2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/if_vlan.h>
36 #include <linux/delay.h>
37 #include <linux/crc32.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/mii.h>
44 #define DRV_NAME "skge"
45 #define DRV_VERSION "1.10"
46 #define PFX DRV_NAME " "
48 #define DEFAULT_TX_RING_SIZE 128
49 #define DEFAULT_RX_RING_SIZE 512
50 #define MAX_TX_RING_SIZE 1024
51 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
52 #define MAX_RX_RING_SIZE 4096
53 #define RX_COPY_THRESHOLD 128
54 #define RX_BUF_SIZE 1536
55 #define PHY_RETRIES 1000
56 #define ETH_JUMBO_MTU 9000
57 #define TX_WATCHDOG (5 * HZ)
58 #define NAPI_WEIGHT 64
60 #define LINK_HZ (HZ/2)
62 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
63 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
64 MODULE_LICENSE("GPL");
65 MODULE_VERSION(DRV_VERSION
);
67 static const u32 default_msg
68 = NETIF_MSG_DRV
| NETIF_MSG_PROBE
| NETIF_MSG_LINK
69 | NETIF_MSG_IFUP
| NETIF_MSG_IFDOWN
;
71 static int debug
= -1; /* defaults above */
72 module_param(debug
, int, 0);
73 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
75 static const struct pci_device_id skge_id_table
[] = {
76 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940
) },
77 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940B
) },
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_GE
) },
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_YU
) },
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, PCI_DEVICE_ID_DLINK_DGE510T
), },
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4b01) }, /* DGE-530T */
82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) },
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
84 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, PCI_DEVICE_ID_CNET_GIGACARD
) },
85 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, PCI_DEVICE_ID_LINKSYS_EG1064
) },
86 { PCI_VENDOR_ID_LINKSYS
, 0x1032, PCI_ANY_ID
, 0x0015, },
89 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
91 static int skge_up(struct net_device
*dev
);
92 static int skge_down(struct net_device
*dev
);
93 static void skge_phy_reset(struct skge_port
*skge
);
94 static void skge_tx_clean(struct net_device
*dev
);
95 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
96 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
97 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
98 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
99 static void yukon_init(struct skge_hw
*hw
, int port
);
100 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
101 static void genesis_link_up(struct skge_port
*skge
);
103 /* Avoid conditionals by using array */
104 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
105 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
106 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
107 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
108 static const u32 irqmask
[] = { IS_R1_F
|IS_XA1_F
, IS_R2_F
|IS_XA2_F
};
110 static int skge_get_regs_len(struct net_device
*dev
)
116 * Returns copy of whole control register region
117 * Note: skip RAM address register because accessing it will
120 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
123 const struct skge_port
*skge
= netdev_priv(dev
);
124 const void __iomem
*io
= skge
->hw
->regs
;
127 memset(p
, 0, regs
->len
);
128 memcpy_fromio(p
, io
, B3_RAM_ADDR
);
130 memcpy_fromio(p
+ B3_RI_WTO_R1
, io
+ B3_RI_WTO_R1
,
131 regs
->len
- B3_RI_WTO_R1
);
134 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
135 static u32
wol_supported(const struct skge_hw
*hw
)
137 if (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
!= 0)
138 return WAKE_MAGIC
| WAKE_PHY
;
143 static u32
pci_wake_enabled(struct pci_dev
*dev
)
145 int pm
= pci_find_capability(dev
, PCI_CAP_ID_PM
);
148 /* If device doesn't support PM Capabilities, but request is to disable
149 * wake events, it's a nop; otherwise fail */
153 pci_read_config_word(dev
, pm
+ PCI_PM_PMC
, &value
);
155 value
&= PCI_PM_CAP_PME_MASK
;
156 value
>>= ffs(PCI_PM_CAP_PME_MASK
) - 1; /* First bit of mask */
161 static void skge_wol_init(struct skge_port
*skge
)
163 struct skge_hw
*hw
= skge
->hw
;
164 int port
= skge
->port
;
165 enum pause_control save_mode
;
168 /* Bring hardware out of reset */
169 skge_write16(hw
, B0_CTST
, CS_RST_CLR
);
170 skge_write16(hw
, SK_REG(port
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
172 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_CLR
);
173 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_CLR
);
175 /* Force to 10/100 skge_reset will re-enable on resume */
176 save_mode
= skge
->flow_control
;
177 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
179 ctrl
= skge
->advertising
;
180 skge
->advertising
&= ~(ADVERTISED_1000baseT_Half
|ADVERTISED_1000baseT_Full
);
182 skge_phy_reset(skge
);
184 skge
->flow_control
= save_mode
;
185 skge
->advertising
= ctrl
;
187 /* Set GMAC to no flow control and auto update for speed/duplex */
188 gma_write16(hw
, port
, GM_GP_CTRL
,
189 GM_GPCR_FC_TX_DIS
|GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
|
190 GM_GPCR_DUP_FULL
|GM_GPCR_FC_RX_DIS
|GM_GPCR_AU_FCT_DIS
);
192 /* Set WOL address */
193 memcpy_toio(hw
->regs
+ WOL_REGS(port
, WOL_MAC_ADDR
),
194 skge
->netdev
->dev_addr
, ETH_ALEN
);
196 /* Turn on appropriate WOL control bits */
197 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), WOL_CTL_CLEAR_RESULT
);
199 if (skge
->wol
& WAKE_PHY
)
200 ctrl
|= WOL_CTL_ENA_PME_ON_LINK_CHG
|WOL_CTL_ENA_LINK_CHG_UNIT
;
202 ctrl
|= WOL_CTL_DIS_PME_ON_LINK_CHG
|WOL_CTL_DIS_LINK_CHG_UNIT
;
204 if (skge
->wol
& WAKE_MAGIC
)
205 ctrl
|= WOL_CTL_ENA_PME_ON_MAGIC_PKT
|WOL_CTL_ENA_MAGIC_PKT_UNIT
;
207 ctrl
|= WOL_CTL_DIS_PME_ON_MAGIC_PKT
|WOL_CTL_DIS_MAGIC_PKT_UNIT
;;
209 ctrl
|= WOL_CTL_DIS_PME_ON_PATTERN
|WOL_CTL_DIS_PATTERN_UNIT
;
210 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), ctrl
);
213 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
216 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
218 struct skge_port
*skge
= netdev_priv(dev
);
220 wol
->supported
= wol_supported(skge
->hw
);
221 wol
->wolopts
= skge
->wol
;
224 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
226 struct skge_port
*skge
= netdev_priv(dev
);
227 struct skge_hw
*hw
= skge
->hw
;
229 if (wol
->wolopts
& wol_supported(hw
))
232 skge
->wol
= wol
->wolopts
;
233 if (!netif_running(dev
))
238 /* Determine supported/advertised modes based on hardware.
239 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
241 static u32
skge_supported_modes(const struct skge_hw
*hw
)
246 supported
= SUPPORTED_10baseT_Half
247 | SUPPORTED_10baseT_Full
248 | SUPPORTED_100baseT_Half
249 | SUPPORTED_100baseT_Full
250 | SUPPORTED_1000baseT_Half
251 | SUPPORTED_1000baseT_Full
252 | SUPPORTED_Autoneg
| SUPPORTED_TP
;
254 if (hw
->chip_id
== CHIP_ID_GENESIS
)
255 supported
&= ~(SUPPORTED_10baseT_Half
256 | SUPPORTED_10baseT_Full
257 | SUPPORTED_100baseT_Half
258 | SUPPORTED_100baseT_Full
);
260 else if (hw
->chip_id
== CHIP_ID_YUKON
)
261 supported
&= ~SUPPORTED_1000baseT_Half
;
263 supported
= SUPPORTED_1000baseT_Full
| SUPPORTED_1000baseT_Half
264 | SUPPORTED_FIBRE
| SUPPORTED_Autoneg
;
269 static int skge_get_settings(struct net_device
*dev
,
270 struct ethtool_cmd
*ecmd
)
272 struct skge_port
*skge
= netdev_priv(dev
);
273 struct skge_hw
*hw
= skge
->hw
;
275 ecmd
->transceiver
= XCVR_INTERNAL
;
276 ecmd
->supported
= skge_supported_modes(hw
);
279 ecmd
->port
= PORT_TP
;
280 ecmd
->phy_address
= hw
->phy_addr
;
282 ecmd
->port
= PORT_FIBRE
;
284 ecmd
->advertising
= skge
->advertising
;
285 ecmd
->autoneg
= skge
->autoneg
;
286 ecmd
->speed
= skge
->speed
;
287 ecmd
->duplex
= skge
->duplex
;
291 static int skge_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
293 struct skge_port
*skge
= netdev_priv(dev
);
294 const struct skge_hw
*hw
= skge
->hw
;
295 u32 supported
= skge_supported_modes(hw
);
297 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
298 ecmd
->advertising
= supported
;
304 switch (ecmd
->speed
) {
306 if (ecmd
->duplex
== DUPLEX_FULL
)
307 setting
= SUPPORTED_1000baseT_Full
;
308 else if (ecmd
->duplex
== DUPLEX_HALF
)
309 setting
= SUPPORTED_1000baseT_Half
;
314 if (ecmd
->duplex
== DUPLEX_FULL
)
315 setting
= SUPPORTED_100baseT_Full
;
316 else if (ecmd
->duplex
== DUPLEX_HALF
)
317 setting
= SUPPORTED_100baseT_Half
;
323 if (ecmd
->duplex
== DUPLEX_FULL
)
324 setting
= SUPPORTED_10baseT_Full
;
325 else if (ecmd
->duplex
== DUPLEX_HALF
)
326 setting
= SUPPORTED_10baseT_Half
;
334 if ((setting
& supported
) == 0)
337 skge
->speed
= ecmd
->speed
;
338 skge
->duplex
= ecmd
->duplex
;
341 skge
->autoneg
= ecmd
->autoneg
;
342 skge
->advertising
= ecmd
->advertising
;
344 if (netif_running(dev
))
345 skge_phy_reset(skge
);
350 static void skge_get_drvinfo(struct net_device
*dev
,
351 struct ethtool_drvinfo
*info
)
353 struct skge_port
*skge
= netdev_priv(dev
);
355 strcpy(info
->driver
, DRV_NAME
);
356 strcpy(info
->version
, DRV_VERSION
);
357 strcpy(info
->fw_version
, "N/A");
358 strcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
));
361 static const struct skge_stat
{
362 char name
[ETH_GSTRING_LEN
];
366 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
367 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
369 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
370 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
371 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
372 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
373 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
374 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
375 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
376 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
378 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
379 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
380 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
381 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
382 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
383 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
385 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
386 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
387 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
388 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
389 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
392 static int skge_get_stats_count(struct net_device
*dev
)
394 return ARRAY_SIZE(skge_stats
);
397 static void skge_get_ethtool_stats(struct net_device
*dev
,
398 struct ethtool_stats
*stats
, u64
*data
)
400 struct skge_port
*skge
= netdev_priv(dev
);
402 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
403 genesis_get_stats(skge
, data
);
405 yukon_get_stats(skge
, data
);
408 /* Use hardware MIB variables for critical path statistics and
409 * transmit feedback not reported at interrupt.
410 * Other errors are accounted for in interrupt handler.
412 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
414 struct skge_port
*skge
= netdev_priv(dev
);
415 u64 data
[ARRAY_SIZE(skge_stats
)];
417 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
418 genesis_get_stats(skge
, data
);
420 yukon_get_stats(skge
, data
);
422 skge
->net_stats
.tx_bytes
= data
[0];
423 skge
->net_stats
.rx_bytes
= data
[1];
424 skge
->net_stats
.tx_packets
= data
[2] + data
[4] + data
[6];
425 skge
->net_stats
.rx_packets
= data
[3] + data
[5] + data
[7];
426 skge
->net_stats
.multicast
= data
[3] + data
[5];
427 skge
->net_stats
.collisions
= data
[10];
428 skge
->net_stats
.tx_aborted_errors
= data
[12];
430 return &skge
->net_stats
;
433 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
439 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
440 memcpy(data
+ i
* ETH_GSTRING_LEN
,
441 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
446 static void skge_get_ring_param(struct net_device
*dev
,
447 struct ethtool_ringparam
*p
)
449 struct skge_port
*skge
= netdev_priv(dev
);
451 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
452 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
453 p
->rx_mini_max_pending
= 0;
454 p
->rx_jumbo_max_pending
= 0;
456 p
->rx_pending
= skge
->rx_ring
.count
;
457 p
->tx_pending
= skge
->tx_ring
.count
;
458 p
->rx_mini_pending
= 0;
459 p
->rx_jumbo_pending
= 0;
462 static int skge_set_ring_param(struct net_device
*dev
,
463 struct ethtool_ringparam
*p
)
465 struct skge_port
*skge
= netdev_priv(dev
);
468 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
469 p
->tx_pending
< TX_LOW_WATER
|| p
->tx_pending
> MAX_TX_RING_SIZE
)
472 skge
->rx_ring
.count
= p
->rx_pending
;
473 skge
->tx_ring
.count
= p
->tx_pending
;
475 if (netif_running(dev
)) {
485 static u32
skge_get_msglevel(struct net_device
*netdev
)
487 struct skge_port
*skge
= netdev_priv(netdev
);
488 return skge
->msg_enable
;
491 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
493 struct skge_port
*skge
= netdev_priv(netdev
);
494 skge
->msg_enable
= value
;
497 static int skge_nway_reset(struct net_device
*dev
)
499 struct skge_port
*skge
= netdev_priv(dev
);
501 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
504 skge_phy_reset(skge
);
508 static int skge_set_sg(struct net_device
*dev
, u32 data
)
510 struct skge_port
*skge
= netdev_priv(dev
);
511 struct skge_hw
*hw
= skge
->hw
;
513 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
515 return ethtool_op_set_sg(dev
, data
);
518 static int skge_set_tx_csum(struct net_device
*dev
, u32 data
)
520 struct skge_port
*skge
= netdev_priv(dev
);
521 struct skge_hw
*hw
= skge
->hw
;
523 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
526 return ethtool_op_set_tx_csum(dev
, data
);
529 static u32
skge_get_rx_csum(struct net_device
*dev
)
531 struct skge_port
*skge
= netdev_priv(dev
);
533 return skge
->rx_csum
;
536 /* Only Yukon supports checksum offload. */
537 static int skge_set_rx_csum(struct net_device
*dev
, u32 data
)
539 struct skge_port
*skge
= netdev_priv(dev
);
541 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
544 skge
->rx_csum
= data
;
548 static void skge_get_pauseparam(struct net_device
*dev
,
549 struct ethtool_pauseparam
*ecmd
)
551 struct skge_port
*skge
= netdev_priv(dev
);
553 ecmd
->rx_pause
= (skge
->flow_control
== FLOW_MODE_SYMMETRIC
)
554 || (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
);
555 ecmd
->tx_pause
= ecmd
->rx_pause
|| (skge
->flow_control
== FLOW_MODE_LOC_SEND
);
557 ecmd
->autoneg
= ecmd
->rx_pause
|| ecmd
->tx_pause
;
560 static int skge_set_pauseparam(struct net_device
*dev
,
561 struct ethtool_pauseparam
*ecmd
)
563 struct skge_port
*skge
= netdev_priv(dev
);
564 struct ethtool_pauseparam old
;
566 skge_get_pauseparam(dev
, &old
);
568 if (ecmd
->autoneg
!= old
.autoneg
)
569 skge
->flow_control
= ecmd
->autoneg
? FLOW_MODE_NONE
: FLOW_MODE_SYMMETRIC
;
571 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
572 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
573 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
574 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
575 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
576 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
578 skge
->flow_control
= FLOW_MODE_NONE
;
581 if (netif_running(dev
))
582 skge_phy_reset(skge
);
587 /* Chip internal frequency for clock calculations */
588 static inline u32
hwkhz(const struct skge_hw
*hw
)
590 return (hw
->chip_id
== CHIP_ID_GENESIS
) ? 53125 : 78125;
593 /* Chip HZ to microseconds */
594 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
596 return (ticks
* 1000) / hwkhz(hw
);
599 /* Microseconds to chip HZ */
600 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
602 return hwkhz(hw
) * usec
/ 1000;
605 static int skge_get_coalesce(struct net_device
*dev
,
606 struct ethtool_coalesce
*ecmd
)
608 struct skge_port
*skge
= netdev_priv(dev
);
609 struct skge_hw
*hw
= skge
->hw
;
610 int port
= skge
->port
;
612 ecmd
->rx_coalesce_usecs
= 0;
613 ecmd
->tx_coalesce_usecs
= 0;
615 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
616 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
617 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
619 if (msk
& rxirqmask
[port
])
620 ecmd
->rx_coalesce_usecs
= delay
;
621 if (msk
& txirqmask
[port
])
622 ecmd
->tx_coalesce_usecs
= delay
;
628 /* Note: interrupt timer is per board, but can turn on/off per port */
629 static int skge_set_coalesce(struct net_device
*dev
,
630 struct ethtool_coalesce
*ecmd
)
632 struct skge_port
*skge
= netdev_priv(dev
);
633 struct skge_hw
*hw
= skge
->hw
;
634 int port
= skge
->port
;
635 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
638 if (ecmd
->rx_coalesce_usecs
== 0)
639 msk
&= ~rxirqmask
[port
];
640 else if (ecmd
->rx_coalesce_usecs
< 25 ||
641 ecmd
->rx_coalesce_usecs
> 33333)
644 msk
|= rxirqmask
[port
];
645 delay
= ecmd
->rx_coalesce_usecs
;
648 if (ecmd
->tx_coalesce_usecs
== 0)
649 msk
&= ~txirqmask
[port
];
650 else if (ecmd
->tx_coalesce_usecs
< 25 ||
651 ecmd
->tx_coalesce_usecs
> 33333)
654 msk
|= txirqmask
[port
];
655 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
658 skge_write32(hw
, B2_IRQM_MSK
, msk
);
660 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
662 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
663 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
668 enum led_mode
{ LED_MODE_OFF
, LED_MODE_ON
, LED_MODE_TST
};
669 static void skge_led(struct skge_port
*skge
, enum led_mode mode
)
671 struct skge_hw
*hw
= skge
->hw
;
672 int port
= skge
->port
;
674 mutex_lock(&hw
->phy_mutex
);
675 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
678 if (hw
->phy_type
== SK_PHY_BCOM
)
679 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
681 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 0);
682 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_T_OFF
);
684 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
685 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
686 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
690 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
691 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
693 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
694 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
699 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
700 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
701 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
703 if (hw
->phy_type
== SK_PHY_BCOM
)
704 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
706 skge_write8(hw
, SK_REG(port
, TX_LED_TST
), LED_T_ON
);
707 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 100);
708 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
715 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
716 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
717 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
718 PHY_M_LED_MO_10(MO_LED_OFF
) |
719 PHY_M_LED_MO_100(MO_LED_OFF
) |
720 PHY_M_LED_MO_1000(MO_LED_OFF
) |
721 PHY_M_LED_MO_RX(MO_LED_OFF
));
724 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
,
725 PHY_M_LED_PULS_DUR(PULS_170MS
) |
726 PHY_M_LED_BLINK_RT(BLINK_84MS
) |
730 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
731 PHY_M_LED_MO_RX(MO_LED_OFF
) |
732 (skge
->speed
== SPEED_100
?
733 PHY_M_LED_MO_100(MO_LED_ON
) : 0));
736 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
737 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
738 PHY_M_LED_MO_DUP(MO_LED_ON
) |
739 PHY_M_LED_MO_10(MO_LED_ON
) |
740 PHY_M_LED_MO_100(MO_LED_ON
) |
741 PHY_M_LED_MO_1000(MO_LED_ON
) |
742 PHY_M_LED_MO_RX(MO_LED_ON
));
745 mutex_unlock(&hw
->phy_mutex
);
748 /* blink LED's for finding board */
749 static int skge_phys_id(struct net_device
*dev
, u32 data
)
751 struct skge_port
*skge
= netdev_priv(dev
);
753 enum led_mode mode
= LED_MODE_TST
;
755 if (!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
756 ms
= jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT
/ HZ
) * 1000;
761 skge_led(skge
, mode
);
762 mode
^= LED_MODE_TST
;
764 if (msleep_interruptible(BLINK_MS
))
769 /* back to regular LED state */
770 skge_led(skge
, netif_running(dev
) ? LED_MODE_ON
: LED_MODE_OFF
);
775 static const struct ethtool_ops skge_ethtool_ops
= {
776 .get_settings
= skge_get_settings
,
777 .set_settings
= skge_set_settings
,
778 .get_drvinfo
= skge_get_drvinfo
,
779 .get_regs_len
= skge_get_regs_len
,
780 .get_regs
= skge_get_regs
,
781 .get_wol
= skge_get_wol
,
782 .set_wol
= skge_set_wol
,
783 .get_msglevel
= skge_get_msglevel
,
784 .set_msglevel
= skge_set_msglevel
,
785 .nway_reset
= skge_nway_reset
,
786 .get_link
= ethtool_op_get_link
,
787 .get_ringparam
= skge_get_ring_param
,
788 .set_ringparam
= skge_set_ring_param
,
789 .get_pauseparam
= skge_get_pauseparam
,
790 .set_pauseparam
= skge_set_pauseparam
,
791 .get_coalesce
= skge_get_coalesce
,
792 .set_coalesce
= skge_set_coalesce
,
793 .get_sg
= ethtool_op_get_sg
,
794 .set_sg
= skge_set_sg
,
795 .get_tx_csum
= ethtool_op_get_tx_csum
,
796 .set_tx_csum
= skge_set_tx_csum
,
797 .get_rx_csum
= skge_get_rx_csum
,
798 .set_rx_csum
= skge_set_rx_csum
,
799 .get_strings
= skge_get_strings
,
800 .phys_id
= skge_phys_id
,
801 .get_stats_count
= skge_get_stats_count
,
802 .get_ethtool_stats
= skge_get_ethtool_stats
,
803 .get_perm_addr
= ethtool_op_get_perm_addr
,
807 * Allocate ring elements and chain them together
808 * One-to-one association of board descriptors with ring elements
810 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u32 base
)
812 struct skge_tx_desc
*d
;
813 struct skge_element
*e
;
816 ring
->start
= kcalloc(ring
->count
, sizeof(*e
), GFP_KERNEL
);
820 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
822 if (i
== ring
->count
- 1) {
823 e
->next
= ring
->start
;
824 d
->next_offset
= base
;
827 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
830 ring
->to_use
= ring
->to_clean
= ring
->start
;
835 /* Allocate and setup a new buffer for receiving */
836 static void skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
837 struct sk_buff
*skb
, unsigned int bufsize
)
839 struct skge_rx_desc
*rd
= e
->desc
;
842 map
= pci_map_single(skge
->hw
->pdev
, skb
->data
, bufsize
,
846 rd
->dma_hi
= map
>> 32;
848 rd
->csum1_start
= ETH_HLEN
;
849 rd
->csum2_start
= ETH_HLEN
;
855 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
856 pci_unmap_addr_set(e
, mapaddr
, map
);
857 pci_unmap_len_set(e
, maplen
, bufsize
);
860 /* Resume receiving using existing skb,
861 * Note: DMA address is not changed by chip.
862 * MTU not changed while receiver active.
864 static inline void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
866 struct skge_rx_desc
*rd
= e
->desc
;
869 rd
->csum2_start
= ETH_HLEN
;
873 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
877 /* Free all buffers in receive ring, assumes receiver stopped */
878 static void skge_rx_clean(struct skge_port
*skge
)
880 struct skge_hw
*hw
= skge
->hw
;
881 struct skge_ring
*ring
= &skge
->rx_ring
;
882 struct skge_element
*e
;
886 struct skge_rx_desc
*rd
= e
->desc
;
889 pci_unmap_single(hw
->pdev
,
890 pci_unmap_addr(e
, mapaddr
),
891 pci_unmap_len(e
, maplen
),
893 dev_kfree_skb(e
->skb
);
896 } while ((e
= e
->next
) != ring
->start
);
900 /* Allocate buffers for receive ring
901 * For receive: to_clean is next received frame.
903 static int skge_rx_fill(struct net_device
*dev
)
905 struct skge_port
*skge
= netdev_priv(dev
);
906 struct skge_ring
*ring
= &skge
->rx_ring
;
907 struct skge_element
*e
;
913 skb
= __netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
,
918 skb_reserve(skb
, NET_IP_ALIGN
);
919 skge_rx_setup(skge
, e
, skb
, skge
->rx_buf_size
);
920 } while ( (e
= e
->next
) != ring
->start
);
922 ring
->to_clean
= ring
->start
;
926 static const char *skge_pause(enum pause_status status
)
931 case FLOW_STAT_REM_SEND
:
933 case FLOW_STAT_LOC_SEND
:
935 case FLOW_STAT_SYMMETRIC
: /* Both station may send PAUSE */
938 return "indeterminated";
943 static void skge_link_up(struct skge_port
*skge
)
945 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
),
946 LED_BLK_OFF
|LED_SYNC_OFF
|LED_ON
);
948 netif_carrier_on(skge
->netdev
);
949 netif_wake_queue(skge
->netdev
);
951 if (netif_msg_link(skge
)) {
953 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
954 skge
->netdev
->name
, skge
->speed
,
955 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
956 skge_pause(skge
->flow_status
));
960 static void skge_link_down(struct skge_port
*skge
)
962 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
963 netif_carrier_off(skge
->netdev
);
964 netif_stop_queue(skge
->netdev
);
966 if (netif_msg_link(skge
))
967 printk(KERN_INFO PFX
"%s: Link is down.\n", skge
->netdev
->name
);
971 static void xm_link_down(struct skge_hw
*hw
, int port
)
973 struct net_device
*dev
= hw
->dev
[port
];
974 struct skge_port
*skge
= netdev_priv(dev
);
977 if (hw
->phy_type
== SK_PHY_XMAC
) {
978 msk
= xm_read16(hw
, port
, XM_IMSK
);
979 msk
|= XM_IS_INP_ASS
| XM_IS_LIPA_RC
| XM_IS_RX_PAGE
| XM_IS_AND
;
980 xm_write16(hw
, port
, XM_IMSK
, msk
);
983 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
984 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
985 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
986 /* dummy read to ensure writing */
987 (void) xm_read16(hw
, port
, XM_MMU_CMD
);
989 if (netif_carrier_ok(dev
))
990 skge_link_down(skge
);
993 static int __xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
997 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
998 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1000 if (hw
->phy_type
== SK_PHY_XMAC
)
1003 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1004 if (xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_RDY
)
1011 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1016 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1019 if (__xm_phy_read(hw
, port
, reg
, &v
))
1020 printk(KERN_WARNING PFX
"%s: phy read timed out\n",
1021 hw
->dev
[port
]->name
);
1025 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1029 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1030 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1031 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1038 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
1039 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1040 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1047 static void genesis_init(struct skge_hw
*hw
)
1049 /* set blink source counter */
1050 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
1051 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
1053 /* configure mac arbiter */
1054 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1056 /* configure mac arbiter timeout values */
1057 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
1058 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
1059 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
1060 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
1062 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1063 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1064 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1065 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1067 /* configure packet arbiter timeout */
1068 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
1069 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
1070 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
1071 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
1072 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
1075 static void genesis_reset(struct skge_hw
*hw
, int port
)
1077 const u8 zero
[8] = { 0 };
1079 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
1081 /* reset the statistics module */
1082 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
1083 xm_write16(hw
, port
, XM_IMSK
, 0xffff); /* disable XMAC IRQs */
1084 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
1085 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
1086 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
1088 /* disable Broadcom PHY IRQ */
1089 if (hw
->phy_type
== SK_PHY_BCOM
)
1090 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
1092 xm_outhash(hw
, port
, XM_HSM
, zero
);
1096 /* Convert mode to MII values */
1097 static const u16 phy_pause_map
[] = {
1098 [FLOW_MODE_NONE
] = 0,
1099 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
1100 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
1101 [FLOW_MODE_SYM_OR_REM
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
1104 /* special defines for FIBER (88E1011S only) */
1105 static const u16 fiber_pause_map
[] = {
1106 [FLOW_MODE_NONE
] = PHY_X_P_NO_PAUSE
,
1107 [FLOW_MODE_LOC_SEND
] = PHY_X_P_ASYM_MD
,
1108 [FLOW_MODE_SYMMETRIC
] = PHY_X_P_SYM_MD
,
1109 [FLOW_MODE_SYM_OR_REM
] = PHY_X_P_BOTH_MD
,
1113 /* Check status of Broadcom phy link */
1114 static void bcom_check_link(struct skge_hw
*hw
, int port
)
1116 struct net_device
*dev
= hw
->dev
[port
];
1117 struct skge_port
*skge
= netdev_priv(dev
);
1120 /* read twice because of latch */
1121 (void) xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1122 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1124 if ((status
& PHY_ST_LSYNC
) == 0) {
1125 xm_link_down(hw
, port
);
1129 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1132 if (!(status
& PHY_ST_AN_OVER
))
1135 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1136 if (lpa
& PHY_B_AN_RF
) {
1137 printk(KERN_NOTICE PFX
"%s: remote fault\n",
1142 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1144 /* Check Duplex mismatch */
1145 switch (aux
& PHY_B_AS_AN_RES_MSK
) {
1146 case PHY_B_RES_1000FD
:
1147 skge
->duplex
= DUPLEX_FULL
;
1149 case PHY_B_RES_1000HD
:
1150 skge
->duplex
= DUPLEX_HALF
;
1153 printk(KERN_NOTICE PFX
"%s: duplex mismatch\n",
1158 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1159 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1160 case PHY_B_AS_PAUSE_MSK
:
1161 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1164 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1167 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1170 skge
->flow_status
= FLOW_STAT_NONE
;
1172 skge
->speed
= SPEED_1000
;
1175 if (!netif_carrier_ok(dev
))
1176 genesis_link_up(skge
);
1179 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1180 * Phy on for 100 or 10Mbit operation
1182 static void bcom_phy_init(struct skge_port
*skge
)
1184 struct skge_hw
*hw
= skge
->hw
;
1185 int port
= skge
->port
;
1187 u16 id1
, r
, ext
, ctl
;
1189 /* magic workaround patterns for Broadcom */
1190 static const struct {
1194 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1195 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1196 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1197 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1199 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1200 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1203 /* read Id from external PHY (all have the same address) */
1204 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1206 /* Optimize MDIO transfer by suppressing preamble. */
1207 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1209 xm_write16(hw
, port
, XM_MMU_CMD
,r
);
1212 case PHY_BCOM_ID1_C0
:
1214 * Workaround BCOM Errata for the C0 type.
1215 * Write magic patterns to reserved registers.
1217 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1218 xm_phy_write(hw
, port
,
1219 C0hack
[i
].reg
, C0hack
[i
].val
);
1222 case PHY_BCOM_ID1_A1
:
1224 * Workaround BCOM Errata for the A1 type.
1225 * Write magic patterns to reserved registers.
1227 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1228 xm_phy_write(hw
, port
,
1229 A1hack
[i
].reg
, A1hack
[i
].val
);
1234 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1235 * Disable Power Management after reset.
1237 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1238 r
|= PHY_B_AC_DIS_PM
;
1239 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1242 xm_read16(hw
, port
, XM_ISRC
);
1244 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1245 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1247 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1249 * Workaround BCOM Errata #1 for the C5 type.
1250 * 1000Base-T Link Acquisition Failure in Slave Mode
1251 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1253 u16 adv
= PHY_B_1000C_RD
;
1254 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1255 adv
|= PHY_B_1000C_AHD
;
1256 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1257 adv
|= PHY_B_1000C_AFD
;
1258 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1260 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1262 if (skge
->duplex
== DUPLEX_FULL
)
1263 ctl
|= PHY_CT_DUP_MD
;
1264 /* Force to slave */
1265 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1268 /* Set autonegotiation pause parameters */
1269 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1270 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1272 /* Handle Jumbo frames */
1273 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
) {
1274 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1275 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1277 ext
|= PHY_B_PEC_HIGH_LA
;
1281 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1282 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1284 /* Use link status change interrupt */
1285 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1288 static void xm_phy_init(struct skge_port
*skge
)
1290 struct skge_hw
*hw
= skge
->hw
;
1291 int port
= skge
->port
;
1294 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1295 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1296 ctrl
|= PHY_X_AN_HD
;
1297 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1298 ctrl
|= PHY_X_AN_FD
;
1300 ctrl
|= fiber_pause_map
[skge
->flow_control
];
1302 xm_phy_write(hw
, port
, PHY_XMAC_AUNE_ADV
, ctrl
);
1304 /* Restart Auto-negotiation */
1305 ctrl
= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1307 /* Set DuplexMode in Config register */
1308 if (skge
->duplex
== DUPLEX_FULL
)
1309 ctrl
|= PHY_CT_DUP_MD
;
1311 * Do NOT enable Auto-negotiation here. This would hold
1312 * the link down because no IDLEs are transmitted
1316 xm_phy_write(hw
, port
, PHY_XMAC_CTRL
, ctrl
);
1318 /* Poll PHY for status changes */
1319 schedule_delayed_work(&skge
->link_thread
, LINK_HZ
);
1322 static void xm_check_link(struct net_device
*dev
)
1324 struct skge_port
*skge
= netdev_priv(dev
);
1325 struct skge_hw
*hw
= skge
->hw
;
1326 int port
= skge
->port
;
1329 /* read twice because of latch */
1330 (void) xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1331 status
= xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1333 if ((status
& PHY_ST_LSYNC
) == 0) {
1334 xm_link_down(hw
, port
);
1338 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1341 if (!(status
& PHY_ST_AN_OVER
))
1344 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1345 if (lpa
& PHY_B_AN_RF
) {
1346 printk(KERN_NOTICE PFX
"%s: remote fault\n",
1351 res
= xm_phy_read(hw
, port
, PHY_XMAC_RES_ABI
);
1353 /* Check Duplex mismatch */
1354 switch (res
& (PHY_X_RS_HD
| PHY_X_RS_FD
)) {
1356 skge
->duplex
= DUPLEX_FULL
;
1359 skge
->duplex
= DUPLEX_HALF
;
1362 printk(KERN_NOTICE PFX
"%s: duplex mismatch\n",
1367 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1368 if ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1369 skge
->flow_control
== FLOW_MODE_SYM_OR_REM
) &&
1370 (lpa
& PHY_X_P_SYM_MD
))
1371 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1372 else if (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
&&
1373 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_ASYM_MD
)
1374 /* Enable PAUSE receive, disable PAUSE transmit */
1375 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1376 else if (skge
->flow_control
== FLOW_MODE_LOC_SEND
&&
1377 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_BOTH_MD
)
1378 /* Disable PAUSE receive, enable PAUSE transmit */
1379 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1381 skge
->flow_status
= FLOW_STAT_NONE
;
1383 skge
->speed
= SPEED_1000
;
1386 if (!netif_carrier_ok(dev
))
1387 genesis_link_up(skge
);
1390 /* Poll to check for link coming up.
1391 * Since internal PHY is wired to a level triggered pin, can't
1392 * get an interrupt when carrier is detected.
1394 static void xm_link_timer(struct work_struct
*work
)
1396 struct skge_port
*skge
=
1397 container_of(work
, struct skge_port
, link_thread
.work
);
1398 struct net_device
*dev
= skge
->netdev
;
1399 struct skge_hw
*hw
= skge
->hw
;
1400 int port
= skge
->port
;
1402 if (!netif_running(dev
))
1405 if (netif_carrier_ok(dev
)) {
1406 xm_read16(hw
, port
, XM_ISRC
);
1407 if (!(xm_read16(hw
, port
, XM_ISRC
) & XM_IS_INP_ASS
))
1410 if (xm_read32(hw
, port
, XM_GP_PORT
) & XM_GP_INP_ASS
)
1412 xm_read16(hw
, port
, XM_ISRC
);
1413 if (xm_read16(hw
, port
, XM_ISRC
) & XM_IS_INP_ASS
)
1417 mutex_lock(&hw
->phy_mutex
);
1419 mutex_unlock(&hw
->phy_mutex
);
1422 schedule_delayed_work(&skge
->link_thread
, LINK_HZ
);
1425 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1427 struct net_device
*dev
= hw
->dev
[port
];
1428 struct skge_port
*skge
= netdev_priv(dev
);
1429 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1432 const u8 zero
[6] = { 0 };
1434 for (i
= 0; i
< 10; i
++) {
1435 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
1437 if (skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
)
1442 printk(KERN_WARNING PFX
"%s: genesis reset failed\n", dev
->name
);
1445 /* Unreset the XMAC. */
1446 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1449 * Perform additional initialization for external PHYs,
1450 * namely for the 1000baseTX cards that use the XMAC's
1453 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1454 /* Take external Phy out of reset */
1455 r
= skge_read32(hw
, B2_GP_IO
);
1457 r
|= GP_DIR_0
|GP_IO_0
;
1459 r
|= GP_DIR_2
|GP_IO_2
;
1461 skge_write32(hw
, B2_GP_IO
, r
);
1463 /* Enable GMII interface */
1464 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1468 switch(hw
->phy_type
) {
1473 bcom_phy_init(skge
);
1474 bcom_check_link(hw
, port
);
1477 /* Set Station Address */
1478 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1480 /* We don't use match addresses so clear */
1481 for (i
= 1; i
< 16; i
++)
1482 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1484 /* Clear MIB counters */
1485 xm_write16(hw
, port
, XM_STAT_CMD
,
1486 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1487 /* Clear two times according to Errata #3 */
1488 xm_write16(hw
, port
, XM_STAT_CMD
,
1489 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1491 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1492 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1494 /* We don't need the FCS appended to the packet. */
1495 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1497 r
|= XM_RX_BIG_PK_OK
;
1499 if (skge
->duplex
== DUPLEX_HALF
) {
1501 * If in manual half duplex mode the other side might be in
1502 * full duplex mode, so ignore if a carrier extension is not seen
1503 * on frames received
1505 r
|= XM_RX_DIS_CEXT
;
1507 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1510 /* We want short frames padded to 60 bytes. */
1511 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1514 * Bump up the transmit threshold. This helps hold off transmit
1515 * underruns when we're blasting traffic from both ports at once.
1517 xm_write16(hw
, port
, XM_TX_THR
, 512);
1520 * Enable the reception of all error frames. This is is
1521 * a necessary evil due to the design of the XMAC. The
1522 * XMAC's receive FIFO is only 8K in size, however jumbo
1523 * frames can be up to 9000 bytes in length. When bad
1524 * frame filtering is enabled, the XMAC's RX FIFO operates
1525 * in 'store and forward' mode. For this to work, the
1526 * entire frame has to fit into the FIFO, but that means
1527 * that jumbo frames larger than 8192 bytes will be
1528 * truncated. Disabling all bad frame filtering causes
1529 * the RX FIFO to operate in streaming mode, in which
1530 * case the XMAC will start transferring frames out of the
1531 * RX FIFO as soon as the FIFO threshold is reached.
1533 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1537 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1538 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1539 * and 'Octets Rx OK Hi Cnt Ov'.
1541 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1544 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1545 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1546 * and 'Octets Tx OK Hi Cnt Ov'.
1548 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1550 /* Configure MAC arbiter */
1551 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1553 /* configure timeout values */
1554 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1555 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1556 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1557 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1559 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1560 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1561 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1562 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1564 /* Configure Rx MAC FIFO */
1565 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1566 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1567 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1569 /* Configure Tx MAC FIFO */
1570 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1571 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1572 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1575 /* Enable frame flushing if jumbo frames used */
1576 skge_write16(hw
, SK_REG(port
,RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1578 /* enable timeout timers if normal frames */
1579 skge_write16(hw
, B3_PA_CTRL
,
1580 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1584 static void genesis_stop(struct skge_port
*skge
)
1586 struct skge_hw
*hw
= skge
->hw
;
1587 int port
= skge
->port
;
1590 genesis_reset(hw
, port
);
1592 /* Clear Tx packet arbiter timeout IRQ */
1593 skge_write16(hw
, B3_PA_CTRL
,
1594 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1597 * If the transfer sticks at the MAC the STOP command will not
1598 * terminate if we don't flush the XMAC's transmit FIFO !
1600 xm_write32(hw
, port
, XM_MODE
,
1601 xm_read32(hw
, port
, XM_MODE
)|XM_MD_FTF
);
1605 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1607 /* For external PHYs there must be special handling */
1608 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1609 reg
= skge_read32(hw
, B2_GP_IO
);
1617 skge_write32(hw
, B2_GP_IO
, reg
);
1618 skge_read32(hw
, B2_GP_IO
);
1621 xm_write16(hw
, port
, XM_MMU_CMD
,
1622 xm_read16(hw
, port
, XM_MMU_CMD
)
1623 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1625 xm_read16(hw
, port
, XM_MMU_CMD
);
1629 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1631 struct skge_hw
*hw
= skge
->hw
;
1632 int port
= skge
->port
;
1634 unsigned long timeout
= jiffies
+ HZ
;
1636 xm_write16(hw
, port
,
1637 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1639 /* wait for update to complete */
1640 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1641 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1642 if (time_after(jiffies
, timeout
))
1647 /* special case for 64 bit octet counter */
1648 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1649 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1650 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1651 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1653 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1654 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1657 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1659 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1660 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1662 if (netif_msg_intr(skge
))
1663 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
1664 skge
->netdev
->name
, status
);
1666 if (hw
->phy_type
== SK_PHY_XMAC
&&
1667 (status
& (XM_IS_INP_ASS
| XM_IS_LIPA_RC
)))
1668 xm_link_down(hw
, port
);
1670 if (status
& XM_IS_TXF_UR
) {
1671 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1672 ++skge
->net_stats
.tx_fifo_errors
;
1674 if (status
& XM_IS_RXF_OV
) {
1675 xm_write32(hw
, port
, XM_MODE
, XM_MD_FRF
);
1676 ++skge
->net_stats
.rx_fifo_errors
;
1680 static void genesis_link_up(struct skge_port
*skge
)
1682 struct skge_hw
*hw
= skge
->hw
;
1683 int port
= skge
->port
;
1687 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1690 * enabling pause frame reception is required for 1000BT
1691 * because the XMAC is not reset if the link is going down
1693 if (skge
->flow_status
== FLOW_STAT_NONE
||
1694 skge
->flow_status
== FLOW_STAT_LOC_SEND
)
1695 /* Disable Pause Frame Reception */
1696 cmd
|= XM_MMU_IGN_PF
;
1698 /* Enable Pause Frame Reception */
1699 cmd
&= ~XM_MMU_IGN_PF
;
1701 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1703 mode
= xm_read32(hw
, port
, XM_MODE
);
1704 if (skge
->flow_status
== FLOW_STAT_SYMMETRIC
||
1705 skge
->flow_status
== FLOW_STAT_LOC_SEND
) {
1707 * Configure Pause Frame Generation
1708 * Use internal and external Pause Frame Generation.
1709 * Sending pause frames is edge triggered.
1710 * Send a Pause frame with the maximum pause time if
1711 * internal oder external FIFO full condition occurs.
1712 * Send a zero pause time frame to re-start transmission.
1714 /* XM_PAUSE_DA = '010000C28001' (default) */
1715 /* XM_MAC_PTIME = 0xffff (maximum) */
1716 /* remember this value is defined in big endian (!) */
1717 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1719 mode
|= XM_PAUSE_MODE
;
1720 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1723 * disable pause frame generation is required for 1000BT
1724 * because the XMAC is not reset if the link is going down
1726 /* Disable Pause Mode in Mode Register */
1727 mode
&= ~XM_PAUSE_MODE
;
1729 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1732 xm_write32(hw
, port
, XM_MODE
, mode
);
1734 if (hw
->phy_type
!= SK_PHY_XMAC
)
1735 msk
|= XM_IS_INP_ASS
; /* disable GP0 interrupt bit */
1737 xm_write16(hw
, port
, XM_IMSK
, msk
);
1738 xm_read16(hw
, port
, XM_ISRC
);
1740 /* get MMU Command Reg. */
1741 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1742 if (hw
->phy_type
!= SK_PHY_XMAC
&& skge
->duplex
== DUPLEX_FULL
)
1743 cmd
|= XM_MMU_GMII_FD
;
1746 * Workaround BCOM Errata (#10523) for all BCom Phys
1747 * Enable Power Management after link up
1749 if (hw
->phy_type
== SK_PHY_BCOM
) {
1750 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1751 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1752 & ~PHY_B_AC_DIS_PM
);
1753 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1757 xm_write16(hw
, port
, XM_MMU_CMD
,
1758 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1763 static inline void bcom_phy_intr(struct skge_port
*skge
)
1765 struct skge_hw
*hw
= skge
->hw
;
1766 int port
= skge
->port
;
1769 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1770 if (netif_msg_intr(skge
))
1771 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x\n",
1772 skge
->netdev
->name
, isrc
);
1774 if (isrc
& PHY_B_IS_PSE
)
1775 printk(KERN_ERR PFX
"%s: uncorrectable pair swap error\n",
1776 hw
->dev
[port
]->name
);
1778 /* Workaround BCom Errata:
1779 * enable and disable loopback mode if "NO HCD" occurs.
1781 if (isrc
& PHY_B_IS_NO_HDCL
) {
1782 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1783 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1784 ctrl
| PHY_CT_LOOP
);
1785 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1786 ctrl
& ~PHY_CT_LOOP
);
1789 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1790 bcom_check_link(hw
, port
);
1794 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1798 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1799 gma_write16(hw
, port
, GM_SMI_CTRL
,
1800 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1801 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1804 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1808 printk(KERN_WARNING PFX
"%s: phy write timeout\n",
1809 hw
->dev
[port
]->name
);
1813 static int __gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1817 gma_write16(hw
, port
, GM_SMI_CTRL
,
1818 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1819 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1821 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1823 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1829 *val
= gma_read16(hw
, port
, GM_SMI_DATA
);
1833 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1836 if (__gm_phy_read(hw
, port
, reg
, &v
))
1837 printk(KERN_WARNING PFX
"%s: phy read timeout\n",
1838 hw
->dev
[port
]->name
);
1842 /* Marvell Phy Initialization */
1843 static void yukon_init(struct skge_hw
*hw
, int port
)
1845 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1846 u16 ctrl
, ct1000
, adv
;
1848 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1849 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1851 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1852 PHY_M_EC_MAC_S_MSK
);
1853 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1855 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1857 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1860 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1861 if (skge
->autoneg
== AUTONEG_DISABLE
)
1862 ctrl
&= ~PHY_CT_ANE
;
1864 ctrl
|= PHY_CT_RESET
;
1865 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1871 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1873 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1874 ct1000
|= PHY_M_1000C_AFD
;
1875 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1876 ct1000
|= PHY_M_1000C_AHD
;
1877 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
1878 adv
|= PHY_M_AN_100_FD
;
1879 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
1880 adv
|= PHY_M_AN_100_HD
;
1881 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
1882 adv
|= PHY_M_AN_10_FD
;
1883 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
1884 adv
|= PHY_M_AN_10_HD
;
1886 /* Set Flow-control capabilities */
1887 adv
|= phy_pause_map
[skge
->flow_control
];
1889 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1890 adv
|= PHY_M_AN_1000X_AFD
;
1891 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1892 adv
|= PHY_M_AN_1000X_AHD
;
1894 adv
|= fiber_pause_map
[skge
->flow_control
];
1897 /* Restart Auto-negotiation */
1898 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1900 /* forced speed/duplex settings */
1901 ct1000
= PHY_M_1000C_MSE
;
1903 if (skge
->duplex
== DUPLEX_FULL
)
1904 ctrl
|= PHY_CT_DUP_MD
;
1906 switch (skge
->speed
) {
1908 ctrl
|= PHY_CT_SP1000
;
1911 ctrl
|= PHY_CT_SP100
;
1915 ctrl
|= PHY_CT_RESET
;
1918 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
1920 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
1921 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1923 /* Enable phy interrupt on autonegotiation complete (or link up) */
1924 if (skge
->autoneg
== AUTONEG_ENABLE
)
1925 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_MSK
);
1927 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
1930 static void yukon_reset(struct skge_hw
*hw
, int port
)
1932 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
1933 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
1934 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
1935 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
1936 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
1938 gma_write16(hw
, port
, GM_RX_CTRL
,
1939 gma_read16(hw
, port
, GM_RX_CTRL
)
1940 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
1943 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1944 static int is_yukon_lite_a0(struct skge_hw
*hw
)
1949 if (hw
->chip_id
!= CHIP_ID_YUKON
)
1952 reg
= skge_read32(hw
, B2_FAR
);
1953 skge_write8(hw
, B2_FAR
+ 3, 0xff);
1954 ret
= (skge_read8(hw
, B2_FAR
+ 3) != 0);
1955 skge_write32(hw
, B2_FAR
, reg
);
1959 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
1961 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1964 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
1966 /* WA code for COMA mode -- set PHY reset */
1967 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
1968 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
1969 reg
= skge_read32(hw
, B2_GP_IO
);
1970 reg
|= GP_DIR_9
| GP_IO_9
;
1971 skge_write32(hw
, B2_GP_IO
, reg
);
1975 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
1976 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
1978 /* WA code for COMA mode -- clear PHY reset */
1979 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
1980 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
1981 reg
= skge_read32(hw
, B2_GP_IO
);
1984 skge_write32(hw
, B2_GP_IO
, reg
);
1987 /* Set hardware config mode */
1988 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
1989 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
1990 reg
|= hw
->copper
? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
1992 /* Clear GMC reset */
1993 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
1994 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
1995 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
1997 if (skge
->autoneg
== AUTONEG_DISABLE
) {
1998 reg
= GM_GPCR_AU_ALL_DIS
;
1999 gma_write16(hw
, port
, GM_GP_CTRL
,
2000 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
2002 switch (skge
->speed
) {
2004 reg
&= ~GM_GPCR_SPEED_100
;
2005 reg
|= GM_GPCR_SPEED_1000
;
2008 reg
&= ~GM_GPCR_SPEED_1000
;
2009 reg
|= GM_GPCR_SPEED_100
;
2012 reg
&= ~(GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
);
2016 if (skge
->duplex
== DUPLEX_FULL
)
2017 reg
|= GM_GPCR_DUP_FULL
;
2019 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
2021 switch (skge
->flow_control
) {
2022 case FLOW_MODE_NONE
:
2023 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2024 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2026 case FLOW_MODE_LOC_SEND
:
2027 /* disable Rx flow-control */
2028 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2030 case FLOW_MODE_SYMMETRIC
:
2031 case FLOW_MODE_SYM_OR_REM
:
2032 /* enable Tx & Rx flow-control */
2036 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2037 skge_read16(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2039 yukon_init(hw
, port
);
2042 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
2043 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
2045 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
2046 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
2047 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
2049 /* transmit control */
2050 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
2052 /* receive control reg: unicast + multicast + no FCS */
2053 gma_write16(hw
, port
, GM_RX_CTRL
,
2054 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
2056 /* transmit flow control */
2057 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
2059 /* transmit parameter */
2060 gma_write16(hw
, port
, GM_TX_PARAM
,
2061 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
2062 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
2063 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
2065 /* serial mode register */
2066 reg
= GM_SMOD_VLAN_ENA
| IPG_DATA_VAL(IPG_DATA_DEF
);
2067 if (hw
->dev
[port
]->mtu
> 1500)
2068 reg
|= GM_SMOD_JUMBO_ENA
;
2070 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
2072 /* physical address: used for pause frames */
2073 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
2074 /* virtual address for data */
2075 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
2077 /* enable interrupt mask for counter overflows */
2078 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
2079 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
2080 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
2082 /* Initialize Mac Fifo */
2084 /* Configure Rx MAC FIFO */
2085 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
2086 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
2088 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2089 if (is_yukon_lite_a0(hw
))
2090 reg
&= ~GMF_RX_F_FL_ON
;
2092 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
2093 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
2095 * because Pause Packet Truncation in GMAC is not working
2096 * we have to increase the Flush Threshold to 64 bytes
2097 * in order to flush pause packets in Rx FIFO on Yukon-1
2099 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
+1);
2101 /* Configure Tx MAC FIFO */
2102 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
2103 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
2106 /* Go into power down mode */
2107 static void yukon_suspend(struct skge_hw
*hw
, int port
)
2111 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_PHY_CTRL
);
2112 ctrl
|= PHY_M_PC_POL_R_DIS
;
2113 gm_phy_write(hw
, port
, PHY_MARV_PHY_CTRL
, ctrl
);
2115 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2116 ctrl
|= PHY_CT_RESET
;
2117 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2119 /* switch IEEE compatible power down mode on */
2120 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2121 ctrl
|= PHY_CT_PDOWN
;
2122 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2125 static void yukon_stop(struct skge_port
*skge
)
2127 struct skge_hw
*hw
= skge
->hw
;
2128 int port
= skge
->port
;
2130 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
2131 yukon_reset(hw
, port
);
2133 gma_write16(hw
, port
, GM_GP_CTRL
,
2134 gma_read16(hw
, port
, GM_GP_CTRL
)
2135 & ~(GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
));
2136 gma_read16(hw
, port
, GM_GP_CTRL
);
2138 yukon_suspend(hw
, port
);
2140 /* set GPHY Control reset */
2141 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2142 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2145 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
2147 struct skge_hw
*hw
= skge
->hw
;
2148 int port
= skge
->port
;
2151 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
2152 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
2153 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
2154 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
2156 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
2157 data
[i
] = gma_read32(hw
, port
,
2158 skge_stats
[i
].gma_offset
);
2161 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
2163 struct net_device
*dev
= hw
->dev
[port
];
2164 struct skge_port
*skge
= netdev_priv(dev
);
2165 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2167 if (netif_msg_intr(skge
))
2168 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
2171 if (status
& GM_IS_RX_FF_OR
) {
2172 ++skge
->net_stats
.rx_fifo_errors
;
2173 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_CLI_RX_FO
);
2176 if (status
& GM_IS_TX_FF_UR
) {
2177 ++skge
->net_stats
.tx_fifo_errors
;
2178 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_CLI_TX_FU
);
2183 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
2185 switch (aux
& PHY_M_PS_SPEED_MSK
) {
2186 case PHY_M_PS_SPEED_1000
:
2188 case PHY_M_PS_SPEED_100
:
2195 static void yukon_link_up(struct skge_port
*skge
)
2197 struct skge_hw
*hw
= skge
->hw
;
2198 int port
= skge
->port
;
2201 /* Enable Transmit FIFO Underrun */
2202 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), GMAC_DEF_MSK
);
2204 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
2205 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
2206 reg
|= GM_GPCR_DUP_FULL
;
2209 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
2210 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2212 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2216 static void yukon_link_down(struct skge_port
*skge
)
2218 struct skge_hw
*hw
= skge
->hw
;
2219 int port
= skge
->port
;
2222 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
2223 ctrl
&= ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
);
2224 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
2226 if (skge
->flow_status
== FLOW_STAT_REM_SEND
) {
2227 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_AUNE_ADV
);
2228 ctrl
|= PHY_M_AN_ASP
;
2229 /* restore Asymmetric Pause bit */
2230 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, ctrl
);
2233 skge_link_down(skge
);
2235 yukon_init(hw
, port
);
2238 static void yukon_phy_intr(struct skge_port
*skge
)
2240 struct skge_hw
*hw
= skge
->hw
;
2241 int port
= skge
->port
;
2242 const char *reason
= NULL
;
2243 u16 istatus
, phystat
;
2245 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
2246 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
2248 if (netif_msg_intr(skge
))
2249 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x 0x%x\n",
2250 skge
->netdev
->name
, istatus
, phystat
);
2252 if (istatus
& PHY_M_IS_AN_COMPL
) {
2253 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
2255 reason
= "remote fault";
2259 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
2260 reason
= "master/slave fault";
2264 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
2265 reason
= "speed/duplex";
2269 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
2270 ? DUPLEX_FULL
: DUPLEX_HALF
;
2271 skge
->speed
= yukon_speed(hw
, phystat
);
2273 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2274 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
2275 case PHY_M_PS_PAUSE_MSK
:
2276 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
2278 case PHY_M_PS_RX_P_EN
:
2279 skge
->flow_status
= FLOW_STAT_REM_SEND
;
2281 case PHY_M_PS_TX_P_EN
:
2282 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
2285 skge
->flow_status
= FLOW_STAT_NONE
;
2288 if (skge
->flow_status
== FLOW_STAT_NONE
||
2289 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
2290 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2292 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
2293 yukon_link_up(skge
);
2297 if (istatus
& PHY_M_IS_LSP_CHANGE
)
2298 skge
->speed
= yukon_speed(hw
, phystat
);
2300 if (istatus
& PHY_M_IS_DUP_CHANGE
)
2301 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
2302 if (istatus
& PHY_M_IS_LST_CHANGE
) {
2303 if (phystat
& PHY_M_PS_LINK_UP
)
2304 yukon_link_up(skge
);
2306 yukon_link_down(skge
);
2310 printk(KERN_ERR PFX
"%s: autonegotiation failed (%s)\n",
2311 skge
->netdev
->name
, reason
);
2313 /* XXX restart autonegotiation? */
2316 static void skge_phy_reset(struct skge_port
*skge
)
2318 struct skge_hw
*hw
= skge
->hw
;
2319 int port
= skge
->port
;
2320 struct net_device
*dev
= hw
->dev
[port
];
2322 netif_stop_queue(skge
->netdev
);
2323 netif_carrier_off(skge
->netdev
);
2325 mutex_lock(&hw
->phy_mutex
);
2326 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2327 genesis_reset(hw
, port
);
2328 genesis_mac_init(hw
, port
);
2330 yukon_reset(hw
, port
);
2331 yukon_init(hw
, port
);
2333 mutex_unlock(&hw
->phy_mutex
);
2335 dev
->set_multicast_list(dev
);
2338 /* Basic MII support */
2339 static int skge_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2341 struct mii_ioctl_data
*data
= if_mii(ifr
);
2342 struct skge_port
*skge
= netdev_priv(dev
);
2343 struct skge_hw
*hw
= skge
->hw
;
2344 int err
= -EOPNOTSUPP
;
2346 if (!netif_running(dev
))
2347 return -ENODEV
; /* Phy still in reset */
2351 data
->phy_id
= hw
->phy_addr
;
2356 mutex_lock(&hw
->phy_mutex
);
2357 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2358 err
= __xm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2360 err
= __gm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2361 mutex_unlock(&hw
->phy_mutex
);
2362 data
->val_out
= val
;
2367 if (!capable(CAP_NET_ADMIN
))
2370 mutex_lock(&hw
->phy_mutex
);
2371 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2372 err
= xm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2375 err
= gm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2377 mutex_unlock(&hw
->phy_mutex
);
2383 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2389 end
= start
+ len
- 1;
2391 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2392 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2393 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2394 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2395 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2397 if (q
== Q_R1
|| q
== Q_R2
) {
2398 /* Set thresholds on receive queue's */
2399 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2401 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2404 /* Enable store & forward on Tx queue's because
2405 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2407 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2410 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2413 /* Setup Bus Memory Interface */
2414 static void skge_qset(struct skge_port
*skge
, u16 q
,
2415 const struct skge_element
*e
)
2417 struct skge_hw
*hw
= skge
->hw
;
2418 u32 watermark
= 0x600;
2419 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2421 /* optimization to reduce window on 32bit/33mhz */
2422 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2425 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2426 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2427 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2428 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2431 static int skge_up(struct net_device
*dev
)
2433 struct skge_port
*skge
= netdev_priv(dev
);
2434 struct skge_hw
*hw
= skge
->hw
;
2435 int port
= skge
->port
;
2436 u32 chunk
, ram_addr
;
2437 size_t rx_size
, tx_size
;
2440 if (!is_valid_ether_addr(dev
->dev_addr
))
2443 if (netif_msg_ifup(skge
))
2444 printk(KERN_INFO PFX
"%s: enabling interface\n", dev
->name
);
2446 if (dev
->mtu
> RX_BUF_SIZE
)
2447 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
;
2449 skge
->rx_buf_size
= RX_BUF_SIZE
;
2452 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2453 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2454 skge
->mem_size
= tx_size
+ rx_size
;
2455 skge
->mem
= pci_alloc_consistent(hw
->pdev
, skge
->mem_size
, &skge
->dma
);
2459 BUG_ON(skge
->dma
& 7);
2461 if ((u64
)skge
->dma
>> 32 != ((u64
) skge
->dma
+ skge
->mem_size
) >> 32) {
2462 dev_err(&hw
->pdev
->dev
, "pci_alloc_consistent region crosses 4G boundary\n");
2467 memset(skge
->mem
, 0, skge
->mem_size
);
2469 err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
);
2473 err
= skge_rx_fill(dev
);
2477 err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2478 skge
->dma
+ rx_size
);
2482 /* Initialize MAC */
2483 mutex_lock(&hw
->phy_mutex
);
2484 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2485 genesis_mac_init(hw
, port
);
2487 yukon_mac_init(hw
, port
);
2488 mutex_unlock(&hw
->phy_mutex
);
2490 /* Configure RAMbuffers */
2491 chunk
= hw
->ram_size
/ ((hw
->ports
+ 1)*2);
2492 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2494 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2495 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2497 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2498 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2499 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2501 /* Start receiver BMU */
2503 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2504 skge_led(skge
, LED_MODE_ON
);
2506 netif_poll_enable(dev
);
2510 skge_rx_clean(skge
);
2511 kfree(skge
->rx_ring
.start
);
2513 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2519 static int skge_down(struct net_device
*dev
)
2521 struct skge_port
*skge
= netdev_priv(dev
);
2522 struct skge_hw
*hw
= skge
->hw
;
2523 int port
= skge
->port
;
2525 if (skge
->mem
== NULL
)
2528 if (netif_msg_ifdown(skge
))
2529 printk(KERN_INFO PFX
"%s: disabling interface\n", dev
->name
);
2531 netif_stop_queue(dev
);
2532 if (hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
)
2533 cancel_rearming_delayed_work(&skge
->link_thread
);
2535 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
2536 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2541 /* Stop transmitter */
2542 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2543 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2544 RB_RST_SET
|RB_DIS_OP_MD
);
2547 /* Disable Force Sync bit and Enable Alloc bit */
2548 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2549 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2551 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2552 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2553 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2555 /* Reset PCI FIFO */
2556 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2557 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2559 /* Reset the RAM Buffer async Tx queue */
2560 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2562 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2563 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2564 RB_RST_SET
|RB_DIS_OP_MD
);
2565 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2567 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2568 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2569 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2571 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2572 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2575 skge_led(skge
, LED_MODE_OFF
);
2577 netif_poll_disable(dev
);
2579 skge_rx_clean(skge
);
2581 kfree(skge
->rx_ring
.start
);
2582 kfree(skge
->tx_ring
.start
);
2583 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2588 static inline int skge_avail(const struct skge_ring
*ring
)
2590 return ((ring
->to_clean
> ring
->to_use
) ? 0 : ring
->count
)
2591 + (ring
->to_clean
- ring
->to_use
) - 1;
2594 static int skge_xmit_frame(struct sk_buff
*skb
, struct net_device
*dev
)
2596 struct skge_port
*skge
= netdev_priv(dev
);
2597 struct skge_hw
*hw
= skge
->hw
;
2598 struct skge_element
*e
;
2599 struct skge_tx_desc
*td
;
2604 if (skb_padto(skb
, ETH_ZLEN
))
2605 return NETDEV_TX_OK
;
2607 if (unlikely(skge_avail(&skge
->tx_ring
) < skb_shinfo(skb
)->nr_frags
+ 1))
2608 return NETDEV_TX_BUSY
;
2610 e
= skge
->tx_ring
.to_use
;
2612 BUG_ON(td
->control
& BMU_OWN
);
2614 len
= skb_headlen(skb
);
2615 map
= pci_map_single(hw
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
2616 pci_unmap_addr_set(e
, mapaddr
, map
);
2617 pci_unmap_len_set(e
, maplen
, len
);
2620 td
->dma_hi
= map
>> 32;
2622 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2623 int offset
= skb
->h
.raw
- skb
->data
;
2625 /* This seems backwards, but it is what the sk98lin
2626 * does. Looks like hardware is wrong?
2628 if (skb
->h
.ipiph
->protocol
== IPPROTO_UDP
2629 && hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2630 control
= BMU_TCP_CHECK
;
2632 control
= BMU_UDP_CHECK
;
2635 td
->csum_start
= offset
;
2636 td
->csum_write
= offset
+ skb
->csum_offset
;
2638 control
= BMU_CHECK
;
2640 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2641 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2643 struct skge_tx_desc
*tf
= td
;
2645 control
|= BMU_STFWD
;
2646 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2647 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2649 map
= pci_map_page(hw
->pdev
, frag
->page
, frag
->page_offset
,
2650 frag
->size
, PCI_DMA_TODEVICE
);
2655 BUG_ON(tf
->control
& BMU_OWN
);
2658 tf
->dma_hi
= (u64
) map
>> 32;
2659 pci_unmap_addr_set(e
, mapaddr
, map
);
2660 pci_unmap_len_set(e
, maplen
, frag
->size
);
2662 tf
->control
= BMU_OWN
| BMU_SW
| control
| frag
->size
;
2664 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2666 /* Make sure all the descriptors written */
2668 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2671 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2673 if (unlikely(netif_msg_tx_queued(skge
)))
2674 printk(KERN_DEBUG
"%s: tx queued, slot %td, len %d\n",
2675 dev
->name
, e
- skge
->tx_ring
.start
, skb
->len
);
2677 skge
->tx_ring
.to_use
= e
->next
;
2678 if (skge_avail(&skge
->tx_ring
) <= TX_LOW_WATER
) {
2679 pr_debug("%s: transmit queue full\n", dev
->name
);
2680 netif_stop_queue(dev
);
2683 dev
->trans_start
= jiffies
;
2685 return NETDEV_TX_OK
;
2689 /* Free resources associated with this reing element */
2690 static void skge_tx_free(struct skge_port
*skge
, struct skge_element
*e
,
2693 struct pci_dev
*pdev
= skge
->hw
->pdev
;
2697 /* skb header vs. fragment */
2698 if (control
& BMU_STF
)
2699 pci_unmap_single(pdev
, pci_unmap_addr(e
, mapaddr
),
2700 pci_unmap_len(e
, maplen
),
2703 pci_unmap_page(pdev
, pci_unmap_addr(e
, mapaddr
),
2704 pci_unmap_len(e
, maplen
),
2707 if (control
& BMU_EOF
) {
2708 if (unlikely(netif_msg_tx_done(skge
)))
2709 printk(KERN_DEBUG PFX
"%s: tx done slot %td\n",
2710 skge
->netdev
->name
, e
- skge
->tx_ring
.start
);
2712 dev_kfree_skb(e
->skb
);
2717 /* Free all buffers in transmit ring */
2718 static void skge_tx_clean(struct net_device
*dev
)
2720 struct skge_port
*skge
= netdev_priv(dev
);
2721 struct skge_element
*e
;
2723 netif_tx_lock_bh(dev
);
2724 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
2725 struct skge_tx_desc
*td
= e
->desc
;
2726 skge_tx_free(skge
, e
, td
->control
);
2730 skge
->tx_ring
.to_clean
= e
;
2731 netif_wake_queue(dev
);
2732 netif_tx_unlock_bh(dev
);
2735 static void skge_tx_timeout(struct net_device
*dev
)
2737 struct skge_port
*skge
= netdev_priv(dev
);
2739 if (netif_msg_timer(skge
))
2740 printk(KERN_DEBUG PFX
"%s: tx timeout\n", dev
->name
);
2742 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2746 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2750 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_JUMBO_MTU
)
2753 if (!netif_running(dev
)) {
2769 static void genesis_set_multicast(struct net_device
*dev
)
2771 struct skge_port
*skge
= netdev_priv(dev
);
2772 struct skge_hw
*hw
= skge
->hw
;
2773 int port
= skge
->port
;
2774 int i
, count
= dev
->mc_count
;
2775 struct dev_mc_list
*list
= dev
->mc_list
;
2779 mode
= xm_read32(hw
, port
, XM_MODE
);
2780 mode
|= XM_MD_ENA_HASH
;
2781 if (dev
->flags
& IFF_PROMISC
)
2782 mode
|= XM_MD_ENA_PROM
;
2784 mode
&= ~XM_MD_ENA_PROM
;
2786 if (dev
->flags
& IFF_ALLMULTI
)
2787 memset(filter
, 0xff, sizeof(filter
));
2789 memset(filter
, 0, sizeof(filter
));
2790 for (i
= 0; list
&& i
< count
; i
++, list
= list
->next
) {
2792 crc
= ether_crc_le(ETH_ALEN
, list
->dmi_addr
);
2794 filter
[bit
/8] |= 1 << (bit
%8);
2798 xm_write32(hw
, port
, XM_MODE
, mode
);
2799 xm_outhash(hw
, port
, XM_HSM
, filter
);
2802 static void yukon_set_multicast(struct net_device
*dev
)
2804 struct skge_port
*skge
= netdev_priv(dev
);
2805 struct skge_hw
*hw
= skge
->hw
;
2806 int port
= skge
->port
;
2807 struct dev_mc_list
*list
= dev
->mc_list
;
2811 memset(filter
, 0, sizeof(filter
));
2813 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
2814 reg
|= GM_RXCR_UCF_ENA
;
2816 if (dev
->flags
& IFF_PROMISC
) /* promiscuous */
2817 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2818 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
2819 memset(filter
, 0xff, sizeof(filter
));
2820 else if (dev
->mc_count
== 0) /* no multicast */
2821 reg
&= ~GM_RXCR_MCF_ENA
;
2824 reg
|= GM_RXCR_MCF_ENA
;
2826 for (i
= 0; list
&& i
< dev
->mc_count
; i
++, list
= list
->next
) {
2827 u32 bit
= ether_crc(ETH_ALEN
, list
->dmi_addr
) & 0x3f;
2828 filter
[bit
/8] |= 1 << (bit
%8);
2833 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
2834 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
2835 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
2836 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
2837 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
2838 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
2839 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
2840 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
2842 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
2845 static inline u16
phy_length(const struct skge_hw
*hw
, u32 status
)
2847 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2848 return status
>> XMR_FS_LEN_SHIFT
;
2850 return status
>> GMR_FS_LEN_SHIFT
;
2853 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
2855 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2856 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
2858 return (status
& GMR_FS_ANY_ERR
) ||
2859 (status
& GMR_FS_RX_OK
) == 0;
2863 /* Get receive buffer from descriptor.
2864 * Handles copy of small buffers and reallocation failures
2866 static struct sk_buff
*skge_rx_get(struct net_device
*dev
,
2867 struct skge_element
*e
,
2868 u32 control
, u32 status
, u16 csum
)
2870 struct skge_port
*skge
= netdev_priv(dev
);
2871 struct sk_buff
*skb
;
2872 u16 len
= control
& BMU_BBC
;
2874 if (unlikely(netif_msg_rx_status(skge
)))
2875 printk(KERN_DEBUG PFX
"%s: rx slot %td status 0x%x len %d\n",
2876 dev
->name
, e
- skge
->rx_ring
.start
,
2879 if (len
> skge
->rx_buf_size
)
2882 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
2885 if (bad_phy_status(skge
->hw
, status
))
2888 if (phy_length(skge
->hw
, status
) != len
)
2891 if (len
< RX_COPY_THRESHOLD
) {
2892 skb
= netdev_alloc_skb(dev
, len
+ 2);
2896 skb_reserve(skb
, 2);
2897 pci_dma_sync_single_for_cpu(skge
->hw
->pdev
,
2898 pci_unmap_addr(e
, mapaddr
),
2899 len
, PCI_DMA_FROMDEVICE
);
2900 memcpy(skb
->data
, e
->skb
->data
, len
);
2901 pci_dma_sync_single_for_device(skge
->hw
->pdev
,
2902 pci_unmap_addr(e
, mapaddr
),
2903 len
, PCI_DMA_FROMDEVICE
);
2904 skge_rx_reuse(e
, skge
->rx_buf_size
);
2906 struct sk_buff
*nskb
;
2907 nskb
= netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
);
2911 skb_reserve(nskb
, NET_IP_ALIGN
);
2912 pci_unmap_single(skge
->hw
->pdev
,
2913 pci_unmap_addr(e
, mapaddr
),
2914 pci_unmap_len(e
, maplen
),
2915 PCI_DMA_FROMDEVICE
);
2917 prefetch(skb
->data
);
2918 skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
);
2922 if (skge
->rx_csum
) {
2924 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2927 skb
->protocol
= eth_type_trans(skb
, dev
);
2932 if (netif_msg_rx_err(skge
))
2933 printk(KERN_DEBUG PFX
"%s: rx err, slot %td control 0x%x status 0x%x\n",
2934 dev
->name
, e
- skge
->rx_ring
.start
,
2937 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
) {
2938 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
2939 skge
->net_stats
.rx_length_errors
++;
2940 if (status
& XMR_FS_FRA_ERR
)
2941 skge
->net_stats
.rx_frame_errors
++;
2942 if (status
& XMR_FS_FCS_ERR
)
2943 skge
->net_stats
.rx_crc_errors
++;
2945 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
2946 skge
->net_stats
.rx_length_errors
++;
2947 if (status
& GMR_FS_FRAGMENT
)
2948 skge
->net_stats
.rx_frame_errors
++;
2949 if (status
& GMR_FS_CRC_ERR
)
2950 skge
->net_stats
.rx_crc_errors
++;
2954 skge_rx_reuse(e
, skge
->rx_buf_size
);
2958 /* Free all buffers in Tx ring which are no longer owned by device */
2959 static void skge_tx_done(struct net_device
*dev
)
2961 struct skge_port
*skge
= netdev_priv(dev
);
2962 struct skge_ring
*ring
= &skge
->tx_ring
;
2963 struct skge_element
*e
;
2965 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
2968 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
2969 struct skge_tx_desc
*td
= e
->desc
;
2971 if (td
->control
& BMU_OWN
)
2974 skge_tx_free(skge
, e
, td
->control
);
2976 skge
->tx_ring
.to_clean
= e
;
2978 if (skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)
2979 netif_wake_queue(dev
);
2981 netif_tx_unlock(dev
);
2984 static int skge_poll(struct net_device
*dev
, int *budget
)
2986 struct skge_port
*skge
= netdev_priv(dev
);
2987 struct skge_hw
*hw
= skge
->hw
;
2988 struct skge_ring
*ring
= &skge
->rx_ring
;
2989 struct skge_element
*e
;
2990 unsigned long flags
;
2991 int to_do
= min(dev
->quota
, *budget
);
2996 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
2998 for (e
= ring
->to_clean
; prefetch(e
->next
), work_done
< to_do
; e
= e
->next
) {
2999 struct skge_rx_desc
*rd
= e
->desc
;
3000 struct sk_buff
*skb
;
3004 control
= rd
->control
;
3005 if (control
& BMU_OWN
)
3008 skb
= skge_rx_get(dev
, e
, control
, rd
->status
, rd
->csum2
);
3010 dev
->last_rx
= jiffies
;
3011 netif_receive_skb(skb
);
3018 /* restart receiver */
3020 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_START
);
3022 *budget
-= work_done
;
3023 dev
->quota
-= work_done
;
3025 if (work_done
>= to_do
)
3026 return 1; /* not done */
3028 spin_lock_irqsave(&hw
->hw_lock
, flags
);
3029 __netif_rx_complete(dev
);
3030 hw
->intr_mask
|= irqmask
[skge
->port
];
3031 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3032 skge_read32(hw
, B0_IMSK
);
3033 spin_unlock_irqrestore(&hw
->hw_lock
, flags
);
3038 /* Parity errors seem to happen when Genesis is connected to a switch
3039 * with no other ports present. Heartbeat error??
3041 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
3043 struct net_device
*dev
= hw
->dev
[port
];
3046 struct skge_port
*skge
= netdev_priv(dev
);
3047 ++skge
->net_stats
.tx_heartbeat_errors
;
3050 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3051 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
3054 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3055 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
3056 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
3057 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
3060 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
3062 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3063 genesis_mac_intr(hw
, port
);
3065 yukon_mac_intr(hw
, port
);
3068 /* Handle device specific framing and timeout interrupts */
3069 static void skge_error_irq(struct skge_hw
*hw
)
3071 struct pci_dev
*pdev
= hw
->pdev
;
3072 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3074 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3075 /* clear xmac errors */
3076 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
3077 skge_write16(hw
, RX_MFF_CTRL1
, MFF_CLR_INSTAT
);
3078 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
3079 skge_write16(hw
, RX_MFF_CTRL2
, MFF_CLR_INSTAT
);
3081 /* Timestamp (unused) overflow */
3082 if (hwstatus
& IS_IRQ_TIST_OV
)
3083 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
3086 if (hwstatus
& IS_RAM_RD_PAR
) {
3087 dev_err(&pdev
->dev
, "Ram read data parity error\n");
3088 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
3091 if (hwstatus
& IS_RAM_WR_PAR
) {
3092 dev_err(&pdev
->dev
, "Ram write data parity error\n");
3093 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
3096 if (hwstatus
& IS_M1_PAR_ERR
)
3097 skge_mac_parity(hw
, 0);
3099 if (hwstatus
& IS_M2_PAR_ERR
)
3100 skge_mac_parity(hw
, 1);
3102 if (hwstatus
& IS_R1_PAR_ERR
) {
3103 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3105 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
3108 if (hwstatus
& IS_R2_PAR_ERR
) {
3109 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3111 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
3114 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
3115 u16 pci_status
, pci_cmd
;
3117 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
3118 pci_read_config_word(pdev
, PCI_STATUS
, &pci_status
);
3120 dev_err(&pdev
->dev
, "PCI error cmd=%#x status=%#x\n",
3121 pci_cmd
, pci_status
);
3123 /* Write the error bits back to clear them. */
3124 pci_status
&= PCI_STATUS_ERROR_BITS
;
3125 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3126 pci_write_config_word(pdev
, PCI_COMMAND
,
3127 pci_cmd
| PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
3128 pci_write_config_word(pdev
, PCI_STATUS
, pci_status
);
3129 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3131 /* if error still set then just ignore it */
3132 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3133 if (hwstatus
& IS_IRQ_STAT
) {
3134 dev_warn(&hw
->pdev
->dev
, "unable to clear error (so ignoring them)\n");
3135 hw
->intr_mask
&= ~IS_HW_ERR
;
3141 * Interrupt from PHY are handled in work queue
3142 * because accessing phy registers requires spin wait which might
3143 * cause excess interrupt latency.
3145 static void skge_extirq(struct work_struct
*work
)
3147 struct skge_hw
*hw
= container_of(work
, struct skge_hw
, phy_work
);
3150 mutex_lock(&hw
->phy_mutex
);
3151 for (port
= 0; port
< hw
->ports
; port
++) {
3152 struct net_device
*dev
= hw
->dev
[port
];
3153 struct skge_port
*skge
= netdev_priv(dev
);
3155 if (netif_running(dev
)) {
3156 if (hw
->chip_id
!= CHIP_ID_GENESIS
)
3157 yukon_phy_intr(skge
);
3158 else if (hw
->phy_type
== SK_PHY_BCOM
)
3159 bcom_phy_intr(skge
);
3162 mutex_unlock(&hw
->phy_mutex
);
3164 spin_lock_irq(&hw
->hw_lock
);
3165 hw
->intr_mask
|= IS_EXT_REG
;
3166 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3167 skge_read32(hw
, B0_IMSK
);
3168 spin_unlock_irq(&hw
->hw_lock
);
3171 static irqreturn_t
skge_intr(int irq
, void *dev_id
)
3173 struct skge_hw
*hw
= dev_id
;
3177 spin_lock(&hw
->hw_lock
);
3178 /* Reading this register masks IRQ */
3179 status
= skge_read32(hw
, B0_SP_ISRC
);
3180 if (status
== 0 || status
== ~0)
3184 status
&= hw
->intr_mask
;
3185 if (status
& IS_EXT_REG
) {
3186 hw
->intr_mask
&= ~IS_EXT_REG
;
3187 schedule_work(&hw
->phy_work
);
3190 if (status
& (IS_XA1_F
|IS_R1_F
)) {
3191 hw
->intr_mask
&= ~(IS_XA1_F
|IS_R1_F
);
3192 netif_rx_schedule(hw
->dev
[0]);
3195 if (status
& IS_PA_TO_TX1
)
3196 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
3198 if (status
& IS_PA_TO_RX1
) {
3199 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
3201 ++skge
->net_stats
.rx_over_errors
;
3202 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
3206 if (status
& IS_MAC1
)
3207 skge_mac_intr(hw
, 0);
3210 if (status
& (IS_XA2_F
|IS_R2_F
)) {
3211 hw
->intr_mask
&= ~(IS_XA2_F
|IS_R2_F
);
3212 netif_rx_schedule(hw
->dev
[1]);
3215 if (status
& IS_PA_TO_RX2
) {
3216 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
3217 ++skge
->net_stats
.rx_over_errors
;
3218 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
3221 if (status
& IS_PA_TO_TX2
)
3222 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
3224 if (status
& IS_MAC2
)
3225 skge_mac_intr(hw
, 1);
3228 if (status
& IS_HW_ERR
)
3231 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3232 skge_read32(hw
, B0_IMSK
);
3234 spin_unlock(&hw
->hw_lock
);
3236 return IRQ_RETVAL(handled
);
3239 #ifdef CONFIG_NET_POLL_CONTROLLER
3240 static void skge_netpoll(struct net_device
*dev
)
3242 struct skge_port
*skge
= netdev_priv(dev
);
3244 disable_irq(dev
->irq
);
3245 skge_intr(dev
->irq
, skge
->hw
);
3246 enable_irq(dev
->irq
);
3250 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
3252 struct skge_port
*skge
= netdev_priv(dev
);
3253 struct skge_hw
*hw
= skge
->hw
;
3254 unsigned port
= skge
->port
;
3255 const struct sockaddr
*addr
= p
;
3257 if (!is_valid_ether_addr(addr
->sa_data
))
3258 return -EADDRNOTAVAIL
;
3260 mutex_lock(&hw
->phy_mutex
);
3261 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
3262 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8,
3263 dev
->dev_addr
, ETH_ALEN
);
3264 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8,
3265 dev
->dev_addr
, ETH_ALEN
);
3267 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3268 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
3270 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, dev
->dev_addr
);
3271 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, dev
->dev_addr
);
3273 mutex_unlock(&hw
->phy_mutex
);
3278 static const struct {
3282 { CHIP_ID_GENESIS
, "Genesis" },
3283 { CHIP_ID_YUKON
, "Yukon" },
3284 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
3285 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
3288 static const char *skge_board_name(const struct skge_hw
*hw
)
3291 static char buf
[16];
3293 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
3294 if (skge_chips
[i
].id
== hw
->chip_id
)
3295 return skge_chips
[i
].name
;
3297 snprintf(buf
, sizeof buf
, "chipid 0x%x", hw
->chip_id
);
3303 * Setup the board data structure, but don't bring up
3306 static int skge_reset(struct skge_hw
*hw
)
3309 u16 ctst
, pci_status
;
3310 u8 t8
, mac_cfg
, pmd_type
;
3313 ctst
= skge_read16(hw
, B0_CTST
);
3316 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3317 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
3319 /* clear PCI errors, if any */
3320 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3321 skge_write8(hw
, B2_TST_CTRL2
, 0);
3323 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &pci_status
);
3324 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
3325 pci_status
| PCI_STATUS_ERROR_BITS
);
3326 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3327 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
3329 /* restore CLK_RUN bits (for Yukon-Lite) */
3330 skge_write16(hw
, B0_CTST
,
3331 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
3333 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
3334 hw
->phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
3335 pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
3336 hw
->copper
= (pmd_type
== 'T' || pmd_type
== '1');
3338 switch (hw
->chip_id
) {
3339 case CHIP_ID_GENESIS
:
3340 switch (hw
->phy_type
) {
3342 hw
->phy_addr
= PHY_ADDR_XMAC
;
3345 hw
->phy_addr
= PHY_ADDR_BCOM
;
3348 dev_err(&hw
->pdev
->dev
, "unsupported phy type 0x%x\n",
3355 case CHIP_ID_YUKON_LITE
:
3356 case CHIP_ID_YUKON_LP
:
3357 if (hw
->phy_type
< SK_PHY_MARV_COPPER
&& pmd_type
!= 'S')
3360 hw
->phy_addr
= PHY_ADDR_MARV
;
3364 dev_err(&hw
->pdev
->dev
, "unsupported chip type 0x%x\n",
3369 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
3370 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
3371 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
3373 /* read the adapters RAM size */
3374 t8
= skge_read8(hw
, B2_E_0
);
3375 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3377 /* special case: 4 x 64k x 36, offset = 0x80000 */
3378 hw
->ram_size
= 0x100000;
3379 hw
->ram_offset
= 0x80000;
3381 hw
->ram_size
= t8
* 512;
3384 hw
->ram_size
= 0x20000;
3386 hw
->ram_size
= t8
* 4096;
3388 hw
->intr_mask
= IS_HW_ERR
| IS_PORT_1
;
3390 hw
->intr_mask
|= IS_PORT_2
;
3392 if (!(hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
))
3393 hw
->intr_mask
|= IS_EXT_REG
;
3395 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3398 /* switch power to VCC (WA for VAUX problem) */
3399 skge_write8(hw
, B0_POWER_CTRL
,
3400 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
3402 /* avoid boards with stuck Hardware error bits */
3403 if ((skge_read32(hw
, B0_ISRC
) & IS_HW_ERR
) &&
3404 (skge_read32(hw
, B0_HWE_ISRC
) & IS_IRQ_SENSOR
)) {
3405 dev_warn(&hw
->pdev
->dev
, "stuck hardware sensor bit\n");
3406 hw
->intr_mask
&= ~IS_HW_ERR
;
3409 /* Clear PHY COMA */
3410 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3411 pci_read_config_dword(hw
->pdev
, PCI_DEV_REG1
, ®
);
3412 reg
&= ~PCI_PHY_COMA
;
3413 pci_write_config_dword(hw
->pdev
, PCI_DEV_REG1
, reg
);
3414 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3417 for (i
= 0; i
< hw
->ports
; i
++) {
3418 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
3419 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
3423 /* turn off hardware timer (unused) */
3424 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
3425 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
3426 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
3428 /* enable the Tx Arbiters */
3429 for (i
= 0; i
< hw
->ports
; i
++)
3430 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
3432 /* Initialize ram interface */
3433 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
3435 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
3436 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
3437 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
3438 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
3439 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
3440 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
3441 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
3442 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
3443 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
3444 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
3445 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
3446 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3448 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3450 /* Set interrupt moderation for Transmit only
3451 * Receive interrupts avoided by NAPI
3453 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3454 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3455 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3457 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3459 mutex_lock(&hw
->phy_mutex
);
3460 for (i
= 0; i
< hw
->ports
; i
++) {
3461 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3462 genesis_reset(hw
, i
);
3466 mutex_unlock(&hw
->phy_mutex
);
3471 /* Initialize network device */
3472 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3475 struct skge_port
*skge
;
3476 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3479 dev_err(&hw
->pdev
->dev
, "etherdev alloc failed\n");
3483 SET_MODULE_OWNER(dev
);
3484 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3485 dev
->open
= skge_up
;
3486 dev
->stop
= skge_down
;
3487 dev
->do_ioctl
= skge_ioctl
;
3488 dev
->hard_start_xmit
= skge_xmit_frame
;
3489 dev
->get_stats
= skge_get_stats
;
3490 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3491 dev
->set_multicast_list
= genesis_set_multicast
;
3493 dev
->set_multicast_list
= yukon_set_multicast
;
3495 dev
->set_mac_address
= skge_set_mac_address
;
3496 dev
->change_mtu
= skge_change_mtu
;
3497 SET_ETHTOOL_OPS(dev
, &skge_ethtool_ops
);
3498 dev
->tx_timeout
= skge_tx_timeout
;
3499 dev
->watchdog_timeo
= TX_WATCHDOG
;
3500 dev
->poll
= skge_poll
;
3501 dev
->weight
= NAPI_WEIGHT
;
3502 #ifdef CONFIG_NET_POLL_CONTROLLER
3503 dev
->poll_controller
= skge_netpoll
;
3505 dev
->irq
= hw
->pdev
->irq
;
3508 dev
->features
|= NETIF_F_HIGHDMA
;
3510 skge
= netdev_priv(dev
);
3513 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3514 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3515 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3517 /* Auto speed and flow control */
3518 skge
->autoneg
= AUTONEG_ENABLE
;
3519 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
3522 skge
->advertising
= skge_supported_modes(hw
);
3523 skge
->wol
= pci_wake_enabled(hw
->pdev
) ? wol_supported(hw
) : 0;
3525 hw
->dev
[port
] = dev
;
3529 /* Only used for Genesis XMAC */
3530 INIT_DELAYED_WORK(&skge
->link_thread
, xm_link_timer
);
3532 if (hw
->chip_id
!= CHIP_ID_GENESIS
) {
3533 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
3537 /* read the mac address */
3538 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3539 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
3541 /* device is off until link detection */
3542 netif_carrier_off(dev
);
3543 netif_stop_queue(dev
);
3548 static void __devinit
skge_show_addr(struct net_device
*dev
)
3550 const struct skge_port
*skge
= netdev_priv(dev
);
3552 if (netif_msg_probe(skge
))
3553 printk(KERN_INFO PFX
"%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3555 dev
->dev_addr
[0], dev
->dev_addr
[1], dev
->dev_addr
[2],
3556 dev
->dev_addr
[3], dev
->dev_addr
[4], dev
->dev_addr
[5]);
3559 static int __devinit
skge_probe(struct pci_dev
*pdev
,
3560 const struct pci_device_id
*ent
)
3562 struct net_device
*dev
, *dev1
;
3564 int err
, using_dac
= 0;
3566 err
= pci_enable_device(pdev
);
3568 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
3572 err
= pci_request_regions(pdev
, DRV_NAME
);
3574 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
3575 goto err_out_disable_pdev
;
3578 pci_set_master(pdev
);
3580 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
3582 err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
3583 } else if (!(err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
))) {
3585 err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
3589 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
3590 goto err_out_free_regions
;
3594 /* byte swap descriptors in hardware */
3598 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3599 reg
|= PCI_REV_DESC
;
3600 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3605 hw
= kzalloc(sizeof(*hw
), GFP_KERNEL
);
3607 dev_err(&pdev
->dev
, "cannot allocate hardware struct\n");
3608 goto err_out_free_regions
;
3612 mutex_init(&hw
->phy_mutex
);
3613 INIT_WORK(&hw
->phy_work
, skge_extirq
);
3614 spin_lock_init(&hw
->hw_lock
);
3616 hw
->regs
= ioremap_nocache(pci_resource_start(pdev
, 0), 0x4000);
3618 dev_err(&pdev
->dev
, "cannot map device registers\n");
3619 goto err_out_free_hw
;
3622 err
= skge_reset(hw
);
3624 goto err_out_iounmap
;
3626 printk(KERN_INFO PFX DRV_VERSION
" addr 0x%llx irq %d chip %s rev %d\n",
3627 (unsigned long long)pci_resource_start(pdev
, 0), pdev
->irq
,
3628 skge_board_name(hw
), hw
->chip_rev
);
3630 dev
= skge_devinit(hw
, 0, using_dac
);
3632 goto err_out_led_off
;
3634 /* Some motherboards are broken and has zero in ROM. */
3635 if (!is_valid_ether_addr(dev
->dev_addr
))
3636 dev_warn(&pdev
->dev
, "bad (zero?) ethernet address in rom\n");
3638 err
= register_netdev(dev
);
3640 dev_err(&pdev
->dev
, "cannot register net device\n");
3641 goto err_out_free_netdev
;
3644 err
= request_irq(pdev
->irq
, skge_intr
, IRQF_SHARED
, dev
->name
, hw
);
3646 dev_err(&pdev
->dev
, "%s: cannot assign irq %d\n",
3647 dev
->name
, pdev
->irq
);
3648 goto err_out_unregister
;
3650 skge_show_addr(dev
);
3652 if (hw
->ports
> 1 && (dev1
= skge_devinit(hw
, 1, using_dac
))) {
3653 if (register_netdev(dev1
) == 0)
3654 skge_show_addr(dev1
);
3656 /* Failure to register second port need not be fatal */
3657 dev_warn(&pdev
->dev
, "register of second port failed\n");
3662 pci_set_drvdata(pdev
, hw
);
3667 unregister_netdev(dev
);
3668 err_out_free_netdev
:
3671 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3676 err_out_free_regions
:
3677 pci_release_regions(pdev
);
3678 err_out_disable_pdev
:
3679 pci_disable_device(pdev
);
3680 pci_set_drvdata(pdev
, NULL
);
3685 static void __devexit
skge_remove(struct pci_dev
*pdev
)
3687 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3688 struct net_device
*dev0
, *dev1
;
3693 if ((dev1
= hw
->dev
[1]))
3694 unregister_netdev(dev1
);
3696 unregister_netdev(dev0
);
3698 spin_lock_irq(&hw
->hw_lock
);
3700 skge_write32(hw
, B0_IMSK
, 0);
3701 skge_read32(hw
, B0_IMSK
);
3702 spin_unlock_irq(&hw
->hw_lock
);
3704 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3705 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3707 flush_scheduled_work();
3709 free_irq(pdev
->irq
, hw
);
3710 pci_release_regions(pdev
);
3711 pci_disable_device(pdev
);
3718 pci_set_drvdata(pdev
, NULL
);
3722 static int vaux_avail(struct pci_dev
*pdev
)
3726 pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
3729 pci_read_config_word(pdev
, pm_cap
+ PCI_PM_PMC
, &ctl
);
3730 if (ctl
& PCI_PM_CAP_AUX_POWER
)
3737 static int skge_suspend(struct pci_dev
*pdev
, pm_message_t state
)
3739 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3740 int i
, err
, wol
= 0;
3742 err
= pci_save_state(pdev
);
3746 for (i
= 0; i
< hw
->ports
; i
++) {
3747 struct net_device
*dev
= hw
->dev
[i
];
3748 struct skge_port
*skge
= netdev_priv(dev
);
3750 if (netif_running(dev
))
3753 skge_wol_init(skge
);
3758 if (wol
&& vaux_avail(pdev
))
3759 skge_write8(hw
, B0_POWER_CTRL
,
3760 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_ON
| PC_VCC_OFF
);
3762 skge_write32(hw
, B0_IMSK
, 0);
3763 pci_enable_wake(pdev
, pci_choose_state(pdev
, state
), wol
);
3764 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
3769 static int skge_resume(struct pci_dev
*pdev
)
3771 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3774 err
= pci_set_power_state(pdev
, PCI_D0
);
3778 err
= pci_restore_state(pdev
);
3782 pci_enable_wake(pdev
, PCI_D0
, 0);
3784 err
= skge_reset(hw
);
3788 for (i
= 0; i
< hw
->ports
; i
++) {
3789 struct net_device
*dev
= hw
->dev
[i
];
3791 if (netif_running(dev
)) {
3795 printk(KERN_ERR PFX
"%s: could not up: %d\n",
3807 static struct pci_driver skge_driver
= {
3809 .id_table
= skge_id_table
,
3810 .probe
= skge_probe
,
3811 .remove
= __devexit_p(skge_remove
),
3813 .suspend
= skge_suspend
,
3814 .resume
= skge_resume
,
3818 static int __init
skge_init_module(void)
3820 return pci_register_driver(&skge_driver
);
3823 static void __exit
skge_cleanup_module(void)
3825 pci_unregister_driver(&skge_driver
);
3828 module_init(skge_init_module
);
3829 module_exit(skge_cleanup_module
);