
, req_pages
- page_nr
);
365 * If the page isn't uptodate, we may need to start io on it
367 if (!PageUptodate(page
)) {
369 * If in nonblock mode then dont block on waiting
370 * for an in-flight io page
372 if (flags
& SPLICE_F_NONBLOCK
) {
373 if (TestSetPageLocked(page
))
379 * page was truncated, stop here. if this isn't the
380 * first page, we'll just complete what we already
383 if (!page
->mapping
) {
388 * page was already under io and is now done, great
390 if (PageUptodate(page
)) {
396 * need to read in the page
398 error
= mapping
->a_ops
->readpage(in
, page
);
399 if (unlikely(error
)) {
401 * We really should re-lookup the page here,
402 * but it complicates things a lot. Instead
403 * lets just do what we already stored, and
404 * we'll get it the next time we are called.
406 if (error
== AOP_TRUNCATED_PAGE
)
414 * i_size must be checked after PageUptodate.
416 isize
= i_size_read(mapping
->host
);
417 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
418 if (unlikely(!isize
|| index
> end_index
))
422 * if this is the last page, see if we need to shrink
423 * the length and stop
425 if (end_index
== index
) {
429 * max good bytes in this page
431 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
436 * force quit after adding this page
438 this_len
= min(this_len
, plen
- loff
);
442 partial
[page_nr
].offset
= loff
;
443 partial
[page_nr
].len
= this_len
;
451 * Release any pages at the end, if we quit early. 'page_nr' is how far
452 * we got, 'nr_pages' is how many pages are in the map.
454 while (page_nr
< nr_pages
)
455 page_cache_release(pages
[page_nr
++]);
456 in
->f_ra
.prev_pos
= (loff_t
)index
<< PAGE_CACHE_SHIFT
;
459 return splice_to_pipe(pipe
, &spd
);
465 * generic_file_splice_read - splice data from file to a pipe
466 * @in: file to splice from
467 * @ppos: position in @in
468 * @pipe: pipe to splice to
469 * @len: number of bytes to splice
470 * @flags: splice modifier flags
473 * Will read pages from given file and fill them into a pipe. Can be
474 * used as long as the address_space operations for the source implements
478 ssize_t
generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
479 struct pipe_inode_info
*pipe
, size_t len
,
486 isize
= i_size_read(in
->f_mapping
->host
);
487 if (unlikely(*ppos
>= isize
))
490 left
= isize
- *ppos
;
491 if (unlikely(left
< len
))
496 while (len
&& !spliced
) {
497 ret
= __generic_file_splice_read(in
, ppos
, pipe
, len
, flags
);
504 if (flags
& SPLICE_F_NONBLOCK
) {
521 EXPORT_SYMBOL(generic_file_splice_read
);
524 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
525 * using sendpage(). Return the number of bytes sent.
527 static int pipe_to_sendpage(struct pipe_inode_info
*pipe
,
528 struct pipe_buffer
*buf
, struct splice_desc
*sd
)
530 struct file
*file
= sd
->u
.file
;
531 loff_t pos
= sd
->pos
;
534 ret
= buf
->ops
->confirm(pipe
, buf
);
536 more
= (sd
->flags
& SPLICE_F_MORE
) || sd
->len
< sd
->total_len
;
538 ret
= file
->f_op
->sendpage(file
, buf
->page
, buf
->offset
,
539 sd
->len
, &pos
, more
);
546 * This is a little more tricky than the file -> pipe splicing. There are
547 * basically three cases:
549 * - Destination page already exists in the address space and there
550 * are users of it. For that case we have no other option that
551 * copying the data. Tough luck.
552 * - Destination page already exists in the address space, but there
553 * are no users of it. Make sure it's uptodate, then drop it. Fall
554 * through to last case.
555 * - Destination page does not exist, we can add the pipe page to
556 * the page cache and avoid the copy.
558 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
559 * sd->flags), we attempt to migrate pages from the pipe to the output
560 * file address space page cache. This is possible if no one else has
561 * the pipe page referenced outside of the pipe and page cache. If
562 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
563 * a new page in the output file page cache and fill/dirty that.
565 static int pipe_to_file(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
566 struct splice_desc
*sd
)
568 struct file
*file
= sd
->u
.file
;
569 struct address_space
*mapping
= file
->f_mapping
;
570 unsigned int offset
, this_len
;
576 * make sure the data in this buffer is uptodate
578 ret
= buf
->ops
->confirm(pipe
, buf
);
582 offset
= sd
->pos
& ~PAGE_CACHE_MASK
;
585 if (this_len
+ offset
> PAGE_CACHE_SIZE
)
586 this_len
= PAGE_CACHE_SIZE
- offset
;
588 ret
= pagecache_write_begin(file
, mapping
, sd
->pos
, this_len
,
589 AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
593 if (buf
->page
!= page
) {
595 * Careful, ->map() uses KM_USER0!
597 char *src
= buf
->ops
->map(pipe
, buf
, 1);
598 char *dst
= kmap_atomic(page
, KM_USER1
);
600 memcpy(dst
+ offset
, src
+ buf
->offset
, this_len
);
601 flush_dcache_page(page
);
602 kunmap_atomic(dst
, KM_USER1
);
603 buf
->ops
->unmap(pipe
, buf
, src
);
605 ret
= pagecache_write_end(file
, mapping
, sd
->pos
, this_len
, this_len
,
612 * __splice_from_pipe - splice data from a pipe to given actor
613 * @pipe: pipe to splice from
614 * @sd: information to @actor
615 * @actor: handler that splices the data
618 * This function does little more than loop over the pipe and call
619 * @actor to do the actual moving of a single struct pipe_buffer to
620 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
624 ssize_t
__splice_from_pipe(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
,
627 int ret
, do_wakeup
, err
;
634 struct pipe_buffer
*buf
= pipe
->bufs
+ pipe
->curbuf
;
635 const struct pipe_buf_operations
*ops
= buf
->ops
;
638 if (sd
->len
> sd
->total_len
)
639 sd
->len
= sd
->total_len
;
641 err
= actor(pipe
, buf
, sd
);
643 if (!ret
&& err
!= -ENODATA
)
655 sd
->total_len
-= err
;
661 ops
->release(pipe
, buf
);
662 pipe
->curbuf
= (pipe
->curbuf
+ 1) & (PIPE_BUFFERS
- 1);
676 if (!pipe
->waiting_writers
) {
681 if (sd
->flags
& SPLICE_F_NONBLOCK
) {
687 if (signal_pending(current
)) {
695 if (waitqueue_active(&pipe
->wait
))
696 wake_up_interruptible_sync(&pipe
->wait
);
697 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
706 if (waitqueue_active(&pipe
->wait
))
707 wake_up_interruptible(&pipe
->wait
);
708 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
713 EXPORT_SYMBOL(__splice_from_pipe
);
716 * splice_from_pipe - splice data from a pipe to a file
717 * @pipe: pipe to splice from
718 * @out: file to splice to
719 * @ppos: position in @out
720 * @len: how many bytes to splice
721 * @flags: splice modifier flags
722 * @actor: handler that splices the data
725 * See __splice_from_pipe. This function locks the input and output inodes,
726 * otherwise it's identical to __splice_from_pipe().
729 ssize_t
splice_from_pipe(struct pipe_inode_info
*pipe
, struct file
*out
,
730 loff_t
*ppos
, size_t len
, unsigned int flags
,
734 struct inode
*inode
= out
->f_mapping
->host
;
735 struct splice_desc sd
= {
743 * The actor worker might be calling ->prepare_write and
744 * ->commit_write. Most of the time, these expect i_mutex to
745 * be held. Since this may result in an ABBA deadlock with
746 * pipe->inode, we have to order lock acquiry here.
748 inode_double_lock(inode
, pipe
->inode
);
749 ret
= __splice_from_pipe(pipe
, &sd
, actor
);
750 inode_double_unlock(inode
, pipe
->inode
);
756 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
758 * @out: file to write to
759 * @ppos: position in @out
760 * @len: number of bytes to splice
761 * @flags: splice modifier flags
764 * Will either move or copy pages (determined by @flags options) from
765 * the given pipe inode to the given file. The caller is responsible
766 * for acquiring i_mutex on both inodes.
770 generic_file_splice_write_nolock(struct pipe_inode_info
*pipe
, struct file
*out
,
771 loff_t
*ppos
, size_t len
, unsigned int flags
)
773 struct address_space
*mapping
= out
->f_mapping
;
774 struct inode
*inode
= mapping
->host
;
775 struct splice_desc sd
= {
784 err
= remove_suid(out
->f_path
.dentry
);
788 ret
= __splice_from_pipe(pipe
, &sd
, pipe_to_file
);
790 unsigned long nr_pages
;
793 nr_pages
= (ret
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
796 * If file or inode is SYNC and we actually wrote some data,
799 if (unlikely((out
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
800 err
= generic_osync_inode(inode
, mapping
,
801 OSYNC_METADATA
|OSYNC_DATA
);
806 balance_dirty_pages_ratelimited_nr(mapping
, nr_pages
);
812 EXPORT_SYMBOL(generic_file_splice_write_nolock
);
815 * generic_file_splice_write - splice data from a pipe to a file
817 * @out: file to write to
818 * @ppos: position in @out
819 * @len: number of bytes to splice
820 * @flags: splice modifier flags
823 * Will either move or copy pages (determined by @flags options) from
824 * the given pipe inode to the given file.
828 generic_file_splice_write(struct pipe_inode_info
*pipe
, struct file
*out
,
829 loff_t
*ppos
, size_t len
, unsigned int flags
)
831 struct address_space
*mapping
= out
->f_mapping
;
832 struct inode
*inode
= mapping
->host
;
833 int killsuid
, killpriv
;
837 killpriv
= security_inode_need_killpriv(out
->f_path
.dentry
);
838 killsuid
= should_remove_suid(out
->f_path
.dentry
);
839 if (unlikely(killsuid
|| killpriv
)) {
840 mutex_lock(&inode
->i_mutex
);
842 err
= security_inode_killpriv(out
->f_path
.dentry
);
843 if (!err
&& killsuid
)
844 err
= __remove_suid(out
->f_path
.dentry
, killsuid
);
845 mutex_unlock(&inode
->i_mutex
);
850 ret
= splice_from_pipe(pipe
, out
, ppos
, len
, flags
, pipe_to_file
);
852 unsigned long nr_pages
;
855 nr_pages
= (ret
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
858 * If file or inode is SYNC and we actually wrote some data,
861 if (unlikely((out
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
862 mutex_lock(&inode
->i_mutex
);
863 err
= generic_osync_inode(inode
, mapping
,
864 OSYNC_METADATA
|OSYNC_DATA
);
865 mutex_unlock(&inode
->i_mutex
);
870 balance_dirty_pages_ratelimited_nr(mapping
, nr_pages
);
876 EXPORT_SYMBOL(generic_file_splice_write
);
879 * generic_splice_sendpage - splice data from a pipe to a socket
880 * @pipe: pipe to splice from
881 * @out: socket to write to
882 * @ppos: position in @out
883 * @len: number of bytes to splice
884 * @flags: splice modifier flags
887 * Will send @len bytes from the pipe to a network socket. No data copying
891 ssize_t
generic_splice_sendpage(struct pipe_inode_info
*pipe
, struct file
*out
,
892 loff_t
*ppos
, size_t len
, unsigned int flags
)
894 return splice_from_pipe(pipe
, out
, ppos
, len
, flags
, pipe_to_sendpage
);
897 EXPORT_SYMBOL(generic_splice_sendpage
);
900 * Attempt to initiate a splice from pipe to file.
902 static long do_splice_from(struct pipe_inode_info
*pipe
, struct file
*out
,
903 loff_t
*ppos
, size_t len
, unsigned int flags
)
907 if (unlikely(!out
->f_op
|| !out
->f_op
->splice_write
))
910 if (unlikely(!(out
->f_mode
& FMODE_WRITE
)))
913 ret
= rw_verify_area(WRITE
, out
, ppos
, len
);
914 if (unlikely(ret
< 0))
917 return out
->f_op
->splice_write(pipe
, out
, ppos
, len
, flags
);
921 * Attempt to initiate a splice from a file to a pipe.
923 static long do_splice_to(struct file
*in
, loff_t
*ppos
,
924 struct pipe_inode_info
*pipe
, size_t len
,
929 if (unlikely(!in
->f_op
|| !in
->f_op
->splice_read
))
932 if (unlikely(!(in
->f_mode
& FMODE_READ
)))
935 ret
= rw_verify_area(READ
, in
, ppos
, len
);
936 if (unlikely(ret
< 0))
939 return in
->f_op
->splice_read(in
, ppos
, pipe
, len
, flags
);
943 * splice_direct_to_actor - splices data directly between two non-pipes
944 * @in: file to splice from
945 * @sd: actor information on where to splice to
946 * @actor: handles the data splicing
949 * This is a special case helper to splice directly between two
950 * points, without requiring an explicit pipe. Internally an allocated
951 * pipe is cached in the process, and reused during the lifetime of
955 ssize_t
splice_direct_to_actor(struct file
*in
, struct splice_desc
*sd
,
956 splice_direct_actor
*actor
)
958 struct pipe_inode_info
*pipe
;
965 * We require the input being a regular file, as we don't want to
966 * randomly drop data for eg socket -> socket splicing. Use the
967 * piped splicing for that!
969 i_mode
= in
->f_path
.dentry
->d_inode
->i_mode
;
970 if (unlikely(!S_ISREG(i_mode
) && !S_ISBLK(i_mode
)))
974 * neither in nor out is a pipe, setup an internal pipe attached to
975 * 'out' and transfer the wanted data from 'in' to 'out' through that
977 pipe
= current
->splice_pipe
;
978 if (unlikely(!pipe
)) {
979 pipe
= alloc_pipe_info(NULL
);
984 * We don't have an immediate reader, but we'll read the stuff
985 * out of the pipe right after the splice_to_pipe(). So set
986 * PIPE_READERS appropriately.
990 current
->splice_pipe
= pipe
;
1002 * Don't block on output, we have to drain the direct pipe.
1004 sd
->flags
&= ~SPLICE_F_NONBLOCK
;
1008 loff_t pos
= sd
->pos
;
1010 ret
= do_splice_to(in
, &pos
, pipe
, len
, flags
);
1011 if (unlikely(ret
<= 0))
1015 sd
->total_len
= read_len
;
1018 * NOTE: nonblocking mode only applies to the input. We
1019 * must not do the output in nonblocking mode as then we
1020 * could get stuck data in the internal pipe:
1022 ret
= actor(pipe
, sd
);
1023 if (unlikely(ret
<= 0))
1035 pipe
->nrbufs
= pipe
->curbuf
= 0;
1043 * If we did an incomplete transfer we must release
1044 * the pipe buffers in question:
1046 for (i
= 0; i
< PIPE_BUFFERS
; i
++) {
1047 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
1050 buf
->ops
->release(pipe
, buf
);
1060 EXPORT_SYMBOL(splice_direct_to_actor
);
1062 static int direct_splice_actor(struct pipe_inode_info
*pipe
,
1063 struct splice_desc
*sd
)
1065 struct file
*file
= sd
->u
.file
;
1067 return do_splice_from(pipe
, file
, &sd
->pos
, sd
->total_len
, sd
->flags
);
1071 * do_splice_direct - splices data directly between two files
1072 * @in: file to splice from
1073 * @ppos: input file offset
1074 * @out: file to splice to
1075 * @len: number of bytes to splice
1076 * @flags: splice modifier flags
1079 * For use by do_sendfile(). splice can easily emulate sendfile, but
1080 * doing it in the application would incur an extra system call
1081 * (splice in + splice out, as compared to just sendfile()). So this helper
1082 * can splice directly through a process-private pipe.
1085 long do_splice_direct(struct file
*in
, loff_t
*ppos
, struct file
*out
,
1086 size_t len
, unsigned int flags
)
1088 struct splice_desc sd
= {
1097 ret
= splice_direct_to_actor(in
, &sd
, direct_splice_actor
);
1105 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1106 * location, so checking ->i_pipe is not enough to verify that this is a
1109 static inline struct pipe_inode_info
*pipe_info(struct inode
*inode
)
1111 if (S_ISFIFO(inode
->i_mode
))
1112 return inode
->i_pipe
;
1118 * Determine where to splice to/from.
1120 static long do_splice(struct file
*in
, loff_t __user
*off_in
,
1121 struct file
*out
, loff_t __user
*off_out
,
1122 size_t len
, unsigned int flags
)
1124 struct pipe_inode_info
*pipe
;
1125 loff_t offset
, *off
;
1128 pipe
= pipe_info(in
->f_path
.dentry
->d_inode
);
1133 if (out
->f_op
->llseek
== no_llseek
)
1135 if (copy_from_user(&offset
, off_out
, sizeof(loff_t
)))
1141 ret
= do_splice_from(pipe
, out
, off
, len
, flags
);
1143 if (off_out
&& copy_to_user(off_out
, off
, sizeof(loff_t
)))
1149 pipe
= pipe_info(out
->f_path
.dentry
->d_inode
);
1154 if (in
->f_op
->llseek
== no_llseek
)
1156 if (copy_from_user(&offset
, off_in
, sizeof(loff_t
)))
1162 ret
= do_splice_to(in
, off
, pipe
, len
, flags
);
1164 if (off_in
&& copy_to_user(off_in
, off
, sizeof(loff_t
)))
1174 * Do a copy-from-user while holding the mmap_semaphore for reading, in a
1175 * manner safe from deadlocking with simultaneous mmap() (grabbing mmap_sem
1176 * for writing) and page faulting on the user memory pointed to by src.
1177 * This assumes that we will very rarely hit the partial != 0 path, or this
1178 * will not be a win.
1180 static int copy_from_user_mmap_sem(void *dst
, const void __user
*src
, size_t n
)
1184 pagefault_disable();
1185 partial
= __copy_from_user_inatomic(dst
, src
, n
);
1189 * Didn't copy everything, drop the mmap_sem and do a faulting copy
1191 if (unlikely(partial
)) {
1192 up_read(¤t
->mm
->mmap_sem
);
1193 partial
= copy_from_user(dst
, src
, n
);
1194 down_read(¤t
->mm
->mmap_sem
);
1201 * Map an iov into an array of pages and offset/length tupples. With the
1202 * partial_page structure, we can map several non-contiguous ranges into
1203 * our ones pages[] map instead of splitting that operation into pieces.
1204 * Could easily be exported as a generic helper for other users, in which
1205 * case one would probably want to add a 'max_nr_pages' parameter as well.
1207 static int get_iovec_page_array(const struct iovec __user
*iov
,
1208 unsigned int nr_vecs
, struct page
**pages
,
1209 struct partial_page
*partial
, int aligned
)
1211 int buffers
= 0, error
= 0;
1213 down_read(¤t
->mm
->mmap_sem
);
1216 unsigned long off
, npages
;
1223 if (copy_from_user_mmap_sem(&entry
, iov
, sizeof(entry
)))
1226 base
= entry
.iov_base
;
1227 len
= entry
.iov_len
;
1230 * Sanity check this iovec. 0 read succeeds.
1236 if (unlikely(!base
))
1240 * Get this base offset and number of pages, then map
1241 * in the user pages.
1243 off
= (unsigned long) base
& ~PAGE_MASK
;
1246 * If asked for alignment, the offset must be zero and the
1247 * length a multiple of the PAGE_SIZE.
1250 if (aligned
&& (off
|| len
& ~PAGE_MASK
))
1253 npages
= (off
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1254 if (npages
> PIPE_BUFFERS
- buffers
)
1255 npages
= PIPE_BUFFERS
- buffers
;
1257 error
= get_user_pages(current
, current
->mm
,
1258 (unsigned long) base
, npages
, 0, 0,
1259 &pages
[buffers
], NULL
);
1261 if (unlikely(error
<= 0))
1265 * Fill this contiguous range into the partial page map.
1267 for (i
= 0; i
< error
; i
++) {
1268 const int plen
= min_t(size_t, len
, PAGE_SIZE
- off
);
1270 partial
[buffers
].offset
= off
;
1271 partial
[buffers
].len
= plen
;
1279 * We didn't complete this iov, stop here since it probably
1280 * means we have to move some of this into a pipe to
1281 * be able to continue.
1287 * Don't continue if we mapped fewer pages than we asked for,
1288 * or if we mapped the max number of pages that we have
1291 if (error
< npages
|| buffers
== PIPE_BUFFERS
)
1298 up_read(¤t
->mm
->mmap_sem
);
1306 static int pipe_to_user(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
1307 struct splice_desc
*sd
)
1312 ret
= buf
->ops
->confirm(pipe
, buf
);
1317 * See if we can use the atomic maps, by prefaulting in the
1318 * pages and doing an atomic copy
1320 if (!fault_in_pages_writeable(sd
->u
.userptr
, sd
->len
)) {
1321 src
= buf
->ops
->map(pipe
, buf
, 1);
1322 ret
= __copy_to_user_inatomic(sd
->u
.userptr
, src
+ buf
->offset
,
1324 buf
->ops
->unmap(pipe
, buf
, src
);
1332 * No dice, use slow non-atomic map and copy
1334 src
= buf
->ops
->map(pipe
, buf
, 0);
1337 if (copy_to_user(sd
->u
.userptr
, src
+ buf
->offset
, sd
->len
))
1340 buf
->ops
->unmap(pipe
, buf
, src
);
1343 sd
->u
.userptr
+= ret
;
1348 * For lack of a better implementation, implement vmsplice() to userspace
1349 * as a simple copy of the pipes pages to the user iov.
1351 static long vmsplice_to_user(struct file
*file
, const struct iovec __user
*iov
,
1352 unsigned long nr_segs
, unsigned int flags
)
1354 struct pipe_inode_info
*pipe
;
1355 struct splice_desc sd
;
1360 pipe
= pipe_info(file
->f_path
.dentry
->d_inode
);
1365 mutex_lock(&pipe
->inode
->i_mutex
);
1373 * Get user address base and length for this iovec.
1375 error
= get_user(base
, &iov
->iov_base
);
1376 if (unlikely(error
))
1378 error
= get_user(len
, &iov
->iov_len
);
1379 if (unlikely(error
))
1383 * Sanity check this iovec. 0 read succeeds.
1387 if (unlikely(!base
)) {
1395 sd
.u
.userptr
= base
;
1398 size
= __splice_from_pipe(pipe
, &sd
, pipe_to_user
);
1416 mutex_unlock(&pipe
->inode
->i_mutex
);
1425 * vmsplice splices a user address range into a pipe. It can be thought of
1426 * as splice-from-memory, where the regular splice is splice-from-file (or
1427 * to file). In both cases the output is a pipe, naturally.
1429 static long vmsplice_to_pipe(struct file
*file
, const struct iovec __user
*iov
,
1430 unsigned long nr_segs
, unsigned int flags
)
1432 struct pipe_inode_info
*pipe
;
1433 struct page
*pages
[PIPE_BUFFERS
];
1434 struct partial_page partial
[PIPE_BUFFERS
];
1435 struct splice_pipe_desc spd
= {
1439 .ops
= &user_page_pipe_buf_ops
,
1440 .spd_release
= spd_release_page
,
1443 pipe
= pipe_info(file
->f_path
.dentry
->d_inode
);
1447 spd
.nr_pages
= get_iovec_page_array(iov
, nr_segs
, pages
, partial
,
1448 flags
& SPLICE_F_GIFT
);
1449 if (spd
.nr_pages
<= 0)
1450 return spd
.nr_pages
;
1452 return splice_to_pipe(pipe
, &spd
);
1456 * Note that vmsplice only really supports true splicing _from_ user memory
1457 * to a pipe, not the other way around. Splicing from user memory is a simple
1458 * operation that can be supported without any funky alignment restrictions
1459 * or nasty vm tricks. We simply map in the user memory and fill them into
1460 * a pipe. The reverse isn't quite as easy, though. There are two possible
1461 * solutions for that:
1463 * - memcpy() the data internally, at which point we might as well just
1464 * do a regular read() on the buffer anyway.
1465 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1466 * has restriction limitations on both ends of the pipe).
1468 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1471 asmlinkage
long sys_vmsplice(int fd
, const struct iovec __user
*iov
,
1472 unsigned long nr_segs
, unsigned int flags
)
1478 if (unlikely(nr_segs
> UIO_MAXIOV
))
1480 else if (unlikely(!nr_segs
))
1484 file
= fget_light(fd
, &fput
);
1486 if (file
->f_mode
& FMODE_WRITE
)
1487 error
= vmsplice_to_pipe(file
, iov
, nr_segs
, flags
);
1488 else if (file
->f_mode
& FMODE_READ
)
1489 error
= vmsplice_to_user(file
, iov
, nr_segs
, flags
);
1491 fput_light(file
, fput
);
1497 asmlinkage
long sys_splice(int fd_in
, loff_t __user
*off_in
,
1498 int fd_out
, loff_t __user
*off_out
,
1499 size_t len
, unsigned int flags
)
1502 struct file
*in
, *out
;
1503 int fput_in
, fput_out
;
1509 in
= fget_light(fd_in
, &fput_in
);
1511 if (in
->f_mode
& FMODE_READ
) {
1512 out
= fget_light(fd_out
, &fput_out
);
1514 if (out
->f_mode
& FMODE_WRITE
)
1515 error
= do_splice(in
, off_in
,
1518 fput_light(out
, fput_out
);
1522 fput_light(in
, fput_in
);
1529 * Make sure there's data to read. Wait for input if we can, otherwise
1530 * return an appropriate error.
1532 static int link_ipipe_prep(struct pipe_inode_info
*pipe
, unsigned int flags
)
1537 * Check ->nrbufs without the inode lock first. This function
1538 * is speculative anyways, so missing one is ok.
1544 mutex_lock(&pipe
->inode
->i_mutex
);
1546 while (!pipe
->nrbufs
) {
1547 if (signal_pending(current
)) {
1553 if (!pipe
->waiting_writers
) {
1554 if (flags
& SPLICE_F_NONBLOCK
) {
1562 mutex_unlock(&pipe
->inode
->i_mutex
);
1567 * Make sure there's writeable room. Wait for room if we can, otherwise
1568 * return an appropriate error.
1570 static int link_opipe_prep(struct pipe_inode_info
*pipe
, unsigned int flags
)
1575 * Check ->nrbufs without the inode lock first. This function
1576 * is speculative anyways, so missing one is ok.
1578 if (pipe
->nrbufs
< PIPE_BUFFERS
)
1582 mutex_lock(&pipe
->inode
->i_mutex
);
1584 while (pipe
->nrbufs
>= PIPE_BUFFERS
) {
1585 if (!pipe
->readers
) {
1586 send_sig(SIGPIPE
, current
, 0);
1590 if (flags
& SPLICE_F_NONBLOCK
) {
1594 if (signal_pending(current
)) {
1598 pipe
->waiting_writers
++;
1600 pipe
->waiting_writers
--;
1603 mutex_unlock(&pipe
->inode
->i_mutex
);
1608 * Link contents of ipipe to opipe.
1610 static int link_pipe(struct pipe_inode_info
*ipipe
,
1611 struct pipe_inode_info
*opipe
,
1612 size_t len
, unsigned int flags
)
1614 struct pipe_buffer
*ibuf
, *obuf
;
1615 int ret
= 0, i
= 0, nbuf
;
1618 * Potential ABBA deadlock, work around it by ordering lock
1619 * grabbing by inode address. Otherwise two different processes
1620 * could deadlock (one doing tee from A -> B, the other from B -> A).
1622 inode_double_lock(ipipe
->inode
, opipe
->inode
);
1625 if (!opipe
->readers
) {
1626 send_sig(SIGPIPE
, current
, 0);
1633 * If we have iterated all input buffers or ran out of
1634 * output room, break.
1636 if (i
>= ipipe
->nrbufs
|| opipe
->nrbufs
>= PIPE_BUFFERS
)
1639 ibuf
= ipipe
->bufs
+ ((ipipe
->curbuf
+ i
) & (PIPE_BUFFERS
- 1));
1640 nbuf
= (opipe
->curbuf
+ opipe
->nrbufs
) & (PIPE_BUFFERS
- 1);
1643 * Get a reference to this pipe buffer,
1644 * so we can copy the contents over.
1646 ibuf
->ops
->get(ipipe
, ibuf
);
1648 obuf
= opipe
->bufs
+ nbuf
;
1652 * Don't inherit the gift flag, we need to
1653 * prevent multiple steals of this page.
1655 obuf
->flags
&= ~PIPE_BUF_FLAG_GIFT
;
1657 if (obuf
->len
> len
)
1666 inode_double_unlock(ipipe
->inode
, opipe
->inode
);
1669 * If we put data in the output pipe, wakeup any potential readers.
1673 if (waitqueue_active(&opipe
->wait
))
1674 wake_up_interruptible(&opipe
->wait
);
1675 kill_fasync(&opipe
->fasync_readers
, SIGIO
, POLL_IN
);
1682 * This is a tee(1) implementation that works on pipes. It doesn't copy
1683 * any data, it simply references the 'in' pages on the 'out' pipe.
1684 * The 'flags' used are the SPLICE_F_* variants, currently the only
1685 * applicable one is SPLICE_F_NONBLOCK.
1687 static long do_tee(struct file
*in
, struct file
*out
, size_t len
,
1690 struct pipe_inode_info
*ipipe
= pipe_info(in
->f_path
.dentry
->d_inode
);
1691 struct pipe_inode_info
*opipe
= pipe_info(out
->f_path
.dentry
->d_inode
);
1695 * Duplicate the contents of ipipe to opipe without actually
1698 if (ipipe
&& opipe
&& ipipe
!= opipe
) {
1700 * Keep going, unless we encounter an error. The ipipe/opipe
1701 * ordering doesn't really matter.
1703 ret
= link_ipipe_prep(ipipe
, flags
);
1705 ret
= link_opipe_prep(opipe
, flags
);
1707 ret
= link_pipe(ipipe
, opipe
, len
, flags
);
1708 if (!ret
&& (flags
& SPLICE_F_NONBLOCK
))
1717 asmlinkage
long sys_tee(int fdin
, int fdout
, size_t len
, unsigned int flags
)
1726 in
= fget_light(fdin
, &fput_in
);
1728 if (in
->f_mode
& FMODE_READ
) {
1730 struct file
*out
= fget_light(fdout
, &fput_out
);
1733 if (out
->f_mode
& FMODE_WRITE
)
1734 error
= do_tee(in
, out
, len
, flags
);
1735 fput_light(out
, fput_out
);
1738 fput_light(in
, fput_in
);