2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
19 /* max queue in one round of service */
20 static const int cfq_quantum
= 4;
21 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max
= 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty
= 2;
26 static const int cfq_slice_sync
= HZ
/ 10;
27 static int cfq_slice_async
= HZ
/ 25;
28 static const int cfq_slice_async_rq
= 2;
29 static int cfq_slice_idle
= HZ
/ 125;
32 * offset from end of service tree
34 #define CFQ_IDLE_DELAY (HZ / 5)
37 * below this threshold, we consider thinktime immediate
39 #define CFQ_MIN_TT (2)
41 #define CFQ_SLICE_SCALE (5)
44 ((struct cfq_io_context *) (rq)->elevator_private)
45 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
47 static struct kmem_cache
*cfq_pool
;
48 static struct kmem_cache
*cfq_ioc_pool
;
50 static DEFINE_PER_CPU(unsigned long, ioc_count
);
51 static struct completion
*ioc_gone
;
52 static DEFINE_SPINLOCK(ioc_gone_lock
);
54 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
55 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
56 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
61 #define sample_valid(samples) ((samples) > 80)
64 * Most of our rbtree usage is for sorting with min extraction, so
65 * if we cache the leftmost node we don't have to walk down the tree
66 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
67 * move this into the elevator for the rq sorting as well.
73 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
76 * Per block device queue structure
79 struct request_queue
*queue
;
82 * rr list of queues with requests and the count of them
84 struct cfq_rb_root service_tree
;
85 unsigned int busy_queues
;
92 * idle window management
94 struct timer_list idle_slice_timer
;
95 struct work_struct unplug_work
;
97 struct cfq_queue
*active_queue
;
98 struct cfq_io_context
*active_cic
;
101 * async queue for each priority case
103 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
104 struct cfq_queue
*async_idle_cfqq
;
106 sector_t last_position
;
107 unsigned long last_end_request
;
110 * tunables, see top of file
112 unsigned int cfq_quantum
;
113 unsigned int cfq_fifo_expire
[2];
114 unsigned int cfq_back_penalty
;
115 unsigned int cfq_back_max
;
116 unsigned int cfq_slice
[2];
117 unsigned int cfq_slice_async_rq
;
118 unsigned int cfq_slice_idle
;
120 struct list_head cic_list
;
124 * Per process-grouping structure
127 /* reference count */
129 /* various state flags, see below */
131 /* parent cfq_data */
132 struct cfq_data
*cfqd
;
133 /* service_tree member */
134 struct rb_node rb_node
;
135 /* service_tree key */
136 unsigned long rb_key
;
137 /* sorted list of pending requests */
138 struct rb_root sort_list
;
139 /* if fifo isn't expired, next request to serve */
140 struct request
*next_rq
;
141 /* requests queued in sort_list */
143 /* currently allocated requests */
145 /* fifo list of requests in sort_list */
146 struct list_head fifo
;
148 unsigned long slice_end
;
151 /* pending metadata requests */
153 /* number of requests that are on the dispatch list or inside driver */
156 /* io prio of this group */
157 unsigned short ioprio
, org_ioprio
;
158 unsigned short ioprio_class
, org_ioprio_class
;
163 enum cfqq_state_flags
{
164 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
165 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
166 CFQ_CFQQ_FLAG_must_alloc
, /* must be allowed rq alloc */
167 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
168 CFQ_CFQQ_FLAG_must_dispatch
, /* must dispatch, even if expired */
169 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
170 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
171 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
172 CFQ_CFQQ_FLAG_queue_new
, /* queue never been serviced */
173 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
174 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
177 #define CFQ_CFQQ_FNS(name) \
178 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
180 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
182 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
184 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
186 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
188 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
192 CFQ_CFQQ_FNS(wait_request
);
193 CFQ_CFQQ_FNS(must_alloc
);
194 CFQ_CFQQ_FNS(must_alloc_slice
);
195 CFQ_CFQQ_FNS(must_dispatch
);
196 CFQ_CFQQ_FNS(fifo_expire
);
197 CFQ_CFQQ_FNS(idle_window
);
198 CFQ_CFQQ_FNS(prio_changed
);
199 CFQ_CFQQ_FNS(queue_new
);
200 CFQ_CFQQ_FNS(slice_new
);
204 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
205 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
206 #define cfq_log(cfqd, fmt, args...) \
207 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
209 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
210 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, int,
211 struct io_context
*, gfp_t
);
212 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
213 struct io_context
*);
215 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
218 return cic
->cfqq
[!!is_sync
];
221 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
222 struct cfq_queue
*cfqq
, int is_sync
)
224 cic
->cfqq
[!!is_sync
] = cfqq
;
228 * We regard a request as SYNC, if it's either a read or has the SYNC bit
229 * set (in which case it could also be direct WRITE).
231 static inline int cfq_bio_sync(struct bio
*bio
)
233 if (bio_data_dir(bio
) == READ
|| bio_sync(bio
))
240 * scheduler run of queue, if there are requests pending and no one in the
241 * driver that will restart queueing
243 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
245 if (cfqd
->busy_queues
) {
246 cfq_log(cfqd
, "schedule dispatch");
247 kblockd_schedule_work(&cfqd
->unplug_work
);
251 static int cfq_queue_empty(struct request_queue
*q
)
253 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
255 return !cfqd
->busy_queues
;
259 * Scale schedule slice based on io priority. Use the sync time slice only
260 * if a queue is marked sync and has sync io queued. A sync queue with async
261 * io only, should not get full sync slice length.
263 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, int sync
,
266 const int base_slice
= cfqd
->cfq_slice
[sync
];
268 WARN_ON(prio
>= IOPRIO_BE_NR
);
270 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
274 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
276 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
280 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
282 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
283 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
287 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
288 * isn't valid until the first request from the dispatch is activated
289 * and the slice time set.
291 static inline int cfq_slice_used(struct cfq_queue
*cfqq
)
293 if (cfq_cfqq_slice_new(cfqq
))
295 if (time_before(jiffies
, cfqq
->slice_end
))
302 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
303 * We choose the request that is closest to the head right now. Distance
304 * behind the head is penalized and only allowed to a certain extent.
306 static struct request
*
307 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
)
309 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
310 unsigned long back_max
;
311 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
312 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
313 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
315 if (rq1
== NULL
|| rq1
== rq2
)
320 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
322 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
324 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
326 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
332 last
= cfqd
->last_position
;
335 * by definition, 1KiB is 2 sectors
337 back_max
= cfqd
->cfq_back_max
* 2;
340 * Strict one way elevator _except_ in the case where we allow
341 * short backward seeks which are biased as twice the cost of a
342 * similar forward seek.
346 else if (s1
+ back_max
>= last
)
347 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
349 wrap
|= CFQ_RQ1_WRAP
;
353 else if (s2
+ back_max
>= last
)
354 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
356 wrap
|= CFQ_RQ2_WRAP
;
358 /* Found required data */
361 * By doing switch() on the bit mask "wrap" we avoid having to
362 * check two variables for all permutations: --> faster!
365 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
381 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
384 * Since both rqs are wrapped,
385 * start with the one that's further behind head
386 * (--> only *one* back seek required),
387 * since back seek takes more time than forward.
397 * The below is leftmost cache rbtree addon
399 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
402 root
->left
= rb_first(&root
->rb
);
405 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
410 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
415 rb_erase(n
, &root
->rb
);
420 * would be nice to take fifo expire time into account as well
422 static struct request
*
423 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
424 struct request
*last
)
426 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
427 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
428 struct request
*next
= NULL
, *prev
= NULL
;
430 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
433 prev
= rb_entry_rq(rbprev
);
436 next
= rb_entry_rq(rbnext
);
438 rbnext
= rb_first(&cfqq
->sort_list
);
439 if (rbnext
&& rbnext
!= &last
->rb_node
)
440 next
= rb_entry_rq(rbnext
);
443 return cfq_choose_req(cfqd
, next
, prev
);
446 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
447 struct cfq_queue
*cfqq
)
450 * just an approximation, should be ok.
452 return (cfqd
->busy_queues
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
453 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
457 * The cfqd->service_tree holds all pending cfq_queue's that have
458 * requests waiting to be processed. It is sorted in the order that
459 * we will service the queues.
461 static void cfq_service_tree_add(struct cfq_data
*cfqd
,
462 struct cfq_queue
*cfqq
, int add_front
)
464 struct rb_node
**p
, *parent
;
465 struct cfq_queue
*__cfqq
;
466 unsigned long rb_key
;
469 if (cfq_class_idle(cfqq
)) {
470 rb_key
= CFQ_IDLE_DELAY
;
471 parent
= rb_last(&cfqd
->service_tree
.rb
);
472 if (parent
&& parent
!= &cfqq
->rb_node
) {
473 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
474 rb_key
+= __cfqq
->rb_key
;
477 } else if (!add_front
) {
478 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
479 rb_key
+= cfqq
->slice_resid
;
480 cfqq
->slice_resid
= 0;
484 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
486 * same position, nothing more to do
488 if (rb_key
== cfqq
->rb_key
)
491 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
496 p
= &cfqd
->service_tree
.rb
.rb_node
;
501 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
504 * sort RT queues first, we always want to give
505 * preference to them. IDLE queues goes to the back.
506 * after that, sort on the next service time.
508 if (cfq_class_rt(cfqq
) > cfq_class_rt(__cfqq
))
510 else if (cfq_class_rt(cfqq
) < cfq_class_rt(__cfqq
))
512 else if (cfq_class_idle(cfqq
) < cfq_class_idle(__cfqq
))
514 else if (cfq_class_idle(cfqq
) > cfq_class_idle(__cfqq
))
516 else if (rb_key
< __cfqq
->rb_key
)
521 if (n
== &(*p
)->rb_right
)
528 cfqd
->service_tree
.left
= &cfqq
->rb_node
;
530 cfqq
->rb_key
= rb_key
;
531 rb_link_node(&cfqq
->rb_node
, parent
, p
);
532 rb_insert_color(&cfqq
->rb_node
, &cfqd
->service_tree
.rb
);
536 * Update cfqq's position in the service tree.
538 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
541 * Resorting requires the cfqq to be on the RR list already.
543 if (cfq_cfqq_on_rr(cfqq
))
544 cfq_service_tree_add(cfqd
, cfqq
, 0);
548 * add to busy list of queues for service, trying to be fair in ordering
549 * the pending list according to last request service
551 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
553 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
554 BUG_ON(cfq_cfqq_on_rr(cfqq
));
555 cfq_mark_cfqq_on_rr(cfqq
);
558 cfq_resort_rr_list(cfqd
, cfqq
);
562 * Called when the cfqq no longer has requests pending, remove it from
565 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
567 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
568 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
569 cfq_clear_cfqq_on_rr(cfqq
);
571 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
572 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
574 BUG_ON(!cfqd
->busy_queues
);
579 * rb tree support functions
581 static void cfq_del_rq_rb(struct request
*rq
)
583 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
584 struct cfq_data
*cfqd
= cfqq
->cfqd
;
585 const int sync
= rq_is_sync(rq
);
587 BUG_ON(!cfqq
->queued
[sync
]);
588 cfqq
->queued
[sync
]--;
590 elv_rb_del(&cfqq
->sort_list
, rq
);
592 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
593 cfq_del_cfqq_rr(cfqd
, cfqq
);
596 static void cfq_add_rq_rb(struct request
*rq
)
598 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
599 struct cfq_data
*cfqd
= cfqq
->cfqd
;
600 struct request
*__alias
;
602 cfqq
->queued
[rq_is_sync(rq
)]++;
605 * looks a little odd, but the first insert might return an alias.
606 * if that happens, put the alias on the dispatch list
608 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
609 cfq_dispatch_insert(cfqd
->queue
, __alias
);
611 if (!cfq_cfqq_on_rr(cfqq
))
612 cfq_add_cfqq_rr(cfqd
, cfqq
);
615 * check if this request is a better next-serve candidate
617 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
);
618 BUG_ON(!cfqq
->next_rq
);
621 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
623 elv_rb_del(&cfqq
->sort_list
, rq
);
624 cfqq
->queued
[rq_is_sync(rq
)]--;
628 static struct request
*
629 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
631 struct task_struct
*tsk
= current
;
632 struct cfq_io_context
*cic
;
633 struct cfq_queue
*cfqq
;
635 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
639 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
641 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
643 return elv_rb_find(&cfqq
->sort_list
, sector
);
649 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
651 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
653 cfqd
->rq_in_driver
++;
654 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
658 * If the depth is larger 1, it really could be queueing. But lets
659 * make the mark a little higher - idling could still be good for
660 * low queueing, and a low queueing number could also just indicate
661 * a SCSI mid layer like behaviour where limit+1 is often seen.
663 if (!cfqd
->hw_tag
&& cfqd
->rq_in_driver
> 4)
666 cfqd
->last_position
= rq
->hard_sector
+ rq
->hard_nr_sectors
;
669 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
671 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
673 WARN_ON(!cfqd
->rq_in_driver
);
674 cfqd
->rq_in_driver
--;
675 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
679 static void cfq_remove_request(struct request
*rq
)
681 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
683 if (cfqq
->next_rq
== rq
)
684 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
686 list_del_init(&rq
->queuelist
);
689 if (rq_is_meta(rq
)) {
690 WARN_ON(!cfqq
->meta_pending
);
691 cfqq
->meta_pending
--;
695 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
698 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
699 struct request
*__rq
;
701 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
702 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
704 return ELEVATOR_FRONT_MERGE
;
707 return ELEVATOR_NO_MERGE
;
710 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
713 if (type
== ELEVATOR_FRONT_MERGE
) {
714 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
716 cfq_reposition_rq_rb(cfqq
, req
);
721 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
722 struct request
*next
)
725 * reposition in fifo if next is older than rq
727 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
728 time_before(next
->start_time
, rq
->start_time
))
729 list_move(&rq
->queuelist
, &next
->queuelist
);
731 cfq_remove_request(next
);
734 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
737 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
738 struct cfq_io_context
*cic
;
739 struct cfq_queue
*cfqq
;
742 * Disallow merge of a sync bio into an async request.
744 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
748 * Lookup the cfqq that this bio will be queued with. Allow
749 * merge only if rq is queued there.
751 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
755 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
756 if (cfqq
== RQ_CFQQ(rq
))
762 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
763 struct cfq_queue
*cfqq
)
766 cfq_log_cfqq(cfqd
, cfqq
, "set_active");
768 cfq_clear_cfqq_must_alloc_slice(cfqq
);
769 cfq_clear_cfqq_fifo_expire(cfqq
);
770 cfq_mark_cfqq_slice_new(cfqq
);
771 cfq_clear_cfqq_queue_new(cfqq
);
774 cfqd
->active_queue
= cfqq
;
778 * current cfqq expired its slice (or was too idle), select new one
781 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
784 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
786 if (cfq_cfqq_wait_request(cfqq
))
787 del_timer(&cfqd
->idle_slice_timer
);
789 cfq_clear_cfqq_must_dispatch(cfqq
);
790 cfq_clear_cfqq_wait_request(cfqq
);
793 * store what was left of this slice, if the queue idled/timed out
795 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
796 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
797 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
800 cfq_resort_rr_list(cfqd
, cfqq
);
802 if (cfqq
== cfqd
->active_queue
)
803 cfqd
->active_queue
= NULL
;
805 if (cfqd
->active_cic
) {
806 put_io_context(cfqd
->active_cic
->ioc
);
807 cfqd
->active_cic
= NULL
;
811 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, int timed_out
)
813 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
816 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
820 * Get next queue for service. Unless we have a queue preemption,
821 * we'll simply select the first cfqq in the service tree.
823 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
825 if (RB_EMPTY_ROOT(&cfqd
->service_tree
.rb
))
828 return cfq_rb_first(&cfqd
->service_tree
);
832 * Get and set a new active queue for service.
834 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
)
836 struct cfq_queue
*cfqq
;
838 cfqq
= cfq_get_next_queue(cfqd
);
839 __cfq_set_active_queue(cfqd
, cfqq
);
843 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
846 if (rq
->sector
>= cfqd
->last_position
)
847 return rq
->sector
- cfqd
->last_position
;
849 return cfqd
->last_position
- rq
->sector
;
852 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct request
*rq
)
854 struct cfq_io_context
*cic
= cfqd
->active_cic
;
856 if (!sample_valid(cic
->seek_samples
))
859 return cfq_dist_from_last(cfqd
, rq
) <= cic
->seek_mean
;
862 static int cfq_close_cooperator(struct cfq_data
*cfq_data
,
863 struct cfq_queue
*cfqq
)
866 * We should notice if some of the queues are cooperating, eg
867 * working closely on the same area of the disk. In that case,
868 * we can group them together and don't waste time idling.
873 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
875 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
877 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
878 struct cfq_io_context
*cic
;
881 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
882 WARN_ON(cfq_cfqq_slice_new(cfqq
));
885 * idle is disabled, either manually or by past process history
887 if (!cfqd
->cfq_slice_idle
|| !cfq_cfqq_idle_window(cfqq
))
891 * still requests with the driver, don't idle
893 if (cfqd
->rq_in_driver
)
897 * task has exited, don't wait
899 cic
= cfqd
->active_cic
;
900 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
904 * See if this prio level has a good candidate
906 if (cfq_close_cooperator(cfqd
, cfqq
) &&
907 (sample_valid(cic
->ttime_samples
) && cic
->ttime_mean
> 2))
910 cfq_mark_cfqq_must_dispatch(cfqq
);
911 cfq_mark_cfqq_wait_request(cfqq
);
914 * we don't want to idle for seeks, but we do want to allow
915 * fair distribution of slice time for a process doing back-to-back
916 * seeks. so allow a little bit of time for him to submit a new rq
918 sl
= cfqd
->cfq_slice_idle
;
919 if (sample_valid(cic
->seek_samples
) && CIC_SEEKY(cic
))
920 sl
= min(sl
, msecs_to_jiffies(CFQ_MIN_TT
));
922 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
923 cfq_log(cfqd
, "arm_idle: %lu", sl
);
927 * Move request from internal lists to the request queue dispatch list.
929 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
931 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
932 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
934 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
936 cfq_remove_request(rq
);
938 elv_dispatch_sort(q
, rq
);
940 if (cfq_cfqq_sync(cfqq
))
945 * return expired entry, or NULL to just start from scratch in rbtree
947 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
949 struct cfq_data
*cfqd
= cfqq
->cfqd
;
953 if (cfq_cfqq_fifo_expire(cfqq
))
956 cfq_mark_cfqq_fifo_expire(cfqq
);
958 if (list_empty(&cfqq
->fifo
))
961 fifo
= cfq_cfqq_sync(cfqq
);
962 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
964 if (time_before(jiffies
, rq
->start_time
+ cfqd
->cfq_fifo_expire
[fifo
]))
967 cfq_log_cfqq(cfqd
, cfqq
, "fifo=%p", rq
);
972 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
974 const int base_rq
= cfqd
->cfq_slice_async_rq
;
976 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
978 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
982 * Select a queue for service. If we have a current active queue,
983 * check whether to continue servicing it, or retrieve and set a new one.
985 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
987 struct cfq_queue
*cfqq
;
989 cfqq
= cfqd
->active_queue
;
994 * The active queue has run out of time, expire it and select new.
996 if (cfq_slice_used(cfqq
))
1000 * The active queue has requests and isn't expired, allow it to
1003 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
1007 * No requests pending. If the active queue still has requests in
1008 * flight or is idling for a new request, allow either of these
1009 * conditions to happen (or time out) before selecting a new queue.
1011 if (timer_pending(&cfqd
->idle_slice_timer
) ||
1012 (cfqq
->dispatched
&& cfq_cfqq_idle_window(cfqq
))) {
1018 cfq_slice_expired(cfqd
, 0);
1020 cfqq
= cfq_set_active_queue(cfqd
);
1026 * Dispatch some requests from cfqq, moving them to the request queue
1030 __cfq_dispatch_requests(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1035 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
1041 * follow expired path, else get first next available
1043 rq
= cfq_check_fifo(cfqq
);
1048 * finally, insert request into driver dispatch list
1050 cfq_dispatch_insert(cfqd
->queue
, rq
);
1054 if (!cfqd
->active_cic
) {
1055 atomic_inc(&RQ_CIC(rq
)->ioc
->refcount
);
1056 cfqd
->active_cic
= RQ_CIC(rq
);
1059 if (RB_EMPTY_ROOT(&cfqq
->sort_list
))
1062 } while (dispatched
< max_dispatch
);
1065 * expire an async queue immediately if it has used up its slice. idle
1066 * queue always expire after 1 dispatch round.
1068 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
1069 dispatched
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
1070 cfq_class_idle(cfqq
))) {
1071 cfqq
->slice_end
= jiffies
+ 1;
1072 cfq_slice_expired(cfqd
, 0);
1078 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
1082 while (cfqq
->next_rq
) {
1083 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
1087 BUG_ON(!list_empty(&cfqq
->fifo
));
1092 * Drain our current requests. Used for barriers and when switching
1093 * io schedulers on-the-fly.
1095 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
1097 struct cfq_queue
*cfqq
;
1100 while ((cfqq
= cfq_rb_first(&cfqd
->service_tree
)) != NULL
)
1101 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
1103 cfq_slice_expired(cfqd
, 0);
1105 BUG_ON(cfqd
->busy_queues
);
1107 cfq_log(cfqd
, "forced_dispatch=%d\n", dispatched
);
1111 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
1113 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1114 struct cfq_queue
*cfqq
;
1117 if (!cfqd
->busy_queues
)
1120 if (unlikely(force
))
1121 return cfq_forced_dispatch(cfqd
);
1124 while ((cfqq
= cfq_select_queue(cfqd
)) != NULL
) {
1127 max_dispatch
= cfqd
->cfq_quantum
;
1128 if (cfq_class_idle(cfqq
))
1131 if (cfqq
->dispatched
>= max_dispatch
) {
1132 if (cfqd
->busy_queues
> 1)
1134 if (cfqq
->dispatched
>= 4 * max_dispatch
)
1138 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
1141 cfq_clear_cfqq_must_dispatch(cfqq
);
1142 cfq_clear_cfqq_wait_request(cfqq
);
1143 del_timer(&cfqd
->idle_slice_timer
);
1145 dispatched
+= __cfq_dispatch_requests(cfqd
, cfqq
, max_dispatch
);
1148 cfq_log(cfqd
, "dispatched=%d", dispatched
);
1153 * task holds one reference to the queue, dropped when task exits. each rq
1154 * in-flight on this queue also holds a reference, dropped when rq is freed.
1156 * queue lock must be held here.
1158 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1160 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1162 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1164 if (!atomic_dec_and_test(&cfqq
->ref
))
1167 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
1168 BUG_ON(rb_first(&cfqq
->sort_list
));
1169 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1170 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1172 if (unlikely(cfqd
->active_queue
== cfqq
)) {
1173 __cfq_slice_expired(cfqd
, cfqq
, 0);
1174 cfq_schedule_dispatch(cfqd
);
1177 kmem_cache_free(cfq_pool
, cfqq
);
1181 * Must always be called with the rcu_read_lock() held
1184 __call_for_each_cic(struct io_context
*ioc
,
1185 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1187 struct cfq_io_context
*cic
;
1188 struct hlist_node
*n
;
1190 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
1195 * Call func for each cic attached to this ioc.
1198 call_for_each_cic(struct io_context
*ioc
,
1199 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1202 __call_for_each_cic(ioc
, func
);
1206 static void cfq_cic_free_rcu(struct rcu_head
*head
)
1208 struct cfq_io_context
*cic
;
1210 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
1212 kmem_cache_free(cfq_ioc_pool
, cic
);
1213 elv_ioc_count_dec(ioc_count
);
1217 * CFQ scheduler is exiting, grab exit lock and check
1218 * the pending io context count. If it hits zero,
1219 * complete ioc_gone and set it back to NULL
1221 spin_lock(&ioc_gone_lock
);
1222 if (ioc_gone
&& !elv_ioc_count_read(ioc_count
)) {
1226 spin_unlock(&ioc_gone_lock
);
1230 static void cfq_cic_free(struct cfq_io_context
*cic
)
1232 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
1235 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1237 unsigned long flags
;
1239 BUG_ON(!cic
->dead_key
);
1241 spin_lock_irqsave(&ioc
->lock
, flags
);
1242 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
1243 hlist_del_rcu(&cic
->cic_list
);
1244 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1250 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1251 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1252 * and ->trim() which is called with the task lock held
1254 static void cfq_free_io_context(struct io_context
*ioc
)
1257 * ioc->refcount is zero here, or we are called from elv_unregister(),
1258 * so no more cic's are allowed to be linked into this ioc. So it
1259 * should be ok to iterate over the known list, we will see all cic's
1260 * since no new ones are added.
1262 __call_for_each_cic(ioc
, cic_free_func
);
1265 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1267 if (unlikely(cfqq
== cfqd
->active_queue
)) {
1268 __cfq_slice_expired(cfqd
, cfqq
, 0);
1269 cfq_schedule_dispatch(cfqd
);
1272 cfq_put_queue(cfqq
);
1275 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
1276 struct cfq_io_context
*cic
)
1278 struct io_context
*ioc
= cic
->ioc
;
1280 list_del_init(&cic
->queue_list
);
1283 * Make sure key == NULL is seen for dead queues
1286 cic
->dead_key
= (unsigned long) cic
->key
;
1289 if (ioc
->ioc_data
== cic
)
1290 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
1292 if (cic
->cfqq
[ASYNC
]) {
1293 cfq_exit_cfqq(cfqd
, cic
->cfqq
[ASYNC
]);
1294 cic
->cfqq
[ASYNC
] = NULL
;
1297 if (cic
->cfqq
[SYNC
]) {
1298 cfq_exit_cfqq(cfqd
, cic
->cfqq
[SYNC
]);
1299 cic
->cfqq
[SYNC
] = NULL
;
1303 static void cfq_exit_single_io_context(struct io_context
*ioc
,
1304 struct cfq_io_context
*cic
)
1306 struct cfq_data
*cfqd
= cic
->key
;
1309 struct request_queue
*q
= cfqd
->queue
;
1310 unsigned long flags
;
1312 spin_lock_irqsave(q
->queue_lock
, flags
);
1313 __cfq_exit_single_io_context(cfqd
, cic
);
1314 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1319 * The process that ioc belongs to has exited, we need to clean up
1320 * and put the internal structures we have that belongs to that process.
1322 static void cfq_exit_io_context(struct io_context
*ioc
)
1324 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
1327 static struct cfq_io_context
*
1328 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1330 struct cfq_io_context
*cic
;
1332 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
1335 cic
->last_end_request
= jiffies
;
1336 INIT_LIST_HEAD(&cic
->queue_list
);
1337 INIT_HLIST_NODE(&cic
->cic_list
);
1338 cic
->dtor
= cfq_free_io_context
;
1339 cic
->exit
= cfq_exit_io_context
;
1340 elv_ioc_count_inc(ioc_count
);
1346 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
1348 struct task_struct
*tsk
= current
;
1351 if (!cfq_cfqq_prio_changed(cfqq
))
1354 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
1355 switch (ioprio_class
) {
1357 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1358 case IOPRIO_CLASS_NONE
:
1360 * no prio set, inherit CPU scheduling settings
1362 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1363 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
1365 case IOPRIO_CLASS_RT
:
1366 cfqq
->ioprio
= task_ioprio(ioc
);
1367 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1369 case IOPRIO_CLASS_BE
:
1370 cfqq
->ioprio
= task_ioprio(ioc
);
1371 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1373 case IOPRIO_CLASS_IDLE
:
1374 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1376 cfq_clear_cfqq_idle_window(cfqq
);
1381 * keep track of original prio settings in case we have to temporarily
1382 * elevate the priority of this queue
1384 cfqq
->org_ioprio
= cfqq
->ioprio
;
1385 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1386 cfq_clear_cfqq_prio_changed(cfqq
);
1389 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1391 struct cfq_data
*cfqd
= cic
->key
;
1392 struct cfq_queue
*cfqq
;
1393 unsigned long flags
;
1395 if (unlikely(!cfqd
))
1398 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1400 cfqq
= cic
->cfqq
[ASYNC
];
1402 struct cfq_queue
*new_cfqq
;
1403 new_cfqq
= cfq_get_queue(cfqd
, ASYNC
, cic
->ioc
, GFP_ATOMIC
);
1405 cic
->cfqq
[ASYNC
] = new_cfqq
;
1406 cfq_put_queue(cfqq
);
1410 cfqq
= cic
->cfqq
[SYNC
];
1412 cfq_mark_cfqq_prio_changed(cfqq
);
1414 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1417 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
1419 call_for_each_cic(ioc
, changed_ioprio
);
1420 ioc
->ioprio_changed
= 0;
1423 static struct cfq_queue
*
1424 cfq_find_alloc_queue(struct cfq_data
*cfqd
, int is_sync
,
1425 struct io_context
*ioc
, gfp_t gfp_mask
)
1427 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1428 struct cfq_io_context
*cic
;
1431 cic
= cfq_cic_lookup(cfqd
, ioc
);
1432 /* cic always exists here */
1433 cfqq
= cic_to_cfqq(cic
, is_sync
);
1439 } else if (gfp_mask
& __GFP_WAIT
) {
1441 * Inform the allocator of the fact that we will
1442 * just repeat this allocation if it fails, to allow
1443 * the allocator to do whatever it needs to attempt to
1446 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1447 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
1448 gfp_mask
| __GFP_NOFAIL
| __GFP_ZERO
,
1450 spin_lock_irq(cfqd
->queue
->queue_lock
);
1453 cfqq
= kmem_cache_alloc_node(cfq_pool
,
1454 gfp_mask
| __GFP_ZERO
,
1460 RB_CLEAR_NODE(&cfqq
->rb_node
);
1461 INIT_LIST_HEAD(&cfqq
->fifo
);
1463 atomic_set(&cfqq
->ref
, 0);
1466 cfq_mark_cfqq_prio_changed(cfqq
);
1467 cfq_mark_cfqq_queue_new(cfqq
);
1469 cfq_init_prio_data(cfqq
, ioc
);
1472 if (!cfq_class_idle(cfqq
))
1473 cfq_mark_cfqq_idle_window(cfqq
);
1474 cfq_mark_cfqq_sync(cfqq
);
1476 cfqq
->pid
= current
->pid
;
1477 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
1481 kmem_cache_free(cfq_pool
, new_cfqq
);
1484 WARN_ON((gfp_mask
& __GFP_WAIT
) && !cfqq
);
1488 static struct cfq_queue
**
1489 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
1491 switch (ioprio_class
) {
1492 case IOPRIO_CLASS_RT
:
1493 return &cfqd
->async_cfqq
[0][ioprio
];
1494 case IOPRIO_CLASS_BE
:
1495 return &cfqd
->async_cfqq
[1][ioprio
];
1496 case IOPRIO_CLASS_IDLE
:
1497 return &cfqd
->async_idle_cfqq
;
1503 static struct cfq_queue
*
1504 cfq_get_queue(struct cfq_data
*cfqd
, int is_sync
, struct io_context
*ioc
,
1507 const int ioprio
= task_ioprio(ioc
);
1508 const int ioprio_class
= task_ioprio_class(ioc
);
1509 struct cfq_queue
**async_cfqq
= NULL
;
1510 struct cfq_queue
*cfqq
= NULL
;
1513 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
1518 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
1524 * pin the queue now that it's allocated, scheduler exit will prune it
1526 if (!is_sync
&& !(*async_cfqq
)) {
1527 atomic_inc(&cfqq
->ref
);
1531 atomic_inc(&cfqq
->ref
);
1536 * We drop cfq io contexts lazily, so we may find a dead one.
1539 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1540 struct cfq_io_context
*cic
)
1542 unsigned long flags
;
1544 WARN_ON(!list_empty(&cic
->queue_list
));
1546 spin_lock_irqsave(&ioc
->lock
, flags
);
1548 BUG_ON(ioc
->ioc_data
== cic
);
1550 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
1551 hlist_del_rcu(&cic
->cic_list
);
1552 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1557 static struct cfq_io_context
*
1558 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
1560 struct cfq_io_context
*cic
;
1561 unsigned long flags
;
1570 * we maintain a last-hit cache, to avoid browsing over the tree
1572 cic
= rcu_dereference(ioc
->ioc_data
);
1573 if (cic
&& cic
->key
== cfqd
) {
1579 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
1583 /* ->key must be copied to avoid race with cfq_exit_queue() */
1586 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
1591 spin_lock_irqsave(&ioc
->lock
, flags
);
1592 rcu_assign_pointer(ioc
->ioc_data
, cic
);
1593 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1601 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1602 * the process specific cfq io context when entered from the block layer.
1603 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1605 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1606 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
1608 unsigned long flags
;
1611 ret
= radix_tree_preload(gfp_mask
);
1616 spin_lock_irqsave(&ioc
->lock
, flags
);
1617 ret
= radix_tree_insert(&ioc
->radix_root
,
1618 (unsigned long) cfqd
, cic
);
1620 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
1621 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1623 radix_tree_preload_end();
1626 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1627 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
1628 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1633 printk(KERN_ERR
"cfq: cic link failed!\n");
1639 * Setup general io context and cfq io context. There can be several cfq
1640 * io contexts per general io context, if this process is doing io to more
1641 * than one device managed by cfq.
1643 static struct cfq_io_context
*
1644 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1646 struct io_context
*ioc
= NULL
;
1647 struct cfq_io_context
*cic
;
1649 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1651 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
1655 cic
= cfq_cic_lookup(cfqd
, ioc
);
1659 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1663 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
1667 smp_read_barrier_depends();
1668 if (unlikely(ioc
->ioprio_changed
))
1669 cfq_ioc_set_ioprio(ioc
);
1675 put_io_context(ioc
);
1680 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
1682 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
1683 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
1685 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
1686 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
1687 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
1691 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
1697 if (cic
->last_request_pos
< rq
->sector
)
1698 sdist
= rq
->sector
- cic
->last_request_pos
;
1700 sdist
= cic
->last_request_pos
- rq
->sector
;
1703 * Don't allow the seek distance to get too large from the
1704 * odd fragment, pagein, etc
1706 if (cic
->seek_samples
<= 60) /* second&third seek */
1707 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*1024);
1709 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*64);
1711 cic
->seek_samples
= (7*cic
->seek_samples
+ 256) / 8;
1712 cic
->seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1713 total
= cic
->seek_total
+ (cic
->seek_samples
/2);
1714 do_div(total
, cic
->seek_samples
);
1715 cic
->seek_mean
= (sector_t
)total
;
1719 * Disable idle window if the process thinks too long or seeks so much that
1723 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1724 struct cfq_io_context
*cic
)
1726 int old_idle
, enable_idle
;
1729 * Don't idle for async or idle io prio class
1731 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
1734 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
1736 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
1737 (cfqd
->hw_tag
&& CIC_SEEKY(cic
)))
1739 else if (sample_valid(cic
->ttime_samples
)) {
1740 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
1746 if (old_idle
!= enable_idle
) {
1747 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
1749 cfq_mark_cfqq_idle_window(cfqq
);
1751 cfq_clear_cfqq_idle_window(cfqq
);
1756 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1757 * no or if we aren't sure, a 1 will cause a preempt.
1760 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
1763 struct cfq_queue
*cfqq
;
1765 cfqq
= cfqd
->active_queue
;
1769 if (cfq_slice_used(cfqq
))
1772 if (cfq_class_idle(new_cfqq
))
1775 if (cfq_class_idle(cfqq
))
1779 * if the new request is sync, but the currently running queue is
1780 * not, let the sync request have priority.
1782 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
1786 * So both queues are sync. Let the new request get disk time if
1787 * it's a metadata request and the current queue is doing regular IO.
1789 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
1792 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
1796 * if this request is as-good as one we would expect from the
1797 * current cfqq, let it preempt
1799 if (cfq_rq_close(cfqd
, rq
))
1806 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1807 * let it have half of its nominal slice.
1809 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1811 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
1812 cfq_slice_expired(cfqd
, 1);
1815 * Put the new queue at the front of the of the current list,
1816 * so we know that it will be selected next.
1818 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1820 cfq_service_tree_add(cfqd
, cfqq
, 1);
1822 cfqq
->slice_end
= 0;
1823 cfq_mark_cfqq_slice_new(cfqq
);
1827 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1828 * something we should do about it
1831 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1834 struct cfq_io_context
*cic
= RQ_CIC(rq
);
1837 cfqq
->meta_pending
++;
1839 cfq_update_io_thinktime(cfqd
, cic
);
1840 cfq_update_io_seektime(cfqd
, cic
, rq
);
1841 cfq_update_idle_window(cfqd
, cfqq
, cic
);
1843 cic
->last_request_pos
= rq
->sector
+ rq
->nr_sectors
;
1845 if (cfqq
== cfqd
->active_queue
) {
1847 * if we are waiting for a request for this queue, let it rip
1848 * immediately and flag that we must not expire this queue
1851 if (cfq_cfqq_wait_request(cfqq
)) {
1852 cfq_mark_cfqq_must_dispatch(cfqq
);
1853 del_timer(&cfqd
->idle_slice_timer
);
1854 blk_start_queueing(cfqd
->queue
);
1856 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
1858 * not the active queue - expire current slice if it is
1859 * idle and has expired it's mean thinktime or this new queue
1860 * has some old slice time left and is of higher priority
1862 cfq_preempt_queue(cfqd
, cfqq
);
1863 cfq_mark_cfqq_must_dispatch(cfqq
);
1864 blk_start_queueing(cfqd
->queue
);
1868 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
1870 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1871 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1873 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
1874 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
1878 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
1880 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
1883 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
1885 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1886 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1887 const int sync
= rq_is_sync(rq
);
1891 cfq_log_cfqq(cfqd
, cfqq
, "complete");
1893 WARN_ON(!cfqd
->rq_in_driver
);
1894 WARN_ON(!cfqq
->dispatched
);
1895 cfqd
->rq_in_driver
--;
1898 if (cfq_cfqq_sync(cfqq
))
1899 cfqd
->sync_flight
--;
1901 if (!cfq_class_idle(cfqq
))
1902 cfqd
->last_end_request
= now
;
1905 RQ_CIC(rq
)->last_end_request
= now
;
1908 * If this is the active queue, check if it needs to be expired,
1909 * or if we want to idle in case it has no pending requests.
1911 if (cfqd
->active_queue
== cfqq
) {
1912 if (cfq_cfqq_slice_new(cfqq
)) {
1913 cfq_set_prio_slice(cfqd
, cfqq
);
1914 cfq_clear_cfqq_slice_new(cfqq
);
1916 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
1917 cfq_slice_expired(cfqd
, 1);
1918 else if (sync
&& RB_EMPTY_ROOT(&cfqq
->sort_list
))
1919 cfq_arm_slice_timer(cfqd
);
1922 if (!cfqd
->rq_in_driver
)
1923 cfq_schedule_dispatch(cfqd
);
1927 * we temporarily boost lower priority queues if they are holding fs exclusive
1928 * resources. they are boosted to normal prio (CLASS_BE/4)
1930 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
1932 if (has_fs_excl()) {
1934 * boost idle prio on transactions that would lock out other
1935 * users of the filesystem
1937 if (cfq_class_idle(cfqq
))
1938 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1939 if (cfqq
->ioprio
> IOPRIO_NORM
)
1940 cfqq
->ioprio
= IOPRIO_NORM
;
1943 * check if we need to unboost the queue
1945 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
1946 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
1947 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
1948 cfqq
->ioprio
= cfqq
->org_ioprio
;
1952 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
1954 if ((cfq_cfqq_wait_request(cfqq
) || cfq_cfqq_must_alloc(cfqq
)) &&
1955 !cfq_cfqq_must_alloc_slice(cfqq
)) {
1956 cfq_mark_cfqq_must_alloc_slice(cfqq
);
1957 return ELV_MQUEUE_MUST
;
1960 return ELV_MQUEUE_MAY
;
1963 static int cfq_may_queue(struct request_queue
*q
, int rw
)
1965 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1966 struct task_struct
*tsk
= current
;
1967 struct cfq_io_context
*cic
;
1968 struct cfq_queue
*cfqq
;
1971 * don't force setup of a queue from here, as a call to may_queue
1972 * does not necessarily imply that a request actually will be queued.
1973 * so just lookup a possibly existing queue, or return 'may queue'
1976 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1978 return ELV_MQUEUE_MAY
;
1980 cfqq
= cic_to_cfqq(cic
, rw
& REQ_RW_SYNC
);
1982 cfq_init_prio_data(cfqq
, cic
->ioc
);
1983 cfq_prio_boost(cfqq
);
1985 return __cfq_may_queue(cfqq
);
1988 return ELV_MQUEUE_MAY
;
1992 * queue lock held here
1994 static void cfq_put_request(struct request
*rq
)
1996 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1999 const int rw
= rq_data_dir(rq
);
2001 BUG_ON(!cfqq
->allocated
[rw
]);
2002 cfqq
->allocated
[rw
]--;
2004 put_io_context(RQ_CIC(rq
)->ioc
);
2006 rq
->elevator_private
= NULL
;
2007 rq
->elevator_private2
= NULL
;
2009 cfq_put_queue(cfqq
);
2014 * Allocate cfq data structures associated with this request.
2017 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
2019 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2020 struct cfq_io_context
*cic
;
2021 const int rw
= rq_data_dir(rq
);
2022 const int is_sync
= rq_is_sync(rq
);
2023 struct cfq_queue
*cfqq
;
2024 unsigned long flags
;
2026 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2028 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
2030 spin_lock_irqsave(q
->queue_lock
, flags
);
2035 cfqq
= cic_to_cfqq(cic
, is_sync
);
2037 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
2042 cic_set_cfqq(cic
, cfqq
, is_sync
);
2045 cfqq
->allocated
[rw
]++;
2046 cfq_clear_cfqq_must_alloc(cfqq
);
2047 atomic_inc(&cfqq
->ref
);
2049 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2051 rq
->elevator_private
= cic
;
2052 rq
->elevator_private2
= cfqq
;
2057 put_io_context(cic
->ioc
);
2059 cfq_schedule_dispatch(cfqd
);
2060 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2061 cfq_log(cfqd
, "set_request fail");
2065 static void cfq_kick_queue(struct work_struct
*work
)
2067 struct cfq_data
*cfqd
=
2068 container_of(work
, struct cfq_data
, unplug_work
);
2069 struct request_queue
*q
= cfqd
->queue
;
2070 unsigned long flags
;
2072 spin_lock_irqsave(q
->queue_lock
, flags
);
2073 blk_start_queueing(q
);
2074 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2078 * Timer running if the active_queue is currently idling inside its time slice
2080 static void cfq_idle_slice_timer(unsigned long data
)
2082 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2083 struct cfq_queue
*cfqq
;
2084 unsigned long flags
;
2087 cfq_log(cfqd
, "idle timer fired");
2089 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2091 cfqq
= cfqd
->active_queue
;
2098 if (cfq_slice_used(cfqq
))
2102 * only expire and reinvoke request handler, if there are
2103 * other queues with pending requests
2105 if (!cfqd
->busy_queues
)
2109 * not expired and it has a request pending, let it dispatch
2111 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
2112 cfq_mark_cfqq_must_dispatch(cfqq
);
2117 cfq_slice_expired(cfqd
, timed_out
);
2119 cfq_schedule_dispatch(cfqd
);
2121 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2124 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
2126 del_timer_sync(&cfqd
->idle_slice_timer
);
2127 kblockd_flush_work(&cfqd
->unplug_work
);
2130 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
2134 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
2135 if (cfqd
->async_cfqq
[0][i
])
2136 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
2137 if (cfqd
->async_cfqq
[1][i
])
2138 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
2141 if (cfqd
->async_idle_cfqq
)
2142 cfq_put_queue(cfqd
->async_idle_cfqq
);
2145 static void cfq_exit_queue(elevator_t
*e
)
2147 struct cfq_data
*cfqd
= e
->elevator_data
;
2148 struct request_queue
*q
= cfqd
->queue
;
2150 cfq_shutdown_timer_wq(cfqd
);
2152 spin_lock_irq(q
->queue_lock
);
2154 if (cfqd
->active_queue
)
2155 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
2157 while (!list_empty(&cfqd
->cic_list
)) {
2158 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
2159 struct cfq_io_context
,
2162 __cfq_exit_single_io_context(cfqd
, cic
);
2165 cfq_put_async_queues(cfqd
);
2167 spin_unlock_irq(q
->queue_lock
);
2169 cfq_shutdown_timer_wq(cfqd
);
2174 static void *cfq_init_queue(struct request_queue
*q
)
2176 struct cfq_data
*cfqd
;
2178 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
2182 cfqd
->service_tree
= CFQ_RB_ROOT
;
2183 INIT_LIST_HEAD(&cfqd
->cic_list
);
2187 init_timer(&cfqd
->idle_slice_timer
);
2188 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2189 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2191 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
2193 cfqd
->last_end_request
= jiffies
;
2194 cfqd
->cfq_quantum
= cfq_quantum
;
2195 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2196 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2197 cfqd
->cfq_back_max
= cfq_back_max
;
2198 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2199 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2200 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2201 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2202 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2207 static void cfq_slab_kill(void)
2210 * Caller already ensured that pending RCU callbacks are completed,
2211 * so we should have no busy allocations at this point.
2214 kmem_cache_destroy(cfq_pool
);
2216 kmem_cache_destroy(cfq_ioc_pool
);
2219 static int __init
cfq_slab_setup(void)
2221 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
2225 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
2236 * sysfs parts below -->
2239 cfq_var_show(unsigned int var
, char *page
)
2241 return sprintf(page
, "%d\n", var
);
2245 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2247 char *p
= (char *) page
;
2249 *var
= simple_strtoul(p
, &p
, 10);
2253 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2254 static ssize_t __FUNC(elevator_t *e, char *page) \
2256 struct cfq_data *cfqd = e->elevator_data; \
2257 unsigned int __data = __VAR; \
2259 __data = jiffies_to_msecs(__data); \
2260 return cfq_var_show(__data, (page)); \
2262 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2263 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2264 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2265 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
2266 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2267 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2268 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2269 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2270 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2271 #undef SHOW_FUNCTION
2273 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2274 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2276 struct cfq_data *cfqd = e->elevator_data; \
2277 unsigned int __data; \
2278 int ret = cfq_var_store(&__data, (page), count); \
2279 if (__data < (MIN)) \
2281 else if (__data > (MAX)) \
2284 *(__PTR) = msecs_to_jiffies(__data); \
2286 *(__PTR) = __data; \
2289 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2290 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
2292 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
2294 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2295 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
2297 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2298 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2299 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2300 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
2302 #undef STORE_FUNCTION
2304 #define CFQ_ATTR(name) \
2305 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2307 static struct elv_fs_entry cfq_attrs
[] = {
2309 CFQ_ATTR(fifo_expire_sync
),
2310 CFQ_ATTR(fifo_expire_async
),
2311 CFQ_ATTR(back_seek_max
),
2312 CFQ_ATTR(back_seek_penalty
),
2313 CFQ_ATTR(slice_sync
),
2314 CFQ_ATTR(slice_async
),
2315 CFQ_ATTR(slice_async_rq
),
2316 CFQ_ATTR(slice_idle
),
2320 static struct elevator_type iosched_cfq
= {
2322 .elevator_merge_fn
= cfq_merge
,
2323 .elevator_merged_fn
= cfq_merged_request
,
2324 .elevator_merge_req_fn
= cfq_merged_requests
,
2325 .elevator_allow_merge_fn
= cfq_allow_merge
,
2326 .elevator_dispatch_fn
= cfq_dispatch_requests
,
2327 .elevator_add_req_fn
= cfq_insert_request
,
2328 .elevator_activate_req_fn
= cfq_activate_request
,
2329 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2330 .elevator_queue_empty_fn
= cfq_queue_empty
,
2331 .elevator_completed_req_fn
= cfq_completed_request
,
2332 .elevator_former_req_fn
= elv_rb_former_request
,
2333 .elevator_latter_req_fn
= elv_rb_latter_request
,
2334 .elevator_set_req_fn
= cfq_set_request
,
2335 .elevator_put_req_fn
= cfq_put_request
,
2336 .elevator_may_queue_fn
= cfq_may_queue
,
2337 .elevator_init_fn
= cfq_init_queue
,
2338 .elevator_exit_fn
= cfq_exit_queue
,
2339 .trim
= cfq_free_io_context
,
2341 .elevator_attrs
= cfq_attrs
,
2342 .elevator_name
= "cfq",
2343 .elevator_owner
= THIS_MODULE
,
2346 static int __init
cfq_init(void)
2349 * could be 0 on HZ < 1000 setups
2351 if (!cfq_slice_async
)
2352 cfq_slice_async
= 1;
2353 if (!cfq_slice_idle
)
2356 if (cfq_slab_setup())
2359 elv_register(&iosched_cfq
);
2364 static void __exit
cfq_exit(void)
2366 DECLARE_COMPLETION_ONSTACK(all_gone
);
2367 elv_unregister(&iosched_cfq
);
2368 ioc_gone
= &all_gone
;
2369 /* ioc_gone's update must be visible before reading ioc_count */
2373 * this also protects us from entering cfq_slab_kill() with
2374 * pending RCU callbacks
2376 if (elv_ioc_count_read(ioc_count
))
2377 wait_for_completion(&all_gone
);
2381 module_init(cfq_init
);
2382 module_exit(cfq_exit
);
2384 MODULE_AUTHOR("Jens Axboe");
2385 MODULE_LICENSE("GPL");
2386 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");