[IA64] CMC/CPE: Reverse the order of fetching log and checking poll threshold
[linux-2.6/zen-sources.git] / arch / ia64 / kernel / mca.c
blobbfbd8986153b96101d00ba27b1ccbb2ac8d25f17
1 /*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
5 * Updated for latest kernel
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
24 * 03/04/15 D. Mosberger Added INIT backtrace support.
25 * 02/03/25 M. Domsch GUID cleanups
27 * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
28 * error flag, set SAL default return values, changed
29 * error record structure to linked list, added init call
30 * to sal_get_state_info_size().
32 * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
33 * platform errors, completed code for logging of
34 * corrected & uncorrected machine check errors, and
35 * updated for conformance with Nov. 2000 revision of the
36 * SAL 3.0 spec.
37 * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38 * added min save state dump, added INIT handler.
40 * 2003-12-08 Keith Owens <kaos@sgi.com>
41 * smp_call_function() must not be called from interrupt context (can
42 * deadlock on tasklist_lock). Use keventd to call smp_call_function().
44 * 2004-02-01 Keith Owens <kaos@sgi.com>
45 * Avoid deadlock when using printk() for MCA and INIT records.
46 * Delete all record printing code, moved to salinfo_decode in user space.
47 * Mark variables and functions static where possible.
48 * Delete dead variables and functions.
49 * Reorder to remove the need for forward declarations and to consolidate
50 * related code.
52 * 2005-08-12 Keith Owens <kaos@sgi.com>
53 * Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
55 * 2005-10-07 Keith Owens <kaos@sgi.com>
56 * Add notify_die() hooks.
58 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
59 * Add printing support for MCA/INIT.
61 #include <linux/types.h>
62 #include <linux/init.h>
63 #include <linux/sched.h>
64 #include <linux/interrupt.h>
65 #include <linux/irq.h>
66 #include <linux/smp_lock.h>
67 #include <linux/bootmem.h>
68 #include <linux/acpi.h>
69 #include <linux/timer.h>
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/smp.h>
73 #include <linux/workqueue.h>
74 #include <linux/cpumask.h>
76 #include <asm/delay.h>
77 #include <asm/kdebug.h>
78 #include <asm/machvec.h>
79 #include <asm/meminit.h>
80 #include <asm/page.h>
81 #include <asm/ptrace.h>
82 #include <asm/system.h>
83 #include <asm/sal.h>
84 #include <asm/mca.h>
86 #include <asm/irq.h>
87 #include <asm/hw_irq.h>
89 #include "mca_drv.h"
90 #include "entry.h"
92 #if defined(IA64_MCA_DEBUG_INFO)
93 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
94 #else
95 # define IA64_MCA_DEBUG(fmt...)
96 #endif
98 /* Used by mca_asm.S */
99 u32 ia64_mca_serialize;
100 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
101 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
102 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
103 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
105 unsigned long __per_cpu_mca[NR_CPUS];
107 /* In mca_asm.S */
108 extern void ia64_os_init_dispatch_monarch (void);
109 extern void ia64_os_init_dispatch_slave (void);
111 static int monarch_cpu = -1;
113 static ia64_mc_info_t ia64_mc_info;
115 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
116 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
117 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
118 #define CPE_HISTORY_LENGTH 5
119 #define CMC_HISTORY_LENGTH 5
121 static struct timer_list cpe_poll_timer;
122 static struct timer_list cmc_poll_timer;
124 * This variable tells whether we are currently in polling mode.
125 * Start with this in the wrong state so we won't play w/ timers
126 * before the system is ready.
128 static int cmc_polling_enabled = 1;
131 * Clearing this variable prevents CPE polling from getting activated
132 * in mca_late_init. Use it if your system doesn't provide a CPEI,
133 * but encounters problems retrieving CPE logs. This should only be
134 * necessary for debugging.
136 static int cpe_poll_enabled = 1;
138 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
140 static int mca_init __initdata;
143 * limited & delayed printing support for MCA/INIT handler
146 #define mprintk(fmt...) ia64_mca_printk(fmt)
148 #define MLOGBUF_SIZE (512+256*NR_CPUS)
149 #define MLOGBUF_MSGMAX 256
150 static char mlogbuf[MLOGBUF_SIZE];
151 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
152 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
153 static unsigned long mlogbuf_start;
154 static unsigned long mlogbuf_end;
155 static unsigned int mlogbuf_finished = 0;
156 static unsigned long mlogbuf_timestamp = 0;
158 static int loglevel_save = -1;
159 #define BREAK_LOGLEVEL(__console_loglevel) \
160 oops_in_progress = 1; \
161 if (loglevel_save < 0) \
162 loglevel_save = __console_loglevel; \
163 __console_loglevel = 15;
165 #define RESTORE_LOGLEVEL(__console_loglevel) \
166 if (loglevel_save >= 0) { \
167 __console_loglevel = loglevel_save; \
168 loglevel_save = -1; \
170 mlogbuf_finished = 0; \
171 oops_in_progress = 0;
174 * Push messages into buffer, print them later if not urgent.
176 void ia64_mca_printk(const char *fmt, ...)
178 va_list args;
179 int printed_len;
180 char temp_buf[MLOGBUF_MSGMAX];
181 char *p;
183 va_start(args, fmt);
184 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
185 va_end(args);
187 /* Copy the output into mlogbuf */
188 if (oops_in_progress) {
189 /* mlogbuf was abandoned, use printk directly instead. */
190 printk(temp_buf);
191 } else {
192 spin_lock(&mlogbuf_wlock);
193 for (p = temp_buf; *p; p++) {
194 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
195 if (next != mlogbuf_start) {
196 mlogbuf[mlogbuf_end] = *p;
197 mlogbuf_end = next;
198 } else {
199 /* buffer full */
200 break;
203 mlogbuf[mlogbuf_end] = '\0';
204 spin_unlock(&mlogbuf_wlock);
207 EXPORT_SYMBOL(ia64_mca_printk);
210 * Print buffered messages.
211 * NOTE: call this after returning normal context. (ex. from salinfod)
213 void ia64_mlogbuf_dump(void)
215 char temp_buf[MLOGBUF_MSGMAX];
216 char *p;
217 unsigned long index;
218 unsigned long flags;
219 unsigned int printed_len;
221 /* Get output from mlogbuf */
222 while (mlogbuf_start != mlogbuf_end) {
223 temp_buf[0] = '\0';
224 p = temp_buf;
225 printed_len = 0;
227 spin_lock_irqsave(&mlogbuf_rlock, flags);
229 index = mlogbuf_start;
230 while (index != mlogbuf_end) {
231 *p = mlogbuf[index];
232 index = (index + 1) % MLOGBUF_SIZE;
233 if (!*p)
234 break;
235 p++;
236 if (++printed_len >= MLOGBUF_MSGMAX - 1)
237 break;
239 *p = '\0';
240 if (temp_buf[0])
241 printk(temp_buf);
242 mlogbuf_start = index;
244 mlogbuf_timestamp = 0;
245 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
248 EXPORT_SYMBOL(ia64_mlogbuf_dump);
251 * Call this if system is going to down or if immediate flushing messages to
252 * console is required. (ex. recovery was failed, crash dump is going to be
253 * invoked, long-wait rendezvous etc.)
254 * NOTE: this should be called from monarch.
256 static void ia64_mlogbuf_finish(int wait)
258 BREAK_LOGLEVEL(console_loglevel);
260 spin_lock_init(&mlogbuf_rlock);
261 ia64_mlogbuf_dump();
262 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
263 "MCA/INIT might be dodgy or fail.\n");
265 if (!wait)
266 return;
268 /* wait for console */
269 printk("Delaying for 5 seconds...\n");
270 udelay(5*1000000);
272 mlogbuf_finished = 1;
274 EXPORT_SYMBOL(ia64_mlogbuf_finish);
277 * Print buffered messages from INIT context.
279 static void ia64_mlogbuf_dump_from_init(void)
281 if (mlogbuf_finished)
282 return;
284 if (mlogbuf_timestamp && (mlogbuf_timestamp + 30*HZ > jiffies)) {
285 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
286 " and the system seems to be messed up.\n");
287 ia64_mlogbuf_finish(0);
288 return;
291 if (!spin_trylock(&mlogbuf_rlock)) {
292 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
293 "Generated messages other than stack dump will be "
294 "buffered to mlogbuf and will be printed later.\n");
295 printk(KERN_ERR "INIT: If messages would not printed after "
296 "this INIT, wait 30sec and assert INIT again.\n");
297 if (!mlogbuf_timestamp)
298 mlogbuf_timestamp = jiffies;
299 return;
301 spin_unlock(&mlogbuf_rlock);
302 ia64_mlogbuf_dump();
305 static void inline
306 ia64_mca_spin(const char *func)
308 if (monarch_cpu == smp_processor_id())
309 ia64_mlogbuf_finish(0);
310 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
311 while (1)
312 cpu_relax();
315 * IA64_MCA log support
317 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
318 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
320 typedef struct ia64_state_log_s
322 spinlock_t isl_lock;
323 int isl_index;
324 unsigned long isl_count;
325 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
326 } ia64_state_log_t;
328 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
330 #define IA64_LOG_ALLOCATE(it, size) \
331 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
332 (ia64_err_rec_t *)alloc_bootmem(size); \
333 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
334 (ia64_err_rec_t *)alloc_bootmem(size);}
335 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
336 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
337 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
338 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
339 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
340 #define IA64_LOG_INDEX_INC(it) \
341 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
342 ia64_state_log[it].isl_count++;}
343 #define IA64_LOG_INDEX_DEC(it) \
344 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
345 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
346 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
347 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
350 * ia64_log_init
351 * Reset the OS ia64 log buffer
352 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
353 * Outputs : None
355 static void __init
356 ia64_log_init(int sal_info_type)
358 u64 max_size = 0;
360 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
361 IA64_LOG_LOCK_INIT(sal_info_type);
363 // SAL will tell us the maximum size of any error record of this type
364 max_size = ia64_sal_get_state_info_size(sal_info_type);
365 if (!max_size)
366 /* alloc_bootmem() doesn't like zero-sized allocations! */
367 return;
369 // set up OS data structures to hold error info
370 IA64_LOG_ALLOCATE(sal_info_type, max_size);
371 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
372 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
376 * ia64_log_get
378 * Get the current MCA log from SAL and copy it into the OS log buffer.
380 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
381 * irq_safe whether you can use printk at this point
382 * Outputs : size (total record length)
383 * *buffer (ptr to error record)
386 static u64
387 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
389 sal_log_record_header_t *log_buffer;
390 u64 total_len = 0;
391 int s;
393 IA64_LOG_LOCK(sal_info_type);
395 /* Get the process state information */
396 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
398 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
400 if (total_len) {
401 IA64_LOG_INDEX_INC(sal_info_type);
402 IA64_LOG_UNLOCK(sal_info_type);
403 if (irq_safe) {
404 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
405 "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
407 *buffer = (u8 *) log_buffer;
408 return total_len;
409 } else {
410 IA64_LOG_UNLOCK(sal_info_type);
411 return 0;
416 * ia64_mca_log_sal_error_record
418 * This function retrieves a specified error record type from SAL
419 * and wakes up any processes waiting for error records.
421 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
422 * FIXME: remove MCA and irq_safe.
424 static void
425 ia64_mca_log_sal_error_record(int sal_info_type)
427 u8 *buffer;
428 sal_log_record_header_t *rh;
429 u64 size;
430 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
431 #ifdef IA64_MCA_DEBUG_INFO
432 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
433 #endif
435 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
436 if (!size)
437 return;
439 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
441 if (irq_safe)
442 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
443 smp_processor_id(),
444 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
446 /* Clear logs from corrected errors in case there's no user-level logger */
447 rh = (sal_log_record_header_t *)buffer;
448 if (rh->severity == sal_log_severity_corrected)
449 ia64_sal_clear_state_info(sal_info_type);
453 * search_mca_table
454 * See if the MCA surfaced in an instruction range
455 * that has been tagged as recoverable.
457 * Inputs
458 * first First address range to check
459 * last Last address range to check
460 * ip Instruction pointer, address we are looking for
462 * Return value:
463 * 1 on Success (in the table)/ 0 on Failure (not in the table)
466 search_mca_table (const struct mca_table_entry *first,
467 const struct mca_table_entry *last,
468 unsigned long ip)
470 const struct mca_table_entry *curr;
471 u64 curr_start, curr_end;
473 curr = first;
474 while (curr <= last) {
475 curr_start = (u64) &curr->start_addr + curr->start_addr;
476 curr_end = (u64) &curr->end_addr + curr->end_addr;
478 if ((ip >= curr_start) && (ip <= curr_end)) {
479 return 1;
481 curr++;
483 return 0;
486 /* Given an address, look for it in the mca tables. */
487 int mca_recover_range(unsigned long addr)
489 extern struct mca_table_entry __start___mca_table[];
490 extern struct mca_table_entry __stop___mca_table[];
492 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
494 EXPORT_SYMBOL_GPL(mca_recover_range);
496 #ifdef CONFIG_ACPI
498 int cpe_vector = -1;
499 int ia64_cpe_irq = -1;
501 static irqreturn_t
502 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
504 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
505 static int index;
506 static DEFINE_SPINLOCK(cpe_history_lock);
508 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
509 __FUNCTION__, cpe_irq, smp_processor_id());
511 /* SAL spec states this should run w/ interrupts enabled */
512 local_irq_enable();
514 spin_lock(&cpe_history_lock);
515 if (!cpe_poll_enabled && cpe_vector >= 0) {
517 int i, count = 1; /* we know 1 happened now */
518 unsigned long now = jiffies;
520 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
521 if (now - cpe_history[i] <= HZ)
522 count++;
525 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
526 if (count >= CPE_HISTORY_LENGTH) {
528 cpe_poll_enabled = 1;
529 spin_unlock(&cpe_history_lock);
530 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
533 * Corrected errors will still be corrected, but
534 * make sure there's a log somewhere that indicates
535 * something is generating more than we can handle.
537 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
539 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
541 /* lock already released, get out now */
542 goto out;
543 } else {
544 cpe_history[index++] = now;
545 if (index == CPE_HISTORY_LENGTH)
546 index = 0;
549 spin_unlock(&cpe_history_lock);
550 out:
551 /* Get the CPE error record and log it */
552 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
554 return IRQ_HANDLED;
557 #endif /* CONFIG_ACPI */
559 #ifdef CONFIG_ACPI
561 * ia64_mca_register_cpev
563 * Register the corrected platform error vector with SAL.
565 * Inputs
566 * cpev Corrected Platform Error Vector number
568 * Outputs
569 * None
571 static void __init
572 ia64_mca_register_cpev (int cpev)
574 /* Register the CPE interrupt vector with SAL */
575 struct ia64_sal_retval isrv;
577 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
578 if (isrv.status) {
579 printk(KERN_ERR "Failed to register Corrected Platform "
580 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
581 return;
584 IA64_MCA_DEBUG("%s: corrected platform error "
585 "vector %#x registered\n", __FUNCTION__, cpev);
587 #endif /* CONFIG_ACPI */
590 * ia64_mca_cmc_vector_setup
592 * Setup the corrected machine check vector register in the processor.
593 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
594 * This function is invoked on a per-processor basis.
596 * Inputs
597 * None
599 * Outputs
600 * None
602 void __cpuinit
603 ia64_mca_cmc_vector_setup (void)
605 cmcv_reg_t cmcv;
607 cmcv.cmcv_regval = 0;
608 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
609 cmcv.cmcv_vector = IA64_CMC_VECTOR;
610 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
612 IA64_MCA_DEBUG("%s: CPU %d corrected "
613 "machine check vector %#x registered.\n",
614 __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
616 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
617 __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
621 * ia64_mca_cmc_vector_disable
623 * Mask the corrected machine check vector register in the processor.
624 * This function is invoked on a per-processor basis.
626 * Inputs
627 * dummy(unused)
629 * Outputs
630 * None
632 static void
633 ia64_mca_cmc_vector_disable (void *dummy)
635 cmcv_reg_t cmcv;
637 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
639 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
640 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
642 IA64_MCA_DEBUG("%s: CPU %d corrected "
643 "machine check vector %#x disabled.\n",
644 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
648 * ia64_mca_cmc_vector_enable
650 * Unmask the corrected machine check vector register in the processor.
651 * This function is invoked on a per-processor basis.
653 * Inputs
654 * dummy(unused)
656 * Outputs
657 * None
659 static void
660 ia64_mca_cmc_vector_enable (void *dummy)
662 cmcv_reg_t cmcv;
664 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
666 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
667 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
669 IA64_MCA_DEBUG("%s: CPU %d corrected "
670 "machine check vector %#x enabled.\n",
671 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
675 * ia64_mca_cmc_vector_disable_keventd
677 * Called via keventd (smp_call_function() is not safe in interrupt context) to
678 * disable the cmc interrupt vector.
680 static void
681 ia64_mca_cmc_vector_disable_keventd(void *unused)
683 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
687 * ia64_mca_cmc_vector_enable_keventd
689 * Called via keventd (smp_call_function() is not safe in interrupt context) to
690 * enable the cmc interrupt vector.
692 static void
693 ia64_mca_cmc_vector_enable_keventd(void *unused)
695 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
699 * ia64_mca_wakeup
701 * Send an inter-cpu interrupt to wake-up a particular cpu
702 * and mark that cpu to be out of rendez.
704 * Inputs : cpuid
705 * Outputs : None
707 static void
708 ia64_mca_wakeup(int cpu)
710 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
711 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
716 * ia64_mca_wakeup_all
718 * Wakeup all the cpus which have rendez'ed previously.
720 * Inputs : None
721 * Outputs : None
723 static void
724 ia64_mca_wakeup_all(void)
726 int cpu;
728 /* Clear the Rendez checkin flag for all cpus */
729 for_each_online_cpu(cpu) {
730 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
731 ia64_mca_wakeup(cpu);
737 * ia64_mca_rendez_interrupt_handler
739 * This is handler used to put slave processors into spinloop
740 * while the monarch processor does the mca handling and later
741 * wake each slave up once the monarch is done.
743 * Inputs : None
744 * Outputs : None
746 static irqreturn_t
747 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *regs)
749 unsigned long flags;
750 int cpu = smp_processor_id();
751 struct ia64_mca_notify_die nd =
752 { .sos = NULL, .monarch_cpu = &monarch_cpu };
754 /* Mask all interrupts */
755 local_irq_save(flags);
756 if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", regs, (long)&nd, 0, 0)
757 == NOTIFY_STOP)
758 ia64_mca_spin(__FUNCTION__);
760 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
761 /* Register with the SAL monarch that the slave has
762 * reached SAL
764 ia64_sal_mc_rendez();
766 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", regs, (long)&nd, 0, 0)
767 == NOTIFY_STOP)
768 ia64_mca_spin(__FUNCTION__);
770 /* Wait for the monarch cpu to exit. */
771 while (monarch_cpu != -1)
772 cpu_relax(); /* spin until monarch leaves */
774 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", regs, (long)&nd, 0, 0)
775 == NOTIFY_STOP)
776 ia64_mca_spin(__FUNCTION__);
778 /* Enable all interrupts */
779 local_irq_restore(flags);
780 return IRQ_HANDLED;
784 * ia64_mca_wakeup_int_handler
786 * The interrupt handler for processing the inter-cpu interrupt to the
787 * slave cpu which was spinning in the rendez loop.
788 * Since this spinning is done by turning off the interrupts and
789 * polling on the wakeup-interrupt bit in the IRR, there is
790 * nothing useful to be done in the handler.
792 * Inputs : wakeup_irq (Wakeup-interrupt bit)
793 * arg (Interrupt handler specific argument)
794 * ptregs (Exception frame at the time of the interrupt)
795 * Outputs : None
798 static irqreturn_t
799 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
801 return IRQ_HANDLED;
804 /* Function pointer for extra MCA recovery */
805 int (*ia64_mca_ucmc_extension)
806 (void*,struct ia64_sal_os_state*)
807 = NULL;
810 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
812 if (ia64_mca_ucmc_extension)
813 return 1;
815 ia64_mca_ucmc_extension = fn;
816 return 0;
819 void
820 ia64_unreg_MCA_extension(void)
822 if (ia64_mca_ucmc_extension)
823 ia64_mca_ucmc_extension = NULL;
826 EXPORT_SYMBOL(ia64_reg_MCA_extension);
827 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
830 static inline void
831 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
833 u64 fslot, tslot, nat;
834 *tr = *fr;
835 fslot = ((unsigned long)fr >> 3) & 63;
836 tslot = ((unsigned long)tr >> 3) & 63;
837 *tnat &= ~(1UL << tslot);
838 nat = (fnat >> fslot) & 1;
839 *tnat |= (nat << tslot);
842 /* Change the comm field on the MCA/INT task to include the pid that
843 * was interrupted, it makes for easier debugging. If that pid was 0
844 * (swapper or nested MCA/INIT) then use the start of the previous comm
845 * field suffixed with its cpu.
848 static void
849 ia64_mca_modify_comm(const struct task_struct *previous_current)
851 char *p, comm[sizeof(current->comm)];
852 if (previous_current->pid)
853 snprintf(comm, sizeof(comm), "%s %d",
854 current->comm, previous_current->pid);
855 else {
856 int l;
857 if ((p = strchr(previous_current->comm, ' ')))
858 l = p - previous_current->comm;
859 else
860 l = strlen(previous_current->comm);
861 snprintf(comm, sizeof(comm), "%s %*s %d",
862 current->comm, l, previous_current->comm,
863 task_thread_info(previous_current)->cpu);
865 memcpy(current->comm, comm, sizeof(current->comm));
868 /* On entry to this routine, we are running on the per cpu stack, see
869 * mca_asm.h. The original stack has not been touched by this event. Some of
870 * the original stack's registers will be in the RBS on this stack. This stack
871 * also contains a partial pt_regs and switch_stack, the rest of the data is in
872 * PAL minstate.
874 * The first thing to do is modify the original stack to look like a blocked
875 * task so we can run backtrace on the original task. Also mark the per cpu
876 * stack as current to ensure that we use the correct task state, it also means
877 * that we can do backtrace on the MCA/INIT handler code itself.
880 static struct task_struct *
881 ia64_mca_modify_original_stack(struct pt_regs *regs,
882 const struct switch_stack *sw,
883 struct ia64_sal_os_state *sos,
884 const char *type)
886 char *p;
887 ia64_va va;
888 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
889 const pal_min_state_area_t *ms = sos->pal_min_state;
890 struct task_struct *previous_current;
891 struct pt_regs *old_regs;
892 struct switch_stack *old_sw;
893 unsigned size = sizeof(struct pt_regs) +
894 sizeof(struct switch_stack) + 16;
895 u64 *old_bspstore, *old_bsp;
896 u64 *new_bspstore, *new_bsp;
897 u64 old_unat, old_rnat, new_rnat, nat;
898 u64 slots, loadrs = regs->loadrs;
899 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
900 u64 ar_bspstore = regs->ar_bspstore;
901 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
902 const u64 *bank;
903 const char *msg;
904 int cpu = smp_processor_id();
906 previous_current = curr_task(cpu);
907 set_curr_task(cpu, current);
908 if ((p = strchr(current->comm, ' ')))
909 *p = '\0';
911 /* Best effort attempt to cope with MCA/INIT delivered while in
912 * physical mode.
914 regs->cr_ipsr = ms->pmsa_ipsr;
915 if (ia64_psr(regs)->dt == 0) {
916 va.l = r12;
917 if (va.f.reg == 0) {
918 va.f.reg = 7;
919 r12 = va.l;
921 va.l = r13;
922 if (va.f.reg == 0) {
923 va.f.reg = 7;
924 r13 = va.l;
927 if (ia64_psr(regs)->rt == 0) {
928 va.l = ar_bspstore;
929 if (va.f.reg == 0) {
930 va.f.reg = 7;
931 ar_bspstore = va.l;
933 va.l = ar_bsp;
934 if (va.f.reg == 0) {
935 va.f.reg = 7;
936 ar_bsp = va.l;
940 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
941 * have been copied to the old stack, the old stack may fail the
942 * validation tests below. So ia64_old_stack() must restore the dirty
943 * registers from the new stack. The old and new bspstore probably
944 * have different alignments, so loadrs calculated on the old bsp
945 * cannot be used to restore from the new bsp. Calculate a suitable
946 * loadrs for the new stack and save it in the new pt_regs, where
947 * ia64_old_stack() can get it.
949 old_bspstore = (u64 *)ar_bspstore;
950 old_bsp = (u64 *)ar_bsp;
951 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
952 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
953 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
954 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
956 /* Verify the previous stack state before we change it */
957 if (user_mode(regs)) {
958 msg = "occurred in user space";
959 /* previous_current is guaranteed to be valid when the task was
960 * in user space, so ...
962 ia64_mca_modify_comm(previous_current);
963 goto no_mod;
966 if (!mca_recover_range(ms->pmsa_iip)) {
967 if (r13 != sos->prev_IA64_KR_CURRENT) {
968 msg = "inconsistent previous current and r13";
969 goto no_mod;
971 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
972 msg = "inconsistent r12 and r13";
973 goto no_mod;
975 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
976 msg = "inconsistent ar.bspstore and r13";
977 goto no_mod;
979 va.p = old_bspstore;
980 if (va.f.reg < 5) {
981 msg = "old_bspstore is in the wrong region";
982 goto no_mod;
984 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
985 msg = "inconsistent ar.bsp and r13";
986 goto no_mod;
988 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
989 if (ar_bspstore + size > r12) {
990 msg = "no room for blocked state";
991 goto no_mod;
995 ia64_mca_modify_comm(previous_current);
997 /* Make the original task look blocked. First stack a struct pt_regs,
998 * describing the state at the time of interrupt. mca_asm.S built a
999 * partial pt_regs, copy it and fill in the blanks using minstate.
1001 p = (char *)r12 - sizeof(*regs);
1002 old_regs = (struct pt_regs *)p;
1003 memcpy(old_regs, regs, sizeof(*regs));
1004 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1005 * pmsa_{xip,xpsr,xfs}
1007 if (ia64_psr(regs)->ic) {
1008 old_regs->cr_iip = ms->pmsa_iip;
1009 old_regs->cr_ipsr = ms->pmsa_ipsr;
1010 old_regs->cr_ifs = ms->pmsa_ifs;
1011 } else {
1012 old_regs->cr_iip = ms->pmsa_xip;
1013 old_regs->cr_ipsr = ms->pmsa_xpsr;
1014 old_regs->cr_ifs = ms->pmsa_xfs;
1016 old_regs->pr = ms->pmsa_pr;
1017 old_regs->b0 = ms->pmsa_br0;
1018 old_regs->loadrs = loadrs;
1019 old_regs->ar_rsc = ms->pmsa_rsc;
1020 old_unat = old_regs->ar_unat;
1021 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1022 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1023 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1024 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1025 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1026 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1027 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1028 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1029 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1030 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1031 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1032 if (ia64_psr(old_regs)->bn)
1033 bank = ms->pmsa_bank1_gr;
1034 else
1035 bank = ms->pmsa_bank0_gr;
1036 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1037 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1038 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1039 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1040 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1041 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1042 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1043 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1044 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1045 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1046 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1047 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1048 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1049 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1050 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1051 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1053 /* Next stack a struct switch_stack. mca_asm.S built a partial
1054 * switch_stack, copy it and fill in the blanks using pt_regs and
1055 * minstate.
1057 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1058 * ar.pfs is set to 0.
1060 * unwind.c::unw_unwind() does special processing for interrupt frames.
1061 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1062 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1063 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1064 * switch_stack on the original stack so it will unwind correctly when
1065 * unwind.c reads pt_regs.
1067 * thread.ksp is updated to point to the synthesized switch_stack.
1069 p -= sizeof(struct switch_stack);
1070 old_sw = (struct switch_stack *)p;
1071 memcpy(old_sw, sw, sizeof(*sw));
1072 old_sw->caller_unat = old_unat;
1073 old_sw->ar_fpsr = old_regs->ar_fpsr;
1074 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1075 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1076 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1077 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1078 old_sw->b0 = (u64)ia64_leave_kernel;
1079 old_sw->b1 = ms->pmsa_br1;
1080 old_sw->ar_pfs = 0;
1081 old_sw->ar_unat = old_unat;
1082 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1083 previous_current->thread.ksp = (u64)p - 16;
1085 /* Finally copy the original stack's registers back to its RBS.
1086 * Registers from ar.bspstore through ar.bsp at the time of the event
1087 * are in the current RBS, copy them back to the original stack. The
1088 * copy must be done register by register because the original bspstore
1089 * and the current one have different alignments, so the saved RNAT
1090 * data occurs at different places.
1092 * mca_asm does cover, so the old_bsp already includes all registers at
1093 * the time of MCA/INIT. It also does flushrs, so all registers before
1094 * this function have been written to backing store on the MCA/INIT
1095 * stack.
1097 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1098 old_rnat = regs->ar_rnat;
1099 while (slots--) {
1100 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1101 new_rnat = ia64_get_rnat(new_bspstore++);
1103 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1104 *old_bspstore++ = old_rnat;
1105 old_rnat = 0;
1107 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1108 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1109 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1110 *old_bspstore++ = *new_bspstore++;
1112 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1113 old_sw->ar_rnat = old_rnat;
1115 sos->prev_task = previous_current;
1116 return previous_current;
1118 no_mod:
1119 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1120 smp_processor_id(), type, msg);
1121 return previous_current;
1124 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1125 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1126 * not entered rendezvous yet then wait a bit. The assumption is that any
1127 * slave that has not rendezvoused after a reasonable time is never going to do
1128 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1129 * interrupt, as well as cpus that receive the INIT slave event.
1132 static void
1133 ia64_wait_for_slaves(int monarch, const char *type)
1135 int c, wait = 0, missing = 0;
1136 for_each_online_cpu(c) {
1137 if (c == monarch)
1138 continue;
1139 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1140 udelay(1000); /* short wait first */
1141 wait = 1;
1142 break;
1145 if (!wait)
1146 goto all_in;
1147 for_each_online_cpu(c) {
1148 if (c == monarch)
1149 continue;
1150 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1151 udelay(5*1000000); /* wait 5 seconds for slaves (arbitrary) */
1152 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1153 missing = 1;
1154 break;
1157 if (!missing)
1158 goto all_in;
1160 * Maybe slave(s) dead. Print buffered messages immediately.
1162 ia64_mlogbuf_finish(0);
1163 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1164 for_each_online_cpu(c) {
1165 if (c == monarch)
1166 continue;
1167 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1168 mprintk(" %d", c);
1170 mprintk("\n");
1171 return;
1173 all_in:
1174 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1175 return;
1179 * ia64_mca_handler
1181 * This is uncorrectable machine check handler called from OS_MCA
1182 * dispatch code which is in turn called from SAL_CHECK().
1183 * This is the place where the core of OS MCA handling is done.
1184 * Right now the logs are extracted and displayed in a well-defined
1185 * format. This handler code is supposed to be run only on the
1186 * monarch processor. Once the monarch is done with MCA handling
1187 * further MCA logging is enabled by clearing logs.
1188 * Monarch also has the duty of sending wakeup-IPIs to pull the
1189 * slave processors out of rendezvous spinloop.
1191 void
1192 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1193 struct ia64_sal_os_state *sos)
1195 pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
1196 &sos->proc_state_param;
1197 int recover, cpu = smp_processor_id();
1198 struct task_struct *previous_current;
1199 struct ia64_mca_notify_die nd =
1200 { .sos = sos, .monarch_cpu = &monarch_cpu };
1202 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1203 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1205 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1206 monarch_cpu = cpu;
1207 if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
1208 == NOTIFY_STOP)
1209 ia64_mca_spin(__FUNCTION__);
1210 ia64_wait_for_slaves(cpu, "MCA");
1212 /* Wakeup all the processors which are spinning in the rendezvous loop.
1213 * They will leave SAL, then spin in the OS with interrupts disabled
1214 * until this monarch cpu leaves the MCA handler. That gets control
1215 * back to the OS so we can backtrace the other cpus, backtrace when
1216 * spinning in SAL does not work.
1218 ia64_mca_wakeup_all();
1219 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
1220 == NOTIFY_STOP)
1221 ia64_mca_spin(__FUNCTION__);
1223 /* Get the MCA error record and log it */
1224 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1226 /* TLB error is only exist in this SAL error record */
1227 recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
1228 /* other error recovery */
1229 || (ia64_mca_ucmc_extension
1230 && ia64_mca_ucmc_extension(
1231 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1232 sos));
1234 if (recover) {
1235 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1236 rh->severity = sal_log_severity_corrected;
1237 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1238 sos->os_status = IA64_MCA_CORRECTED;
1239 } else {
1240 /* Dump buffered message to console */
1241 ia64_mlogbuf_finish(1);
1243 if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
1244 == NOTIFY_STOP)
1245 ia64_mca_spin(__FUNCTION__);
1247 set_curr_task(cpu, previous_current);
1248 monarch_cpu = -1;
1251 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
1252 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
1255 * ia64_mca_cmc_int_handler
1257 * This is corrected machine check interrupt handler.
1258 * Right now the logs are extracted and displayed in a well-defined
1259 * format.
1261 * Inputs
1262 * interrupt number
1263 * client data arg ptr
1264 * saved registers ptr
1266 * Outputs
1267 * None
1269 static irqreturn_t
1270 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
1272 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1273 static int index;
1274 static DEFINE_SPINLOCK(cmc_history_lock);
1276 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1277 __FUNCTION__, cmc_irq, smp_processor_id());
1279 /* SAL spec states this should run w/ interrupts enabled */
1280 local_irq_enable();
1282 spin_lock(&cmc_history_lock);
1283 if (!cmc_polling_enabled) {
1284 int i, count = 1; /* we know 1 happened now */
1285 unsigned long now = jiffies;
1287 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1288 if (now - cmc_history[i] <= HZ)
1289 count++;
1292 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1293 if (count >= CMC_HISTORY_LENGTH) {
1295 cmc_polling_enabled = 1;
1296 spin_unlock(&cmc_history_lock);
1297 /* If we're being hit with CMC interrupts, we won't
1298 * ever execute the schedule_work() below. Need to
1299 * disable CMC interrupts on this processor now.
1301 ia64_mca_cmc_vector_disable(NULL);
1302 schedule_work(&cmc_disable_work);
1305 * Corrected errors will still be corrected, but
1306 * make sure there's a log somewhere that indicates
1307 * something is generating more than we can handle.
1309 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1311 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1313 /* lock already released, get out now */
1314 goto out;
1315 } else {
1316 cmc_history[index++] = now;
1317 if (index == CMC_HISTORY_LENGTH)
1318 index = 0;
1321 spin_unlock(&cmc_history_lock);
1322 out:
1323 /* Get the CMC error record and log it */
1324 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1326 return IRQ_HANDLED;
1330 * ia64_mca_cmc_int_caller
1332 * Triggered by sw interrupt from CMC polling routine. Calls
1333 * real interrupt handler and either triggers a sw interrupt
1334 * on the next cpu or does cleanup at the end.
1336 * Inputs
1337 * interrupt number
1338 * client data arg ptr
1339 * saved registers ptr
1340 * Outputs
1341 * handled
1343 static irqreturn_t
1344 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
1346 static int start_count = -1;
1347 unsigned int cpuid;
1349 cpuid = smp_processor_id();
1351 /* If first cpu, update count */
1352 if (start_count == -1)
1353 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1355 ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
1357 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1359 if (cpuid < NR_CPUS) {
1360 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1361 } else {
1362 /* If no log record, switch out of polling mode */
1363 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1365 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1366 schedule_work(&cmc_enable_work);
1367 cmc_polling_enabled = 0;
1369 } else {
1371 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1374 start_count = -1;
1377 return IRQ_HANDLED;
1381 * ia64_mca_cmc_poll
1383 * Poll for Corrected Machine Checks (CMCs)
1385 * Inputs : dummy(unused)
1386 * Outputs : None
1389 static void
1390 ia64_mca_cmc_poll (unsigned long dummy)
1392 /* Trigger a CMC interrupt cascade */
1393 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1397 * ia64_mca_cpe_int_caller
1399 * Triggered by sw interrupt from CPE polling routine. Calls
1400 * real interrupt handler and either triggers a sw interrupt
1401 * on the next cpu or does cleanup at the end.
1403 * Inputs
1404 * interrupt number
1405 * client data arg ptr
1406 * saved registers ptr
1407 * Outputs
1408 * handled
1410 #ifdef CONFIG_ACPI
1412 static irqreturn_t
1413 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
1415 static int start_count = -1;
1416 static int poll_time = MIN_CPE_POLL_INTERVAL;
1417 unsigned int cpuid;
1419 cpuid = smp_processor_id();
1421 /* If first cpu, update count */
1422 if (start_count == -1)
1423 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1425 ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
1427 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1429 if (cpuid < NR_CPUS) {
1430 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1431 } else {
1433 * If a log was recorded, increase our polling frequency,
1434 * otherwise, backoff or return to interrupt mode.
1436 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1437 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1438 } else if (cpe_vector < 0) {
1439 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1440 } else {
1441 poll_time = MIN_CPE_POLL_INTERVAL;
1443 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1444 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1445 cpe_poll_enabled = 0;
1448 if (cpe_poll_enabled)
1449 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1450 start_count = -1;
1453 return IRQ_HANDLED;
1457 * ia64_mca_cpe_poll
1459 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1460 * on first cpu, from there it will trickle through all the cpus.
1462 * Inputs : dummy(unused)
1463 * Outputs : None
1466 static void
1467 ia64_mca_cpe_poll (unsigned long dummy)
1469 /* Trigger a CPE interrupt cascade */
1470 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1473 #endif /* CONFIG_ACPI */
1475 static int
1476 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1478 int c;
1479 struct task_struct *g, *t;
1480 if (val != DIE_INIT_MONARCH_PROCESS)
1481 return NOTIFY_DONE;
1484 * FIXME: mlogbuf will brim over with INIT stack dumps.
1485 * To enable show_stack from INIT, we use oops_in_progress which should
1486 * be used in real oops. This would cause something wrong after INIT.
1488 BREAK_LOGLEVEL(console_loglevel);
1489 ia64_mlogbuf_dump_from_init();
1491 printk(KERN_ERR "Processes interrupted by INIT -");
1492 for_each_online_cpu(c) {
1493 struct ia64_sal_os_state *s;
1494 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1495 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1496 g = s->prev_task;
1497 if (g) {
1498 if (g->pid)
1499 printk(" %d", g->pid);
1500 else
1501 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1504 printk("\n\n");
1505 if (read_trylock(&tasklist_lock)) {
1506 do_each_thread (g, t) {
1507 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1508 show_stack(t, NULL);
1509 } while_each_thread (g, t);
1510 read_unlock(&tasklist_lock);
1512 /* FIXME: This will not restore zapped printk locks. */
1513 RESTORE_LOGLEVEL(console_loglevel);
1514 return NOTIFY_DONE;
1518 * C portion of the OS INIT handler
1520 * Called from ia64_os_init_dispatch
1522 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1523 * this event. This code is used for both monarch and slave INIT events, see
1524 * sos->monarch.
1526 * All INIT events switch to the INIT stack and change the previous process to
1527 * blocked status. If one of the INIT events is the monarch then we are
1528 * probably processing the nmi button/command. Use the monarch cpu to dump all
1529 * the processes. The slave INIT events all spin until the monarch cpu
1530 * returns. We can also get INIT slave events for MCA, in which case the MCA
1531 * process is the monarch.
1534 void
1535 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1536 struct ia64_sal_os_state *sos)
1538 static atomic_t slaves;
1539 static atomic_t monarchs;
1540 struct task_struct *previous_current;
1541 int cpu = smp_processor_id();
1542 struct ia64_mca_notify_die nd =
1543 { .sos = sos, .monarch_cpu = &monarch_cpu };
1545 (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1547 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1548 sos->proc_state_param, cpu, sos->monarch);
1549 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1551 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1552 sos->os_status = IA64_INIT_RESUME;
1554 /* FIXME: Workaround for broken proms that drive all INIT events as
1555 * slaves. The last slave that enters is promoted to be a monarch.
1556 * Remove this code in September 2006, that gives platforms a year to
1557 * fix their proms and get their customers updated.
1559 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1560 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1561 __FUNCTION__, cpu);
1562 atomic_dec(&slaves);
1563 sos->monarch = 1;
1566 /* FIXME: Workaround for broken proms that drive all INIT events as
1567 * monarchs. Second and subsequent monarchs are demoted to slaves.
1568 * Remove this code in September 2006, that gives platforms a year to
1569 * fix their proms and get their customers updated.
1571 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1572 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1573 __FUNCTION__, cpu);
1574 atomic_dec(&monarchs);
1575 sos->monarch = 0;
1578 if (!sos->monarch) {
1579 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1580 while (monarch_cpu == -1)
1581 cpu_relax(); /* spin until monarch enters */
1582 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
1583 == NOTIFY_STOP)
1584 ia64_mca_spin(__FUNCTION__);
1585 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1586 == NOTIFY_STOP)
1587 ia64_mca_spin(__FUNCTION__);
1588 while (monarch_cpu != -1)
1589 cpu_relax(); /* spin until monarch leaves */
1590 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1591 == NOTIFY_STOP)
1592 ia64_mca_spin(__FUNCTION__);
1593 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1594 set_curr_task(cpu, previous_current);
1595 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1596 atomic_dec(&slaves);
1597 return;
1600 monarch_cpu = cpu;
1601 if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
1602 == NOTIFY_STOP)
1603 ia64_mca_spin(__FUNCTION__);
1606 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1607 * generated via the BMC's command-line interface, but since the console is on the
1608 * same serial line, the user will need some time to switch out of the BMC before
1609 * the dump begins.
1611 mprintk("Delaying for 5 seconds...\n");
1612 udelay(5*1000000);
1613 ia64_wait_for_slaves(cpu, "INIT");
1614 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1615 * to default_monarch_init_process() above and just print all the
1616 * tasks.
1618 if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1619 == NOTIFY_STOP)
1620 ia64_mca_spin(__FUNCTION__);
1621 if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1622 == NOTIFY_STOP)
1623 ia64_mca_spin(__FUNCTION__);
1624 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1625 atomic_dec(&monarchs);
1626 set_curr_task(cpu, previous_current);
1627 monarch_cpu = -1;
1628 return;
1631 static int __init
1632 ia64_mca_disable_cpe_polling(char *str)
1634 cpe_poll_enabled = 0;
1635 return 1;
1638 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1640 static struct irqaction cmci_irqaction = {
1641 .handler = ia64_mca_cmc_int_handler,
1642 .flags = IRQF_DISABLED,
1643 .name = "cmc_hndlr"
1646 static struct irqaction cmcp_irqaction = {
1647 .handler = ia64_mca_cmc_int_caller,
1648 .flags = IRQF_DISABLED,
1649 .name = "cmc_poll"
1652 static struct irqaction mca_rdzv_irqaction = {
1653 .handler = ia64_mca_rendez_int_handler,
1654 .flags = IRQF_DISABLED,
1655 .name = "mca_rdzv"
1658 static struct irqaction mca_wkup_irqaction = {
1659 .handler = ia64_mca_wakeup_int_handler,
1660 .flags = IRQF_DISABLED,
1661 .name = "mca_wkup"
1664 #ifdef CONFIG_ACPI
1665 static struct irqaction mca_cpe_irqaction = {
1666 .handler = ia64_mca_cpe_int_handler,
1667 .flags = IRQF_DISABLED,
1668 .name = "cpe_hndlr"
1671 static struct irqaction mca_cpep_irqaction = {
1672 .handler = ia64_mca_cpe_int_caller,
1673 .flags = IRQF_DISABLED,
1674 .name = "cpe_poll"
1676 #endif /* CONFIG_ACPI */
1678 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1679 * these stacks can never sleep, they cannot return from the kernel to user
1680 * space, they do not appear in a normal ps listing. So there is no need to
1681 * format most of the fields.
1684 static void __cpuinit
1685 format_mca_init_stack(void *mca_data, unsigned long offset,
1686 const char *type, int cpu)
1688 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1689 struct thread_info *ti;
1690 memset(p, 0, KERNEL_STACK_SIZE);
1691 ti = task_thread_info(p);
1692 ti->flags = _TIF_MCA_INIT;
1693 ti->preempt_count = 1;
1694 ti->task = p;
1695 ti->cpu = cpu;
1696 p->thread_info = ti;
1697 p->state = TASK_UNINTERRUPTIBLE;
1698 cpu_set(cpu, p->cpus_allowed);
1699 INIT_LIST_HEAD(&p->tasks);
1700 p->parent = p->real_parent = p->group_leader = p;
1701 INIT_LIST_HEAD(&p->children);
1702 INIT_LIST_HEAD(&p->sibling);
1703 strncpy(p->comm, type, sizeof(p->comm)-1);
1706 /* Do per-CPU MCA-related initialization. */
1708 void __cpuinit
1709 ia64_mca_cpu_init(void *cpu_data)
1711 void *pal_vaddr;
1712 static int first_time = 1;
1714 if (first_time) {
1715 void *mca_data;
1716 int cpu;
1718 first_time = 0;
1719 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1720 * NR_CPUS + KERNEL_STACK_SIZE);
1721 mca_data = (void *)(((unsigned long)mca_data +
1722 KERNEL_STACK_SIZE - 1) &
1723 (-KERNEL_STACK_SIZE));
1724 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1725 format_mca_init_stack(mca_data,
1726 offsetof(struct ia64_mca_cpu, mca_stack),
1727 "MCA", cpu);
1728 format_mca_init_stack(mca_data,
1729 offsetof(struct ia64_mca_cpu, init_stack),
1730 "INIT", cpu);
1731 __per_cpu_mca[cpu] = __pa(mca_data);
1732 mca_data += sizeof(struct ia64_mca_cpu);
1737 * The MCA info structure was allocated earlier and its
1738 * physical address saved in __per_cpu_mca[cpu]. Copy that
1739 * address * to ia64_mca_data so we can access it as a per-CPU
1740 * variable.
1742 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1745 * Stash away a copy of the PTE needed to map the per-CPU page.
1746 * We may need it during MCA recovery.
1748 __get_cpu_var(ia64_mca_per_cpu_pte) =
1749 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1752 * Also, stash away a copy of the PAL address and the PTE
1753 * needed to map it.
1755 pal_vaddr = efi_get_pal_addr();
1756 if (!pal_vaddr)
1757 return;
1758 __get_cpu_var(ia64_mca_pal_base) =
1759 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1760 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1761 PAGE_KERNEL));
1765 * ia64_mca_init
1767 * Do all the system level mca specific initialization.
1769 * 1. Register spinloop and wakeup request interrupt vectors
1771 * 2. Register OS_MCA handler entry point
1773 * 3. Register OS_INIT handler entry point
1775 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1777 * Note that this initialization is done very early before some kernel
1778 * services are available.
1780 * Inputs : None
1782 * Outputs : None
1784 void __init
1785 ia64_mca_init(void)
1787 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1788 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1789 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1790 int i;
1791 s64 rc;
1792 struct ia64_sal_retval isrv;
1793 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1794 static struct notifier_block default_init_monarch_nb = {
1795 .notifier_call = default_monarch_init_process,
1796 .priority = 0/* we need to notified last */
1799 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1801 /* Clear the Rendez checkin flag for all cpus */
1802 for(i = 0 ; i < NR_CPUS; i++)
1803 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1806 * Register the rendezvous spinloop and wakeup mechanism with SAL
1809 /* Register the rendezvous interrupt vector with SAL */
1810 while (1) {
1811 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1812 SAL_MC_PARAM_MECHANISM_INT,
1813 IA64_MCA_RENDEZ_VECTOR,
1814 timeout,
1815 SAL_MC_PARAM_RZ_ALWAYS);
1816 rc = isrv.status;
1817 if (rc == 0)
1818 break;
1819 if (rc == -2) {
1820 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1821 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1822 timeout = isrv.v0;
1823 (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1824 continue;
1826 printk(KERN_ERR "Failed to register rendezvous interrupt "
1827 "with SAL (status %ld)\n", rc);
1828 return;
1831 /* Register the wakeup interrupt vector with SAL */
1832 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1833 SAL_MC_PARAM_MECHANISM_INT,
1834 IA64_MCA_WAKEUP_VECTOR,
1835 0, 0);
1836 rc = isrv.status;
1837 if (rc) {
1838 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1839 "(status %ld)\n", rc);
1840 return;
1843 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1845 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1847 * XXX - disable SAL checksum by setting size to 0; should be
1848 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1850 ia64_mc_info.imi_mca_handler_size = 0;
1852 /* Register the os mca handler with SAL */
1853 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1854 ia64_mc_info.imi_mca_handler,
1855 ia64_tpa(mca_hldlr_ptr->gp),
1856 ia64_mc_info.imi_mca_handler_size,
1857 0, 0, 0)))
1859 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1860 "(status %ld)\n", rc);
1861 return;
1864 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1865 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1868 * XXX - disable SAL checksum by setting size to 0, should be
1869 * size of the actual init handler in mca_asm.S.
1871 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1872 ia64_mc_info.imi_monarch_init_handler_size = 0;
1873 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1874 ia64_mc_info.imi_slave_init_handler_size = 0;
1876 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1877 ia64_mc_info.imi_monarch_init_handler);
1879 /* Register the os init handler with SAL */
1880 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1881 ia64_mc_info.imi_monarch_init_handler,
1882 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1883 ia64_mc_info.imi_monarch_init_handler_size,
1884 ia64_mc_info.imi_slave_init_handler,
1885 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1886 ia64_mc_info.imi_slave_init_handler_size)))
1888 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1889 "(status %ld)\n", rc);
1890 return;
1892 if (register_die_notifier(&default_init_monarch_nb)) {
1893 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1894 return;
1897 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1900 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1901 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1903 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1904 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1905 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1907 /* Setup the MCA rendezvous interrupt vector */
1908 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1910 /* Setup the MCA wakeup interrupt vector */
1911 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1913 #ifdef CONFIG_ACPI
1914 /* Setup the CPEI/P handler */
1915 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1916 #endif
1918 /* Initialize the areas set aside by the OS to buffer the
1919 * platform/processor error states for MCA/INIT/CMC
1920 * handling.
1922 ia64_log_init(SAL_INFO_TYPE_MCA);
1923 ia64_log_init(SAL_INFO_TYPE_INIT);
1924 ia64_log_init(SAL_INFO_TYPE_CMC);
1925 ia64_log_init(SAL_INFO_TYPE_CPE);
1927 mca_init = 1;
1928 printk(KERN_INFO "MCA related initialization done\n");
1932 * ia64_mca_late_init
1934 * Opportunity to setup things that require initialization later
1935 * than ia64_mca_init. Setup a timer to poll for CPEs if the
1936 * platform doesn't support an interrupt driven mechanism.
1938 * Inputs : None
1939 * Outputs : Status
1941 static int __init
1942 ia64_mca_late_init(void)
1944 if (!mca_init)
1945 return 0;
1947 /* Setup the CMCI/P vector and handler */
1948 init_timer(&cmc_poll_timer);
1949 cmc_poll_timer.function = ia64_mca_cmc_poll;
1951 /* Unmask/enable the vector */
1952 cmc_polling_enabled = 0;
1953 schedule_work(&cmc_enable_work);
1955 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1957 #ifdef CONFIG_ACPI
1958 /* Setup the CPEI/P vector and handler */
1959 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1960 init_timer(&cpe_poll_timer);
1961 cpe_poll_timer.function = ia64_mca_cpe_poll;
1964 irq_desc_t *desc;
1965 unsigned int irq;
1967 if (cpe_vector >= 0) {
1968 /* If platform supports CPEI, enable the irq. */
1969 cpe_poll_enabled = 0;
1970 for (irq = 0; irq < NR_IRQS; ++irq)
1971 if (irq_to_vector(irq) == cpe_vector) {
1972 desc = irq_desc + irq;
1973 desc->status |= IRQ_PER_CPU;
1974 setup_irq(irq, &mca_cpe_irqaction);
1975 ia64_cpe_irq = irq;
1977 ia64_mca_register_cpev(cpe_vector);
1978 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1979 } else {
1980 /* If platform doesn't support CPEI, get the timer going. */
1981 if (cpe_poll_enabled) {
1982 ia64_mca_cpe_poll(0UL);
1983 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1987 #endif
1989 return 0;
1992 device_initcall(ia64_mca_late_init);