memory unplug: ia64 interface
[linux-2.6/zen-sources.git] / kernel / cpuset.c
blobe196510aa40f6975310655450030c9d28a4b1e12
1 /*
2 * kernel/cpuset.c
4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
9 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 * 2003-10-10 Written by Simon Derr.
13 * 2003-10-22 Updates by Stephen Hemminger.
14 * 2004 May-July Rework by Paul Jackson.
16 * This file is subject to the terms and conditions of the GNU General Public
17 * License. See the file COPYING in the main directory of the Linux
18 * distribution for more details.
21 #include <linux/cpu.h>
22 #include <linux/cpumask.h>
23 #include <linux/cpuset.h>
24 #include <linux/err.h>
25 #include <linux/errno.h>
26 #include <linux/file.h>
27 #include <linux/fs.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/kernel.h>
31 #include <linux/kmod.h>
32 #include <linux/list.h>
33 #include <linux/mempolicy.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/mount.h>
37 #include <linux/namei.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/rcupdate.h>
41 #include <linux/sched.h>
42 #include <linux/seq_file.h>
43 #include <linux/security.h>
44 #include <linux/slab.h>
45 #include <linux/spinlock.h>
46 #include <linux/stat.h>
47 #include <linux/string.h>
48 #include <linux/time.h>
49 #include <linux/backing-dev.h>
50 #include <linux/sort.h>
52 #include <asm/uaccess.h>
53 #include <asm/atomic.h>
54 #include <linux/mutex.h>
56 #define CPUSET_SUPER_MAGIC 0x27e0eb
59 * Tracks how many cpusets are currently defined in system.
60 * When there is only one cpuset (the root cpuset) we can
61 * short circuit some hooks.
63 int number_of_cpusets __read_mostly;
65 /* See "Frequency meter" comments, below. */
67 struct fmeter {
68 int cnt; /* unprocessed events count */
69 int val; /* most recent output value */
70 time_t time; /* clock (secs) when val computed */
71 spinlock_t lock; /* guards read or write of above */
74 struct cpuset {
75 unsigned long flags; /* "unsigned long" so bitops work */
76 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
77 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
80 * Count is atomic so can incr (fork) or decr (exit) without a lock.
82 atomic_t count; /* count tasks using this cpuset */
85 * We link our 'sibling' struct into our parents 'children'.
86 * Our children link their 'sibling' into our 'children'.
88 struct list_head sibling; /* my parents children */
89 struct list_head children; /* my children */
91 struct cpuset *parent; /* my parent */
92 struct dentry *dentry; /* cpuset fs entry */
95 * Copy of global cpuset_mems_generation as of the most
96 * recent time this cpuset changed its mems_allowed.
98 int mems_generation;
100 struct fmeter fmeter; /* memory_pressure filter */
103 /* bits in struct cpuset flags field */
104 typedef enum {
105 CS_CPU_EXCLUSIVE,
106 CS_MEM_EXCLUSIVE,
107 CS_MEMORY_MIGRATE,
108 CS_REMOVED,
109 CS_NOTIFY_ON_RELEASE,
110 CS_SPREAD_PAGE,
111 CS_SPREAD_SLAB,
112 } cpuset_flagbits_t;
114 /* convenient tests for these bits */
115 static inline int is_cpu_exclusive(const struct cpuset *cs)
117 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
120 static inline int is_mem_exclusive(const struct cpuset *cs)
122 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
125 static inline int is_removed(const struct cpuset *cs)
127 return test_bit(CS_REMOVED, &cs->flags);
130 static inline int notify_on_release(const struct cpuset *cs)
132 return test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
135 static inline int is_memory_migrate(const struct cpuset *cs)
137 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
140 static inline int is_spread_page(const struct cpuset *cs)
142 return test_bit(CS_SPREAD_PAGE, &cs->flags);
145 static inline int is_spread_slab(const struct cpuset *cs)
147 return test_bit(CS_SPREAD_SLAB, &cs->flags);
151 * Increment this integer everytime any cpuset changes its
152 * mems_allowed value. Users of cpusets can track this generation
153 * number, and avoid having to lock and reload mems_allowed unless
154 * the cpuset they're using changes generation.
156 * A single, global generation is needed because attach_task() could
157 * reattach a task to a different cpuset, which must not have its
158 * generation numbers aliased with those of that tasks previous cpuset.
160 * Generations are needed for mems_allowed because one task cannot
161 * modify anothers memory placement. So we must enable every task,
162 * on every visit to __alloc_pages(), to efficiently check whether
163 * its current->cpuset->mems_allowed has changed, requiring an update
164 * of its current->mems_allowed.
166 * Since cpuset_mems_generation is guarded by manage_mutex,
167 * there is no need to mark it atomic.
169 static int cpuset_mems_generation;
171 static struct cpuset top_cpuset = {
172 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
173 .cpus_allowed = CPU_MASK_ALL,
174 .mems_allowed = NODE_MASK_ALL,
175 .count = ATOMIC_INIT(0),
176 .sibling = LIST_HEAD_INIT(top_cpuset.sibling),
177 .children = LIST_HEAD_INIT(top_cpuset.children),
180 static struct vfsmount *cpuset_mount;
181 static struct super_block *cpuset_sb;
184 * We have two global cpuset mutexes below. They can nest.
185 * It is ok to first take manage_mutex, then nest callback_mutex. We also
186 * require taking task_lock() when dereferencing a tasks cpuset pointer.
187 * See "The task_lock() exception", at the end of this comment.
189 * A task must hold both mutexes to modify cpusets. If a task
190 * holds manage_mutex, then it blocks others wanting that mutex,
191 * ensuring that it is the only task able to also acquire callback_mutex
192 * and be able to modify cpusets. It can perform various checks on
193 * the cpuset structure first, knowing nothing will change. It can
194 * also allocate memory while just holding manage_mutex. While it is
195 * performing these checks, various callback routines can briefly
196 * acquire callback_mutex to query cpusets. Once it is ready to make
197 * the changes, it takes callback_mutex, blocking everyone else.
199 * Calls to the kernel memory allocator can not be made while holding
200 * callback_mutex, as that would risk double tripping on callback_mutex
201 * from one of the callbacks into the cpuset code from within
202 * __alloc_pages().
204 * If a task is only holding callback_mutex, then it has read-only
205 * access to cpusets.
207 * The task_struct fields mems_allowed and mems_generation may only
208 * be accessed in the context of that task, so require no locks.
210 * Any task can increment and decrement the count field without lock.
211 * So in general, code holding manage_mutex or callback_mutex can't rely
212 * on the count field not changing. However, if the count goes to
213 * zero, then only attach_task(), which holds both mutexes, can
214 * increment it again. Because a count of zero means that no tasks
215 * are currently attached, therefore there is no way a task attached
216 * to that cpuset can fork (the other way to increment the count).
217 * So code holding manage_mutex or callback_mutex can safely assume that
218 * if the count is zero, it will stay zero. Similarly, if a task
219 * holds manage_mutex or callback_mutex on a cpuset with zero count, it
220 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
221 * both of those mutexes.
223 * The cpuset_common_file_write handler for operations that modify
224 * the cpuset hierarchy holds manage_mutex across the entire operation,
225 * single threading all such cpuset modifications across the system.
227 * The cpuset_common_file_read() handlers only hold callback_mutex across
228 * small pieces of code, such as when reading out possibly multi-word
229 * cpumasks and nodemasks.
231 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
232 * (usually) take either mutex. These are the two most performance
233 * critical pieces of code here. The exception occurs on cpuset_exit(),
234 * when a task in a notify_on_release cpuset exits. Then manage_mutex
235 * is taken, and if the cpuset count is zero, a usermode call made
236 * to /sbin/cpuset_release_agent with the name of the cpuset (path
237 * relative to the root of cpuset file system) as the argument.
239 * A cpuset can only be deleted if both its 'count' of using tasks
240 * is zero, and its list of 'children' cpusets is empty. Since all
241 * tasks in the system use _some_ cpuset, and since there is always at
242 * least one task in the system (init), therefore, top_cpuset
243 * always has either children cpusets and/or using tasks. So we don't
244 * need a special hack to ensure that top_cpuset cannot be deleted.
246 * The above "Tale of Two Semaphores" would be complete, but for:
248 * The task_lock() exception
250 * The need for this exception arises from the action of attach_task(),
251 * which overwrites one tasks cpuset pointer with another. It does
252 * so using both mutexes, however there are several performance
253 * critical places that need to reference task->cpuset without the
254 * expense of grabbing a system global mutex. Therefore except as
255 * noted below, when dereferencing or, as in attach_task(), modifying
256 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
257 * (task->alloc_lock) already in the task_struct routinely used for
258 * such matters.
260 * P.S. One more locking exception. RCU is used to guard the
261 * update of a tasks cpuset pointer by attach_task() and the
262 * access of task->cpuset->mems_generation via that pointer in
263 * the routine cpuset_update_task_memory_state().
266 static DEFINE_MUTEX(manage_mutex);
267 static DEFINE_MUTEX(callback_mutex);
270 * A couple of forward declarations required, due to cyclic reference loop:
271 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
272 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
275 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
276 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
278 static struct backing_dev_info cpuset_backing_dev_info = {
279 .ra_pages = 0, /* No readahead */
280 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
283 static struct inode *cpuset_new_inode(mode_t mode)
285 struct inode *inode = new_inode(cpuset_sb);
287 if (inode) {
288 inode->i_mode = mode;
289 inode->i_uid = current->fsuid;
290 inode->i_gid = current->fsgid;
291 inode->i_blocks = 0;
292 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
293 inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
295 return inode;
298 static void cpuset_diput(struct dentry *dentry, struct inode *inode)
300 /* is dentry a directory ? if so, kfree() associated cpuset */
301 if (S_ISDIR(inode->i_mode)) {
302 struct cpuset *cs = dentry->d_fsdata;
303 BUG_ON(!(is_removed(cs)));
304 kfree(cs);
306 iput(inode);
309 static struct dentry_operations cpuset_dops = {
310 .d_iput = cpuset_diput,
313 static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
315 struct dentry *d = lookup_one_len(name, parent, strlen(name));
316 if (!IS_ERR(d))
317 d->d_op = &cpuset_dops;
318 return d;
321 static void remove_dir(struct dentry *d)
323 struct dentry *parent = dget(d->d_parent);
325 d_delete(d);
326 simple_rmdir(parent->d_inode, d);
327 dput(parent);
331 * NOTE : the dentry must have been dget()'ed
333 static void cpuset_d_remove_dir(struct dentry *dentry)
335 struct list_head *node;
337 spin_lock(&dcache_lock);
338 node = dentry->d_subdirs.next;
339 while (node != &dentry->d_subdirs) {
340 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
341 list_del_init(node);
342 if (d->d_inode) {
343 d = dget_locked(d);
344 spin_unlock(&dcache_lock);
345 d_delete(d);
346 simple_unlink(dentry->d_inode, d);
347 dput(d);
348 spin_lock(&dcache_lock);
350 node = dentry->d_subdirs.next;
352 list_del_init(&dentry->d_u.d_child);
353 spin_unlock(&dcache_lock);
354 remove_dir(dentry);
357 static struct super_operations cpuset_ops = {
358 .statfs = simple_statfs,
359 .drop_inode = generic_delete_inode,
362 static int cpuset_fill_super(struct super_block *sb, void *unused_data,
363 int unused_silent)
365 struct inode *inode;
366 struct dentry *root;
368 sb->s_blocksize = PAGE_CACHE_SIZE;
369 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
370 sb->s_magic = CPUSET_SUPER_MAGIC;
371 sb->s_op = &cpuset_ops;
372 cpuset_sb = sb;
374 inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
375 if (inode) {
376 inode->i_op = &simple_dir_inode_operations;
377 inode->i_fop = &simple_dir_operations;
378 /* directories start off with i_nlink == 2 (for "." entry) */
379 inc_nlink(inode);
380 } else {
381 return -ENOMEM;
384 root = d_alloc_root(inode);
385 if (!root) {
386 iput(inode);
387 return -ENOMEM;
389 sb->s_root = root;
390 return 0;
393 static int cpuset_get_sb(struct file_system_type *fs_type,
394 int flags, const char *unused_dev_name,
395 void *data, struct vfsmount *mnt)
397 return get_sb_single(fs_type, flags, data, cpuset_fill_super, mnt);
400 static struct file_system_type cpuset_fs_type = {
401 .name = "cpuset",
402 .get_sb = cpuset_get_sb,
403 .kill_sb = kill_litter_super,
406 /* struct cftype:
408 * The files in the cpuset filesystem mostly have a very simple read/write
409 * handling, some common function will take care of it. Nevertheless some cases
410 * (read tasks) are special and therefore I define this structure for every
411 * kind of file.
414 * When reading/writing to a file:
415 * - the cpuset to use in file->f_path.dentry->d_parent->d_fsdata
416 * - the 'cftype' of the file is file->f_path.dentry->d_fsdata
419 struct cftype {
420 char *name;
421 int private;
422 int (*open) (struct inode *inode, struct file *file);
423 ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
424 loff_t *ppos);
425 int (*write) (struct file *file, const char __user *buf, size_t nbytes,
426 loff_t *ppos);
427 int (*release) (struct inode *inode, struct file *file);
430 static inline struct cpuset *__d_cs(struct dentry *dentry)
432 return dentry->d_fsdata;
435 static inline struct cftype *__d_cft(struct dentry *dentry)
437 return dentry->d_fsdata;
441 * Call with manage_mutex held. Writes path of cpuset into buf.
442 * Returns 0 on success, -errno on error.
445 static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
447 char *start;
449 start = buf + buflen;
451 *--start = '\0';
452 for (;;) {
453 int len = cs->dentry->d_name.len;
454 if ((start -= len) < buf)
455 return -ENAMETOOLONG;
456 memcpy(start, cs->dentry->d_name.name, len);
457 cs = cs->parent;
458 if (!cs)
459 break;
460 if (!cs->parent)
461 continue;
462 if (--start < buf)
463 return -ENAMETOOLONG;
464 *start = '/';
466 memmove(buf, start, buf + buflen - start);
467 return 0;
471 * Notify userspace when a cpuset is released, by running
472 * /sbin/cpuset_release_agent with the name of the cpuset (path
473 * relative to the root of cpuset file system) as the argument.
475 * Most likely, this user command will try to rmdir this cpuset.
477 * This races with the possibility that some other task will be
478 * attached to this cpuset before it is removed, or that some other
479 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
480 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
481 * unused, and this cpuset will be reprieved from its death sentence,
482 * to continue to serve a useful existence. Next time it's released,
483 * we will get notified again, if it still has 'notify_on_release' set.
485 * The final arg to call_usermodehelper() is 0, which means don't
486 * wait. The separate /sbin/cpuset_release_agent task is forked by
487 * call_usermodehelper(), then control in this thread returns here,
488 * without waiting for the release agent task. We don't bother to
489 * wait because the caller of this routine has no use for the exit
490 * status of the /sbin/cpuset_release_agent task, so no sense holding
491 * our caller up for that.
493 * When we had only one cpuset mutex, we had to call this
494 * without holding it, to avoid deadlock when call_usermodehelper()
495 * allocated memory. With two locks, we could now call this while
496 * holding manage_mutex, but we still don't, so as to minimize
497 * the time manage_mutex is held.
500 static void cpuset_release_agent(const char *pathbuf)
502 char *argv[3], *envp[3];
503 int i;
505 if (!pathbuf)
506 return;
508 i = 0;
509 argv[i++] = "/sbin/cpuset_release_agent";
510 argv[i++] = (char *)pathbuf;
511 argv[i] = NULL;
513 i = 0;
514 /* minimal command environment */
515 envp[i++] = "HOME=/";
516 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
517 envp[i] = NULL;
519 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
520 kfree(pathbuf);
524 * Either cs->count of using tasks transitioned to zero, or the
525 * cs->children list of child cpusets just became empty. If this
526 * cs is notify_on_release() and now both the user count is zero and
527 * the list of children is empty, prepare cpuset path in a kmalloc'd
528 * buffer, to be returned via ppathbuf, so that the caller can invoke
529 * cpuset_release_agent() with it later on, once manage_mutex is dropped.
530 * Call here with manage_mutex held.
532 * This check_for_release() routine is responsible for kmalloc'ing
533 * pathbuf. The above cpuset_release_agent() is responsible for
534 * kfree'ing pathbuf. The caller of these routines is responsible
535 * for providing a pathbuf pointer, initialized to NULL, then
536 * calling check_for_release() with manage_mutex held and the address
537 * of the pathbuf pointer, then dropping manage_mutex, then calling
538 * cpuset_release_agent() with pathbuf, as set by check_for_release().
541 static void check_for_release(struct cpuset *cs, char **ppathbuf)
543 if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
544 list_empty(&cs->children)) {
545 char *buf;
547 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
548 if (!buf)
549 return;
550 if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
551 kfree(buf);
552 else
553 *ppathbuf = buf;
558 * Return in *pmask the portion of a cpusets's cpus_allowed that
559 * are online. If none are online, walk up the cpuset hierarchy
560 * until we find one that does have some online cpus. If we get
561 * all the way to the top and still haven't found any online cpus,
562 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
563 * task, return cpu_online_map.
565 * One way or another, we guarantee to return some non-empty subset
566 * of cpu_online_map.
568 * Call with callback_mutex held.
571 static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
573 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
574 cs = cs->parent;
575 if (cs)
576 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
577 else
578 *pmask = cpu_online_map;
579 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
583 * Return in *pmask the portion of a cpusets's mems_allowed that
584 * are online, with memory. If none are online with memory, walk
585 * up the cpuset hierarchy until we find one that does have some
586 * online mems. If we get all the way to the top and still haven't
587 * found any online mems, return node_states[N_HIGH_MEMORY].
589 * One way or another, we guarantee to return some non-empty subset
590 * of node_states[N_HIGH_MEMORY].
592 * Call with callback_mutex held.
595 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
597 while (cs && !nodes_intersects(cs->mems_allowed,
598 node_states[N_HIGH_MEMORY]))
599 cs = cs->parent;
600 if (cs)
601 nodes_and(*pmask, cs->mems_allowed,
602 node_states[N_HIGH_MEMORY]);
603 else
604 *pmask = node_states[N_HIGH_MEMORY];
605 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
609 * cpuset_update_task_memory_state - update task memory placement
611 * If the current tasks cpusets mems_allowed changed behind our
612 * backs, update current->mems_allowed, mems_generation and task NUMA
613 * mempolicy to the new value.
615 * Task mempolicy is updated by rebinding it relative to the
616 * current->cpuset if a task has its memory placement changed.
617 * Do not call this routine if in_interrupt().
619 * Call without callback_mutex or task_lock() held. May be
620 * called with or without manage_mutex held. Thanks in part to
621 * 'the_top_cpuset_hack', the tasks cpuset pointer will never
622 * be NULL. This routine also might acquire callback_mutex and
623 * current->mm->mmap_sem during call.
625 * Reading current->cpuset->mems_generation doesn't need task_lock
626 * to guard the current->cpuset derefence, because it is guarded
627 * from concurrent freeing of current->cpuset by attach_task(),
628 * using RCU.
630 * The rcu_dereference() is technically probably not needed,
631 * as I don't actually mind if I see a new cpuset pointer but
632 * an old value of mems_generation. However this really only
633 * matters on alpha systems using cpusets heavily. If I dropped
634 * that rcu_dereference(), it would save them a memory barrier.
635 * For all other arch's, rcu_dereference is a no-op anyway, and for
636 * alpha systems not using cpusets, another planned optimization,
637 * avoiding the rcu critical section for tasks in the root cpuset
638 * which is statically allocated, so can't vanish, will make this
639 * irrelevant. Better to use RCU as intended, than to engage in
640 * some cute trick to save a memory barrier that is impossible to
641 * test, for alpha systems using cpusets heavily, which might not
642 * even exist.
644 * This routine is needed to update the per-task mems_allowed data,
645 * within the tasks context, when it is trying to allocate memory
646 * (in various mm/mempolicy.c routines) and notices that some other
647 * task has been modifying its cpuset.
650 void cpuset_update_task_memory_state(void)
652 int my_cpusets_mem_gen;
653 struct task_struct *tsk = current;
654 struct cpuset *cs;
656 if (tsk->cpuset == &top_cpuset) {
657 /* Don't need rcu for top_cpuset. It's never freed. */
658 my_cpusets_mem_gen = top_cpuset.mems_generation;
659 } else {
660 rcu_read_lock();
661 cs = rcu_dereference(tsk->cpuset);
662 my_cpusets_mem_gen = cs->mems_generation;
663 rcu_read_unlock();
666 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
667 mutex_lock(&callback_mutex);
668 task_lock(tsk);
669 cs = tsk->cpuset; /* Maybe changed when task not locked */
670 guarantee_online_mems(cs, &tsk->mems_allowed);
671 tsk->cpuset_mems_generation = cs->mems_generation;
672 if (is_spread_page(cs))
673 tsk->flags |= PF_SPREAD_PAGE;
674 else
675 tsk->flags &= ~PF_SPREAD_PAGE;
676 if (is_spread_slab(cs))
677 tsk->flags |= PF_SPREAD_SLAB;
678 else
679 tsk->flags &= ~PF_SPREAD_SLAB;
680 task_unlock(tsk);
681 mutex_unlock(&callback_mutex);
682 mpol_rebind_task(tsk, &tsk->mems_allowed);
687 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
689 * One cpuset is a subset of another if all its allowed CPUs and
690 * Memory Nodes are a subset of the other, and its exclusive flags
691 * are only set if the other's are set. Call holding manage_mutex.
694 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
696 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
697 nodes_subset(p->mems_allowed, q->mems_allowed) &&
698 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
699 is_mem_exclusive(p) <= is_mem_exclusive(q);
703 * validate_change() - Used to validate that any proposed cpuset change
704 * follows the structural rules for cpusets.
706 * If we replaced the flag and mask values of the current cpuset
707 * (cur) with those values in the trial cpuset (trial), would
708 * our various subset and exclusive rules still be valid? Presumes
709 * manage_mutex held.
711 * 'cur' is the address of an actual, in-use cpuset. Operations
712 * such as list traversal that depend on the actual address of the
713 * cpuset in the list must use cur below, not trial.
715 * 'trial' is the address of bulk structure copy of cur, with
716 * perhaps one or more of the fields cpus_allowed, mems_allowed,
717 * or flags changed to new, trial values.
719 * Return 0 if valid, -errno if not.
722 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
724 struct cpuset *c, *par;
726 /* Each of our child cpusets must be a subset of us */
727 list_for_each_entry(c, &cur->children, sibling) {
728 if (!is_cpuset_subset(c, trial))
729 return -EBUSY;
732 /* Remaining checks don't apply to root cpuset */
733 if (cur == &top_cpuset)
734 return 0;
736 par = cur->parent;
738 /* We must be a subset of our parent cpuset */
739 if (!is_cpuset_subset(trial, par))
740 return -EACCES;
742 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
743 list_for_each_entry(c, &par->children, sibling) {
744 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
745 c != cur &&
746 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
747 return -EINVAL;
748 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
749 c != cur &&
750 nodes_intersects(trial->mems_allowed, c->mems_allowed))
751 return -EINVAL;
754 return 0;
758 * For a given cpuset cur, partition the system as follows
759 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
760 * exclusive child cpusets
761 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
762 * exclusive child cpusets
763 * Build these two partitions by calling partition_sched_domains
765 * Call with manage_mutex held. May nest a call to the
766 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
767 * Must not be called holding callback_mutex, because we must
768 * not call lock_cpu_hotplug() while holding callback_mutex.
771 static void update_cpu_domains(struct cpuset *cur)
773 struct cpuset *c, *par = cur->parent;
774 cpumask_t pspan, cspan;
776 if (par == NULL || cpus_empty(cur->cpus_allowed))
777 return;
780 * Get all cpus from parent's cpus_allowed not part of exclusive
781 * children
783 pspan = par->cpus_allowed;
784 list_for_each_entry(c, &par->children, sibling) {
785 if (is_cpu_exclusive(c))
786 cpus_andnot(pspan, pspan, c->cpus_allowed);
788 if (!is_cpu_exclusive(cur)) {
789 cpus_or(pspan, pspan, cur->cpus_allowed);
790 if (cpus_equal(pspan, cur->cpus_allowed))
791 return;
792 cspan = CPU_MASK_NONE;
793 } else {
794 if (cpus_empty(pspan))
795 return;
796 cspan = cur->cpus_allowed;
798 * Get all cpus from current cpuset's cpus_allowed not part
799 * of exclusive children
801 list_for_each_entry(c, &cur->children, sibling) {
802 if (is_cpu_exclusive(c))
803 cpus_andnot(cspan, cspan, c->cpus_allowed);
807 lock_cpu_hotplug();
808 partition_sched_domains(&pspan, &cspan);
809 unlock_cpu_hotplug();
813 * Call with manage_mutex held. May take callback_mutex during call.
816 static int update_cpumask(struct cpuset *cs, char *buf)
818 struct cpuset trialcs;
819 int retval, cpus_unchanged;
821 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
822 if (cs == &top_cpuset)
823 return -EACCES;
825 trialcs = *cs;
828 * We allow a cpuset's cpus_allowed to be empty; if it has attached
829 * tasks, we'll catch it later when we validate the change and return
830 * -ENOSPC.
832 if (!buf[0] || (buf[0] == '\n' && !buf[1])) {
833 cpus_clear(trialcs.cpus_allowed);
834 } else {
835 retval = cpulist_parse(buf, trialcs.cpus_allowed);
836 if (retval < 0)
837 return retval;
839 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
840 /* cpus_allowed cannot be empty for a cpuset with attached tasks. */
841 if (atomic_read(&cs->count) && cpus_empty(trialcs.cpus_allowed))
842 return -ENOSPC;
843 retval = validate_change(cs, &trialcs);
844 if (retval < 0)
845 return retval;
846 cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
847 mutex_lock(&callback_mutex);
848 cs->cpus_allowed = trialcs.cpus_allowed;
849 mutex_unlock(&callback_mutex);
850 if (is_cpu_exclusive(cs) && !cpus_unchanged)
851 update_cpu_domains(cs);
852 return 0;
856 * cpuset_migrate_mm
858 * Migrate memory region from one set of nodes to another.
860 * Temporarilly set tasks mems_allowed to target nodes of migration,
861 * so that the migration code can allocate pages on these nodes.
863 * Call holding manage_mutex, so our current->cpuset won't change
864 * during this call, as manage_mutex holds off any attach_task()
865 * calls. Therefore we don't need to take task_lock around the
866 * call to guarantee_online_mems(), as we know no one is changing
867 * our tasks cpuset.
869 * Hold callback_mutex around the two modifications of our tasks
870 * mems_allowed to synchronize with cpuset_mems_allowed().
872 * While the mm_struct we are migrating is typically from some
873 * other task, the task_struct mems_allowed that we are hacking
874 * is for our current task, which must allocate new pages for that
875 * migrating memory region.
877 * We call cpuset_update_task_memory_state() before hacking
878 * our tasks mems_allowed, so that we are assured of being in
879 * sync with our tasks cpuset, and in particular, callbacks to
880 * cpuset_update_task_memory_state() from nested page allocations
881 * won't see any mismatch of our cpuset and task mems_generation
882 * values, so won't overwrite our hacked tasks mems_allowed
883 * nodemask.
886 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
887 const nodemask_t *to)
889 struct task_struct *tsk = current;
891 cpuset_update_task_memory_state();
893 mutex_lock(&callback_mutex);
894 tsk->mems_allowed = *to;
895 mutex_unlock(&callback_mutex);
897 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
899 mutex_lock(&callback_mutex);
900 guarantee_online_mems(tsk->cpuset, &tsk->mems_allowed);
901 mutex_unlock(&callback_mutex);
905 * Handle user request to change the 'mems' memory placement
906 * of a cpuset. Needs to validate the request, update the
907 * cpusets mems_allowed and mems_generation, and for each
908 * task in the cpuset, rebind any vma mempolicies and if
909 * the cpuset is marked 'memory_migrate', migrate the tasks
910 * pages to the new memory.
912 * Call with manage_mutex held. May take callback_mutex during call.
913 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
914 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
915 * their mempolicies to the cpusets new mems_allowed.
918 static int update_nodemask(struct cpuset *cs, char *buf)
920 struct cpuset trialcs;
921 nodemask_t oldmem;
922 struct task_struct *g, *p;
923 struct mm_struct **mmarray;
924 int i, n, ntasks;
925 int migrate;
926 int fudge;
927 int retval;
930 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
931 * it's read-only
933 if (cs == &top_cpuset)
934 return -EACCES;
936 trialcs = *cs;
939 * We allow a cpuset's mems_allowed to be empty; if it has attached
940 * tasks, we'll catch it later when we validate the change and return
941 * -ENOSPC.
943 if (!buf[0] || (buf[0] == '\n' && !buf[1])) {
944 nodes_clear(trialcs.mems_allowed);
945 } else {
946 retval = nodelist_parse(buf, trialcs.mems_allowed);
947 if (retval < 0)
948 goto done;
949 if (!nodes_intersects(trialcs.mems_allowed,
950 node_states[N_HIGH_MEMORY])) {
952 * error if only memoryless nodes specified.
954 retval = -ENOSPC;
955 goto done;
959 * Exclude memoryless nodes. We know that trialcs.mems_allowed
960 * contains at least one node with memory.
962 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed,
963 node_states[N_HIGH_MEMORY]);
964 oldmem = cs->mems_allowed;
965 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
966 retval = 0; /* Too easy - nothing to do */
967 goto done;
969 /* mems_allowed cannot be empty for a cpuset with attached tasks. */
970 if (atomic_read(&cs->count) && nodes_empty(trialcs.mems_allowed)) {
971 retval = -ENOSPC;
972 goto done;
974 retval = validate_change(cs, &trialcs);
975 if (retval < 0)
976 goto done;
978 mutex_lock(&callback_mutex);
979 cs->mems_allowed = trialcs.mems_allowed;
980 cs->mems_generation = cpuset_mems_generation++;
981 mutex_unlock(&callback_mutex);
983 set_cpuset_being_rebound(cs); /* causes mpol_copy() rebind */
985 fudge = 10; /* spare mmarray[] slots */
986 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
987 retval = -ENOMEM;
990 * Allocate mmarray[] to hold mm reference for each task
991 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
992 * tasklist_lock. We could use GFP_ATOMIC, but with a
993 * few more lines of code, we can retry until we get a big
994 * enough mmarray[] w/o using GFP_ATOMIC.
996 while (1) {
997 ntasks = atomic_read(&cs->count); /* guess */
998 ntasks += fudge;
999 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
1000 if (!mmarray)
1001 goto done;
1002 read_lock(&tasklist_lock); /* block fork */
1003 if (atomic_read(&cs->count) <= ntasks)
1004 break; /* got enough */
1005 read_unlock(&tasklist_lock); /* try again */
1006 kfree(mmarray);
1009 n = 0;
1011 /* Load up mmarray[] with mm reference for each task in cpuset. */
1012 do_each_thread(g, p) {
1013 struct mm_struct *mm;
1015 if (n >= ntasks) {
1016 printk(KERN_WARNING
1017 "Cpuset mempolicy rebind incomplete.\n");
1018 continue;
1020 if (p->cpuset != cs)
1021 continue;
1022 mm = get_task_mm(p);
1023 if (!mm)
1024 continue;
1025 mmarray[n++] = mm;
1026 } while_each_thread(g, p);
1027 read_unlock(&tasklist_lock);
1030 * Now that we've dropped the tasklist spinlock, we can
1031 * rebind the vma mempolicies of each mm in mmarray[] to their
1032 * new cpuset, and release that mm. The mpol_rebind_mm()
1033 * call takes mmap_sem, which we couldn't take while holding
1034 * tasklist_lock. Forks can happen again now - the mpol_copy()
1035 * cpuset_being_rebound check will catch such forks, and rebind
1036 * their vma mempolicies too. Because we still hold the global
1037 * cpuset manage_mutex, we know that no other rebind effort will
1038 * be contending for the global variable cpuset_being_rebound.
1039 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1040 * is idempotent. Also migrate pages in each mm to new nodes.
1042 migrate = is_memory_migrate(cs);
1043 for (i = 0; i < n; i++) {
1044 struct mm_struct *mm = mmarray[i];
1046 mpol_rebind_mm(mm, &cs->mems_allowed);
1047 if (migrate)
1048 cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
1049 mmput(mm);
1052 /* We're done rebinding vma's to this cpusets new mems_allowed. */
1053 kfree(mmarray);
1054 set_cpuset_being_rebound(NULL);
1055 retval = 0;
1056 done:
1057 return retval;
1061 * Call with manage_mutex held.
1064 static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
1066 if (simple_strtoul(buf, NULL, 10) != 0)
1067 cpuset_memory_pressure_enabled = 1;
1068 else
1069 cpuset_memory_pressure_enabled = 0;
1070 return 0;
1074 * update_flag - read a 0 or a 1 in a file and update associated flag
1075 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
1076 * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
1077 * CS_SPREAD_PAGE, CS_SPREAD_SLAB)
1078 * cs: the cpuset to update
1079 * buf: the buffer where we read the 0 or 1
1081 * Call with manage_mutex held.
1084 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
1086 int turning_on;
1087 struct cpuset trialcs;
1088 int err, cpu_exclusive_changed;
1090 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
1092 trialcs = *cs;
1093 if (turning_on)
1094 set_bit(bit, &trialcs.flags);
1095 else
1096 clear_bit(bit, &trialcs.flags);
1098 err = validate_change(cs, &trialcs);
1099 if (err < 0)
1100 return err;
1101 cpu_exclusive_changed =
1102 (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
1103 mutex_lock(&callback_mutex);
1104 cs->flags = trialcs.flags;
1105 mutex_unlock(&callback_mutex);
1107 if (cpu_exclusive_changed)
1108 update_cpu_domains(cs);
1109 return 0;
1113 * Frequency meter - How fast is some event occurring?
1115 * These routines manage a digitally filtered, constant time based,
1116 * event frequency meter. There are four routines:
1117 * fmeter_init() - initialize a frequency meter.
1118 * fmeter_markevent() - called each time the event happens.
1119 * fmeter_getrate() - returns the recent rate of such events.
1120 * fmeter_update() - internal routine used to update fmeter.
1122 * A common data structure is passed to each of these routines,
1123 * which is used to keep track of the state required to manage the
1124 * frequency meter and its digital filter.
1126 * The filter works on the number of events marked per unit time.
1127 * The filter is single-pole low-pass recursive (IIR). The time unit
1128 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1129 * simulate 3 decimal digits of precision (multiplied by 1000).
1131 * With an FM_COEF of 933, and a time base of 1 second, the filter
1132 * has a half-life of 10 seconds, meaning that if the events quit
1133 * happening, then the rate returned from the fmeter_getrate()
1134 * will be cut in half each 10 seconds, until it converges to zero.
1136 * It is not worth doing a real infinitely recursive filter. If more
1137 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1138 * just compute FM_MAXTICKS ticks worth, by which point the level
1139 * will be stable.
1141 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1142 * arithmetic overflow in the fmeter_update() routine.
1144 * Given the simple 32 bit integer arithmetic used, this meter works
1145 * best for reporting rates between one per millisecond (msec) and
1146 * one per 32 (approx) seconds. At constant rates faster than one
1147 * per msec it maxes out at values just under 1,000,000. At constant
1148 * rates between one per msec, and one per second it will stabilize
1149 * to a value N*1000, where N is the rate of events per second.
1150 * At constant rates between one per second and one per 32 seconds,
1151 * it will be choppy, moving up on the seconds that have an event,
1152 * and then decaying until the next event. At rates slower than
1153 * about one in 32 seconds, it decays all the way back to zero between
1154 * each event.
1157 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1158 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1159 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1160 #define FM_SCALE 1000 /* faux fixed point scale */
1162 /* Initialize a frequency meter */
1163 static void fmeter_init(struct fmeter *fmp)
1165 fmp->cnt = 0;
1166 fmp->val = 0;
1167 fmp->time = 0;
1168 spin_lock_init(&fmp->lock);
1171 /* Internal meter update - process cnt events and update value */
1172 static void fmeter_update(struct fmeter *fmp)
1174 time_t now = get_seconds();
1175 time_t ticks = now - fmp->time;
1177 if (ticks == 0)
1178 return;
1180 ticks = min(FM_MAXTICKS, ticks);
1181 while (ticks-- > 0)
1182 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1183 fmp->time = now;
1185 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1186 fmp->cnt = 0;
1189 /* Process any previous ticks, then bump cnt by one (times scale). */
1190 static void fmeter_markevent(struct fmeter *fmp)
1192 spin_lock(&fmp->lock);
1193 fmeter_update(fmp);
1194 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1195 spin_unlock(&fmp->lock);
1198 /* Process any previous ticks, then return current value. */
1199 static int fmeter_getrate(struct fmeter *fmp)
1201 int val;
1203 spin_lock(&fmp->lock);
1204 fmeter_update(fmp);
1205 val = fmp->val;
1206 spin_unlock(&fmp->lock);
1207 return val;
1211 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
1212 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
1213 * notified on release.
1215 * Call holding manage_mutex. May take callback_mutex and task_lock of
1216 * the task 'pid' during call.
1219 static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
1221 pid_t pid;
1222 struct task_struct *tsk;
1223 struct cpuset *oldcs;
1224 cpumask_t cpus;
1225 nodemask_t from, to;
1226 struct mm_struct *mm;
1227 int retval;
1229 if (sscanf(pidbuf, "%d", &pid) != 1)
1230 return -EIO;
1231 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1232 return -ENOSPC;
1234 if (pid) {
1235 read_lock(&tasklist_lock);
1237 tsk = find_task_by_pid(pid);
1238 if (!tsk || tsk->flags & PF_EXITING) {
1239 read_unlock(&tasklist_lock);
1240 return -ESRCH;
1243 get_task_struct(tsk);
1244 read_unlock(&tasklist_lock);
1246 if ((current->euid) && (current->euid != tsk->uid)
1247 && (current->euid != tsk->suid)) {
1248 put_task_struct(tsk);
1249 return -EACCES;
1251 } else {
1252 tsk = current;
1253 get_task_struct(tsk);
1256 retval = security_task_setscheduler(tsk, 0, NULL);
1257 if (retval) {
1258 put_task_struct(tsk);
1259 return retval;
1262 mutex_lock(&callback_mutex);
1264 task_lock(tsk);
1265 oldcs = tsk->cpuset;
1267 * After getting 'oldcs' cpuset ptr, be sure still not exiting.
1268 * If 'oldcs' might be the top_cpuset due to the_top_cpuset_hack
1269 * then fail this attach_task(), to avoid breaking top_cpuset.count.
1271 if (tsk->flags & PF_EXITING) {
1272 task_unlock(tsk);
1273 mutex_unlock(&callback_mutex);
1274 put_task_struct(tsk);
1275 return -ESRCH;
1277 atomic_inc(&cs->count);
1278 rcu_assign_pointer(tsk->cpuset, cs);
1279 task_unlock(tsk);
1281 guarantee_online_cpus(cs, &cpus);
1282 set_cpus_allowed(tsk, cpus);
1284 from = oldcs->mems_allowed;
1285 to = cs->mems_allowed;
1287 mutex_unlock(&callback_mutex);
1289 mm = get_task_mm(tsk);
1290 if (mm) {
1291 mpol_rebind_mm(mm, &to);
1292 if (is_memory_migrate(cs))
1293 cpuset_migrate_mm(mm, &from, &to);
1294 mmput(mm);
1297 put_task_struct(tsk);
1298 synchronize_rcu();
1299 if (atomic_dec_and_test(&oldcs->count))
1300 check_for_release(oldcs, ppathbuf);
1301 return 0;
1304 /* The various types of files and directories in a cpuset file system */
1306 typedef enum {
1307 FILE_ROOT,
1308 FILE_DIR,
1309 FILE_MEMORY_MIGRATE,
1310 FILE_CPULIST,
1311 FILE_MEMLIST,
1312 FILE_CPU_EXCLUSIVE,
1313 FILE_MEM_EXCLUSIVE,
1314 FILE_NOTIFY_ON_RELEASE,
1315 FILE_MEMORY_PRESSURE_ENABLED,
1316 FILE_MEMORY_PRESSURE,
1317 FILE_SPREAD_PAGE,
1318 FILE_SPREAD_SLAB,
1319 FILE_TASKLIST,
1320 } cpuset_filetype_t;
1322 static ssize_t cpuset_common_file_write(struct file *file,
1323 const char __user *userbuf,
1324 size_t nbytes, loff_t *unused_ppos)
1326 struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
1327 struct cftype *cft = __d_cft(file->f_path.dentry);
1328 cpuset_filetype_t type = cft->private;
1329 char *buffer;
1330 char *pathbuf = NULL;
1331 int retval = 0;
1333 /* Crude upper limit on largest legitimate cpulist user might write. */
1334 if (nbytes > 100 + 6 * max(NR_CPUS, MAX_NUMNODES))
1335 return -E2BIG;
1337 /* +1 for nul-terminator */
1338 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
1339 return -ENOMEM;
1341 if (copy_from_user(buffer, userbuf, nbytes)) {
1342 retval = -EFAULT;
1343 goto out1;
1345 buffer[nbytes] = 0; /* nul-terminate */
1347 mutex_lock(&manage_mutex);
1349 if (is_removed(cs)) {
1350 retval = -ENODEV;
1351 goto out2;
1354 switch (type) {
1355 case FILE_CPULIST:
1356 retval = update_cpumask(cs, buffer);
1357 break;
1358 case FILE_MEMLIST:
1359 retval = update_nodemask(cs, buffer);
1360 break;
1361 case FILE_CPU_EXCLUSIVE:
1362 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
1363 break;
1364 case FILE_MEM_EXCLUSIVE:
1365 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
1366 break;
1367 case FILE_NOTIFY_ON_RELEASE:
1368 retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
1369 break;
1370 case FILE_MEMORY_MIGRATE:
1371 retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
1372 break;
1373 case FILE_MEMORY_PRESSURE_ENABLED:
1374 retval = update_memory_pressure_enabled(cs, buffer);
1375 break;
1376 case FILE_MEMORY_PRESSURE:
1377 retval = -EACCES;
1378 break;
1379 case FILE_SPREAD_PAGE:
1380 retval = update_flag(CS_SPREAD_PAGE, cs, buffer);
1381 cs->mems_generation = cpuset_mems_generation++;
1382 break;
1383 case FILE_SPREAD_SLAB:
1384 retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
1385 cs->mems_generation = cpuset_mems_generation++;
1386 break;
1387 case FILE_TASKLIST:
1388 retval = attach_task(cs, buffer, &pathbuf);
1389 break;
1390 default:
1391 retval = -EINVAL;
1392 goto out2;
1395 if (retval == 0)
1396 retval = nbytes;
1397 out2:
1398 mutex_unlock(&manage_mutex);
1399 cpuset_release_agent(pathbuf);
1400 out1:
1401 kfree(buffer);
1402 return retval;
1405 static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
1406 size_t nbytes, loff_t *ppos)
1408 ssize_t retval = 0;
1409 struct cftype *cft = __d_cft(file->f_path.dentry);
1410 if (!cft)
1411 return -ENODEV;
1413 /* special function ? */
1414 if (cft->write)
1415 retval = cft->write(file, buf, nbytes, ppos);
1416 else
1417 retval = cpuset_common_file_write(file, buf, nbytes, ppos);
1419 return retval;
1423 * These ascii lists should be read in a single call, by using a user
1424 * buffer large enough to hold the entire map. If read in smaller
1425 * chunks, there is no guarantee of atomicity. Since the display format
1426 * used, list of ranges of sequential numbers, is variable length,
1427 * and since these maps can change value dynamically, one could read
1428 * gibberish by doing partial reads while a list was changing.
1429 * A single large read to a buffer that crosses a page boundary is
1430 * ok, because the result being copied to user land is not recomputed
1431 * across a page fault.
1434 static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1436 cpumask_t mask;
1438 mutex_lock(&callback_mutex);
1439 mask = cs->cpus_allowed;
1440 mutex_unlock(&callback_mutex);
1442 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1445 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1447 nodemask_t mask;
1449 mutex_lock(&callback_mutex);
1450 mask = cs->mems_allowed;
1451 mutex_unlock(&callback_mutex);
1453 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1456 static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
1457 size_t nbytes, loff_t *ppos)
1459 struct cftype *cft = __d_cft(file->f_path.dentry);
1460 struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
1461 cpuset_filetype_t type = cft->private;
1462 char *page;
1463 ssize_t retval = 0;
1464 char *s;
1466 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1467 return -ENOMEM;
1469 s = page;
1471 switch (type) {
1472 case FILE_CPULIST:
1473 s += cpuset_sprintf_cpulist(s, cs);
1474 break;
1475 case FILE_MEMLIST:
1476 s += cpuset_sprintf_memlist(s, cs);
1477 break;
1478 case FILE_CPU_EXCLUSIVE:
1479 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
1480 break;
1481 case FILE_MEM_EXCLUSIVE:
1482 *s++ = is_mem_exclusive(cs) ? '1' : '0';
1483 break;
1484 case FILE_NOTIFY_ON_RELEASE:
1485 *s++ = notify_on_release(cs) ? '1' : '0';
1486 break;
1487 case FILE_MEMORY_MIGRATE:
1488 *s++ = is_memory_migrate(cs) ? '1' : '0';
1489 break;
1490 case FILE_MEMORY_PRESSURE_ENABLED:
1491 *s++ = cpuset_memory_pressure_enabled ? '1' : '0';
1492 break;
1493 case FILE_MEMORY_PRESSURE:
1494 s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
1495 break;
1496 case FILE_SPREAD_PAGE:
1497 *s++ = is_spread_page(cs) ? '1' : '0';
1498 break;
1499 case FILE_SPREAD_SLAB:
1500 *s++ = is_spread_slab(cs) ? '1' : '0';
1501 break;
1502 default:
1503 retval = -EINVAL;
1504 goto out;
1506 *s++ = '\n';
1508 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1509 out:
1510 free_page((unsigned long)page);
1511 return retval;
1514 static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
1515 loff_t *ppos)
1517 ssize_t retval = 0;
1518 struct cftype *cft = __d_cft(file->f_path.dentry);
1519 if (!cft)
1520 return -ENODEV;
1522 /* special function ? */
1523 if (cft->read)
1524 retval = cft->read(file, buf, nbytes, ppos);
1525 else
1526 retval = cpuset_common_file_read(file, buf, nbytes, ppos);
1528 return retval;
1531 static int cpuset_file_open(struct inode *inode, struct file *file)
1533 int err;
1534 struct cftype *cft;
1536 err = generic_file_open(inode, file);
1537 if (err)
1538 return err;
1540 cft = __d_cft(file->f_path.dentry);
1541 if (!cft)
1542 return -ENODEV;
1543 if (cft->open)
1544 err = cft->open(inode, file);
1545 else
1546 err = 0;
1548 return err;
1551 static int cpuset_file_release(struct inode *inode, struct file *file)
1553 struct cftype *cft = __d_cft(file->f_path.dentry);
1554 if (cft->release)
1555 return cft->release(inode, file);
1556 return 0;
1560 * cpuset_rename - Only allow simple rename of directories in place.
1562 static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
1563 struct inode *new_dir, struct dentry *new_dentry)
1565 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1566 return -ENOTDIR;
1567 if (new_dentry->d_inode)
1568 return -EEXIST;
1569 if (old_dir != new_dir)
1570 return -EIO;
1571 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1574 static const struct file_operations cpuset_file_operations = {
1575 .read = cpuset_file_read,
1576 .write = cpuset_file_write,
1577 .llseek = generic_file_llseek,
1578 .open = cpuset_file_open,
1579 .release = cpuset_file_release,
1582 static const struct inode_operations cpuset_dir_inode_operations = {
1583 .lookup = simple_lookup,
1584 .mkdir = cpuset_mkdir,
1585 .rmdir = cpuset_rmdir,
1586 .rename = cpuset_rename,
1589 static int cpuset_create_file(struct dentry *dentry, int mode)
1591 struct inode *inode;
1593 if (!dentry)
1594 return -ENOENT;
1595 if (dentry->d_inode)
1596 return -EEXIST;
1598 inode = cpuset_new_inode(mode);
1599 if (!inode)
1600 return -ENOMEM;
1602 if (S_ISDIR(mode)) {
1603 inode->i_op = &cpuset_dir_inode_operations;
1604 inode->i_fop = &simple_dir_operations;
1606 /* start off with i_nlink == 2 (for "." entry) */
1607 inc_nlink(inode);
1608 } else if (S_ISREG(mode)) {
1609 inode->i_size = 0;
1610 inode->i_fop = &cpuset_file_operations;
1613 d_instantiate(dentry, inode);
1614 dget(dentry); /* Extra count - pin the dentry in core */
1615 return 0;
1619 * cpuset_create_dir - create a directory for an object.
1620 * cs: the cpuset we create the directory for.
1621 * It must have a valid ->parent field
1622 * And we are going to fill its ->dentry field.
1623 * name: The name to give to the cpuset directory. Will be copied.
1624 * mode: mode to set on new directory.
1627 static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
1629 struct dentry *dentry = NULL;
1630 struct dentry *parent;
1631 int error = 0;
1633 parent = cs->parent->dentry;
1634 dentry = cpuset_get_dentry(parent, name);
1635 if (IS_ERR(dentry))
1636 return PTR_ERR(dentry);
1637 error = cpuset_create_file(dentry, S_IFDIR | mode);
1638 if (!error) {
1639 dentry->d_fsdata = cs;
1640 inc_nlink(parent->d_inode);
1641 cs->dentry = dentry;
1643 dput(dentry);
1645 return error;
1648 static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
1650 struct dentry *dentry;
1651 int error;
1653 mutex_lock(&dir->d_inode->i_mutex);
1654 dentry = cpuset_get_dentry(dir, cft->name);
1655 if (!IS_ERR(dentry)) {
1656 error = cpuset_create_file(dentry, 0644 | S_IFREG);
1657 if (!error)
1658 dentry->d_fsdata = (void *)cft;
1659 dput(dentry);
1660 } else
1661 error = PTR_ERR(dentry);
1662 mutex_unlock(&dir->d_inode->i_mutex);
1663 return error;
1667 * Stuff for reading the 'tasks' file.
1669 * Reading this file can return large amounts of data if a cpuset has
1670 * *lots* of attached tasks. So it may need several calls to read(),
1671 * but we cannot guarantee that the information we produce is correct
1672 * unless we produce it entirely atomically.
1674 * Upon tasks file open(), a struct ctr_struct is allocated, that
1675 * will have a pointer to an array (also allocated here). The struct
1676 * ctr_struct * is stored in file->private_data. Its resources will
1677 * be freed by release() when the file is closed. The array is used
1678 * to sprintf the PIDs and then used by read().
1681 /* cpusets_tasks_read array */
1683 struct ctr_struct {
1684 char *buf;
1685 int bufsz;
1689 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1690 * Return actual number of pids loaded. No need to task_lock(p)
1691 * when reading out p->cpuset, as we don't really care if it changes
1692 * on the next cycle, and we are not going to try to dereference it.
1694 static int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1696 int n = 0;
1697 struct task_struct *g, *p;
1699 read_lock(&tasklist_lock);
1701 do_each_thread(g, p) {
1702 if (p->cpuset == cs) {
1703 if (unlikely(n == npids))
1704 goto array_full;
1705 pidarray[n++] = p->pid;
1707 } while_each_thread(g, p);
1709 array_full:
1710 read_unlock(&tasklist_lock);
1711 return n;
1714 static int cmppid(const void *a, const void *b)
1716 return *(pid_t *)a - *(pid_t *)b;
1720 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1721 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1722 * count 'cnt' of how many chars would be written if buf were large enough.
1724 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1726 int cnt = 0;
1727 int i;
1729 for (i = 0; i < npids; i++)
1730 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1731 return cnt;
1735 * Handle an open on 'tasks' file. Prepare a buffer listing the
1736 * process id's of tasks currently attached to the cpuset being opened.
1738 * Does not require any specific cpuset mutexes, and does not take any.
1740 static int cpuset_tasks_open(struct inode *unused, struct file *file)
1742 struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
1743 struct ctr_struct *ctr;
1744 pid_t *pidarray;
1745 int npids;
1746 char c;
1748 if (!(file->f_mode & FMODE_READ))
1749 return 0;
1751 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1752 if (!ctr)
1753 goto err0;
1756 * If cpuset gets more users after we read count, we won't have
1757 * enough space - tough. This race is indistinguishable to the
1758 * caller from the case that the additional cpuset users didn't
1759 * show up until sometime later on.
1761 npids = atomic_read(&cs->count);
1762 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1763 if (!pidarray)
1764 goto err1;
1766 npids = pid_array_load(pidarray, npids, cs);
1767 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1769 /* Call pid_array_to_buf() twice, first just to get bufsz */
1770 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1771 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1772 if (!ctr->buf)
1773 goto err2;
1774 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1776 kfree(pidarray);
1777 file->private_data = ctr;
1778 return 0;
1780 err2:
1781 kfree(pidarray);
1782 err1:
1783 kfree(ctr);
1784 err0:
1785 return -ENOMEM;
1788 static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
1789 size_t nbytes, loff_t *ppos)
1791 struct ctr_struct *ctr = file->private_data;
1793 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
1796 static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
1798 struct ctr_struct *ctr;
1800 if (file->f_mode & FMODE_READ) {
1801 ctr = file->private_data;
1802 kfree(ctr->buf);
1803 kfree(ctr);
1805 return 0;
1809 * for the common functions, 'private' gives the type of file
1812 static struct cftype cft_tasks = {
1813 .name = "tasks",
1814 .open = cpuset_tasks_open,
1815 .read = cpuset_tasks_read,
1816 .release = cpuset_tasks_release,
1817 .private = FILE_TASKLIST,
1820 static struct cftype cft_cpus = {
1821 .name = "cpus",
1822 .private = FILE_CPULIST,
1825 static struct cftype cft_mems = {
1826 .name = "mems",
1827 .private = FILE_MEMLIST,
1830 static struct cftype cft_cpu_exclusive = {
1831 .name = "cpu_exclusive",
1832 .private = FILE_CPU_EXCLUSIVE,
1835 static struct cftype cft_mem_exclusive = {
1836 .name = "mem_exclusive",
1837 .private = FILE_MEM_EXCLUSIVE,
1840 static struct cftype cft_notify_on_release = {
1841 .name = "notify_on_release",
1842 .private = FILE_NOTIFY_ON_RELEASE,
1845 static struct cftype cft_memory_migrate = {
1846 .name = "memory_migrate",
1847 .private = FILE_MEMORY_MIGRATE,
1850 static struct cftype cft_memory_pressure_enabled = {
1851 .name = "memory_pressure_enabled",
1852 .private = FILE_MEMORY_PRESSURE_ENABLED,
1855 static struct cftype cft_memory_pressure = {
1856 .name = "memory_pressure",
1857 .private = FILE_MEMORY_PRESSURE,
1860 static struct cftype cft_spread_page = {
1861 .name = "memory_spread_page",
1862 .private = FILE_SPREAD_PAGE,
1865 static struct cftype cft_spread_slab = {
1866 .name = "memory_spread_slab",
1867 .private = FILE_SPREAD_SLAB,
1870 static int cpuset_populate_dir(struct dentry *cs_dentry)
1872 int err;
1874 if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
1875 return err;
1876 if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
1877 return err;
1878 if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
1879 return err;
1880 if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
1881 return err;
1882 if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
1883 return err;
1884 if ((err = cpuset_add_file(cs_dentry, &cft_memory_migrate)) < 0)
1885 return err;
1886 if ((err = cpuset_add_file(cs_dentry, &cft_memory_pressure)) < 0)
1887 return err;
1888 if ((err = cpuset_add_file(cs_dentry, &cft_spread_page)) < 0)
1889 return err;
1890 if ((err = cpuset_add_file(cs_dentry, &cft_spread_slab)) < 0)
1891 return err;
1892 if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
1893 return err;
1894 return 0;
1898 * cpuset_create - create a cpuset
1899 * parent: cpuset that will be parent of the new cpuset.
1900 * name: name of the new cpuset. Will be strcpy'ed.
1901 * mode: mode to set on new inode
1903 * Must be called with the mutex on the parent inode held
1906 static long cpuset_create(struct cpuset *parent, const char *name, int mode)
1908 struct cpuset *cs;
1909 int err;
1911 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1912 if (!cs)
1913 return -ENOMEM;
1915 mutex_lock(&manage_mutex);
1916 cpuset_update_task_memory_state();
1917 cs->flags = 0;
1918 if (notify_on_release(parent))
1919 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1920 if (is_spread_page(parent))
1921 set_bit(CS_SPREAD_PAGE, &cs->flags);
1922 if (is_spread_slab(parent))
1923 set_bit(CS_SPREAD_SLAB, &cs->flags);
1924 cs->cpus_allowed = CPU_MASK_NONE;
1925 cs->mems_allowed = NODE_MASK_NONE;
1926 atomic_set(&cs->count, 0);
1927 INIT_LIST_HEAD(&cs->sibling);
1928 INIT_LIST_HEAD(&cs->children);
1929 cs->mems_generation = cpuset_mems_generation++;
1930 fmeter_init(&cs->fmeter);
1932 cs->parent = parent;
1934 mutex_lock(&callback_mutex);
1935 list_add(&cs->sibling, &cs->parent->children);
1936 number_of_cpusets++;
1937 mutex_unlock(&callback_mutex);
1939 err = cpuset_create_dir(cs, name, mode);
1940 if (err < 0)
1941 goto err;
1944 * Release manage_mutex before cpuset_populate_dir() because it
1945 * will down() this new directory's i_mutex and if we race with
1946 * another mkdir, we might deadlock.
1948 mutex_unlock(&manage_mutex);
1950 err = cpuset_populate_dir(cs->dentry);
1951 /* If err < 0, we have a half-filled directory - oh well ;) */
1952 return 0;
1953 err:
1954 list_del(&cs->sibling);
1955 mutex_unlock(&manage_mutex);
1956 kfree(cs);
1957 return err;
1960 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1962 struct cpuset *c_parent = dentry->d_parent->d_fsdata;
1964 /* the vfs holds inode->i_mutex already */
1965 return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
1969 * Locking note on the strange update_flag() call below:
1971 * If the cpuset being removed is marked cpu_exclusive, then simulate
1972 * turning cpu_exclusive off, which will call update_cpu_domains().
1973 * The lock_cpu_hotplug() call in update_cpu_domains() must not be
1974 * made while holding callback_mutex. Elsewhere the kernel nests
1975 * callback_mutex inside lock_cpu_hotplug() calls. So the reverse
1976 * nesting would risk an ABBA deadlock.
1979 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1981 struct cpuset *cs = dentry->d_fsdata;
1982 struct dentry *d;
1983 struct cpuset *parent;
1984 char *pathbuf = NULL;
1986 /* the vfs holds both inode->i_mutex already */
1988 mutex_lock(&manage_mutex);
1989 cpuset_update_task_memory_state();
1990 if (atomic_read(&cs->count) > 0) {
1991 mutex_unlock(&manage_mutex);
1992 return -EBUSY;
1994 if (!list_empty(&cs->children)) {
1995 mutex_unlock(&manage_mutex);
1996 return -EBUSY;
1998 if (is_cpu_exclusive(cs)) {
1999 int retval = update_flag(CS_CPU_EXCLUSIVE, cs, "0");
2000 if (retval < 0) {
2001 mutex_unlock(&manage_mutex);
2002 return retval;
2005 parent = cs->parent;
2006 mutex_lock(&callback_mutex);
2007 set_bit(CS_REMOVED, &cs->flags);
2008 list_del(&cs->sibling); /* delete my sibling from parent->children */
2009 spin_lock(&cs->dentry->d_lock);
2010 d = dget(cs->dentry);
2011 cs->dentry = NULL;
2012 spin_unlock(&d->d_lock);
2013 cpuset_d_remove_dir(d);
2014 dput(d);
2015 number_of_cpusets--;
2016 mutex_unlock(&callback_mutex);
2017 if (list_empty(&parent->children))
2018 check_for_release(parent, &pathbuf);
2019 mutex_unlock(&manage_mutex);
2020 cpuset_release_agent(pathbuf);
2021 return 0;
2025 * cpuset_init_early - just enough so that the calls to
2026 * cpuset_update_task_memory_state() in early init code
2027 * are harmless.
2030 int __init cpuset_init_early(void)
2032 struct task_struct *tsk = current;
2034 tsk->cpuset = &top_cpuset;
2035 tsk->cpuset->mems_generation = cpuset_mems_generation++;
2036 return 0;
2040 * cpuset_init - initialize cpusets at system boot
2042 * Description: Initialize top_cpuset and the cpuset internal file system,
2045 int __init cpuset_init(void)
2047 struct dentry *root;
2048 int err;
2050 top_cpuset.cpus_allowed = CPU_MASK_ALL;
2051 top_cpuset.mems_allowed = NODE_MASK_ALL;
2053 fmeter_init(&top_cpuset.fmeter);
2054 top_cpuset.mems_generation = cpuset_mems_generation++;
2056 init_task.cpuset = &top_cpuset;
2058 err = register_filesystem(&cpuset_fs_type);
2059 if (err < 0)
2060 goto out;
2061 cpuset_mount = kern_mount(&cpuset_fs_type);
2062 if (IS_ERR(cpuset_mount)) {
2063 printk(KERN_ERR "cpuset: could not mount!\n");
2064 err = PTR_ERR(cpuset_mount);
2065 cpuset_mount = NULL;
2066 goto out;
2068 root = cpuset_mount->mnt_sb->s_root;
2069 root->d_fsdata = &top_cpuset;
2070 inc_nlink(root->d_inode);
2071 top_cpuset.dentry = root;
2072 root->d_inode->i_op = &cpuset_dir_inode_operations;
2073 number_of_cpusets = 1;
2074 err = cpuset_populate_dir(root);
2075 /* memory_pressure_enabled is in root cpuset only */
2076 if (err == 0)
2077 err = cpuset_add_file(root, &cft_memory_pressure_enabled);
2078 out:
2079 return err;
2083 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
2084 * or memory nodes, we need to walk over the cpuset hierarchy,
2085 * removing that CPU or node from all cpusets. If this removes the
2086 * last CPU or node from a cpuset, then the guarantee_online_cpus()
2087 * or guarantee_online_mems() code will use that emptied cpusets
2088 * parent online CPUs or nodes. Cpusets that were already empty of
2089 * CPUs or nodes are left empty.
2091 * This routine is intentionally inefficient in a couple of regards.
2092 * It will check all cpusets in a subtree even if the top cpuset of
2093 * the subtree has no offline CPUs or nodes. It checks both CPUs and
2094 * nodes, even though the caller could have been coded to know that
2095 * only one of CPUs or nodes needed to be checked on a given call.
2096 * This was done to minimize text size rather than cpu cycles.
2098 * Call with both manage_mutex and callback_mutex held.
2100 * Recursive, on depth of cpuset subtree.
2103 static void guarantee_online_cpus_mems_in_subtree(const struct cpuset *cur)
2105 struct cpuset *c;
2107 /* Each of our child cpusets mems must be online */
2108 list_for_each_entry(c, &cur->children, sibling) {
2109 guarantee_online_cpus_mems_in_subtree(c);
2110 if (!cpus_empty(c->cpus_allowed))
2111 guarantee_online_cpus(c, &c->cpus_allowed);
2112 if (!nodes_empty(c->mems_allowed))
2113 guarantee_online_mems(c, &c->mems_allowed);
2118 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
2119 * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
2120 * track what's online after any CPU or memory node hotplug or unplug
2121 * event.
2123 * To ensure that we don't remove a CPU or node from the top cpuset
2124 * that is currently in use by a child cpuset (which would violate
2125 * the rule that cpusets must be subsets of their parent), we first
2126 * call the recursive routine guarantee_online_cpus_mems_in_subtree().
2128 * Since there are two callers of this routine, one for CPU hotplug
2129 * events and one for memory node hotplug events, we could have coded
2130 * two separate routines here. We code it as a single common routine
2131 * in order to minimize text size.
2134 static void common_cpu_mem_hotplug_unplug(void)
2136 mutex_lock(&manage_mutex);
2137 mutex_lock(&callback_mutex);
2139 guarantee_online_cpus_mems_in_subtree(&top_cpuset);
2140 top_cpuset.cpus_allowed = cpu_online_map;
2141 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2143 mutex_unlock(&callback_mutex);
2144 mutex_unlock(&manage_mutex);
2148 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2149 * period. This is necessary in order to make cpusets transparent
2150 * (of no affect) on systems that are actively using CPU hotplug
2151 * but making no active use of cpusets.
2153 * This routine ensures that top_cpuset.cpus_allowed tracks
2154 * cpu_online_map on each CPU hotplug (cpuhp) event.
2157 static int cpuset_handle_cpuhp(struct notifier_block *nb,
2158 unsigned long phase, void *cpu)
2160 if (phase == CPU_DYING || phase == CPU_DYING_FROZEN)
2161 return NOTIFY_DONE;
2163 common_cpu_mem_hotplug_unplug();
2164 return 0;
2167 #ifdef CONFIG_MEMORY_HOTPLUG
2169 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2170 * Call this routine anytime after you change
2171 * node_states[N_HIGH_MEMORY].
2172 * See also the previous routine cpuset_handle_cpuhp().
2175 void cpuset_track_online_nodes(void)
2177 common_cpu_mem_hotplug_unplug();
2179 #endif
2182 * cpuset_init_smp - initialize cpus_allowed
2184 * Description: Finish top cpuset after cpu, node maps are initialized
2187 void __init cpuset_init_smp(void)
2189 top_cpuset.cpus_allowed = cpu_online_map;
2190 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2192 hotcpu_notifier(cpuset_handle_cpuhp, 0);
2196 * cpuset_fork - attach newly forked task to its parents cpuset.
2197 * @tsk: pointer to task_struct of forking parent process.
2199 * Description: A task inherits its parent's cpuset at fork().
2201 * A pointer to the shared cpuset was automatically copied in fork.c
2202 * by dup_task_struct(). However, we ignore that copy, since it was
2203 * not made under the protection of task_lock(), so might no longer be
2204 * a valid cpuset pointer. attach_task() might have already changed
2205 * current->cpuset, allowing the previously referenced cpuset to
2206 * be removed and freed. Instead, we task_lock(current) and copy
2207 * its present value of current->cpuset for our freshly forked child.
2209 * At the point that cpuset_fork() is called, 'current' is the parent
2210 * task, and the passed argument 'child' points to the child task.
2213 void cpuset_fork(struct task_struct *child)
2215 task_lock(current);
2216 child->cpuset = current->cpuset;
2217 atomic_inc(&child->cpuset->count);
2218 task_unlock(current);
2222 * cpuset_exit - detach cpuset from exiting task
2223 * @tsk: pointer to task_struct of exiting process
2225 * Description: Detach cpuset from @tsk and release it.
2227 * Note that cpusets marked notify_on_release force every task in
2228 * them to take the global manage_mutex mutex when exiting.
2229 * This could impact scaling on very large systems. Be reluctant to
2230 * use notify_on_release cpusets where very high task exit scaling
2231 * is required on large systems.
2233 * Don't even think about derefencing 'cs' after the cpuset use count
2234 * goes to zero, except inside a critical section guarded by manage_mutex
2235 * or callback_mutex. Otherwise a zero cpuset use count is a license to
2236 * any other task to nuke the cpuset immediately, via cpuset_rmdir().
2238 * This routine has to take manage_mutex, not callback_mutex, because
2239 * it is holding that mutex while calling check_for_release(),
2240 * which calls kmalloc(), so can't be called holding callback_mutex().
2242 * the_top_cpuset_hack:
2244 * Set the exiting tasks cpuset to the root cpuset (top_cpuset).
2246 * Don't leave a task unable to allocate memory, as that is an
2247 * accident waiting to happen should someone add a callout in
2248 * do_exit() after the cpuset_exit() call that might allocate.
2249 * If a task tries to allocate memory with an invalid cpuset,
2250 * it will oops in cpuset_update_task_memory_state().
2252 * We call cpuset_exit() while the task is still competent to
2253 * handle notify_on_release(), then leave the task attached to
2254 * the root cpuset (top_cpuset) for the remainder of its exit.
2256 * To do this properly, we would increment the reference count on
2257 * top_cpuset, and near the very end of the kernel/exit.c do_exit()
2258 * code we would add a second cpuset function call, to drop that
2259 * reference. This would just create an unnecessary hot spot on
2260 * the top_cpuset reference count, to no avail.
2262 * Normally, holding a reference to a cpuset without bumping its
2263 * count is unsafe. The cpuset could go away, or someone could
2264 * attach us to a different cpuset, decrementing the count on
2265 * the first cpuset that we never incremented. But in this case,
2266 * top_cpuset isn't going away, and either task has PF_EXITING set,
2267 * which wards off any attach_task() attempts, or task is a failed
2268 * fork, never visible to attach_task.
2270 * Another way to do this would be to set the cpuset pointer
2271 * to NULL here, and check in cpuset_update_task_memory_state()
2272 * for a NULL pointer. This hack avoids that NULL check, for no
2273 * cost (other than this way too long comment ;).
2276 void cpuset_exit(struct task_struct *tsk)
2278 struct cpuset *cs;
2280 task_lock(current);
2281 cs = tsk->cpuset;
2282 tsk->cpuset = &top_cpuset; /* the_top_cpuset_hack - see above */
2283 task_unlock(current);
2285 if (notify_on_release(cs)) {
2286 char *pathbuf = NULL;
2288 mutex_lock(&manage_mutex);
2289 if (atomic_dec_and_test(&cs->count))
2290 check_for_release(cs, &pathbuf);
2291 mutex_unlock(&manage_mutex);
2292 cpuset_release_agent(pathbuf);
2293 } else {
2294 atomic_dec(&cs->count);
2299 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2300 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2302 * Description: Returns the cpumask_t cpus_allowed of the cpuset
2303 * attached to the specified @tsk. Guaranteed to return some non-empty
2304 * subset of cpu_online_map, even if this means going outside the
2305 * tasks cpuset.
2308 cpumask_t cpuset_cpus_allowed(struct task_struct *tsk)
2310 cpumask_t mask;
2312 mutex_lock(&callback_mutex);
2313 task_lock(tsk);
2314 guarantee_online_cpus(tsk->cpuset, &mask);
2315 task_unlock(tsk);
2316 mutex_unlock(&callback_mutex);
2318 return mask;
2321 void cpuset_init_current_mems_allowed(void)
2323 current->mems_allowed = NODE_MASK_ALL;
2327 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2328 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2330 * Description: Returns the nodemask_t mems_allowed of the cpuset
2331 * attached to the specified @tsk. Guaranteed to return some non-empty
2332 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2333 * tasks cpuset.
2336 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2338 nodemask_t mask;
2340 mutex_lock(&callback_mutex);
2341 task_lock(tsk);
2342 guarantee_online_mems(tsk->cpuset, &mask);
2343 task_unlock(tsk);
2344 mutex_unlock(&callback_mutex);
2346 return mask;
2350 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
2351 * @zl: the zonelist to be checked
2353 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
2355 int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
2357 int i;
2359 for (i = 0; zl->zones[i]; i++) {
2360 int nid = zone_to_nid(zl->zones[i]);
2362 if (node_isset(nid, current->mems_allowed))
2363 return 1;
2365 return 0;
2369 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
2370 * ancestor to the specified cpuset. Call holding callback_mutex.
2371 * If no ancestor is mem_exclusive (an unusual configuration), then
2372 * returns the root cpuset.
2374 static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
2376 while (!is_mem_exclusive(cs) && cs->parent)
2377 cs = cs->parent;
2378 return cs;
2382 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
2383 * @z: is this zone on an allowed node?
2384 * @gfp_mask: memory allocation flags
2386 * If we're in interrupt, yes, we can always allocate. If
2387 * __GFP_THISNODE is set, yes, we can always allocate. If zone
2388 * z's node is in our tasks mems_allowed, yes. If it's not a
2389 * __GFP_HARDWALL request and this zone's nodes is in the nearest
2390 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
2391 * If the task has been OOM killed and has access to memory reserves
2392 * as specified by the TIF_MEMDIE flag, yes.
2393 * Otherwise, no.
2395 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2396 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2397 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2398 * from an enclosing cpuset.
2400 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2401 * hardwall cpusets, and never sleeps.
2403 * The __GFP_THISNODE placement logic is really handled elsewhere,
2404 * by forcibly using a zonelist starting at a specified node, and by
2405 * (in get_page_from_freelist()) refusing to consider the zones for
2406 * any node on the zonelist except the first. By the time any such
2407 * calls get to this routine, we should just shut up and say 'yes'.
2409 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2410 * and do not allow allocations outside the current tasks cpuset
2411 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2412 * GFP_KERNEL allocations are not so marked, so can escape to the
2413 * nearest enclosing mem_exclusive ancestor cpuset.
2415 * Scanning up parent cpusets requires callback_mutex. The
2416 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2417 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2418 * current tasks mems_allowed came up empty on the first pass over
2419 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2420 * cpuset are short of memory, might require taking the callback_mutex
2421 * mutex.
2423 * The first call here from mm/page_alloc:get_page_from_freelist()
2424 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2425 * so no allocation on a node outside the cpuset is allowed (unless
2426 * in interrupt, of course).
2428 * The second pass through get_page_from_freelist() doesn't even call
2429 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2430 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2431 * in alloc_flags. That logic and the checks below have the combined
2432 * affect that:
2433 * in_interrupt - any node ok (current task context irrelevant)
2434 * GFP_ATOMIC - any node ok
2435 * TIF_MEMDIE - any node ok
2436 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
2437 * GFP_USER - only nodes in current tasks mems allowed ok.
2439 * Rule:
2440 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
2441 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2442 * the code that might scan up ancestor cpusets and sleep.
2445 int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
2447 int node; /* node that zone z is on */
2448 const struct cpuset *cs; /* current cpuset ancestors */
2449 int allowed; /* is allocation in zone z allowed? */
2451 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2452 return 1;
2453 node = zone_to_nid(z);
2454 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2455 if (node_isset(node, current->mems_allowed))
2456 return 1;
2458 * Allow tasks that have access to memory reserves because they have
2459 * been OOM killed to get memory anywhere.
2461 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2462 return 1;
2463 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2464 return 0;
2466 if (current->flags & PF_EXITING) /* Let dying task have memory */
2467 return 1;
2469 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2470 mutex_lock(&callback_mutex);
2472 task_lock(current);
2473 cs = nearest_exclusive_ancestor(current->cpuset);
2474 task_unlock(current);
2476 allowed = node_isset(node, cs->mems_allowed);
2477 mutex_unlock(&callback_mutex);
2478 return allowed;
2482 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2483 * @z: is this zone on an allowed node?
2484 * @gfp_mask: memory allocation flags
2486 * If we're in interrupt, yes, we can always allocate.
2487 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
2488 * z's node is in our tasks mems_allowed, yes. If the task has been
2489 * OOM killed and has access to memory reserves as specified by the
2490 * TIF_MEMDIE flag, yes. Otherwise, no.
2492 * The __GFP_THISNODE placement logic is really handled elsewhere,
2493 * by forcibly using a zonelist starting at a specified node, and by
2494 * (in get_page_from_freelist()) refusing to consider the zones for
2495 * any node on the zonelist except the first. By the time any such
2496 * calls get to this routine, we should just shut up and say 'yes'.
2498 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2499 * this variant requires that the zone be in the current tasks
2500 * mems_allowed or that we're in interrupt. It does not scan up the
2501 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2502 * It never sleeps.
2505 int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2507 int node; /* node that zone z is on */
2509 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2510 return 1;
2511 node = zone_to_nid(z);
2512 if (node_isset(node, current->mems_allowed))
2513 return 1;
2515 * Allow tasks that have access to memory reserves because they have
2516 * been OOM killed to get memory anywhere.
2518 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2519 return 1;
2520 return 0;
2524 * cpuset_lock - lock out any changes to cpuset structures
2526 * The out of memory (oom) code needs to mutex_lock cpusets
2527 * from being changed while it scans the tasklist looking for a
2528 * task in an overlapping cpuset. Expose callback_mutex via this
2529 * cpuset_lock() routine, so the oom code can lock it, before
2530 * locking the task list. The tasklist_lock is a spinlock, so
2531 * must be taken inside callback_mutex.
2534 void cpuset_lock(void)
2536 mutex_lock(&callback_mutex);
2540 * cpuset_unlock - release lock on cpuset changes
2542 * Undo the lock taken in a previous cpuset_lock() call.
2545 void cpuset_unlock(void)
2547 mutex_unlock(&callback_mutex);
2551 * cpuset_mem_spread_node() - On which node to begin search for a page
2553 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2554 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2555 * and if the memory allocation used cpuset_mem_spread_node()
2556 * to determine on which node to start looking, as it will for
2557 * certain page cache or slab cache pages such as used for file
2558 * system buffers and inode caches, then instead of starting on the
2559 * local node to look for a free page, rather spread the starting
2560 * node around the tasks mems_allowed nodes.
2562 * We don't have to worry about the returned node being offline
2563 * because "it can't happen", and even if it did, it would be ok.
2565 * The routines calling guarantee_online_mems() are careful to
2566 * only set nodes in task->mems_allowed that are online. So it
2567 * should not be possible for the following code to return an
2568 * offline node. But if it did, that would be ok, as this routine
2569 * is not returning the node where the allocation must be, only
2570 * the node where the search should start. The zonelist passed to
2571 * __alloc_pages() will include all nodes. If the slab allocator
2572 * is passed an offline node, it will fall back to the local node.
2573 * See kmem_cache_alloc_node().
2576 int cpuset_mem_spread_node(void)
2578 int node;
2580 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2581 if (node == MAX_NUMNODES)
2582 node = first_node(current->mems_allowed);
2583 current->cpuset_mem_spread_rotor = node;
2584 return node;
2586 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2589 * cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors?
2590 * @p: pointer to task_struct of some other task.
2592 * Description: Return true if the nearest mem_exclusive ancestor
2593 * cpusets of tasks @p and current overlap. Used by oom killer to
2594 * determine if task @p's memory usage might impact the memory
2595 * available to the current task.
2597 * Call while holding callback_mutex.
2600 int cpuset_excl_nodes_overlap(const struct task_struct *p)
2602 const struct cpuset *cs1, *cs2; /* my and p's cpuset ancestors */
2603 int overlap = 1; /* do cpusets overlap? */
2605 task_lock(current);
2606 if (current->flags & PF_EXITING) {
2607 task_unlock(current);
2608 goto done;
2610 cs1 = nearest_exclusive_ancestor(current->cpuset);
2611 task_unlock(current);
2613 task_lock((struct task_struct *)p);
2614 if (p->flags & PF_EXITING) {
2615 task_unlock((struct task_struct *)p);
2616 goto done;
2618 cs2 = nearest_exclusive_ancestor(p->cpuset);
2619 task_unlock((struct task_struct *)p);
2621 overlap = nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
2622 done:
2623 return overlap;
2627 * Collection of memory_pressure is suppressed unless
2628 * this flag is enabled by writing "1" to the special
2629 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2632 int cpuset_memory_pressure_enabled __read_mostly;
2635 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2637 * Keep a running average of the rate of synchronous (direct)
2638 * page reclaim efforts initiated by tasks in each cpuset.
2640 * This represents the rate at which some task in the cpuset
2641 * ran low on memory on all nodes it was allowed to use, and
2642 * had to enter the kernels page reclaim code in an effort to
2643 * create more free memory by tossing clean pages or swapping
2644 * or writing dirty pages.
2646 * Display to user space in the per-cpuset read-only file
2647 * "memory_pressure". Value displayed is an integer
2648 * representing the recent rate of entry into the synchronous
2649 * (direct) page reclaim by any task attached to the cpuset.
2652 void __cpuset_memory_pressure_bump(void)
2654 struct cpuset *cs;
2656 task_lock(current);
2657 cs = current->cpuset;
2658 fmeter_markevent(&cs->fmeter);
2659 task_unlock(current);
2663 * proc_cpuset_show()
2664 * - Print tasks cpuset path into seq_file.
2665 * - Used for /proc/<pid>/cpuset.
2666 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2667 * doesn't really matter if tsk->cpuset changes after we read it,
2668 * and we take manage_mutex, keeping attach_task() from changing it
2669 * anyway. No need to check that tsk->cpuset != NULL, thanks to
2670 * the_top_cpuset_hack in cpuset_exit(), which sets an exiting tasks
2671 * cpuset to top_cpuset.
2673 static int proc_cpuset_show(struct seq_file *m, void *v)
2675 struct pid *pid;
2676 struct task_struct *tsk;
2677 char *buf;
2678 int retval;
2680 retval = -ENOMEM;
2681 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2682 if (!buf)
2683 goto out;
2685 retval = -ESRCH;
2686 pid = m->private;
2687 tsk = get_pid_task(pid, PIDTYPE_PID);
2688 if (!tsk)
2689 goto out_free;
2691 retval = -EINVAL;
2692 mutex_lock(&manage_mutex);
2694 retval = cpuset_path(tsk->cpuset, buf, PAGE_SIZE);
2695 if (retval < 0)
2696 goto out_unlock;
2697 seq_puts(m, buf);
2698 seq_putc(m, '\n');
2699 out_unlock:
2700 mutex_unlock(&manage_mutex);
2701 put_task_struct(tsk);
2702 out_free:
2703 kfree(buf);
2704 out:
2705 return retval;
2708 static int cpuset_open(struct inode *inode, struct file *file)
2710 struct pid *pid = PROC_I(inode)->pid;
2711 return single_open(file, proc_cpuset_show, pid);
2714 const struct file_operations proc_cpuset_operations = {
2715 .open = cpuset_open,
2716 .read = seq_read,
2717 .llseek = seq_lseek,
2718 .release = single_release,
2721 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2722 char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
2724 buffer += sprintf(buffer, "Cpus_allowed:\t");
2725 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
2726 buffer += sprintf(buffer, "\n");
2727 buffer += sprintf(buffer, "Mems_allowed:\t");
2728 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
2729 buffer += sprintf(buffer, "\n");
2730 return buffer;