lguest: documentation IV: Launcher
[linux-2.6/zen-sources.git] / drivers / lguest / page_tables.c
blobf9ca50d80466cfa45b3596e2e8174526d2a16ab8
1 /*P:700 The pagetable code, on the other hand, still shows the scars of
2 * previous encounters. It's functional, and as neat as it can be in the
3 * circumstances, but be wary, for these things are subtle and break easily.
4 * The Guest provides a virtual to physical mapping, but we can neither trust
5 * it nor use it: we verify and convert it here to point the hardware to the
6 * actual Guest pages when running the Guest. :*/
8 /* Copyright (C) Rusty Russell IBM Corporation 2006.
9 * GPL v2 and any later version */
10 #include <linux/mm.h>
11 #include <linux/types.h>
12 #include <linux/spinlock.h>
13 #include <linux/random.h>
14 #include <linux/percpu.h>
15 #include <asm/tlbflush.h>
16 #include "lg.h"
18 #define PTES_PER_PAGE_SHIFT 10
19 #define PTES_PER_PAGE (1 << PTES_PER_PAGE_SHIFT)
20 #define SWITCHER_PGD_INDEX (PTES_PER_PAGE - 1)
22 static DEFINE_PER_CPU(spte_t *, switcher_pte_pages);
23 #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
25 static unsigned vaddr_to_pgd_index(unsigned long vaddr)
27 return vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT);
30 /* These access the shadow versions (ie. the ones used by the CPU). */
31 static spgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr)
33 unsigned int index = vaddr_to_pgd_index(vaddr);
35 if (index >= SWITCHER_PGD_INDEX) {
36 kill_guest(lg, "attempt to access switcher pages");
37 index = 0;
39 return &lg->pgdirs[i].pgdir[index];
42 static spte_t *spte_addr(struct lguest *lg, spgd_t spgd, unsigned long vaddr)
44 spte_t *page = __va(spgd.pfn << PAGE_SHIFT);
45 BUG_ON(!(spgd.flags & _PAGE_PRESENT));
46 return &page[(vaddr >> PAGE_SHIFT) % PTES_PER_PAGE];
49 /* These access the guest versions. */
50 static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr)
52 unsigned int index = vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT);
53 return lg->pgdirs[lg->pgdidx].cr3 + index * sizeof(gpgd_t);
56 static unsigned long gpte_addr(struct lguest *lg,
57 gpgd_t gpgd, unsigned long vaddr)
59 unsigned long gpage = gpgd.pfn << PAGE_SHIFT;
60 BUG_ON(!(gpgd.flags & _PAGE_PRESENT));
61 return gpage + ((vaddr>>PAGE_SHIFT) % PTES_PER_PAGE) * sizeof(gpte_t);
64 /* Do a virtual -> physical mapping on a user page. */
65 static unsigned long get_pfn(unsigned long virtpfn, int write)
67 struct page *page;
68 unsigned long ret = -1UL;
70 down_read(&current->mm->mmap_sem);
71 if (get_user_pages(current, current->mm, virtpfn << PAGE_SHIFT,
72 1, write, 1, &page, NULL) == 1)
73 ret = page_to_pfn(page);
74 up_read(&current->mm->mmap_sem);
75 return ret;
78 static spte_t gpte_to_spte(struct lguest *lg, gpte_t gpte, int write)
80 spte_t spte;
81 unsigned long pfn;
83 /* We ignore the global flag. */
84 spte.flags = (gpte.flags & ~_PAGE_GLOBAL);
85 pfn = get_pfn(gpte.pfn, write);
86 if (pfn == -1UL) {
87 kill_guest(lg, "failed to get page %u", gpte.pfn);
88 /* Must not put_page() bogus page on cleanup. */
89 spte.flags = 0;
91 spte.pfn = pfn;
92 return spte;
95 static void release_pte(spte_t pte)
97 if (pte.flags & _PAGE_PRESENT)
98 put_page(pfn_to_page(pte.pfn));
101 static void check_gpte(struct lguest *lg, gpte_t gpte)
103 if ((gpte.flags & (_PAGE_PWT|_PAGE_PSE)) || gpte.pfn >= lg->pfn_limit)
104 kill_guest(lg, "bad page table entry");
107 static void check_gpgd(struct lguest *lg, gpgd_t gpgd)
109 if ((gpgd.flags & ~_PAGE_TABLE) || gpgd.pfn >= lg->pfn_limit)
110 kill_guest(lg, "bad page directory entry");
113 /* FIXME: We hold reference to pages, which prevents them from being
114 swapped. It'd be nice to have a callback when Linux wants to swap out. */
116 /* We fault pages in, which allows us to update accessed/dirty bits.
117 * Return true if we got page. */
118 int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
120 gpgd_t gpgd;
121 spgd_t *spgd;
122 unsigned long gpte_ptr;
123 gpte_t gpte;
124 spte_t *spte;
126 gpgd = mkgpgd(lgread_u32(lg, gpgd_addr(lg, vaddr)));
127 if (!(gpgd.flags & _PAGE_PRESENT))
128 return 0;
130 spgd = spgd_addr(lg, lg->pgdidx, vaddr);
131 if (!(spgd->flags & _PAGE_PRESENT)) {
132 /* Get a page of PTEs for them. */
133 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
134 /* FIXME: Steal from self in this case? */
135 if (!ptepage) {
136 kill_guest(lg, "out of memory allocating pte page");
137 return 0;
139 check_gpgd(lg, gpgd);
140 spgd->raw.val = (__pa(ptepage) | gpgd.flags);
143 gpte_ptr = gpte_addr(lg, gpgd, vaddr);
144 gpte = mkgpte(lgread_u32(lg, gpte_ptr));
146 /* No page? */
147 if (!(gpte.flags & _PAGE_PRESENT))
148 return 0;
150 /* Write to read-only page? */
151 if ((errcode & 2) && !(gpte.flags & _PAGE_RW))
152 return 0;
154 /* User access to a non-user page? */
155 if ((errcode & 4) && !(gpte.flags & _PAGE_USER))
156 return 0;
158 check_gpte(lg, gpte);
159 gpte.flags |= _PAGE_ACCESSED;
160 if (errcode & 2)
161 gpte.flags |= _PAGE_DIRTY;
163 /* We're done with the old pte. */
164 spte = spte_addr(lg, *spgd, vaddr);
165 release_pte(*spte);
167 /* We don't make it writable if this isn't a write: later
168 * write will fault so we can set dirty bit in guest. */
169 if (gpte.flags & _PAGE_DIRTY)
170 *spte = gpte_to_spte(lg, gpte, 1);
171 else {
172 gpte_t ro_gpte = gpte;
173 ro_gpte.flags &= ~_PAGE_RW;
174 *spte = gpte_to_spte(lg, ro_gpte, 0);
177 /* Now we update dirty/accessed on guest. */
178 lgwrite_u32(lg, gpte_ptr, gpte.raw.val);
179 return 1;
182 /* This is much faster than the full demand_page logic. */
183 static int page_writable(struct lguest *lg, unsigned long vaddr)
185 spgd_t *spgd;
186 unsigned long flags;
188 spgd = spgd_addr(lg, lg->pgdidx, vaddr);
189 if (!(spgd->flags & _PAGE_PRESENT))
190 return 0;
192 flags = spte_addr(lg, *spgd, vaddr)->flags;
193 return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
196 void pin_page(struct lguest *lg, unsigned long vaddr)
198 if (!page_writable(lg, vaddr) && !demand_page(lg, vaddr, 2))
199 kill_guest(lg, "bad stack page %#lx", vaddr);
202 static void release_pgd(struct lguest *lg, spgd_t *spgd)
204 if (spgd->flags & _PAGE_PRESENT) {
205 unsigned int i;
206 spte_t *ptepage = __va(spgd->pfn << PAGE_SHIFT);
207 for (i = 0; i < PTES_PER_PAGE; i++)
208 release_pte(ptepage[i]);
209 free_page((long)ptepage);
210 spgd->raw.val = 0;
214 static void flush_user_mappings(struct lguest *lg, int idx)
216 unsigned int i;
217 for (i = 0; i < vaddr_to_pgd_index(lg->page_offset); i++)
218 release_pgd(lg, lg->pgdirs[idx].pgdir + i);
221 void guest_pagetable_flush_user(struct lguest *lg)
223 flush_user_mappings(lg, lg->pgdidx);
226 static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
228 unsigned int i;
229 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
230 if (lg->pgdirs[i].cr3 == pgtable)
231 break;
232 return i;
235 static unsigned int new_pgdir(struct lguest *lg,
236 unsigned long cr3,
237 int *blank_pgdir)
239 unsigned int next;
241 next = random32() % ARRAY_SIZE(lg->pgdirs);
242 if (!lg->pgdirs[next].pgdir) {
243 lg->pgdirs[next].pgdir = (spgd_t *)get_zeroed_page(GFP_KERNEL);
244 if (!lg->pgdirs[next].pgdir)
245 next = lg->pgdidx;
246 else
247 /* There are no mappings: you'll need to re-pin */
248 *blank_pgdir = 1;
250 lg->pgdirs[next].cr3 = cr3;
251 /* Release all the non-kernel mappings. */
252 flush_user_mappings(lg, next);
254 return next;
257 void guest_new_pagetable(struct lguest *lg, unsigned long pgtable)
259 int newpgdir, repin = 0;
261 newpgdir = find_pgdir(lg, pgtable);
262 if (newpgdir == ARRAY_SIZE(lg->pgdirs))
263 newpgdir = new_pgdir(lg, pgtable, &repin);
264 lg->pgdidx = newpgdir;
265 if (repin)
266 pin_stack_pages(lg);
269 static void release_all_pagetables(struct lguest *lg)
271 unsigned int i, j;
273 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
274 if (lg->pgdirs[i].pgdir)
275 for (j = 0; j < SWITCHER_PGD_INDEX; j++)
276 release_pgd(lg, lg->pgdirs[i].pgdir + j);
279 void guest_pagetable_clear_all(struct lguest *lg)
281 release_all_pagetables(lg);
282 pin_stack_pages(lg);
285 static void do_set_pte(struct lguest *lg, int idx,
286 unsigned long vaddr, gpte_t gpte)
288 spgd_t *spgd = spgd_addr(lg, idx, vaddr);
289 if (spgd->flags & _PAGE_PRESENT) {
290 spte_t *spte = spte_addr(lg, *spgd, vaddr);
291 release_pte(*spte);
292 if (gpte.flags & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
293 check_gpte(lg, gpte);
294 *spte = gpte_to_spte(lg, gpte, gpte.flags&_PAGE_DIRTY);
295 } else
296 spte->raw.val = 0;
300 void guest_set_pte(struct lguest *lg,
301 unsigned long cr3, unsigned long vaddr, gpte_t gpte)
303 /* Kernel mappings must be changed on all top levels. */
304 if (vaddr >= lg->page_offset) {
305 unsigned int i;
306 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
307 if (lg->pgdirs[i].pgdir)
308 do_set_pte(lg, i, vaddr, gpte);
309 } else {
310 int pgdir = find_pgdir(lg, cr3);
311 if (pgdir != ARRAY_SIZE(lg->pgdirs))
312 do_set_pte(lg, pgdir, vaddr, gpte);
316 void guest_set_pmd(struct lguest *lg, unsigned long cr3, u32 idx)
318 int pgdir;
320 if (idx >= SWITCHER_PGD_INDEX)
321 return;
323 pgdir = find_pgdir(lg, cr3);
324 if (pgdir < ARRAY_SIZE(lg->pgdirs))
325 release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx);
328 int init_guest_pagetable(struct lguest *lg, unsigned long pgtable)
330 /* We assume this in flush_user_mappings, so check now */
331 if (vaddr_to_pgd_index(lg->page_offset) >= SWITCHER_PGD_INDEX)
332 return -EINVAL;
333 lg->pgdidx = 0;
334 lg->pgdirs[lg->pgdidx].cr3 = pgtable;
335 lg->pgdirs[lg->pgdidx].pgdir = (spgd_t*)get_zeroed_page(GFP_KERNEL);
336 if (!lg->pgdirs[lg->pgdidx].pgdir)
337 return -ENOMEM;
338 return 0;
341 void free_guest_pagetable(struct lguest *lg)
343 unsigned int i;
345 release_all_pagetables(lg);
346 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
347 free_page((long)lg->pgdirs[i].pgdir);
350 /* Caller must be preempt-safe */
351 void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages)
353 spte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
354 spgd_t switcher_pgd;
355 spte_t regs_pte;
357 /* Since switcher less that 4MB, we simply mug top pte page. */
358 switcher_pgd.pfn = __pa(switcher_pte_page) >> PAGE_SHIFT;
359 switcher_pgd.flags = _PAGE_KERNEL;
360 lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
362 /* Map our regs page over stack page. */
363 regs_pte.pfn = __pa(lg->regs_page) >> PAGE_SHIFT;
364 regs_pte.flags = _PAGE_KERNEL;
365 switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTES_PER_PAGE]
366 = regs_pte;
369 static void free_switcher_pte_pages(void)
371 unsigned int i;
373 for_each_possible_cpu(i)
374 free_page((long)switcher_pte_page(i));
377 static __init void populate_switcher_pte_page(unsigned int cpu,
378 struct page *switcher_page[],
379 unsigned int pages)
381 unsigned int i;
382 spte_t *pte = switcher_pte_page(cpu);
384 for (i = 0; i < pages; i++) {
385 pte[i].pfn = page_to_pfn(switcher_page[i]);
386 pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED;
389 /* We only map this CPU's pages, so guest can't see others. */
390 i = pages + cpu*2;
392 /* First page (regs) is rw, second (state) is ro. */
393 pte[i].pfn = page_to_pfn(switcher_page[i]);
394 pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW;
395 pte[i+1].pfn = page_to_pfn(switcher_page[i+1]);
396 pte[i+1].flags = _PAGE_PRESENT|_PAGE_ACCESSED;
399 __init int init_pagetables(struct page **switcher_page, unsigned int pages)
401 unsigned int i;
403 for_each_possible_cpu(i) {
404 switcher_pte_page(i) = (spte_t *)get_zeroed_page(GFP_KERNEL);
405 if (!switcher_pte_page(i)) {
406 free_switcher_pte_pages();
407 return -ENOMEM;
409 populate_switcher_pte_page(i, switcher_page, pages);
411 return 0;
414 void free_pagetables(void)
416 free_switcher_pte_pages();