[SCSI] aic79xx: remove extra newline from info message
[linux-2.6/zen-sources.git] / drivers / net / skge.c
blobe482e7fcbb2be36117ee646d4699fb87d49c141d
1 /*
2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/in.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/if_vlan.h>
35 #include <linux/ip.h>
36 #include <linux/delay.h>
37 #include <linux/crc32.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/mii.h>
40 #include <asm/irq.h>
42 #include "skge.h"
44 #define DRV_NAME "skge"
45 #define DRV_VERSION "1.10"
46 #define PFX DRV_NAME " "
48 #define DEFAULT_TX_RING_SIZE 128
49 #define DEFAULT_RX_RING_SIZE 512
50 #define MAX_TX_RING_SIZE 1024
51 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
52 #define MAX_RX_RING_SIZE 4096
53 #define RX_COPY_THRESHOLD 128
54 #define RX_BUF_SIZE 1536
55 #define PHY_RETRIES 1000
56 #define ETH_JUMBO_MTU 9000
57 #define TX_WATCHDOG (5 * HZ)
58 #define NAPI_WEIGHT 64
59 #define BLINK_MS 250
60 #define LINK_HZ (HZ/2)
62 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
63 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
64 MODULE_LICENSE("GPL");
65 MODULE_VERSION(DRV_VERSION);
67 static const u32 default_msg
68 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
69 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
71 static int debug = -1; /* defaults above */
72 module_param(debug, int, 0);
73 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
75 static const struct pci_device_id skge_id_table[] = {
76 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
77 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
84 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
85 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
86 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
87 { 0 }
89 MODULE_DEVICE_TABLE(pci, skge_id_table);
91 static int skge_up(struct net_device *dev);
92 static int skge_down(struct net_device *dev);
93 static void skge_phy_reset(struct skge_port *skge);
94 static void skge_tx_clean(struct net_device *dev);
95 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
96 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static void genesis_get_stats(struct skge_port *skge, u64 *data);
98 static void yukon_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_init(struct skge_hw *hw, int port);
100 static void genesis_mac_init(struct skge_hw *hw, int port);
101 static void genesis_link_up(struct skge_port *skge);
103 /* Avoid conditionals by using array */
104 static const int txqaddr[] = { Q_XA1, Q_XA2 };
105 static const int rxqaddr[] = { Q_R1, Q_R2 };
106 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
107 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
108 static const u32 irqmask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
110 static int skge_get_regs_len(struct net_device *dev)
112 return 0x4000;
116 * Returns copy of whole control register region
117 * Note: skip RAM address register because accessing it will
118 * cause bus hangs!
120 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
121 void *p)
123 const struct skge_port *skge = netdev_priv(dev);
124 const void __iomem *io = skge->hw->regs;
126 regs->version = 1;
127 memset(p, 0, regs->len);
128 memcpy_fromio(p, io, B3_RAM_ADDR);
130 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
131 regs->len - B3_RI_WTO_R1);
134 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
135 static u32 wol_supported(const struct skge_hw *hw)
137 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev != 0)
138 return WAKE_MAGIC | WAKE_PHY;
139 else
140 return 0;
143 static u32 pci_wake_enabled(struct pci_dev *dev)
145 int pm = pci_find_capability(dev, PCI_CAP_ID_PM);
146 u16 value;
148 /* If device doesn't support PM Capabilities, but request is to disable
149 * wake events, it's a nop; otherwise fail */
150 if (!pm)
151 return 0;
153 pci_read_config_word(dev, pm + PCI_PM_PMC, &value);
155 value &= PCI_PM_CAP_PME_MASK;
156 value >>= ffs(PCI_PM_CAP_PME_MASK) - 1; /* First bit of mask */
158 return value != 0;
161 static void skge_wol_init(struct skge_port *skge)
163 struct skge_hw *hw = skge->hw;
164 int port = skge->port;
165 enum pause_control save_mode;
166 u32 ctrl;
168 /* Bring hardware out of reset */
169 skge_write16(hw, B0_CTST, CS_RST_CLR);
170 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
172 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR);
173 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
175 /* Force to 10/100 skge_reset will re-enable on resume */
176 save_mode = skge->flow_control;
177 skge->flow_control = FLOW_MODE_SYMMETRIC;
179 ctrl = skge->advertising;
180 skge->advertising &= ~(ADVERTISED_1000baseT_Half|ADVERTISED_1000baseT_Full);
182 skge_phy_reset(skge);
184 skge->flow_control = save_mode;
185 skge->advertising = ctrl;
187 /* Set GMAC to no flow control and auto update for speed/duplex */
188 gma_write16(hw, port, GM_GP_CTRL,
189 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
190 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
192 /* Set WOL address */
193 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
194 skge->netdev->dev_addr, ETH_ALEN);
196 /* Turn on appropriate WOL control bits */
197 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
198 ctrl = 0;
199 if (skge->wol & WAKE_PHY)
200 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
201 else
202 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
204 if (skge->wol & WAKE_MAGIC)
205 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
206 else
207 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
209 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
210 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
212 /* block receiver */
213 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
216 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
218 struct skge_port *skge = netdev_priv(dev);
220 wol->supported = wol_supported(skge->hw);
221 wol->wolopts = skge->wol;
224 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
226 struct skge_port *skge = netdev_priv(dev);
227 struct skge_hw *hw = skge->hw;
229 if (wol->wolopts & wol_supported(hw))
230 return -EOPNOTSUPP;
232 skge->wol = wol->wolopts;
233 if (!netif_running(dev))
234 skge_wol_init(skge);
235 return 0;
238 /* Determine supported/advertised modes based on hardware.
239 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
241 static u32 skge_supported_modes(const struct skge_hw *hw)
243 u32 supported;
245 if (hw->copper) {
246 supported = SUPPORTED_10baseT_Half
247 | SUPPORTED_10baseT_Full
248 | SUPPORTED_100baseT_Half
249 | SUPPORTED_100baseT_Full
250 | SUPPORTED_1000baseT_Half
251 | SUPPORTED_1000baseT_Full
252 | SUPPORTED_Autoneg| SUPPORTED_TP;
254 if (hw->chip_id == CHIP_ID_GENESIS)
255 supported &= ~(SUPPORTED_10baseT_Half
256 | SUPPORTED_10baseT_Full
257 | SUPPORTED_100baseT_Half
258 | SUPPORTED_100baseT_Full);
260 else if (hw->chip_id == CHIP_ID_YUKON)
261 supported &= ~SUPPORTED_1000baseT_Half;
262 } else
263 supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
264 | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
266 return supported;
269 static int skge_get_settings(struct net_device *dev,
270 struct ethtool_cmd *ecmd)
272 struct skge_port *skge = netdev_priv(dev);
273 struct skge_hw *hw = skge->hw;
275 ecmd->transceiver = XCVR_INTERNAL;
276 ecmd->supported = skge_supported_modes(hw);
278 if (hw->copper) {
279 ecmd->port = PORT_TP;
280 ecmd->phy_address = hw->phy_addr;
281 } else
282 ecmd->port = PORT_FIBRE;
284 ecmd->advertising = skge->advertising;
285 ecmd->autoneg = skge->autoneg;
286 ecmd->speed = skge->speed;
287 ecmd->duplex = skge->duplex;
288 return 0;
291 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
293 struct skge_port *skge = netdev_priv(dev);
294 const struct skge_hw *hw = skge->hw;
295 u32 supported = skge_supported_modes(hw);
297 if (ecmd->autoneg == AUTONEG_ENABLE) {
298 ecmd->advertising = supported;
299 skge->duplex = -1;
300 skge->speed = -1;
301 } else {
302 u32 setting;
304 switch (ecmd->speed) {
305 case SPEED_1000:
306 if (ecmd->duplex == DUPLEX_FULL)
307 setting = SUPPORTED_1000baseT_Full;
308 else if (ecmd->duplex == DUPLEX_HALF)
309 setting = SUPPORTED_1000baseT_Half;
310 else
311 return -EINVAL;
312 break;
313 case SPEED_100:
314 if (ecmd->duplex == DUPLEX_FULL)
315 setting = SUPPORTED_100baseT_Full;
316 else if (ecmd->duplex == DUPLEX_HALF)
317 setting = SUPPORTED_100baseT_Half;
318 else
319 return -EINVAL;
320 break;
322 case SPEED_10:
323 if (ecmd->duplex == DUPLEX_FULL)
324 setting = SUPPORTED_10baseT_Full;
325 else if (ecmd->duplex == DUPLEX_HALF)
326 setting = SUPPORTED_10baseT_Half;
327 else
328 return -EINVAL;
329 break;
330 default:
331 return -EINVAL;
334 if ((setting & supported) == 0)
335 return -EINVAL;
337 skge->speed = ecmd->speed;
338 skge->duplex = ecmd->duplex;
341 skge->autoneg = ecmd->autoneg;
342 skge->advertising = ecmd->advertising;
344 if (netif_running(dev))
345 skge_phy_reset(skge);
347 return (0);
350 static void skge_get_drvinfo(struct net_device *dev,
351 struct ethtool_drvinfo *info)
353 struct skge_port *skge = netdev_priv(dev);
355 strcpy(info->driver, DRV_NAME);
356 strcpy(info->version, DRV_VERSION);
357 strcpy(info->fw_version, "N/A");
358 strcpy(info->bus_info, pci_name(skge->hw->pdev));
361 static const struct skge_stat {
362 char name[ETH_GSTRING_LEN];
363 u16 xmac_offset;
364 u16 gma_offset;
365 } skge_stats[] = {
366 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
367 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
369 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
370 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
371 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
372 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
373 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
374 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
375 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
376 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
378 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
379 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
380 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
381 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
382 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
383 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
385 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
386 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
387 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
388 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
389 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
392 static int skge_get_stats_count(struct net_device *dev)
394 return ARRAY_SIZE(skge_stats);
397 static void skge_get_ethtool_stats(struct net_device *dev,
398 struct ethtool_stats *stats, u64 *data)
400 struct skge_port *skge = netdev_priv(dev);
402 if (skge->hw->chip_id == CHIP_ID_GENESIS)
403 genesis_get_stats(skge, data);
404 else
405 yukon_get_stats(skge, data);
408 /* Use hardware MIB variables for critical path statistics and
409 * transmit feedback not reported at interrupt.
410 * Other errors are accounted for in interrupt handler.
412 static struct net_device_stats *skge_get_stats(struct net_device *dev)
414 struct skge_port *skge = netdev_priv(dev);
415 u64 data[ARRAY_SIZE(skge_stats)];
417 if (skge->hw->chip_id == CHIP_ID_GENESIS)
418 genesis_get_stats(skge, data);
419 else
420 yukon_get_stats(skge, data);
422 skge->net_stats.tx_bytes = data[0];
423 skge->net_stats.rx_bytes = data[1];
424 skge->net_stats.tx_packets = data[2] + data[4] + data[6];
425 skge->net_stats.rx_packets = data[3] + data[5] + data[7];
426 skge->net_stats.multicast = data[3] + data[5];
427 skge->net_stats.collisions = data[10];
428 skge->net_stats.tx_aborted_errors = data[12];
430 return &skge->net_stats;
433 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
435 int i;
437 switch (stringset) {
438 case ETH_SS_STATS:
439 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
440 memcpy(data + i * ETH_GSTRING_LEN,
441 skge_stats[i].name, ETH_GSTRING_LEN);
442 break;
446 static void skge_get_ring_param(struct net_device *dev,
447 struct ethtool_ringparam *p)
449 struct skge_port *skge = netdev_priv(dev);
451 p->rx_max_pending = MAX_RX_RING_SIZE;
452 p->tx_max_pending = MAX_TX_RING_SIZE;
453 p->rx_mini_max_pending = 0;
454 p->rx_jumbo_max_pending = 0;
456 p->rx_pending = skge->rx_ring.count;
457 p->tx_pending = skge->tx_ring.count;
458 p->rx_mini_pending = 0;
459 p->rx_jumbo_pending = 0;
462 static int skge_set_ring_param(struct net_device *dev,
463 struct ethtool_ringparam *p)
465 struct skge_port *skge = netdev_priv(dev);
466 int err;
468 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
469 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
470 return -EINVAL;
472 skge->rx_ring.count = p->rx_pending;
473 skge->tx_ring.count = p->tx_pending;
475 if (netif_running(dev)) {
476 skge_down(dev);
477 err = skge_up(dev);
478 if (err)
479 dev_close(dev);
482 return 0;
485 static u32 skge_get_msglevel(struct net_device *netdev)
487 struct skge_port *skge = netdev_priv(netdev);
488 return skge->msg_enable;
491 static void skge_set_msglevel(struct net_device *netdev, u32 value)
493 struct skge_port *skge = netdev_priv(netdev);
494 skge->msg_enable = value;
497 static int skge_nway_reset(struct net_device *dev)
499 struct skge_port *skge = netdev_priv(dev);
501 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
502 return -EINVAL;
504 skge_phy_reset(skge);
505 return 0;
508 static int skge_set_sg(struct net_device *dev, u32 data)
510 struct skge_port *skge = netdev_priv(dev);
511 struct skge_hw *hw = skge->hw;
513 if (hw->chip_id == CHIP_ID_GENESIS && data)
514 return -EOPNOTSUPP;
515 return ethtool_op_set_sg(dev, data);
518 static int skge_set_tx_csum(struct net_device *dev, u32 data)
520 struct skge_port *skge = netdev_priv(dev);
521 struct skge_hw *hw = skge->hw;
523 if (hw->chip_id == CHIP_ID_GENESIS && data)
524 return -EOPNOTSUPP;
526 return ethtool_op_set_tx_csum(dev, data);
529 static u32 skge_get_rx_csum(struct net_device *dev)
531 struct skge_port *skge = netdev_priv(dev);
533 return skge->rx_csum;
536 /* Only Yukon supports checksum offload. */
537 static int skge_set_rx_csum(struct net_device *dev, u32 data)
539 struct skge_port *skge = netdev_priv(dev);
541 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
542 return -EOPNOTSUPP;
544 skge->rx_csum = data;
545 return 0;
548 static void skge_get_pauseparam(struct net_device *dev,
549 struct ethtool_pauseparam *ecmd)
551 struct skge_port *skge = netdev_priv(dev);
553 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
554 || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
555 ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
557 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
560 static int skge_set_pauseparam(struct net_device *dev,
561 struct ethtool_pauseparam *ecmd)
563 struct skge_port *skge = netdev_priv(dev);
564 struct ethtool_pauseparam old;
566 skge_get_pauseparam(dev, &old);
568 if (ecmd->autoneg != old.autoneg)
569 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
570 else {
571 if (ecmd->rx_pause && ecmd->tx_pause)
572 skge->flow_control = FLOW_MODE_SYMMETRIC;
573 else if (ecmd->rx_pause && !ecmd->tx_pause)
574 skge->flow_control = FLOW_MODE_SYM_OR_REM;
575 else if (!ecmd->rx_pause && ecmd->tx_pause)
576 skge->flow_control = FLOW_MODE_LOC_SEND;
577 else
578 skge->flow_control = FLOW_MODE_NONE;
581 if (netif_running(dev))
582 skge_phy_reset(skge);
584 return 0;
587 /* Chip internal frequency for clock calculations */
588 static inline u32 hwkhz(const struct skge_hw *hw)
590 return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
593 /* Chip HZ to microseconds */
594 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
596 return (ticks * 1000) / hwkhz(hw);
599 /* Microseconds to chip HZ */
600 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
602 return hwkhz(hw) * usec / 1000;
605 static int skge_get_coalesce(struct net_device *dev,
606 struct ethtool_coalesce *ecmd)
608 struct skge_port *skge = netdev_priv(dev);
609 struct skge_hw *hw = skge->hw;
610 int port = skge->port;
612 ecmd->rx_coalesce_usecs = 0;
613 ecmd->tx_coalesce_usecs = 0;
615 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
616 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
617 u32 msk = skge_read32(hw, B2_IRQM_MSK);
619 if (msk & rxirqmask[port])
620 ecmd->rx_coalesce_usecs = delay;
621 if (msk & txirqmask[port])
622 ecmd->tx_coalesce_usecs = delay;
625 return 0;
628 /* Note: interrupt timer is per board, but can turn on/off per port */
629 static int skge_set_coalesce(struct net_device *dev,
630 struct ethtool_coalesce *ecmd)
632 struct skge_port *skge = netdev_priv(dev);
633 struct skge_hw *hw = skge->hw;
634 int port = skge->port;
635 u32 msk = skge_read32(hw, B2_IRQM_MSK);
636 u32 delay = 25;
638 if (ecmd->rx_coalesce_usecs == 0)
639 msk &= ~rxirqmask[port];
640 else if (ecmd->rx_coalesce_usecs < 25 ||
641 ecmd->rx_coalesce_usecs > 33333)
642 return -EINVAL;
643 else {
644 msk |= rxirqmask[port];
645 delay = ecmd->rx_coalesce_usecs;
648 if (ecmd->tx_coalesce_usecs == 0)
649 msk &= ~txirqmask[port];
650 else if (ecmd->tx_coalesce_usecs < 25 ||
651 ecmd->tx_coalesce_usecs > 33333)
652 return -EINVAL;
653 else {
654 msk |= txirqmask[port];
655 delay = min(delay, ecmd->rx_coalesce_usecs);
658 skge_write32(hw, B2_IRQM_MSK, msk);
659 if (msk == 0)
660 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
661 else {
662 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
663 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
665 return 0;
668 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
669 static void skge_led(struct skge_port *skge, enum led_mode mode)
671 struct skge_hw *hw = skge->hw;
672 int port = skge->port;
674 mutex_lock(&hw->phy_mutex);
675 if (hw->chip_id == CHIP_ID_GENESIS) {
676 switch (mode) {
677 case LED_MODE_OFF:
678 if (hw->phy_type == SK_PHY_BCOM)
679 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
680 else {
681 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
682 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
684 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
685 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
686 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
687 break;
689 case LED_MODE_ON:
690 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
691 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
693 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
694 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
696 break;
698 case LED_MODE_TST:
699 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
700 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
701 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
703 if (hw->phy_type == SK_PHY_BCOM)
704 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
705 else {
706 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
707 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
708 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
712 } else {
713 switch (mode) {
714 case LED_MODE_OFF:
715 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
716 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
717 PHY_M_LED_MO_DUP(MO_LED_OFF) |
718 PHY_M_LED_MO_10(MO_LED_OFF) |
719 PHY_M_LED_MO_100(MO_LED_OFF) |
720 PHY_M_LED_MO_1000(MO_LED_OFF) |
721 PHY_M_LED_MO_RX(MO_LED_OFF));
722 break;
723 case LED_MODE_ON:
724 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
725 PHY_M_LED_PULS_DUR(PULS_170MS) |
726 PHY_M_LED_BLINK_RT(BLINK_84MS) |
727 PHY_M_LEDC_TX_CTRL |
728 PHY_M_LEDC_DP_CTRL);
730 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
731 PHY_M_LED_MO_RX(MO_LED_OFF) |
732 (skge->speed == SPEED_100 ?
733 PHY_M_LED_MO_100(MO_LED_ON) : 0));
734 break;
735 case LED_MODE_TST:
736 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
737 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
738 PHY_M_LED_MO_DUP(MO_LED_ON) |
739 PHY_M_LED_MO_10(MO_LED_ON) |
740 PHY_M_LED_MO_100(MO_LED_ON) |
741 PHY_M_LED_MO_1000(MO_LED_ON) |
742 PHY_M_LED_MO_RX(MO_LED_ON));
745 mutex_unlock(&hw->phy_mutex);
748 /* blink LED's for finding board */
749 static int skge_phys_id(struct net_device *dev, u32 data)
751 struct skge_port *skge = netdev_priv(dev);
752 unsigned long ms;
753 enum led_mode mode = LED_MODE_TST;
755 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
756 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
757 else
758 ms = data * 1000;
760 while (ms > 0) {
761 skge_led(skge, mode);
762 mode ^= LED_MODE_TST;
764 if (msleep_interruptible(BLINK_MS))
765 break;
766 ms -= BLINK_MS;
769 /* back to regular LED state */
770 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
772 return 0;
775 static const struct ethtool_ops skge_ethtool_ops = {
776 .get_settings = skge_get_settings,
777 .set_settings = skge_set_settings,
778 .get_drvinfo = skge_get_drvinfo,
779 .get_regs_len = skge_get_regs_len,
780 .get_regs = skge_get_regs,
781 .get_wol = skge_get_wol,
782 .set_wol = skge_set_wol,
783 .get_msglevel = skge_get_msglevel,
784 .set_msglevel = skge_set_msglevel,
785 .nway_reset = skge_nway_reset,
786 .get_link = ethtool_op_get_link,
787 .get_ringparam = skge_get_ring_param,
788 .set_ringparam = skge_set_ring_param,
789 .get_pauseparam = skge_get_pauseparam,
790 .set_pauseparam = skge_set_pauseparam,
791 .get_coalesce = skge_get_coalesce,
792 .set_coalesce = skge_set_coalesce,
793 .get_sg = ethtool_op_get_sg,
794 .set_sg = skge_set_sg,
795 .get_tx_csum = ethtool_op_get_tx_csum,
796 .set_tx_csum = skge_set_tx_csum,
797 .get_rx_csum = skge_get_rx_csum,
798 .set_rx_csum = skge_set_rx_csum,
799 .get_strings = skge_get_strings,
800 .phys_id = skge_phys_id,
801 .get_stats_count = skge_get_stats_count,
802 .get_ethtool_stats = skge_get_ethtool_stats,
803 .get_perm_addr = ethtool_op_get_perm_addr,
807 * Allocate ring elements and chain them together
808 * One-to-one association of board descriptors with ring elements
810 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
812 struct skge_tx_desc *d;
813 struct skge_element *e;
814 int i;
816 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
817 if (!ring->start)
818 return -ENOMEM;
820 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
821 e->desc = d;
822 if (i == ring->count - 1) {
823 e->next = ring->start;
824 d->next_offset = base;
825 } else {
826 e->next = e + 1;
827 d->next_offset = base + (i+1) * sizeof(*d);
830 ring->to_use = ring->to_clean = ring->start;
832 return 0;
835 /* Allocate and setup a new buffer for receiving */
836 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
837 struct sk_buff *skb, unsigned int bufsize)
839 struct skge_rx_desc *rd = e->desc;
840 u64 map;
842 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
843 PCI_DMA_FROMDEVICE);
845 rd->dma_lo = map;
846 rd->dma_hi = map >> 32;
847 e->skb = skb;
848 rd->csum1_start = ETH_HLEN;
849 rd->csum2_start = ETH_HLEN;
850 rd->csum1 = 0;
851 rd->csum2 = 0;
853 wmb();
855 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
856 pci_unmap_addr_set(e, mapaddr, map);
857 pci_unmap_len_set(e, maplen, bufsize);
860 /* Resume receiving using existing skb,
861 * Note: DMA address is not changed by chip.
862 * MTU not changed while receiver active.
864 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
866 struct skge_rx_desc *rd = e->desc;
868 rd->csum2 = 0;
869 rd->csum2_start = ETH_HLEN;
871 wmb();
873 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
877 /* Free all buffers in receive ring, assumes receiver stopped */
878 static void skge_rx_clean(struct skge_port *skge)
880 struct skge_hw *hw = skge->hw;
881 struct skge_ring *ring = &skge->rx_ring;
882 struct skge_element *e;
884 e = ring->start;
885 do {
886 struct skge_rx_desc *rd = e->desc;
887 rd->control = 0;
888 if (e->skb) {
889 pci_unmap_single(hw->pdev,
890 pci_unmap_addr(e, mapaddr),
891 pci_unmap_len(e, maplen),
892 PCI_DMA_FROMDEVICE);
893 dev_kfree_skb(e->skb);
894 e->skb = NULL;
896 } while ((e = e->next) != ring->start);
900 /* Allocate buffers for receive ring
901 * For receive: to_clean is next received frame.
903 static int skge_rx_fill(struct net_device *dev)
905 struct skge_port *skge = netdev_priv(dev);
906 struct skge_ring *ring = &skge->rx_ring;
907 struct skge_element *e;
909 e = ring->start;
910 do {
911 struct sk_buff *skb;
913 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
914 GFP_KERNEL);
915 if (!skb)
916 return -ENOMEM;
918 skb_reserve(skb, NET_IP_ALIGN);
919 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
920 } while ( (e = e->next) != ring->start);
922 ring->to_clean = ring->start;
923 return 0;
926 static const char *skge_pause(enum pause_status status)
928 switch(status) {
929 case FLOW_STAT_NONE:
930 return "none";
931 case FLOW_STAT_REM_SEND:
932 return "rx only";
933 case FLOW_STAT_LOC_SEND:
934 return "tx_only";
935 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
936 return "both";
937 default:
938 return "indeterminated";
943 static void skge_link_up(struct skge_port *skge)
945 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
946 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
948 netif_carrier_on(skge->netdev);
949 netif_wake_queue(skge->netdev);
951 if (netif_msg_link(skge)) {
952 printk(KERN_INFO PFX
953 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
954 skge->netdev->name, skge->speed,
955 skge->duplex == DUPLEX_FULL ? "full" : "half",
956 skge_pause(skge->flow_status));
960 static void skge_link_down(struct skge_port *skge)
962 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
963 netif_carrier_off(skge->netdev);
964 netif_stop_queue(skge->netdev);
966 if (netif_msg_link(skge))
967 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
971 static void xm_link_down(struct skge_hw *hw, int port)
973 struct net_device *dev = hw->dev[port];
974 struct skge_port *skge = netdev_priv(dev);
975 u16 cmd, msk;
977 if (hw->phy_type == SK_PHY_XMAC) {
978 msk = xm_read16(hw, port, XM_IMSK);
979 msk |= XM_IS_INP_ASS | XM_IS_LIPA_RC | XM_IS_RX_PAGE | XM_IS_AND;
980 xm_write16(hw, port, XM_IMSK, msk);
983 cmd = xm_read16(hw, port, XM_MMU_CMD);
984 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
985 xm_write16(hw, port, XM_MMU_CMD, cmd);
986 /* dummy read to ensure writing */
987 (void) xm_read16(hw, port, XM_MMU_CMD);
989 if (netif_carrier_ok(dev))
990 skge_link_down(skge);
993 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
995 int i;
997 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
998 *val = xm_read16(hw, port, XM_PHY_DATA);
1000 if (hw->phy_type == SK_PHY_XMAC)
1001 goto ready;
1003 for (i = 0; i < PHY_RETRIES; i++) {
1004 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1005 goto ready;
1006 udelay(1);
1009 return -ETIMEDOUT;
1010 ready:
1011 *val = xm_read16(hw, port, XM_PHY_DATA);
1013 return 0;
1016 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1018 u16 v = 0;
1019 if (__xm_phy_read(hw, port, reg, &v))
1020 printk(KERN_WARNING PFX "%s: phy read timed out\n",
1021 hw->dev[port]->name);
1022 return v;
1025 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1027 int i;
1029 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1030 for (i = 0; i < PHY_RETRIES; i++) {
1031 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1032 goto ready;
1033 udelay(1);
1035 return -EIO;
1037 ready:
1038 xm_write16(hw, port, XM_PHY_DATA, val);
1039 for (i = 0; i < PHY_RETRIES; i++) {
1040 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1041 return 0;
1042 udelay(1);
1044 return -ETIMEDOUT;
1047 static void genesis_init(struct skge_hw *hw)
1049 /* set blink source counter */
1050 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1051 skge_write8(hw, B2_BSC_CTRL, BSC_START);
1053 /* configure mac arbiter */
1054 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1056 /* configure mac arbiter timeout values */
1057 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1058 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1059 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1060 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1062 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1063 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1064 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1065 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1067 /* configure packet arbiter timeout */
1068 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1069 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1070 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1071 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1072 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1075 static void genesis_reset(struct skge_hw *hw, int port)
1077 const u8 zero[8] = { 0 };
1079 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1081 /* reset the statistics module */
1082 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1083 xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
1084 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1085 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1086 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1088 /* disable Broadcom PHY IRQ */
1089 if (hw->phy_type == SK_PHY_BCOM)
1090 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1092 xm_outhash(hw, port, XM_HSM, zero);
1096 /* Convert mode to MII values */
1097 static const u16 phy_pause_map[] = {
1098 [FLOW_MODE_NONE] = 0,
1099 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
1100 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1101 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1104 /* special defines for FIBER (88E1011S only) */
1105 static const u16 fiber_pause_map[] = {
1106 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
1107 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
1108 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
1109 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
1113 /* Check status of Broadcom phy link */
1114 static void bcom_check_link(struct skge_hw *hw, int port)
1116 struct net_device *dev = hw->dev[port];
1117 struct skge_port *skge = netdev_priv(dev);
1118 u16 status;
1120 /* read twice because of latch */
1121 (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
1122 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1124 if ((status & PHY_ST_LSYNC) == 0) {
1125 xm_link_down(hw, port);
1126 return;
1129 if (skge->autoneg == AUTONEG_ENABLE) {
1130 u16 lpa, aux;
1132 if (!(status & PHY_ST_AN_OVER))
1133 return;
1135 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1136 if (lpa & PHY_B_AN_RF) {
1137 printk(KERN_NOTICE PFX "%s: remote fault\n",
1138 dev->name);
1139 return;
1142 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1144 /* Check Duplex mismatch */
1145 switch (aux & PHY_B_AS_AN_RES_MSK) {
1146 case PHY_B_RES_1000FD:
1147 skge->duplex = DUPLEX_FULL;
1148 break;
1149 case PHY_B_RES_1000HD:
1150 skge->duplex = DUPLEX_HALF;
1151 break;
1152 default:
1153 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1154 dev->name);
1155 return;
1158 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1159 switch (aux & PHY_B_AS_PAUSE_MSK) {
1160 case PHY_B_AS_PAUSE_MSK:
1161 skge->flow_status = FLOW_STAT_SYMMETRIC;
1162 break;
1163 case PHY_B_AS_PRR:
1164 skge->flow_status = FLOW_STAT_REM_SEND;
1165 break;
1166 case PHY_B_AS_PRT:
1167 skge->flow_status = FLOW_STAT_LOC_SEND;
1168 break;
1169 default:
1170 skge->flow_status = FLOW_STAT_NONE;
1172 skge->speed = SPEED_1000;
1175 if (!netif_carrier_ok(dev))
1176 genesis_link_up(skge);
1179 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1180 * Phy on for 100 or 10Mbit operation
1182 static void bcom_phy_init(struct skge_port *skge)
1184 struct skge_hw *hw = skge->hw;
1185 int port = skge->port;
1186 int i;
1187 u16 id1, r, ext, ctl;
1189 /* magic workaround patterns for Broadcom */
1190 static const struct {
1191 u16 reg;
1192 u16 val;
1193 } A1hack[] = {
1194 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1195 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1196 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1197 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1198 }, C0hack[] = {
1199 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1200 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1203 /* read Id from external PHY (all have the same address) */
1204 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1206 /* Optimize MDIO transfer by suppressing preamble. */
1207 r = xm_read16(hw, port, XM_MMU_CMD);
1208 r |= XM_MMU_NO_PRE;
1209 xm_write16(hw, port, XM_MMU_CMD,r);
1211 switch (id1) {
1212 case PHY_BCOM_ID1_C0:
1214 * Workaround BCOM Errata for the C0 type.
1215 * Write magic patterns to reserved registers.
1217 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1218 xm_phy_write(hw, port,
1219 C0hack[i].reg, C0hack[i].val);
1221 break;
1222 case PHY_BCOM_ID1_A1:
1224 * Workaround BCOM Errata for the A1 type.
1225 * Write magic patterns to reserved registers.
1227 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1228 xm_phy_write(hw, port,
1229 A1hack[i].reg, A1hack[i].val);
1230 break;
1234 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1235 * Disable Power Management after reset.
1237 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1238 r |= PHY_B_AC_DIS_PM;
1239 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1241 /* Dummy read */
1242 xm_read16(hw, port, XM_ISRC);
1244 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1245 ctl = PHY_CT_SP1000; /* always 1000mbit */
1247 if (skge->autoneg == AUTONEG_ENABLE) {
1249 * Workaround BCOM Errata #1 for the C5 type.
1250 * 1000Base-T Link Acquisition Failure in Slave Mode
1251 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1253 u16 adv = PHY_B_1000C_RD;
1254 if (skge->advertising & ADVERTISED_1000baseT_Half)
1255 adv |= PHY_B_1000C_AHD;
1256 if (skge->advertising & ADVERTISED_1000baseT_Full)
1257 adv |= PHY_B_1000C_AFD;
1258 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1260 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1261 } else {
1262 if (skge->duplex == DUPLEX_FULL)
1263 ctl |= PHY_CT_DUP_MD;
1264 /* Force to slave */
1265 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1268 /* Set autonegotiation pause parameters */
1269 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1270 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1272 /* Handle Jumbo frames */
1273 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1274 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1275 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1277 ext |= PHY_B_PEC_HIGH_LA;
1281 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1282 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1284 /* Use link status change interrupt */
1285 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1288 static void xm_phy_init(struct skge_port *skge)
1290 struct skge_hw *hw = skge->hw;
1291 int port = skge->port;
1292 u16 ctrl = 0;
1294 if (skge->autoneg == AUTONEG_ENABLE) {
1295 if (skge->advertising & ADVERTISED_1000baseT_Half)
1296 ctrl |= PHY_X_AN_HD;
1297 if (skge->advertising & ADVERTISED_1000baseT_Full)
1298 ctrl |= PHY_X_AN_FD;
1300 ctrl |= fiber_pause_map[skge->flow_control];
1302 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1304 /* Restart Auto-negotiation */
1305 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1306 } else {
1307 /* Set DuplexMode in Config register */
1308 if (skge->duplex == DUPLEX_FULL)
1309 ctrl |= PHY_CT_DUP_MD;
1311 * Do NOT enable Auto-negotiation here. This would hold
1312 * the link down because no IDLEs are transmitted
1316 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1318 /* Poll PHY for status changes */
1319 schedule_delayed_work(&skge->link_thread, LINK_HZ);
1322 static void xm_check_link(struct net_device *dev)
1324 struct skge_port *skge = netdev_priv(dev);
1325 struct skge_hw *hw = skge->hw;
1326 int port = skge->port;
1327 u16 status;
1329 /* read twice because of latch */
1330 (void) xm_phy_read(hw, port, PHY_XMAC_STAT);
1331 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1333 if ((status & PHY_ST_LSYNC) == 0) {
1334 xm_link_down(hw, port);
1335 return;
1338 if (skge->autoneg == AUTONEG_ENABLE) {
1339 u16 lpa, res;
1341 if (!(status & PHY_ST_AN_OVER))
1342 return;
1344 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1345 if (lpa & PHY_B_AN_RF) {
1346 printk(KERN_NOTICE PFX "%s: remote fault\n",
1347 dev->name);
1348 return;
1351 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1353 /* Check Duplex mismatch */
1354 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1355 case PHY_X_RS_FD:
1356 skge->duplex = DUPLEX_FULL;
1357 break;
1358 case PHY_X_RS_HD:
1359 skge->duplex = DUPLEX_HALF;
1360 break;
1361 default:
1362 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1363 dev->name);
1364 return;
1367 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1368 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1369 skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1370 (lpa & PHY_X_P_SYM_MD))
1371 skge->flow_status = FLOW_STAT_SYMMETRIC;
1372 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1373 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1374 /* Enable PAUSE receive, disable PAUSE transmit */
1375 skge->flow_status = FLOW_STAT_REM_SEND;
1376 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1377 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1378 /* Disable PAUSE receive, enable PAUSE transmit */
1379 skge->flow_status = FLOW_STAT_LOC_SEND;
1380 else
1381 skge->flow_status = FLOW_STAT_NONE;
1383 skge->speed = SPEED_1000;
1386 if (!netif_carrier_ok(dev))
1387 genesis_link_up(skge);
1390 /* Poll to check for link coming up.
1391 * Since internal PHY is wired to a level triggered pin, can't
1392 * get an interrupt when carrier is detected.
1394 static void xm_link_timer(struct work_struct *work)
1396 struct skge_port *skge =
1397 container_of(work, struct skge_port, link_thread.work);
1398 struct net_device *dev = skge->netdev;
1399 struct skge_hw *hw = skge->hw;
1400 int port = skge->port;
1402 if (!netif_running(dev))
1403 return;
1405 if (netif_carrier_ok(dev)) {
1406 xm_read16(hw, port, XM_ISRC);
1407 if (!(xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS))
1408 goto nochange;
1409 } else {
1410 if (xm_read32(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1411 goto nochange;
1412 xm_read16(hw, port, XM_ISRC);
1413 if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
1414 goto nochange;
1417 mutex_lock(&hw->phy_mutex);
1418 xm_check_link(dev);
1419 mutex_unlock(&hw->phy_mutex);
1421 nochange:
1422 schedule_delayed_work(&skge->link_thread, LINK_HZ);
1425 static void genesis_mac_init(struct skge_hw *hw, int port)
1427 struct net_device *dev = hw->dev[port];
1428 struct skge_port *skge = netdev_priv(dev);
1429 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1430 int i;
1431 u32 r;
1432 const u8 zero[6] = { 0 };
1434 for (i = 0; i < 10; i++) {
1435 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1436 MFF_SET_MAC_RST);
1437 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1438 goto reset_ok;
1439 udelay(1);
1442 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
1444 reset_ok:
1445 /* Unreset the XMAC. */
1446 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1449 * Perform additional initialization for external PHYs,
1450 * namely for the 1000baseTX cards that use the XMAC's
1451 * GMII mode.
1453 if (hw->phy_type != SK_PHY_XMAC) {
1454 /* Take external Phy out of reset */
1455 r = skge_read32(hw, B2_GP_IO);
1456 if (port == 0)
1457 r |= GP_DIR_0|GP_IO_0;
1458 else
1459 r |= GP_DIR_2|GP_IO_2;
1461 skge_write32(hw, B2_GP_IO, r);
1463 /* Enable GMII interface */
1464 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1468 switch(hw->phy_type) {
1469 case SK_PHY_XMAC:
1470 xm_phy_init(skge);
1471 break;
1472 case SK_PHY_BCOM:
1473 bcom_phy_init(skge);
1474 bcom_check_link(hw, port);
1477 /* Set Station Address */
1478 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1480 /* We don't use match addresses so clear */
1481 for (i = 1; i < 16; i++)
1482 xm_outaddr(hw, port, XM_EXM(i), zero);
1484 /* Clear MIB counters */
1485 xm_write16(hw, port, XM_STAT_CMD,
1486 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1487 /* Clear two times according to Errata #3 */
1488 xm_write16(hw, port, XM_STAT_CMD,
1489 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1491 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1492 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1494 /* We don't need the FCS appended to the packet. */
1495 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1496 if (jumbo)
1497 r |= XM_RX_BIG_PK_OK;
1499 if (skge->duplex == DUPLEX_HALF) {
1501 * If in manual half duplex mode the other side might be in
1502 * full duplex mode, so ignore if a carrier extension is not seen
1503 * on frames received
1505 r |= XM_RX_DIS_CEXT;
1507 xm_write16(hw, port, XM_RX_CMD, r);
1510 /* We want short frames padded to 60 bytes. */
1511 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1514 * Bump up the transmit threshold. This helps hold off transmit
1515 * underruns when we're blasting traffic from both ports at once.
1517 xm_write16(hw, port, XM_TX_THR, 512);
1520 * Enable the reception of all error frames. This is is
1521 * a necessary evil due to the design of the XMAC. The
1522 * XMAC's receive FIFO is only 8K in size, however jumbo
1523 * frames can be up to 9000 bytes in length. When bad
1524 * frame filtering is enabled, the XMAC's RX FIFO operates
1525 * in 'store and forward' mode. For this to work, the
1526 * entire frame has to fit into the FIFO, but that means
1527 * that jumbo frames larger than 8192 bytes will be
1528 * truncated. Disabling all bad frame filtering causes
1529 * the RX FIFO to operate in streaming mode, in which
1530 * case the XMAC will start transferring frames out of the
1531 * RX FIFO as soon as the FIFO threshold is reached.
1533 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1537 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1538 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1539 * and 'Octets Rx OK Hi Cnt Ov'.
1541 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1544 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1545 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1546 * and 'Octets Tx OK Hi Cnt Ov'.
1548 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1550 /* Configure MAC arbiter */
1551 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1553 /* configure timeout values */
1554 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1555 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1556 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1557 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1559 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1560 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1561 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1562 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1564 /* Configure Rx MAC FIFO */
1565 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1566 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1567 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1569 /* Configure Tx MAC FIFO */
1570 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1571 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1572 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1574 if (jumbo) {
1575 /* Enable frame flushing if jumbo frames used */
1576 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1577 } else {
1578 /* enable timeout timers if normal frames */
1579 skge_write16(hw, B3_PA_CTRL,
1580 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1584 static void genesis_stop(struct skge_port *skge)
1586 struct skge_hw *hw = skge->hw;
1587 int port = skge->port;
1588 u32 reg;
1590 genesis_reset(hw, port);
1592 /* Clear Tx packet arbiter timeout IRQ */
1593 skge_write16(hw, B3_PA_CTRL,
1594 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1597 * If the transfer sticks at the MAC the STOP command will not
1598 * terminate if we don't flush the XMAC's transmit FIFO !
1600 xm_write32(hw, port, XM_MODE,
1601 xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1604 /* Reset the MAC */
1605 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1607 /* For external PHYs there must be special handling */
1608 if (hw->phy_type != SK_PHY_XMAC) {
1609 reg = skge_read32(hw, B2_GP_IO);
1610 if (port == 0) {
1611 reg |= GP_DIR_0;
1612 reg &= ~GP_IO_0;
1613 } else {
1614 reg |= GP_DIR_2;
1615 reg &= ~GP_IO_2;
1617 skge_write32(hw, B2_GP_IO, reg);
1618 skge_read32(hw, B2_GP_IO);
1621 xm_write16(hw, port, XM_MMU_CMD,
1622 xm_read16(hw, port, XM_MMU_CMD)
1623 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1625 xm_read16(hw, port, XM_MMU_CMD);
1629 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1631 struct skge_hw *hw = skge->hw;
1632 int port = skge->port;
1633 int i;
1634 unsigned long timeout = jiffies + HZ;
1636 xm_write16(hw, port,
1637 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1639 /* wait for update to complete */
1640 while (xm_read16(hw, port, XM_STAT_CMD)
1641 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1642 if (time_after(jiffies, timeout))
1643 break;
1644 udelay(10);
1647 /* special case for 64 bit octet counter */
1648 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1649 | xm_read32(hw, port, XM_TXO_OK_LO);
1650 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1651 | xm_read32(hw, port, XM_RXO_OK_LO);
1653 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1654 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1657 static void genesis_mac_intr(struct skge_hw *hw, int port)
1659 struct skge_port *skge = netdev_priv(hw->dev[port]);
1660 u16 status = xm_read16(hw, port, XM_ISRC);
1662 if (netif_msg_intr(skge))
1663 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1664 skge->netdev->name, status);
1666 if (hw->phy_type == SK_PHY_XMAC &&
1667 (status & (XM_IS_INP_ASS | XM_IS_LIPA_RC)))
1668 xm_link_down(hw, port);
1670 if (status & XM_IS_TXF_UR) {
1671 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1672 ++skge->net_stats.tx_fifo_errors;
1674 if (status & XM_IS_RXF_OV) {
1675 xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1676 ++skge->net_stats.rx_fifo_errors;
1680 static void genesis_link_up(struct skge_port *skge)
1682 struct skge_hw *hw = skge->hw;
1683 int port = skge->port;
1684 u16 cmd, msk;
1685 u32 mode;
1687 cmd = xm_read16(hw, port, XM_MMU_CMD);
1690 * enabling pause frame reception is required for 1000BT
1691 * because the XMAC is not reset if the link is going down
1693 if (skge->flow_status == FLOW_STAT_NONE ||
1694 skge->flow_status == FLOW_STAT_LOC_SEND)
1695 /* Disable Pause Frame Reception */
1696 cmd |= XM_MMU_IGN_PF;
1697 else
1698 /* Enable Pause Frame Reception */
1699 cmd &= ~XM_MMU_IGN_PF;
1701 xm_write16(hw, port, XM_MMU_CMD, cmd);
1703 mode = xm_read32(hw, port, XM_MODE);
1704 if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
1705 skge->flow_status == FLOW_STAT_LOC_SEND) {
1707 * Configure Pause Frame Generation
1708 * Use internal and external Pause Frame Generation.
1709 * Sending pause frames is edge triggered.
1710 * Send a Pause frame with the maximum pause time if
1711 * internal oder external FIFO full condition occurs.
1712 * Send a zero pause time frame to re-start transmission.
1714 /* XM_PAUSE_DA = '010000C28001' (default) */
1715 /* XM_MAC_PTIME = 0xffff (maximum) */
1716 /* remember this value is defined in big endian (!) */
1717 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1719 mode |= XM_PAUSE_MODE;
1720 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1721 } else {
1723 * disable pause frame generation is required for 1000BT
1724 * because the XMAC is not reset if the link is going down
1726 /* Disable Pause Mode in Mode Register */
1727 mode &= ~XM_PAUSE_MODE;
1729 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1732 xm_write32(hw, port, XM_MODE, mode);
1733 msk = XM_DEF_MSK;
1734 if (hw->phy_type != SK_PHY_XMAC)
1735 msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
1737 xm_write16(hw, port, XM_IMSK, msk);
1738 xm_read16(hw, port, XM_ISRC);
1740 /* get MMU Command Reg. */
1741 cmd = xm_read16(hw, port, XM_MMU_CMD);
1742 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1743 cmd |= XM_MMU_GMII_FD;
1746 * Workaround BCOM Errata (#10523) for all BCom Phys
1747 * Enable Power Management after link up
1749 if (hw->phy_type == SK_PHY_BCOM) {
1750 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1751 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1752 & ~PHY_B_AC_DIS_PM);
1753 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1756 /* enable Rx/Tx */
1757 xm_write16(hw, port, XM_MMU_CMD,
1758 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1759 skge_link_up(skge);
1763 static inline void bcom_phy_intr(struct skge_port *skge)
1765 struct skge_hw *hw = skge->hw;
1766 int port = skge->port;
1767 u16 isrc;
1769 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1770 if (netif_msg_intr(skge))
1771 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
1772 skge->netdev->name, isrc);
1774 if (isrc & PHY_B_IS_PSE)
1775 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
1776 hw->dev[port]->name);
1778 /* Workaround BCom Errata:
1779 * enable and disable loopback mode if "NO HCD" occurs.
1781 if (isrc & PHY_B_IS_NO_HDCL) {
1782 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1783 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1784 ctrl | PHY_CT_LOOP);
1785 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1786 ctrl & ~PHY_CT_LOOP);
1789 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1790 bcom_check_link(hw, port);
1794 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1796 int i;
1798 gma_write16(hw, port, GM_SMI_DATA, val);
1799 gma_write16(hw, port, GM_SMI_CTRL,
1800 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1801 for (i = 0; i < PHY_RETRIES; i++) {
1802 udelay(1);
1804 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1805 return 0;
1808 printk(KERN_WARNING PFX "%s: phy write timeout\n",
1809 hw->dev[port]->name);
1810 return -EIO;
1813 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1815 int i;
1817 gma_write16(hw, port, GM_SMI_CTRL,
1818 GM_SMI_CT_PHY_AD(hw->phy_addr)
1819 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1821 for (i = 0; i < PHY_RETRIES; i++) {
1822 udelay(1);
1823 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1824 goto ready;
1827 return -ETIMEDOUT;
1828 ready:
1829 *val = gma_read16(hw, port, GM_SMI_DATA);
1830 return 0;
1833 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1835 u16 v = 0;
1836 if (__gm_phy_read(hw, port, reg, &v))
1837 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1838 hw->dev[port]->name);
1839 return v;
1842 /* Marvell Phy Initialization */
1843 static void yukon_init(struct skge_hw *hw, int port)
1845 struct skge_port *skge = netdev_priv(hw->dev[port]);
1846 u16 ctrl, ct1000, adv;
1848 if (skge->autoneg == AUTONEG_ENABLE) {
1849 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1851 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1852 PHY_M_EC_MAC_S_MSK);
1853 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1855 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1857 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1860 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1861 if (skge->autoneg == AUTONEG_DISABLE)
1862 ctrl &= ~PHY_CT_ANE;
1864 ctrl |= PHY_CT_RESET;
1865 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1867 ctrl = 0;
1868 ct1000 = 0;
1869 adv = PHY_AN_CSMA;
1871 if (skge->autoneg == AUTONEG_ENABLE) {
1872 if (hw->copper) {
1873 if (skge->advertising & ADVERTISED_1000baseT_Full)
1874 ct1000 |= PHY_M_1000C_AFD;
1875 if (skge->advertising & ADVERTISED_1000baseT_Half)
1876 ct1000 |= PHY_M_1000C_AHD;
1877 if (skge->advertising & ADVERTISED_100baseT_Full)
1878 adv |= PHY_M_AN_100_FD;
1879 if (skge->advertising & ADVERTISED_100baseT_Half)
1880 adv |= PHY_M_AN_100_HD;
1881 if (skge->advertising & ADVERTISED_10baseT_Full)
1882 adv |= PHY_M_AN_10_FD;
1883 if (skge->advertising & ADVERTISED_10baseT_Half)
1884 adv |= PHY_M_AN_10_HD;
1886 /* Set Flow-control capabilities */
1887 adv |= phy_pause_map[skge->flow_control];
1888 } else {
1889 if (skge->advertising & ADVERTISED_1000baseT_Full)
1890 adv |= PHY_M_AN_1000X_AFD;
1891 if (skge->advertising & ADVERTISED_1000baseT_Half)
1892 adv |= PHY_M_AN_1000X_AHD;
1894 adv |= fiber_pause_map[skge->flow_control];
1897 /* Restart Auto-negotiation */
1898 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1899 } else {
1900 /* forced speed/duplex settings */
1901 ct1000 = PHY_M_1000C_MSE;
1903 if (skge->duplex == DUPLEX_FULL)
1904 ctrl |= PHY_CT_DUP_MD;
1906 switch (skge->speed) {
1907 case SPEED_1000:
1908 ctrl |= PHY_CT_SP1000;
1909 break;
1910 case SPEED_100:
1911 ctrl |= PHY_CT_SP100;
1912 break;
1915 ctrl |= PHY_CT_RESET;
1918 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1920 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
1921 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1923 /* Enable phy interrupt on autonegotiation complete (or link up) */
1924 if (skge->autoneg == AUTONEG_ENABLE)
1925 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
1926 else
1927 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1930 static void yukon_reset(struct skge_hw *hw, int port)
1932 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
1933 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
1934 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
1935 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
1936 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1938 gma_write16(hw, port, GM_RX_CTRL,
1939 gma_read16(hw, port, GM_RX_CTRL)
1940 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
1943 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1944 static int is_yukon_lite_a0(struct skge_hw *hw)
1946 u32 reg;
1947 int ret;
1949 if (hw->chip_id != CHIP_ID_YUKON)
1950 return 0;
1952 reg = skge_read32(hw, B2_FAR);
1953 skge_write8(hw, B2_FAR + 3, 0xff);
1954 ret = (skge_read8(hw, B2_FAR + 3) != 0);
1955 skge_write32(hw, B2_FAR, reg);
1956 return ret;
1959 static void yukon_mac_init(struct skge_hw *hw, int port)
1961 struct skge_port *skge = netdev_priv(hw->dev[port]);
1962 int i;
1963 u32 reg;
1964 const u8 *addr = hw->dev[port]->dev_addr;
1966 /* WA code for COMA mode -- set PHY reset */
1967 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1968 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1969 reg = skge_read32(hw, B2_GP_IO);
1970 reg |= GP_DIR_9 | GP_IO_9;
1971 skge_write32(hw, B2_GP_IO, reg);
1974 /* hard reset */
1975 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1976 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1978 /* WA code for COMA mode -- clear PHY reset */
1979 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1980 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1981 reg = skge_read32(hw, B2_GP_IO);
1982 reg |= GP_DIR_9;
1983 reg &= ~GP_IO_9;
1984 skge_write32(hw, B2_GP_IO, reg);
1987 /* Set hardware config mode */
1988 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
1989 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
1990 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
1992 /* Clear GMC reset */
1993 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
1994 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
1995 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
1997 if (skge->autoneg == AUTONEG_DISABLE) {
1998 reg = GM_GPCR_AU_ALL_DIS;
1999 gma_write16(hw, port, GM_GP_CTRL,
2000 gma_read16(hw, port, GM_GP_CTRL) | reg);
2002 switch (skge->speed) {
2003 case SPEED_1000:
2004 reg &= ~GM_GPCR_SPEED_100;
2005 reg |= GM_GPCR_SPEED_1000;
2006 break;
2007 case SPEED_100:
2008 reg &= ~GM_GPCR_SPEED_1000;
2009 reg |= GM_GPCR_SPEED_100;
2010 break;
2011 case SPEED_10:
2012 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2013 break;
2016 if (skge->duplex == DUPLEX_FULL)
2017 reg |= GM_GPCR_DUP_FULL;
2018 } else
2019 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2021 switch (skge->flow_control) {
2022 case FLOW_MODE_NONE:
2023 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2024 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2025 break;
2026 case FLOW_MODE_LOC_SEND:
2027 /* disable Rx flow-control */
2028 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2029 break;
2030 case FLOW_MODE_SYMMETRIC:
2031 case FLOW_MODE_SYM_OR_REM:
2032 /* enable Tx & Rx flow-control */
2033 break;
2036 gma_write16(hw, port, GM_GP_CTRL, reg);
2037 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2039 yukon_init(hw, port);
2041 /* MIB clear */
2042 reg = gma_read16(hw, port, GM_PHY_ADDR);
2043 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2045 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2046 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2047 gma_write16(hw, port, GM_PHY_ADDR, reg);
2049 /* transmit control */
2050 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2052 /* receive control reg: unicast + multicast + no FCS */
2053 gma_write16(hw, port, GM_RX_CTRL,
2054 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2056 /* transmit flow control */
2057 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2059 /* transmit parameter */
2060 gma_write16(hw, port, GM_TX_PARAM,
2061 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2062 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2063 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2065 /* serial mode register */
2066 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
2067 if (hw->dev[port]->mtu > 1500)
2068 reg |= GM_SMOD_JUMBO_ENA;
2070 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2072 /* physical address: used for pause frames */
2073 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2074 /* virtual address for data */
2075 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2077 /* enable interrupt mask for counter overflows */
2078 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2079 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2080 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2082 /* Initialize Mac Fifo */
2084 /* Configure Rx MAC FIFO */
2085 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2086 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2088 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2089 if (is_yukon_lite_a0(hw))
2090 reg &= ~GMF_RX_F_FL_ON;
2092 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2093 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2095 * because Pause Packet Truncation in GMAC is not working
2096 * we have to increase the Flush Threshold to 64 bytes
2097 * in order to flush pause packets in Rx FIFO on Yukon-1
2099 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2101 /* Configure Tx MAC FIFO */
2102 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2103 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2106 /* Go into power down mode */
2107 static void yukon_suspend(struct skge_hw *hw, int port)
2109 u16 ctrl;
2111 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2112 ctrl |= PHY_M_PC_POL_R_DIS;
2113 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2115 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2116 ctrl |= PHY_CT_RESET;
2117 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2119 /* switch IEEE compatible power down mode on */
2120 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2121 ctrl |= PHY_CT_PDOWN;
2122 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2125 static void yukon_stop(struct skge_port *skge)
2127 struct skge_hw *hw = skge->hw;
2128 int port = skge->port;
2130 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2131 yukon_reset(hw, port);
2133 gma_write16(hw, port, GM_GP_CTRL,
2134 gma_read16(hw, port, GM_GP_CTRL)
2135 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2136 gma_read16(hw, port, GM_GP_CTRL);
2138 yukon_suspend(hw, port);
2140 /* set GPHY Control reset */
2141 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2142 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2145 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2147 struct skge_hw *hw = skge->hw;
2148 int port = skge->port;
2149 int i;
2151 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2152 | gma_read32(hw, port, GM_TXO_OK_LO);
2153 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2154 | gma_read32(hw, port, GM_RXO_OK_LO);
2156 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2157 data[i] = gma_read32(hw, port,
2158 skge_stats[i].gma_offset);
2161 static void yukon_mac_intr(struct skge_hw *hw, int port)
2163 struct net_device *dev = hw->dev[port];
2164 struct skge_port *skge = netdev_priv(dev);
2165 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2167 if (netif_msg_intr(skge))
2168 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
2169 dev->name, status);
2171 if (status & GM_IS_RX_FF_OR) {
2172 ++skge->net_stats.rx_fifo_errors;
2173 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2176 if (status & GM_IS_TX_FF_UR) {
2177 ++skge->net_stats.tx_fifo_errors;
2178 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2183 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2185 switch (aux & PHY_M_PS_SPEED_MSK) {
2186 case PHY_M_PS_SPEED_1000:
2187 return SPEED_1000;
2188 case PHY_M_PS_SPEED_100:
2189 return SPEED_100;
2190 default:
2191 return SPEED_10;
2195 static void yukon_link_up(struct skge_port *skge)
2197 struct skge_hw *hw = skge->hw;
2198 int port = skge->port;
2199 u16 reg;
2201 /* Enable Transmit FIFO Underrun */
2202 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2204 reg = gma_read16(hw, port, GM_GP_CTRL);
2205 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2206 reg |= GM_GPCR_DUP_FULL;
2208 /* enable Rx/Tx */
2209 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2210 gma_write16(hw, port, GM_GP_CTRL, reg);
2212 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2213 skge_link_up(skge);
2216 static void yukon_link_down(struct skge_port *skge)
2218 struct skge_hw *hw = skge->hw;
2219 int port = skge->port;
2220 u16 ctrl;
2222 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2223 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2224 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2226 if (skge->flow_status == FLOW_STAT_REM_SEND) {
2227 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2228 ctrl |= PHY_M_AN_ASP;
2229 /* restore Asymmetric Pause bit */
2230 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2233 skge_link_down(skge);
2235 yukon_init(hw, port);
2238 static void yukon_phy_intr(struct skge_port *skge)
2240 struct skge_hw *hw = skge->hw;
2241 int port = skge->port;
2242 const char *reason = NULL;
2243 u16 istatus, phystat;
2245 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2246 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2248 if (netif_msg_intr(skge))
2249 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
2250 skge->netdev->name, istatus, phystat);
2252 if (istatus & PHY_M_IS_AN_COMPL) {
2253 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2254 & PHY_M_AN_RF) {
2255 reason = "remote fault";
2256 goto failed;
2259 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2260 reason = "master/slave fault";
2261 goto failed;
2264 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2265 reason = "speed/duplex";
2266 goto failed;
2269 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2270 ? DUPLEX_FULL : DUPLEX_HALF;
2271 skge->speed = yukon_speed(hw, phystat);
2273 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2274 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2275 case PHY_M_PS_PAUSE_MSK:
2276 skge->flow_status = FLOW_STAT_SYMMETRIC;
2277 break;
2278 case PHY_M_PS_RX_P_EN:
2279 skge->flow_status = FLOW_STAT_REM_SEND;
2280 break;
2281 case PHY_M_PS_TX_P_EN:
2282 skge->flow_status = FLOW_STAT_LOC_SEND;
2283 break;
2284 default:
2285 skge->flow_status = FLOW_STAT_NONE;
2288 if (skge->flow_status == FLOW_STAT_NONE ||
2289 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2290 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2291 else
2292 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2293 yukon_link_up(skge);
2294 return;
2297 if (istatus & PHY_M_IS_LSP_CHANGE)
2298 skge->speed = yukon_speed(hw, phystat);
2300 if (istatus & PHY_M_IS_DUP_CHANGE)
2301 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2302 if (istatus & PHY_M_IS_LST_CHANGE) {
2303 if (phystat & PHY_M_PS_LINK_UP)
2304 yukon_link_up(skge);
2305 else
2306 yukon_link_down(skge);
2308 return;
2309 failed:
2310 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2311 skge->netdev->name, reason);
2313 /* XXX restart autonegotiation? */
2316 static void skge_phy_reset(struct skge_port *skge)
2318 struct skge_hw *hw = skge->hw;
2319 int port = skge->port;
2320 struct net_device *dev = hw->dev[port];
2322 netif_stop_queue(skge->netdev);
2323 netif_carrier_off(skge->netdev);
2325 mutex_lock(&hw->phy_mutex);
2326 if (hw->chip_id == CHIP_ID_GENESIS) {
2327 genesis_reset(hw, port);
2328 genesis_mac_init(hw, port);
2329 } else {
2330 yukon_reset(hw, port);
2331 yukon_init(hw, port);
2333 mutex_unlock(&hw->phy_mutex);
2335 dev->set_multicast_list(dev);
2338 /* Basic MII support */
2339 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2341 struct mii_ioctl_data *data = if_mii(ifr);
2342 struct skge_port *skge = netdev_priv(dev);
2343 struct skge_hw *hw = skge->hw;
2344 int err = -EOPNOTSUPP;
2346 if (!netif_running(dev))
2347 return -ENODEV; /* Phy still in reset */
2349 switch(cmd) {
2350 case SIOCGMIIPHY:
2351 data->phy_id = hw->phy_addr;
2353 /* fallthru */
2354 case SIOCGMIIREG: {
2355 u16 val = 0;
2356 mutex_lock(&hw->phy_mutex);
2357 if (hw->chip_id == CHIP_ID_GENESIS)
2358 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2359 else
2360 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2361 mutex_unlock(&hw->phy_mutex);
2362 data->val_out = val;
2363 break;
2366 case SIOCSMIIREG:
2367 if (!capable(CAP_NET_ADMIN))
2368 return -EPERM;
2370 mutex_lock(&hw->phy_mutex);
2371 if (hw->chip_id == CHIP_ID_GENESIS)
2372 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2373 data->val_in);
2374 else
2375 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2376 data->val_in);
2377 mutex_unlock(&hw->phy_mutex);
2378 break;
2380 return err;
2383 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2385 u32 end;
2387 start /= 8;
2388 len /= 8;
2389 end = start + len - 1;
2391 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2392 skge_write32(hw, RB_ADDR(q, RB_START), start);
2393 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2394 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2395 skge_write32(hw, RB_ADDR(q, RB_END), end);
2397 if (q == Q_R1 || q == Q_R2) {
2398 /* Set thresholds on receive queue's */
2399 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2400 start + (2*len)/3);
2401 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2402 start + (len/3));
2403 } else {
2404 /* Enable store & forward on Tx queue's because
2405 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2407 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2410 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2413 /* Setup Bus Memory Interface */
2414 static void skge_qset(struct skge_port *skge, u16 q,
2415 const struct skge_element *e)
2417 struct skge_hw *hw = skge->hw;
2418 u32 watermark = 0x600;
2419 u64 base = skge->dma + (e->desc - skge->mem);
2421 /* optimization to reduce window on 32bit/33mhz */
2422 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2423 watermark /= 2;
2425 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2426 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2427 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2428 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2431 static int skge_up(struct net_device *dev)
2433 struct skge_port *skge = netdev_priv(dev);
2434 struct skge_hw *hw = skge->hw;
2435 int port = skge->port;
2436 u32 chunk, ram_addr;
2437 size_t rx_size, tx_size;
2438 int err;
2440 if (!is_valid_ether_addr(dev->dev_addr))
2441 return -EINVAL;
2443 if (netif_msg_ifup(skge))
2444 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2446 if (dev->mtu > RX_BUF_SIZE)
2447 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2448 else
2449 skge->rx_buf_size = RX_BUF_SIZE;
2452 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2453 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2454 skge->mem_size = tx_size + rx_size;
2455 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2456 if (!skge->mem)
2457 return -ENOMEM;
2459 BUG_ON(skge->dma & 7);
2461 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2462 dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2463 err = -EINVAL;
2464 goto free_pci_mem;
2467 memset(skge->mem, 0, skge->mem_size);
2469 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2470 if (err)
2471 goto free_pci_mem;
2473 err = skge_rx_fill(dev);
2474 if (err)
2475 goto free_rx_ring;
2477 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2478 skge->dma + rx_size);
2479 if (err)
2480 goto free_rx_ring;
2482 /* Initialize MAC */
2483 mutex_lock(&hw->phy_mutex);
2484 if (hw->chip_id == CHIP_ID_GENESIS)
2485 genesis_mac_init(hw, port);
2486 else
2487 yukon_mac_init(hw, port);
2488 mutex_unlock(&hw->phy_mutex);
2490 /* Configure RAMbuffers */
2491 chunk = hw->ram_size / ((hw->ports + 1)*2);
2492 ram_addr = hw->ram_offset + 2 * chunk * port;
2494 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2495 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2497 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2498 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2499 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2501 /* Start receiver BMU */
2502 wmb();
2503 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2504 skge_led(skge, LED_MODE_ON);
2506 netif_poll_enable(dev);
2507 return 0;
2509 free_rx_ring:
2510 skge_rx_clean(skge);
2511 kfree(skge->rx_ring.start);
2512 free_pci_mem:
2513 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2514 skge->mem = NULL;
2516 return err;
2519 static int skge_down(struct net_device *dev)
2521 struct skge_port *skge = netdev_priv(dev);
2522 struct skge_hw *hw = skge->hw;
2523 int port = skge->port;
2525 if (skge->mem == NULL)
2526 return 0;
2528 if (netif_msg_ifdown(skge))
2529 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2531 netif_stop_queue(dev);
2532 if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
2533 cancel_rearming_delayed_work(&skge->link_thread);
2535 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2536 if (hw->chip_id == CHIP_ID_GENESIS)
2537 genesis_stop(skge);
2538 else
2539 yukon_stop(skge);
2541 /* Stop transmitter */
2542 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2543 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2544 RB_RST_SET|RB_DIS_OP_MD);
2547 /* Disable Force Sync bit and Enable Alloc bit */
2548 skge_write8(hw, SK_REG(port, TXA_CTRL),
2549 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2551 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2552 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2553 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2555 /* Reset PCI FIFO */
2556 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2557 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2559 /* Reset the RAM Buffer async Tx queue */
2560 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2561 /* stop receiver */
2562 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2563 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2564 RB_RST_SET|RB_DIS_OP_MD);
2565 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2567 if (hw->chip_id == CHIP_ID_GENESIS) {
2568 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2569 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2570 } else {
2571 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2572 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2575 skge_led(skge, LED_MODE_OFF);
2577 netif_poll_disable(dev);
2578 skge_tx_clean(dev);
2579 skge_rx_clean(skge);
2581 kfree(skge->rx_ring.start);
2582 kfree(skge->tx_ring.start);
2583 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2584 skge->mem = NULL;
2585 return 0;
2588 static inline int skge_avail(const struct skge_ring *ring)
2590 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2591 + (ring->to_clean - ring->to_use) - 1;
2594 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2596 struct skge_port *skge = netdev_priv(dev);
2597 struct skge_hw *hw = skge->hw;
2598 struct skge_element *e;
2599 struct skge_tx_desc *td;
2600 int i;
2601 u32 control, len;
2602 u64 map;
2604 if (skb_padto(skb, ETH_ZLEN))
2605 return NETDEV_TX_OK;
2607 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2608 return NETDEV_TX_BUSY;
2610 e = skge->tx_ring.to_use;
2611 td = e->desc;
2612 BUG_ON(td->control & BMU_OWN);
2613 e->skb = skb;
2614 len = skb_headlen(skb);
2615 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2616 pci_unmap_addr_set(e, mapaddr, map);
2617 pci_unmap_len_set(e, maplen, len);
2619 td->dma_lo = map;
2620 td->dma_hi = map >> 32;
2622 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2623 int offset = skb->h.raw - skb->data;
2625 /* This seems backwards, but it is what the sk98lin
2626 * does. Looks like hardware is wrong?
2628 if (skb->h.ipiph->protocol == IPPROTO_UDP
2629 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2630 control = BMU_TCP_CHECK;
2631 else
2632 control = BMU_UDP_CHECK;
2634 td->csum_offs = 0;
2635 td->csum_start = offset;
2636 td->csum_write = offset + skb->csum_offset;
2637 } else
2638 control = BMU_CHECK;
2640 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2641 control |= BMU_EOF| BMU_IRQ_EOF;
2642 else {
2643 struct skge_tx_desc *tf = td;
2645 control |= BMU_STFWD;
2646 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2647 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2649 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2650 frag->size, PCI_DMA_TODEVICE);
2652 e = e->next;
2653 e->skb = skb;
2654 tf = e->desc;
2655 BUG_ON(tf->control & BMU_OWN);
2657 tf->dma_lo = map;
2658 tf->dma_hi = (u64) map >> 32;
2659 pci_unmap_addr_set(e, mapaddr, map);
2660 pci_unmap_len_set(e, maplen, frag->size);
2662 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2664 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2666 /* Make sure all the descriptors written */
2667 wmb();
2668 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2669 wmb();
2671 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2673 if (unlikely(netif_msg_tx_queued(skge)))
2674 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2675 dev->name, e - skge->tx_ring.start, skb->len);
2677 skge->tx_ring.to_use = e->next;
2678 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2679 pr_debug("%s: transmit queue full\n", dev->name);
2680 netif_stop_queue(dev);
2683 dev->trans_start = jiffies;
2685 return NETDEV_TX_OK;
2689 /* Free resources associated with this reing element */
2690 static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2691 u32 control)
2693 struct pci_dev *pdev = skge->hw->pdev;
2695 BUG_ON(!e->skb);
2697 /* skb header vs. fragment */
2698 if (control & BMU_STF)
2699 pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
2700 pci_unmap_len(e, maplen),
2701 PCI_DMA_TODEVICE);
2702 else
2703 pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
2704 pci_unmap_len(e, maplen),
2705 PCI_DMA_TODEVICE);
2707 if (control & BMU_EOF) {
2708 if (unlikely(netif_msg_tx_done(skge)))
2709 printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
2710 skge->netdev->name, e - skge->tx_ring.start);
2712 dev_kfree_skb(e->skb);
2714 e->skb = NULL;
2717 /* Free all buffers in transmit ring */
2718 static void skge_tx_clean(struct net_device *dev)
2720 struct skge_port *skge = netdev_priv(dev);
2721 struct skge_element *e;
2723 netif_tx_lock_bh(dev);
2724 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2725 struct skge_tx_desc *td = e->desc;
2726 skge_tx_free(skge, e, td->control);
2727 td->control = 0;
2730 skge->tx_ring.to_clean = e;
2731 netif_wake_queue(dev);
2732 netif_tx_unlock_bh(dev);
2735 static void skge_tx_timeout(struct net_device *dev)
2737 struct skge_port *skge = netdev_priv(dev);
2739 if (netif_msg_timer(skge))
2740 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2742 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2743 skge_tx_clean(dev);
2746 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2748 int err;
2750 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2751 return -EINVAL;
2753 if (!netif_running(dev)) {
2754 dev->mtu = new_mtu;
2755 return 0;
2758 skge_down(dev);
2760 dev->mtu = new_mtu;
2762 err = skge_up(dev);
2763 if (err)
2764 dev_close(dev);
2766 return err;
2769 static void genesis_set_multicast(struct net_device *dev)
2771 struct skge_port *skge = netdev_priv(dev);
2772 struct skge_hw *hw = skge->hw;
2773 int port = skge->port;
2774 int i, count = dev->mc_count;
2775 struct dev_mc_list *list = dev->mc_list;
2776 u32 mode;
2777 u8 filter[8];
2779 mode = xm_read32(hw, port, XM_MODE);
2780 mode |= XM_MD_ENA_HASH;
2781 if (dev->flags & IFF_PROMISC)
2782 mode |= XM_MD_ENA_PROM;
2783 else
2784 mode &= ~XM_MD_ENA_PROM;
2786 if (dev->flags & IFF_ALLMULTI)
2787 memset(filter, 0xff, sizeof(filter));
2788 else {
2789 memset(filter, 0, sizeof(filter));
2790 for (i = 0; list && i < count; i++, list = list->next) {
2791 u32 crc, bit;
2792 crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
2793 bit = ~crc & 0x3f;
2794 filter[bit/8] |= 1 << (bit%8);
2798 xm_write32(hw, port, XM_MODE, mode);
2799 xm_outhash(hw, port, XM_HSM, filter);
2802 static void yukon_set_multicast(struct net_device *dev)
2804 struct skge_port *skge = netdev_priv(dev);
2805 struct skge_hw *hw = skge->hw;
2806 int port = skge->port;
2807 struct dev_mc_list *list = dev->mc_list;
2808 u16 reg;
2809 u8 filter[8];
2811 memset(filter, 0, sizeof(filter));
2813 reg = gma_read16(hw, port, GM_RX_CTRL);
2814 reg |= GM_RXCR_UCF_ENA;
2816 if (dev->flags & IFF_PROMISC) /* promiscuous */
2817 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2818 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2819 memset(filter, 0xff, sizeof(filter));
2820 else if (dev->mc_count == 0) /* no multicast */
2821 reg &= ~GM_RXCR_MCF_ENA;
2822 else {
2823 int i;
2824 reg |= GM_RXCR_MCF_ENA;
2826 for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
2827 u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
2828 filter[bit/8] |= 1 << (bit%8);
2833 gma_write16(hw, port, GM_MC_ADDR_H1,
2834 (u16)filter[0] | ((u16)filter[1] << 8));
2835 gma_write16(hw, port, GM_MC_ADDR_H2,
2836 (u16)filter[2] | ((u16)filter[3] << 8));
2837 gma_write16(hw, port, GM_MC_ADDR_H3,
2838 (u16)filter[4] | ((u16)filter[5] << 8));
2839 gma_write16(hw, port, GM_MC_ADDR_H4,
2840 (u16)filter[6] | ((u16)filter[7] << 8));
2842 gma_write16(hw, port, GM_RX_CTRL, reg);
2845 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2847 if (hw->chip_id == CHIP_ID_GENESIS)
2848 return status >> XMR_FS_LEN_SHIFT;
2849 else
2850 return status >> GMR_FS_LEN_SHIFT;
2853 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2855 if (hw->chip_id == CHIP_ID_GENESIS)
2856 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2857 else
2858 return (status & GMR_FS_ANY_ERR) ||
2859 (status & GMR_FS_RX_OK) == 0;
2863 /* Get receive buffer from descriptor.
2864 * Handles copy of small buffers and reallocation failures
2866 static struct sk_buff *skge_rx_get(struct net_device *dev,
2867 struct skge_element *e,
2868 u32 control, u32 status, u16 csum)
2870 struct skge_port *skge = netdev_priv(dev);
2871 struct sk_buff *skb;
2872 u16 len = control & BMU_BBC;
2874 if (unlikely(netif_msg_rx_status(skge)))
2875 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
2876 dev->name, e - skge->rx_ring.start,
2877 status, len);
2879 if (len > skge->rx_buf_size)
2880 goto error;
2882 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
2883 goto error;
2885 if (bad_phy_status(skge->hw, status))
2886 goto error;
2888 if (phy_length(skge->hw, status) != len)
2889 goto error;
2891 if (len < RX_COPY_THRESHOLD) {
2892 skb = netdev_alloc_skb(dev, len + 2);
2893 if (!skb)
2894 goto resubmit;
2896 skb_reserve(skb, 2);
2897 pci_dma_sync_single_for_cpu(skge->hw->pdev,
2898 pci_unmap_addr(e, mapaddr),
2899 len, PCI_DMA_FROMDEVICE);
2900 memcpy(skb->data, e->skb->data, len);
2901 pci_dma_sync_single_for_device(skge->hw->pdev,
2902 pci_unmap_addr(e, mapaddr),
2903 len, PCI_DMA_FROMDEVICE);
2904 skge_rx_reuse(e, skge->rx_buf_size);
2905 } else {
2906 struct sk_buff *nskb;
2907 nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
2908 if (!nskb)
2909 goto resubmit;
2911 skb_reserve(nskb, NET_IP_ALIGN);
2912 pci_unmap_single(skge->hw->pdev,
2913 pci_unmap_addr(e, mapaddr),
2914 pci_unmap_len(e, maplen),
2915 PCI_DMA_FROMDEVICE);
2916 skb = e->skb;
2917 prefetch(skb->data);
2918 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
2921 skb_put(skb, len);
2922 if (skge->rx_csum) {
2923 skb->csum = csum;
2924 skb->ip_summed = CHECKSUM_COMPLETE;
2927 skb->protocol = eth_type_trans(skb, dev);
2929 return skb;
2930 error:
2932 if (netif_msg_rx_err(skge))
2933 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
2934 dev->name, e - skge->rx_ring.start,
2935 control, status);
2937 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
2938 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
2939 skge->net_stats.rx_length_errors++;
2940 if (status & XMR_FS_FRA_ERR)
2941 skge->net_stats.rx_frame_errors++;
2942 if (status & XMR_FS_FCS_ERR)
2943 skge->net_stats.rx_crc_errors++;
2944 } else {
2945 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
2946 skge->net_stats.rx_length_errors++;
2947 if (status & GMR_FS_FRAGMENT)
2948 skge->net_stats.rx_frame_errors++;
2949 if (status & GMR_FS_CRC_ERR)
2950 skge->net_stats.rx_crc_errors++;
2953 resubmit:
2954 skge_rx_reuse(e, skge->rx_buf_size);
2955 return NULL;
2958 /* Free all buffers in Tx ring which are no longer owned by device */
2959 static void skge_tx_done(struct net_device *dev)
2961 struct skge_port *skge = netdev_priv(dev);
2962 struct skge_ring *ring = &skge->tx_ring;
2963 struct skge_element *e;
2965 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
2967 netif_tx_lock(dev);
2968 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
2969 struct skge_tx_desc *td = e->desc;
2971 if (td->control & BMU_OWN)
2972 break;
2974 skge_tx_free(skge, e, td->control);
2976 skge->tx_ring.to_clean = e;
2978 if (skge_avail(&skge->tx_ring) > TX_LOW_WATER)
2979 netif_wake_queue(dev);
2981 netif_tx_unlock(dev);
2984 static int skge_poll(struct net_device *dev, int *budget)
2986 struct skge_port *skge = netdev_priv(dev);
2987 struct skge_hw *hw = skge->hw;
2988 struct skge_ring *ring = &skge->rx_ring;
2989 struct skge_element *e;
2990 unsigned long flags;
2991 int to_do = min(dev->quota, *budget);
2992 int work_done = 0;
2994 skge_tx_done(dev);
2996 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
2998 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
2999 struct skge_rx_desc *rd = e->desc;
3000 struct sk_buff *skb;
3001 u32 control;
3003 rmb();
3004 control = rd->control;
3005 if (control & BMU_OWN)
3006 break;
3008 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3009 if (likely(skb)) {
3010 dev->last_rx = jiffies;
3011 netif_receive_skb(skb);
3013 ++work_done;
3016 ring->to_clean = e;
3018 /* restart receiver */
3019 wmb();
3020 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3022 *budget -= work_done;
3023 dev->quota -= work_done;
3025 if (work_done >= to_do)
3026 return 1; /* not done */
3028 spin_lock_irqsave(&hw->hw_lock, flags);
3029 __netif_rx_complete(dev);
3030 hw->intr_mask |= irqmask[skge->port];
3031 skge_write32(hw, B0_IMSK, hw->intr_mask);
3032 skge_read32(hw, B0_IMSK);
3033 spin_unlock_irqrestore(&hw->hw_lock, flags);
3035 return 0;
3038 /* Parity errors seem to happen when Genesis is connected to a switch
3039 * with no other ports present. Heartbeat error??
3041 static void skge_mac_parity(struct skge_hw *hw, int port)
3043 struct net_device *dev = hw->dev[port];
3045 if (dev) {
3046 struct skge_port *skge = netdev_priv(dev);
3047 ++skge->net_stats.tx_heartbeat_errors;
3050 if (hw->chip_id == CHIP_ID_GENESIS)
3051 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3052 MFF_CLR_PERR);
3053 else
3054 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3055 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3056 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3057 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3060 static void skge_mac_intr(struct skge_hw *hw, int port)
3062 if (hw->chip_id == CHIP_ID_GENESIS)
3063 genesis_mac_intr(hw, port);
3064 else
3065 yukon_mac_intr(hw, port);
3068 /* Handle device specific framing and timeout interrupts */
3069 static void skge_error_irq(struct skge_hw *hw)
3071 struct pci_dev *pdev = hw->pdev;
3072 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3074 if (hw->chip_id == CHIP_ID_GENESIS) {
3075 /* clear xmac errors */
3076 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3077 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3078 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3079 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3080 } else {
3081 /* Timestamp (unused) overflow */
3082 if (hwstatus & IS_IRQ_TIST_OV)
3083 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3086 if (hwstatus & IS_RAM_RD_PAR) {
3087 dev_err(&pdev->dev, "Ram read data parity error\n");
3088 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3091 if (hwstatus & IS_RAM_WR_PAR) {
3092 dev_err(&pdev->dev, "Ram write data parity error\n");
3093 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3096 if (hwstatus & IS_M1_PAR_ERR)
3097 skge_mac_parity(hw, 0);
3099 if (hwstatus & IS_M2_PAR_ERR)
3100 skge_mac_parity(hw, 1);
3102 if (hwstatus & IS_R1_PAR_ERR) {
3103 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3104 hw->dev[0]->name);
3105 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3108 if (hwstatus & IS_R2_PAR_ERR) {
3109 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3110 hw->dev[1]->name);
3111 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3114 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3115 u16 pci_status, pci_cmd;
3117 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3118 pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3120 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3121 pci_cmd, pci_status);
3123 /* Write the error bits back to clear them. */
3124 pci_status &= PCI_STATUS_ERROR_BITS;
3125 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3126 pci_write_config_word(pdev, PCI_COMMAND,
3127 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3128 pci_write_config_word(pdev, PCI_STATUS, pci_status);
3129 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3131 /* if error still set then just ignore it */
3132 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3133 if (hwstatus & IS_IRQ_STAT) {
3134 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3135 hw->intr_mask &= ~IS_HW_ERR;
3141 * Interrupt from PHY are handled in work queue
3142 * because accessing phy registers requires spin wait which might
3143 * cause excess interrupt latency.
3145 static void skge_extirq(struct work_struct *work)
3147 struct skge_hw *hw = container_of(work, struct skge_hw, phy_work);
3148 int port;
3150 mutex_lock(&hw->phy_mutex);
3151 for (port = 0; port < hw->ports; port++) {
3152 struct net_device *dev = hw->dev[port];
3153 struct skge_port *skge = netdev_priv(dev);
3155 if (netif_running(dev)) {
3156 if (hw->chip_id != CHIP_ID_GENESIS)
3157 yukon_phy_intr(skge);
3158 else if (hw->phy_type == SK_PHY_BCOM)
3159 bcom_phy_intr(skge);
3162 mutex_unlock(&hw->phy_mutex);
3164 spin_lock_irq(&hw->hw_lock);
3165 hw->intr_mask |= IS_EXT_REG;
3166 skge_write32(hw, B0_IMSK, hw->intr_mask);
3167 skge_read32(hw, B0_IMSK);
3168 spin_unlock_irq(&hw->hw_lock);
3171 static irqreturn_t skge_intr(int irq, void *dev_id)
3173 struct skge_hw *hw = dev_id;
3174 u32 status;
3175 int handled = 0;
3177 spin_lock(&hw->hw_lock);
3178 /* Reading this register masks IRQ */
3179 status = skge_read32(hw, B0_SP_ISRC);
3180 if (status == 0 || status == ~0)
3181 goto out;
3183 handled = 1;
3184 status &= hw->intr_mask;
3185 if (status & IS_EXT_REG) {
3186 hw->intr_mask &= ~IS_EXT_REG;
3187 schedule_work(&hw->phy_work);
3190 if (status & (IS_XA1_F|IS_R1_F)) {
3191 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3192 netif_rx_schedule(hw->dev[0]);
3195 if (status & IS_PA_TO_TX1)
3196 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3198 if (status & IS_PA_TO_RX1) {
3199 struct skge_port *skge = netdev_priv(hw->dev[0]);
3201 ++skge->net_stats.rx_over_errors;
3202 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3206 if (status & IS_MAC1)
3207 skge_mac_intr(hw, 0);
3209 if (hw->dev[1]) {
3210 if (status & (IS_XA2_F|IS_R2_F)) {
3211 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3212 netif_rx_schedule(hw->dev[1]);
3215 if (status & IS_PA_TO_RX2) {
3216 struct skge_port *skge = netdev_priv(hw->dev[1]);
3217 ++skge->net_stats.rx_over_errors;
3218 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3221 if (status & IS_PA_TO_TX2)
3222 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3224 if (status & IS_MAC2)
3225 skge_mac_intr(hw, 1);
3228 if (status & IS_HW_ERR)
3229 skge_error_irq(hw);
3231 skge_write32(hw, B0_IMSK, hw->intr_mask);
3232 skge_read32(hw, B0_IMSK);
3233 out:
3234 spin_unlock(&hw->hw_lock);
3236 return IRQ_RETVAL(handled);
3239 #ifdef CONFIG_NET_POLL_CONTROLLER
3240 static void skge_netpoll(struct net_device *dev)
3242 struct skge_port *skge = netdev_priv(dev);
3244 disable_irq(dev->irq);
3245 skge_intr(dev->irq, skge->hw);
3246 enable_irq(dev->irq);
3248 #endif
3250 static int skge_set_mac_address(struct net_device *dev, void *p)
3252 struct skge_port *skge = netdev_priv(dev);
3253 struct skge_hw *hw = skge->hw;
3254 unsigned port = skge->port;
3255 const struct sockaddr *addr = p;
3257 if (!is_valid_ether_addr(addr->sa_data))
3258 return -EADDRNOTAVAIL;
3260 mutex_lock(&hw->phy_mutex);
3261 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3262 memcpy_toio(hw->regs + B2_MAC_1 + port*8,
3263 dev->dev_addr, ETH_ALEN);
3264 memcpy_toio(hw->regs + B2_MAC_2 + port*8,
3265 dev->dev_addr, ETH_ALEN);
3267 if (hw->chip_id == CHIP_ID_GENESIS)
3268 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3269 else {
3270 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3271 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3273 mutex_unlock(&hw->phy_mutex);
3275 return 0;
3278 static const struct {
3279 u8 id;
3280 const char *name;
3281 } skge_chips[] = {
3282 { CHIP_ID_GENESIS, "Genesis" },
3283 { CHIP_ID_YUKON, "Yukon" },
3284 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3285 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3288 static const char *skge_board_name(const struct skge_hw *hw)
3290 int i;
3291 static char buf[16];
3293 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3294 if (skge_chips[i].id == hw->chip_id)
3295 return skge_chips[i].name;
3297 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3298 return buf;
3303 * Setup the board data structure, but don't bring up
3304 * the port(s)
3306 static int skge_reset(struct skge_hw *hw)
3308 u32 reg;
3309 u16 ctst, pci_status;
3310 u8 t8, mac_cfg, pmd_type;
3311 int i;
3313 ctst = skge_read16(hw, B0_CTST);
3315 /* do a SW reset */
3316 skge_write8(hw, B0_CTST, CS_RST_SET);
3317 skge_write8(hw, B0_CTST, CS_RST_CLR);
3319 /* clear PCI errors, if any */
3320 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3321 skge_write8(hw, B2_TST_CTRL2, 0);
3323 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3324 pci_write_config_word(hw->pdev, PCI_STATUS,
3325 pci_status | PCI_STATUS_ERROR_BITS);
3326 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3327 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3329 /* restore CLK_RUN bits (for Yukon-Lite) */
3330 skge_write16(hw, B0_CTST,
3331 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3333 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3334 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3335 pmd_type = skge_read8(hw, B2_PMD_TYP);
3336 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3338 switch (hw->chip_id) {
3339 case CHIP_ID_GENESIS:
3340 switch (hw->phy_type) {
3341 case SK_PHY_XMAC:
3342 hw->phy_addr = PHY_ADDR_XMAC;
3343 break;
3344 case SK_PHY_BCOM:
3345 hw->phy_addr = PHY_ADDR_BCOM;
3346 break;
3347 default:
3348 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3349 hw->phy_type);
3350 return -EOPNOTSUPP;
3352 break;
3354 case CHIP_ID_YUKON:
3355 case CHIP_ID_YUKON_LITE:
3356 case CHIP_ID_YUKON_LP:
3357 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3358 hw->copper = 1;
3360 hw->phy_addr = PHY_ADDR_MARV;
3361 break;
3363 default:
3364 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3365 hw->chip_id);
3366 return -EOPNOTSUPP;
3369 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3370 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3371 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3373 /* read the adapters RAM size */
3374 t8 = skge_read8(hw, B2_E_0);
3375 if (hw->chip_id == CHIP_ID_GENESIS) {
3376 if (t8 == 3) {
3377 /* special case: 4 x 64k x 36, offset = 0x80000 */
3378 hw->ram_size = 0x100000;
3379 hw->ram_offset = 0x80000;
3380 } else
3381 hw->ram_size = t8 * 512;
3383 else if (t8 == 0)
3384 hw->ram_size = 0x20000;
3385 else
3386 hw->ram_size = t8 * 4096;
3388 hw->intr_mask = IS_HW_ERR | IS_PORT_1;
3389 if (hw->ports > 1)
3390 hw->intr_mask |= IS_PORT_2;
3392 if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
3393 hw->intr_mask |= IS_EXT_REG;
3395 if (hw->chip_id == CHIP_ID_GENESIS)
3396 genesis_init(hw);
3397 else {
3398 /* switch power to VCC (WA for VAUX problem) */
3399 skge_write8(hw, B0_POWER_CTRL,
3400 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3402 /* avoid boards with stuck Hardware error bits */
3403 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3404 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3405 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3406 hw->intr_mask &= ~IS_HW_ERR;
3409 /* Clear PHY COMA */
3410 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3411 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3412 reg &= ~PCI_PHY_COMA;
3413 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3414 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3417 for (i = 0; i < hw->ports; i++) {
3418 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3419 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3423 /* turn off hardware timer (unused) */
3424 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3425 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3426 skge_write8(hw, B0_LED, LED_STAT_ON);
3428 /* enable the Tx Arbiters */
3429 for (i = 0; i < hw->ports; i++)
3430 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3432 /* Initialize ram interface */
3433 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3435 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3436 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3437 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3438 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3439 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3440 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3441 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3442 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3443 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3444 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3445 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3446 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3448 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3450 /* Set interrupt moderation for Transmit only
3451 * Receive interrupts avoided by NAPI
3453 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3454 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3455 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3457 skge_write32(hw, B0_IMSK, hw->intr_mask);
3459 mutex_lock(&hw->phy_mutex);
3460 for (i = 0; i < hw->ports; i++) {
3461 if (hw->chip_id == CHIP_ID_GENESIS)
3462 genesis_reset(hw, i);
3463 else
3464 yukon_reset(hw, i);
3466 mutex_unlock(&hw->phy_mutex);
3468 return 0;
3471 /* Initialize network device */
3472 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3473 int highmem)
3475 struct skge_port *skge;
3476 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3478 if (!dev) {
3479 dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
3480 return NULL;
3483 SET_MODULE_OWNER(dev);
3484 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3485 dev->open = skge_up;
3486 dev->stop = skge_down;
3487 dev->do_ioctl = skge_ioctl;
3488 dev->hard_start_xmit = skge_xmit_frame;
3489 dev->get_stats = skge_get_stats;
3490 if (hw->chip_id == CHIP_ID_GENESIS)
3491 dev->set_multicast_list = genesis_set_multicast;
3492 else
3493 dev->set_multicast_list = yukon_set_multicast;
3495 dev->set_mac_address = skge_set_mac_address;
3496 dev->change_mtu = skge_change_mtu;
3497 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3498 dev->tx_timeout = skge_tx_timeout;
3499 dev->watchdog_timeo = TX_WATCHDOG;
3500 dev->poll = skge_poll;
3501 dev->weight = NAPI_WEIGHT;
3502 #ifdef CONFIG_NET_POLL_CONTROLLER
3503 dev->poll_controller = skge_netpoll;
3504 #endif
3505 dev->irq = hw->pdev->irq;
3507 if (highmem)
3508 dev->features |= NETIF_F_HIGHDMA;
3510 skge = netdev_priv(dev);
3511 skge->netdev = dev;
3512 skge->hw = hw;
3513 skge->msg_enable = netif_msg_init(debug, default_msg);
3514 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3515 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3517 /* Auto speed and flow control */
3518 skge->autoneg = AUTONEG_ENABLE;
3519 skge->flow_control = FLOW_MODE_SYM_OR_REM;
3520 skge->duplex = -1;
3521 skge->speed = -1;
3522 skge->advertising = skge_supported_modes(hw);
3523 skge->wol = pci_wake_enabled(hw->pdev) ? wol_supported(hw) : 0;
3525 hw->dev[port] = dev;
3527 skge->port = port;
3529 /* Only used for Genesis XMAC */
3530 INIT_DELAYED_WORK(&skge->link_thread, xm_link_timer);
3532 if (hw->chip_id != CHIP_ID_GENESIS) {
3533 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3534 skge->rx_csum = 1;
3537 /* read the mac address */
3538 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3539 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3541 /* device is off until link detection */
3542 netif_carrier_off(dev);
3543 netif_stop_queue(dev);
3545 return dev;
3548 static void __devinit skge_show_addr(struct net_device *dev)
3550 const struct skge_port *skge = netdev_priv(dev);
3552 if (netif_msg_probe(skge))
3553 printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3554 dev->name,
3555 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3556 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3559 static int __devinit skge_probe(struct pci_dev *pdev,
3560 const struct pci_device_id *ent)
3562 struct net_device *dev, *dev1;
3563 struct skge_hw *hw;
3564 int err, using_dac = 0;
3566 err = pci_enable_device(pdev);
3567 if (err) {
3568 dev_err(&pdev->dev, "cannot enable PCI device\n");
3569 goto err_out;
3572 err = pci_request_regions(pdev, DRV_NAME);
3573 if (err) {
3574 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3575 goto err_out_disable_pdev;
3578 pci_set_master(pdev);
3580 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3581 using_dac = 1;
3582 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3583 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3584 using_dac = 0;
3585 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3588 if (err) {
3589 dev_err(&pdev->dev, "no usable DMA configuration\n");
3590 goto err_out_free_regions;
3593 #ifdef __BIG_ENDIAN
3594 /* byte swap descriptors in hardware */
3596 u32 reg;
3598 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3599 reg |= PCI_REV_DESC;
3600 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3602 #endif
3604 err = -ENOMEM;
3605 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3606 if (!hw) {
3607 dev_err(&pdev->dev, "cannot allocate hardware struct\n");
3608 goto err_out_free_regions;
3611 hw->pdev = pdev;
3612 mutex_init(&hw->phy_mutex);
3613 INIT_WORK(&hw->phy_work, skge_extirq);
3614 spin_lock_init(&hw->hw_lock);
3616 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3617 if (!hw->regs) {
3618 dev_err(&pdev->dev, "cannot map device registers\n");
3619 goto err_out_free_hw;
3622 err = skge_reset(hw);
3623 if (err)
3624 goto err_out_iounmap;
3626 printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
3627 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3628 skge_board_name(hw), hw->chip_rev);
3630 dev = skge_devinit(hw, 0, using_dac);
3631 if (!dev)
3632 goto err_out_led_off;
3634 /* Some motherboards are broken and has zero in ROM. */
3635 if (!is_valid_ether_addr(dev->dev_addr))
3636 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3638 err = register_netdev(dev);
3639 if (err) {
3640 dev_err(&pdev->dev, "cannot register net device\n");
3641 goto err_out_free_netdev;
3644 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
3645 if (err) {
3646 dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
3647 dev->name, pdev->irq);
3648 goto err_out_unregister;
3650 skge_show_addr(dev);
3652 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3653 if (register_netdev(dev1) == 0)
3654 skge_show_addr(dev1);
3655 else {
3656 /* Failure to register second port need not be fatal */
3657 dev_warn(&pdev->dev, "register of second port failed\n");
3658 hw->dev[1] = NULL;
3659 free_netdev(dev1);
3662 pci_set_drvdata(pdev, hw);
3664 return 0;
3666 err_out_unregister:
3667 unregister_netdev(dev);
3668 err_out_free_netdev:
3669 free_netdev(dev);
3670 err_out_led_off:
3671 skge_write16(hw, B0_LED, LED_STAT_OFF);
3672 err_out_iounmap:
3673 iounmap(hw->regs);
3674 err_out_free_hw:
3675 kfree(hw);
3676 err_out_free_regions:
3677 pci_release_regions(pdev);
3678 err_out_disable_pdev:
3679 pci_disable_device(pdev);
3680 pci_set_drvdata(pdev, NULL);
3681 err_out:
3682 return err;
3685 static void __devexit skge_remove(struct pci_dev *pdev)
3687 struct skge_hw *hw = pci_get_drvdata(pdev);
3688 struct net_device *dev0, *dev1;
3690 if (!hw)
3691 return;
3693 if ((dev1 = hw->dev[1]))
3694 unregister_netdev(dev1);
3695 dev0 = hw->dev[0];
3696 unregister_netdev(dev0);
3698 spin_lock_irq(&hw->hw_lock);
3699 hw->intr_mask = 0;
3700 skge_write32(hw, B0_IMSK, 0);
3701 skge_read32(hw, B0_IMSK);
3702 spin_unlock_irq(&hw->hw_lock);
3704 skge_write16(hw, B0_LED, LED_STAT_OFF);
3705 skge_write8(hw, B0_CTST, CS_RST_SET);
3707 flush_scheduled_work();
3709 free_irq(pdev->irq, hw);
3710 pci_release_regions(pdev);
3711 pci_disable_device(pdev);
3712 if (dev1)
3713 free_netdev(dev1);
3714 free_netdev(dev0);
3716 iounmap(hw->regs);
3717 kfree(hw);
3718 pci_set_drvdata(pdev, NULL);
3721 #ifdef CONFIG_PM
3722 static int vaux_avail(struct pci_dev *pdev)
3724 int pm_cap;
3726 pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
3727 if (pm_cap) {
3728 u16 ctl;
3729 pci_read_config_word(pdev, pm_cap + PCI_PM_PMC, &ctl);
3730 if (ctl & PCI_PM_CAP_AUX_POWER)
3731 return 1;
3733 return 0;
3737 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
3739 struct skge_hw *hw = pci_get_drvdata(pdev);
3740 int i, err, wol = 0;
3742 err = pci_save_state(pdev);
3743 if (err)
3744 return err;
3746 for (i = 0; i < hw->ports; i++) {
3747 struct net_device *dev = hw->dev[i];
3748 struct skge_port *skge = netdev_priv(dev);
3750 if (netif_running(dev))
3751 skge_down(dev);
3752 if (skge->wol)
3753 skge_wol_init(skge);
3755 wol |= skge->wol;
3758 if (wol && vaux_avail(pdev))
3759 skge_write8(hw, B0_POWER_CTRL,
3760 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
3762 skge_write32(hw, B0_IMSK, 0);
3763 pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
3764 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3766 return 0;
3769 static int skge_resume(struct pci_dev *pdev)
3771 struct skge_hw *hw = pci_get_drvdata(pdev);
3772 int i, err;
3774 err = pci_set_power_state(pdev, PCI_D0);
3775 if (err)
3776 goto out;
3778 err = pci_restore_state(pdev);
3779 if (err)
3780 goto out;
3782 pci_enable_wake(pdev, PCI_D0, 0);
3784 err = skge_reset(hw);
3785 if (err)
3786 goto out;
3788 for (i = 0; i < hw->ports; i++) {
3789 struct net_device *dev = hw->dev[i];
3791 if (netif_running(dev)) {
3792 err = skge_up(dev);
3794 if (err) {
3795 printk(KERN_ERR PFX "%s: could not up: %d\n",
3796 dev->name, err);
3797 dev_close(dev);
3798 goto out;
3802 out:
3803 return err;
3805 #endif
3807 static struct pci_driver skge_driver = {
3808 .name = DRV_NAME,
3809 .id_table = skge_id_table,
3810 .probe = skge_probe,
3811 .remove = __devexit_p(skge_remove),
3812 #ifdef CONFIG_PM
3813 .suspend = skge_suspend,
3814 .resume = skge_resume,
3815 #endif
3818 static int __init skge_init_module(void)
3820 return pci_register_driver(&skge_driver);
3823 static void __exit skge_cleanup_module(void)
3825 pci_unregister_driver(&skge_driver);
3828 module_init(skge_init_module);
3829 module_exit(skge_cleanup_module);