1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/selinux.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/inotify.h>
72 extern struct list_head audit_filter_list
[];
73 extern int audit_ever_enabled
;
75 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
76 * for saving names from getname(). */
77 #define AUDIT_NAMES 20
79 /* Indicates that audit should log the full pathname. */
80 #define AUDIT_NAME_FULL -1
82 /* no execve audit message should be longer than this (userspace limits) */
83 #define MAX_EXECVE_AUDIT_LEN 7500
85 /* number of audit rules */
88 /* determines whether we collect data for signals sent */
91 /* When fs/namei.c:getname() is called, we store the pointer in name and
92 * we don't let putname() free it (instead we free all of the saved
93 * pointers at syscall exit time).
95 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
98 int name_len
; /* number of name's characters to log */
99 unsigned name_put
; /* call __putname() for this name */
109 struct audit_aux_data
{
110 struct audit_aux_data
*next
;
114 #define AUDIT_AUX_IPCPERM 0
116 /* Number of target pids per aux struct. */
117 #define AUDIT_AUX_PIDS 16
119 struct audit_aux_data_mq_open
{
120 struct audit_aux_data d
;
126 struct audit_aux_data_mq_sendrecv
{
127 struct audit_aux_data d
;
130 unsigned int msg_prio
;
131 struct timespec abs_timeout
;
134 struct audit_aux_data_mq_notify
{
135 struct audit_aux_data d
;
137 struct sigevent notification
;
140 struct audit_aux_data_mq_getsetattr
{
141 struct audit_aux_data d
;
143 struct mq_attr mqstat
;
146 struct audit_aux_data_ipcctl
{
147 struct audit_aux_data d
;
149 unsigned long qbytes
;
156 struct audit_aux_data_execve
{
157 struct audit_aux_data d
;
160 struct mm_struct
*mm
;
163 struct audit_aux_data_socketcall
{
164 struct audit_aux_data d
;
166 unsigned long args
[0];
169 struct audit_aux_data_sockaddr
{
170 struct audit_aux_data d
;
175 struct audit_aux_data_fd_pair
{
176 struct audit_aux_data d
;
180 struct audit_aux_data_pids
{
181 struct audit_aux_data d
;
182 pid_t target_pid
[AUDIT_AUX_PIDS
];
183 uid_t target_auid
[AUDIT_AUX_PIDS
];
184 uid_t target_uid
[AUDIT_AUX_PIDS
];
185 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
186 u32 target_sid
[AUDIT_AUX_PIDS
];
187 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
191 struct audit_tree_refs
{
192 struct audit_tree_refs
*next
;
193 struct audit_chunk
*c
[31];
196 /* The per-task audit context. */
197 struct audit_context
{
198 int dummy
; /* must be the first element */
199 int in_syscall
; /* 1 if task is in a syscall */
200 enum audit_state state
;
201 unsigned int serial
; /* serial number for record */
202 struct timespec ctime
; /* time of syscall entry */
203 int major
; /* syscall number */
204 unsigned long argv
[4]; /* syscall arguments */
205 int return_valid
; /* return code is valid */
206 long return_code
;/* syscall return code */
207 int auditable
; /* 1 if record should be written */
209 struct audit_names names
[AUDIT_NAMES
];
210 char * filterkey
; /* key for rule that triggered record */
212 struct vfsmount
* pwdmnt
;
213 struct audit_context
*previous
; /* For nested syscalls */
214 struct audit_aux_data
*aux
;
215 struct audit_aux_data
*aux_pids
;
217 /* Save things to print about task_struct */
219 uid_t uid
, euid
, suid
, fsuid
;
220 gid_t gid
, egid
, sgid
, fsgid
;
221 unsigned long personality
;
227 unsigned int target_sessionid
;
229 char target_comm
[TASK_COMM_LEN
];
231 struct audit_tree_refs
*trees
, *first_trees
;
240 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
241 static inline int open_arg(int flags
, int mask
)
243 int n
= ACC_MODE(flags
);
244 if (flags
& (O_TRUNC
| O_CREAT
))
245 n
|= AUDIT_PERM_WRITE
;
249 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
251 unsigned n
= ctx
->major
;
252 switch (audit_classify_syscall(ctx
->arch
, n
)) {
254 if ((mask
& AUDIT_PERM_WRITE
) &&
255 audit_match_class(AUDIT_CLASS_WRITE
, n
))
257 if ((mask
& AUDIT_PERM_READ
) &&
258 audit_match_class(AUDIT_CLASS_READ
, n
))
260 if ((mask
& AUDIT_PERM_ATTR
) &&
261 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
264 case 1: /* 32bit on biarch */
265 if ((mask
& AUDIT_PERM_WRITE
) &&
266 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
268 if ((mask
& AUDIT_PERM_READ
) &&
269 audit_match_class(AUDIT_CLASS_READ_32
, n
))
271 if ((mask
& AUDIT_PERM_ATTR
) &&
272 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
276 return mask
& ACC_MODE(ctx
->argv
[1]);
278 return mask
& ACC_MODE(ctx
->argv
[2]);
279 case 4: /* socketcall */
280 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
282 return mask
& AUDIT_PERM_EXEC
;
289 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
290 * ->first_trees points to its beginning, ->trees - to the current end of data.
291 * ->tree_count is the number of free entries in array pointed to by ->trees.
292 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
293 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
294 * it's going to remain 1-element for almost any setup) until we free context itself.
295 * References in it _are_ dropped - at the same time we free/drop aux stuff.
298 #ifdef CONFIG_AUDIT_TREE
299 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
301 struct audit_tree_refs
*p
= ctx
->trees
;
302 int left
= ctx
->tree_count
;
304 p
->c
[--left
] = chunk
;
305 ctx
->tree_count
= left
;
314 ctx
->tree_count
= 30;
320 static int grow_tree_refs(struct audit_context
*ctx
)
322 struct audit_tree_refs
*p
= ctx
->trees
;
323 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
329 p
->next
= ctx
->trees
;
331 ctx
->first_trees
= ctx
->trees
;
332 ctx
->tree_count
= 31;
337 static void unroll_tree_refs(struct audit_context
*ctx
,
338 struct audit_tree_refs
*p
, int count
)
340 #ifdef CONFIG_AUDIT_TREE
341 struct audit_tree_refs
*q
;
344 /* we started with empty chain */
345 p
= ctx
->first_trees
;
347 /* if the very first allocation has failed, nothing to do */
352 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
354 audit_put_chunk(q
->c
[n
]);
358 while (n
-- > ctx
->tree_count
) {
359 audit_put_chunk(q
->c
[n
]);
363 ctx
->tree_count
= count
;
367 static void free_tree_refs(struct audit_context
*ctx
)
369 struct audit_tree_refs
*p
, *q
;
370 for (p
= ctx
->first_trees
; p
; p
= q
) {
376 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
378 #ifdef CONFIG_AUDIT_TREE
379 struct audit_tree_refs
*p
;
384 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
385 for (n
= 0; n
< 31; n
++)
386 if (audit_tree_match(p
->c
[n
], tree
))
391 for (n
= ctx
->tree_count
; n
< 31; n
++)
392 if (audit_tree_match(p
->c
[n
], tree
))
399 /* Determine if any context name data matches a rule's watch data */
400 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
402 static int audit_filter_rules(struct task_struct
*tsk
,
403 struct audit_krule
*rule
,
404 struct audit_context
*ctx
,
405 struct audit_names
*name
,
406 enum audit_state
*state
)
408 int i
, j
, need_sid
= 1;
411 for (i
= 0; i
< rule
->field_count
; i
++) {
412 struct audit_field
*f
= &rule
->fields
[i
];
417 result
= audit_comparator(tsk
->pid
, f
->op
, f
->val
);
422 ctx
->ppid
= sys_getppid();
423 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
427 result
= audit_comparator(tsk
->uid
, f
->op
, f
->val
);
430 result
= audit_comparator(tsk
->euid
, f
->op
, f
->val
);
433 result
= audit_comparator(tsk
->suid
, f
->op
, f
->val
);
436 result
= audit_comparator(tsk
->fsuid
, f
->op
, f
->val
);
439 result
= audit_comparator(tsk
->gid
, f
->op
, f
->val
);
442 result
= audit_comparator(tsk
->egid
, f
->op
, f
->val
);
445 result
= audit_comparator(tsk
->sgid
, f
->op
, f
->val
);
448 result
= audit_comparator(tsk
->fsgid
, f
->op
, f
->val
);
451 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
455 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
459 if (ctx
&& ctx
->return_valid
)
460 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
463 if (ctx
&& ctx
->return_valid
) {
465 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
467 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
472 result
= audit_comparator(MAJOR(name
->dev
),
475 for (j
= 0; j
< ctx
->name_count
; j
++) {
476 if (audit_comparator(MAJOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
485 result
= audit_comparator(MINOR(name
->dev
),
488 for (j
= 0; j
< ctx
->name_count
; j
++) {
489 if (audit_comparator(MINOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
498 result
= (name
->ino
== f
->val
);
500 for (j
= 0; j
< ctx
->name_count
; j
++) {
501 if (audit_comparator(ctx
->names
[j
].ino
, f
->op
, f
->val
)) {
509 if (name
&& rule
->watch
->ino
!= (unsigned long)-1)
510 result
= (name
->dev
== rule
->watch
->dev
&&
511 name
->ino
== rule
->watch
->ino
);
515 result
= match_tree_refs(ctx
, rule
->tree
);
520 result
= audit_comparator(tsk
->loginuid
, f
->op
, f
->val
);
522 case AUDIT_SUBJ_USER
:
523 case AUDIT_SUBJ_ROLE
:
524 case AUDIT_SUBJ_TYPE
:
527 /* NOTE: this may return negative values indicating
528 a temporary error. We simply treat this as a
529 match for now to avoid losing information that
530 may be wanted. An error message will also be
534 selinux_get_task_sid(tsk
, &sid
);
537 result
= selinux_audit_rule_match(sid
, f
->type
,
546 case AUDIT_OBJ_LEV_LOW
:
547 case AUDIT_OBJ_LEV_HIGH
:
548 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
551 /* Find files that match */
553 result
= selinux_audit_rule_match(
554 name
->osid
, f
->type
, f
->op
,
557 for (j
= 0; j
< ctx
->name_count
; j
++) {
558 if (selinux_audit_rule_match(
567 /* Find ipc objects that match */
569 struct audit_aux_data
*aux
;
570 for (aux
= ctx
->aux
; aux
;
572 if (aux
->type
== AUDIT_IPC
) {
573 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
574 if (selinux_audit_rule_match(axi
->osid
, f
->type
, f
->op
, f
->se_rule
, ctx
)) {
588 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
590 case AUDIT_FILTERKEY
:
591 /* ignore this field for filtering */
595 result
= audit_match_perm(ctx
, f
->val
);
603 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
604 switch (rule
->action
) {
605 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
606 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
611 /* At process creation time, we can determine if system-call auditing is
612 * completely disabled for this task. Since we only have the task
613 * structure at this point, we can only check uid and gid.
615 static enum audit_state
audit_filter_task(struct task_struct
*tsk
)
617 struct audit_entry
*e
;
618 enum audit_state state
;
621 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
622 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
, &state
)) {
628 return AUDIT_BUILD_CONTEXT
;
631 /* At syscall entry and exit time, this filter is called if the
632 * audit_state is not low enough that auditing cannot take place, but is
633 * also not high enough that we already know we have to write an audit
634 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
636 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
637 struct audit_context
*ctx
,
638 struct list_head
*list
)
640 struct audit_entry
*e
;
641 enum audit_state state
;
643 if (audit_pid
&& tsk
->tgid
== audit_pid
)
644 return AUDIT_DISABLED
;
647 if (!list_empty(list
)) {
648 int word
= AUDIT_WORD(ctx
->major
);
649 int bit
= AUDIT_BIT(ctx
->major
);
651 list_for_each_entry_rcu(e
, list
, list
) {
652 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
653 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
661 return AUDIT_BUILD_CONTEXT
;
664 /* At syscall exit time, this filter is called if any audit_names[] have been
665 * collected during syscall processing. We only check rules in sublists at hash
666 * buckets applicable to the inode numbers in audit_names[].
667 * Regarding audit_state, same rules apply as for audit_filter_syscall().
669 enum audit_state
audit_filter_inodes(struct task_struct
*tsk
,
670 struct audit_context
*ctx
)
673 struct audit_entry
*e
;
674 enum audit_state state
;
676 if (audit_pid
&& tsk
->tgid
== audit_pid
)
677 return AUDIT_DISABLED
;
680 for (i
= 0; i
< ctx
->name_count
; i
++) {
681 int word
= AUDIT_WORD(ctx
->major
);
682 int bit
= AUDIT_BIT(ctx
->major
);
683 struct audit_names
*n
= &ctx
->names
[i
];
684 int h
= audit_hash_ino((u32
)n
->ino
);
685 struct list_head
*list
= &audit_inode_hash
[h
];
687 if (list_empty(list
))
690 list_for_each_entry_rcu(e
, list
, list
) {
691 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
692 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
)) {
699 return AUDIT_BUILD_CONTEXT
;
702 void audit_set_auditable(struct audit_context
*ctx
)
707 static inline struct audit_context
*audit_get_context(struct task_struct
*tsk
,
711 struct audit_context
*context
= tsk
->audit_context
;
713 if (likely(!context
))
715 context
->return_valid
= return_valid
;
718 * we need to fix up the return code in the audit logs if the actual
719 * return codes are later going to be fixed up by the arch specific
722 * This is actually a test for:
723 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
724 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
726 * but is faster than a bunch of ||
728 if (unlikely(return_code
<= -ERESTARTSYS
) &&
729 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
730 (return_code
!= -ENOIOCTLCMD
))
731 context
->return_code
= -EINTR
;
733 context
->return_code
= return_code
;
735 if (context
->in_syscall
&& !context
->dummy
&& !context
->auditable
) {
736 enum audit_state state
;
738 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
739 if (state
== AUDIT_RECORD_CONTEXT
) {
740 context
->auditable
= 1;
744 state
= audit_filter_inodes(tsk
, context
);
745 if (state
== AUDIT_RECORD_CONTEXT
)
746 context
->auditable
= 1;
752 tsk
->audit_context
= NULL
;
756 static inline void audit_free_names(struct audit_context
*context
)
761 if (context
->auditable
762 ||context
->put_count
+ context
->ino_count
!= context
->name_count
) {
763 printk(KERN_ERR
"%s:%d(:%d): major=%d in_syscall=%d"
764 " name_count=%d put_count=%d"
765 " ino_count=%d [NOT freeing]\n",
767 context
->serial
, context
->major
, context
->in_syscall
,
768 context
->name_count
, context
->put_count
,
770 for (i
= 0; i
< context
->name_count
; i
++) {
771 printk(KERN_ERR
"names[%d] = %p = %s\n", i
,
772 context
->names
[i
].name
,
773 context
->names
[i
].name
?: "(null)");
780 context
->put_count
= 0;
781 context
->ino_count
= 0;
784 for (i
= 0; i
< context
->name_count
; i
++) {
785 if (context
->names
[i
].name
&& context
->names
[i
].name_put
)
786 __putname(context
->names
[i
].name
);
788 context
->name_count
= 0;
792 mntput(context
->pwdmnt
);
794 context
->pwdmnt
= NULL
;
797 static inline void audit_free_aux(struct audit_context
*context
)
799 struct audit_aux_data
*aux
;
801 while ((aux
= context
->aux
)) {
802 context
->aux
= aux
->next
;
805 while ((aux
= context
->aux_pids
)) {
806 context
->aux_pids
= aux
->next
;
811 static inline void audit_zero_context(struct audit_context
*context
,
812 enum audit_state state
)
814 memset(context
, 0, sizeof(*context
));
815 context
->state
= state
;
818 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
820 struct audit_context
*context
;
822 if (!(context
= kmalloc(sizeof(*context
), GFP_KERNEL
)))
824 audit_zero_context(context
, state
);
829 * audit_alloc - allocate an audit context block for a task
832 * Filter on the task information and allocate a per-task audit context
833 * if necessary. Doing so turns on system call auditing for the
834 * specified task. This is called from copy_process, so no lock is
837 int audit_alloc(struct task_struct
*tsk
)
839 struct audit_context
*context
;
840 enum audit_state state
;
842 if (likely(!audit_ever_enabled
))
843 return 0; /* Return if not auditing. */
845 state
= audit_filter_task(tsk
);
846 if (likely(state
== AUDIT_DISABLED
))
849 if (!(context
= audit_alloc_context(state
))) {
850 audit_log_lost("out of memory in audit_alloc");
854 tsk
->audit_context
= context
;
855 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
859 static inline void audit_free_context(struct audit_context
*context
)
861 struct audit_context
*previous
;
865 previous
= context
->previous
;
866 if (previous
|| (count
&& count
< 10)) {
868 printk(KERN_ERR
"audit(:%d): major=%d name_count=%d:"
869 " freeing multiple contexts (%d)\n",
870 context
->serial
, context
->major
,
871 context
->name_count
, count
);
873 audit_free_names(context
);
874 unroll_tree_refs(context
, NULL
, 0);
875 free_tree_refs(context
);
876 audit_free_aux(context
);
877 kfree(context
->filterkey
);
882 printk(KERN_ERR
"audit: freed %d contexts\n", count
);
885 void audit_log_task_context(struct audit_buffer
*ab
)
892 selinux_get_task_sid(current
, &sid
);
896 error
= selinux_sid_to_string(sid
, &ctx
, &len
);
898 if (error
!= -EINVAL
)
903 audit_log_format(ab
, " subj=%s", ctx
);
908 audit_panic("error in audit_log_task_context");
912 EXPORT_SYMBOL(audit_log_task_context
);
914 static void audit_log_task_info(struct audit_buffer
*ab
, struct task_struct
*tsk
)
916 char name
[sizeof(tsk
->comm
)];
917 struct mm_struct
*mm
= tsk
->mm
;
918 struct vm_area_struct
*vma
;
922 get_task_comm(name
, tsk
);
923 audit_log_format(ab
, " comm=");
924 audit_log_untrustedstring(ab
, name
);
927 down_read(&mm
->mmap_sem
);
930 if ((vma
->vm_flags
& VM_EXECUTABLE
) &&
932 audit_log_d_path(ab
, "exe=",
933 vma
->vm_file
->f_path
.dentry
,
934 vma
->vm_file
->f_path
.mnt
);
939 up_read(&mm
->mmap_sem
);
941 audit_log_task_context(ab
);
944 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
945 uid_t auid
, uid_t uid
, unsigned int sessionid
,
948 struct audit_buffer
*ab
;
953 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
957 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
, auid
,
959 if (selinux_sid_to_string(sid
, &s
, &len
)) {
960 audit_log_format(ab
, " obj=(none)");
963 audit_log_format(ab
, " obj=%s", s
);
964 audit_log_format(ab
, " ocomm=");
965 audit_log_untrustedstring(ab
, comm
);
973 * to_send and len_sent accounting are very loose estimates. We aren't
974 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
975 * within about 500 bytes (next page boundry)
977 * why snprintf? an int is up to 12 digits long. if we just assumed when
978 * logging that a[%d]= was going to be 16 characters long we would be wasting
979 * space in every audit message. In one 7500 byte message we can log up to
980 * about 1000 min size arguments. That comes down to about 50% waste of space
981 * if we didn't do the snprintf to find out how long arg_num_len was.
983 static int audit_log_single_execve_arg(struct audit_context
*context
,
984 struct audit_buffer
**ab
,
987 const char __user
*p
,
990 char arg_num_len_buf
[12];
991 const char __user
*tmp_p
= p
;
992 /* how many digits are in arg_num? 3 is the length of a=\n */
993 size_t arg_num_len
= snprintf(arg_num_len_buf
, 12, "%d", arg_num
) + 3;
994 size_t len
, len_left
, to_send
;
995 size_t max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
;
996 unsigned int i
, has_cntl
= 0, too_long
= 0;
999 /* strnlen_user includes the null we don't want to send */
1000 len_left
= len
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1003 * We just created this mm, if we can't find the strings
1004 * we just copied into it something is _very_ wrong. Similar
1005 * for strings that are too long, we should not have created
1008 if (unlikely((len
= -1) || len
> MAX_ARG_STRLEN
- 1)) {
1010 send_sig(SIGKILL
, current
, 0);
1013 /* walk the whole argument looking for non-ascii chars */
1015 if (len_left
> MAX_EXECVE_AUDIT_LEN
)
1016 to_send
= MAX_EXECVE_AUDIT_LEN
;
1019 ret
= copy_from_user(buf
, tmp_p
, to_send
);
1021 * There is no reason for this copy to be short. We just
1022 * copied them here, and the mm hasn't been exposed to user-
1027 send_sig(SIGKILL
, current
, 0);
1029 buf
[to_send
] = '\0';
1030 has_cntl
= audit_string_contains_control(buf
, to_send
);
1033 * hex messages get logged as 2 bytes, so we can only
1034 * send half as much in each message
1036 max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
/ 2;
1039 len_left
-= to_send
;
1041 } while (len_left
> 0);
1045 if (len
> max_execve_audit_len
)
1048 /* rewalk the argument actually logging the message */
1049 for (i
= 0; len_left
> 0; i
++) {
1052 if (len_left
> max_execve_audit_len
)
1053 to_send
= max_execve_audit_len
;
1057 /* do we have space left to send this argument in this ab? */
1058 room_left
= MAX_EXECVE_AUDIT_LEN
- arg_num_len
- *len_sent
;
1060 room_left
-= (to_send
* 2);
1062 room_left
-= to_send
;
1063 if (room_left
< 0) {
1066 *ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EXECVE
);
1072 * first record needs to say how long the original string was
1073 * so we can be sure nothing was lost.
1075 if ((i
== 0) && (too_long
))
1076 audit_log_format(*ab
, "a%d_len=%ld ", arg_num
,
1077 has_cntl
? 2*len
: len
);
1080 * normally arguments are small enough to fit and we already
1081 * filled buf above when we checked for control characters
1082 * so don't bother with another copy_from_user
1084 if (len
>= max_execve_audit_len
)
1085 ret
= copy_from_user(buf
, p
, to_send
);
1090 send_sig(SIGKILL
, current
, 0);
1092 buf
[to_send
] = '\0';
1094 /* actually log it */
1095 audit_log_format(*ab
, "a%d", arg_num
);
1097 audit_log_format(*ab
, "[%d]", i
);
1098 audit_log_format(*ab
, "=");
1100 audit_log_hex(*ab
, buf
, to_send
);
1102 audit_log_format(*ab
, "\"%s\"", buf
);
1103 audit_log_format(*ab
, "\n");
1106 len_left
-= to_send
;
1107 *len_sent
+= arg_num_len
;
1109 *len_sent
+= to_send
* 2;
1111 *len_sent
+= to_send
;
1113 /* include the null we didn't log */
1117 static void audit_log_execve_info(struct audit_context
*context
,
1118 struct audit_buffer
**ab
,
1119 struct audit_aux_data_execve
*axi
)
1122 size_t len
, len_sent
= 0;
1123 const char __user
*p
;
1126 if (axi
->mm
!= current
->mm
)
1127 return; /* execve failed, no additional info */
1129 p
= (const char __user
*)axi
->mm
->arg_start
;
1131 audit_log_format(*ab
, "argc=%d ", axi
->argc
);
1134 * we need some kernel buffer to hold the userspace args. Just
1135 * allocate one big one rather than allocating one of the right size
1136 * for every single argument inside audit_log_single_execve_arg()
1137 * should be <8k allocation so should be pretty safe.
1139 buf
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1141 audit_panic("out of memory for argv string\n");
1145 for (i
= 0; i
< axi
->argc
; i
++) {
1146 len
= audit_log_single_execve_arg(context
, ab
, i
,
1155 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1157 int i
, call_panic
= 0;
1158 struct audit_buffer
*ab
;
1159 struct audit_aux_data
*aux
;
1162 /* tsk == current */
1163 context
->pid
= tsk
->pid
;
1165 context
->ppid
= sys_getppid();
1166 context
->uid
= tsk
->uid
;
1167 context
->gid
= tsk
->gid
;
1168 context
->euid
= tsk
->euid
;
1169 context
->suid
= tsk
->suid
;
1170 context
->fsuid
= tsk
->fsuid
;
1171 context
->egid
= tsk
->egid
;
1172 context
->sgid
= tsk
->sgid
;
1173 context
->fsgid
= tsk
->fsgid
;
1174 context
->personality
= tsk
->personality
;
1176 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1178 return; /* audit_panic has been called */
1179 audit_log_format(ab
, "arch=%x syscall=%d",
1180 context
->arch
, context
->major
);
1181 if (context
->personality
!= PER_LINUX
)
1182 audit_log_format(ab
, " per=%lx", context
->personality
);
1183 if (context
->return_valid
)
1184 audit_log_format(ab
, " success=%s exit=%ld",
1185 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1186 context
->return_code
);
1188 mutex_lock(&tty_mutex
);
1189 read_lock(&tasklist_lock
);
1190 if (tsk
->signal
&& tsk
->signal
->tty
&& tsk
->signal
->tty
->name
)
1191 tty
= tsk
->signal
->tty
->name
;
1194 read_unlock(&tasklist_lock
);
1195 audit_log_format(ab
,
1196 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1197 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1198 " euid=%u suid=%u fsuid=%u"
1199 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1204 context
->name_count
,
1210 context
->euid
, context
->suid
, context
->fsuid
,
1211 context
->egid
, context
->sgid
, context
->fsgid
, tty
,
1214 mutex_unlock(&tty_mutex
);
1216 audit_log_task_info(ab
, tsk
);
1217 if (context
->filterkey
) {
1218 audit_log_format(ab
, " key=");
1219 audit_log_untrustedstring(ab
, context
->filterkey
);
1221 audit_log_format(ab
, " key=(null)");
1224 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1226 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1228 continue; /* audit_panic has been called */
1230 switch (aux
->type
) {
1231 case AUDIT_MQ_OPEN
: {
1232 struct audit_aux_data_mq_open
*axi
= (void *)aux
;
1233 audit_log_format(ab
,
1234 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1235 "mq_msgsize=%ld mq_curmsgs=%ld",
1236 axi
->oflag
, axi
->mode
, axi
->attr
.mq_flags
,
1237 axi
->attr
.mq_maxmsg
, axi
->attr
.mq_msgsize
,
1238 axi
->attr
.mq_curmsgs
);
1241 case AUDIT_MQ_SENDRECV
: {
1242 struct audit_aux_data_mq_sendrecv
*axi
= (void *)aux
;
1243 audit_log_format(ab
,
1244 "mqdes=%d msg_len=%zd msg_prio=%u "
1245 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1246 axi
->mqdes
, axi
->msg_len
, axi
->msg_prio
,
1247 axi
->abs_timeout
.tv_sec
, axi
->abs_timeout
.tv_nsec
);
1250 case AUDIT_MQ_NOTIFY
: {
1251 struct audit_aux_data_mq_notify
*axi
= (void *)aux
;
1252 audit_log_format(ab
,
1253 "mqdes=%d sigev_signo=%d",
1255 axi
->notification
.sigev_signo
);
1258 case AUDIT_MQ_GETSETATTR
: {
1259 struct audit_aux_data_mq_getsetattr
*axi
= (void *)aux
;
1260 audit_log_format(ab
,
1261 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1264 axi
->mqstat
.mq_flags
, axi
->mqstat
.mq_maxmsg
,
1265 axi
->mqstat
.mq_msgsize
, axi
->mqstat
.mq_curmsgs
);
1269 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
1270 audit_log_format(ab
,
1271 "ouid=%u ogid=%u mode=%#o",
1272 axi
->uid
, axi
->gid
, axi
->mode
);
1273 if (axi
->osid
!= 0) {
1276 if (selinux_sid_to_string(
1277 axi
->osid
, &ctx
, &len
)) {
1278 audit_log_format(ab
, " osid=%u",
1282 audit_log_format(ab
, " obj=%s", ctx
);
1287 case AUDIT_IPC_SET_PERM
: {
1288 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
1289 audit_log_format(ab
,
1290 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1291 axi
->qbytes
, axi
->uid
, axi
->gid
, axi
->mode
);
1294 case AUDIT_EXECVE
: {
1295 struct audit_aux_data_execve
*axi
= (void *)aux
;
1296 audit_log_execve_info(context
, &ab
, axi
);
1299 case AUDIT_SOCKETCALL
: {
1301 struct audit_aux_data_socketcall
*axs
= (void *)aux
;
1302 audit_log_format(ab
, "nargs=%d", axs
->nargs
);
1303 for (i
=0; i
<axs
->nargs
; i
++)
1304 audit_log_format(ab
, " a%d=%lx", i
, axs
->args
[i
]);
1307 case AUDIT_SOCKADDR
: {
1308 struct audit_aux_data_sockaddr
*axs
= (void *)aux
;
1310 audit_log_format(ab
, "saddr=");
1311 audit_log_hex(ab
, axs
->a
, axs
->len
);
1314 case AUDIT_FD_PAIR
: {
1315 struct audit_aux_data_fd_pair
*axs
= (void *)aux
;
1316 audit_log_format(ab
, "fd0=%d fd1=%d", axs
->fd
[0], axs
->fd
[1]);
1323 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1324 struct audit_aux_data_pids
*axs
= (void *)aux
;
1327 for (i
= 0; i
< axs
->pid_count
; i
++)
1328 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1329 axs
->target_auid
[i
],
1331 axs
->target_sessionid
[i
],
1333 axs
->target_comm
[i
]))
1337 if (context
->target_pid
&&
1338 audit_log_pid_context(context
, context
->target_pid
,
1339 context
->target_auid
, context
->target_uid
,
1340 context
->target_sessionid
,
1341 context
->target_sid
, context
->target_comm
))
1344 if (context
->pwd
&& context
->pwdmnt
) {
1345 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1347 audit_log_d_path(ab
, "cwd=", context
->pwd
, context
->pwdmnt
);
1351 for (i
= 0; i
< context
->name_count
; i
++) {
1352 struct audit_names
*n
= &context
->names
[i
];
1354 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PATH
);
1356 continue; /* audit_panic has been called */
1358 audit_log_format(ab
, "item=%d", i
);
1361 switch(n
->name_len
) {
1362 case AUDIT_NAME_FULL
:
1363 /* log the full path */
1364 audit_log_format(ab
, " name=");
1365 audit_log_untrustedstring(ab
, n
->name
);
1368 /* name was specified as a relative path and the
1369 * directory component is the cwd */
1370 audit_log_d_path(ab
, " name=", context
->pwd
,
1374 /* log the name's directory component */
1375 audit_log_format(ab
, " name=");
1376 audit_log_n_untrustedstring(ab
, n
->name_len
,
1380 audit_log_format(ab
, " name=(null)");
1382 if (n
->ino
!= (unsigned long)-1) {
1383 audit_log_format(ab
, " inode=%lu"
1384 " dev=%02x:%02x mode=%#o"
1385 " ouid=%u ogid=%u rdev=%02x:%02x",
1398 if (selinux_sid_to_string(
1399 n
->osid
, &ctx
, &len
)) {
1400 audit_log_format(ab
, " osid=%u", n
->osid
);
1403 audit_log_format(ab
, " obj=%s", ctx
);
1410 /* Send end of event record to help user space know we are finished */
1411 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1415 audit_panic("error converting sid to string");
1419 * audit_free - free a per-task audit context
1420 * @tsk: task whose audit context block to free
1422 * Called from copy_process and do_exit
1424 void audit_free(struct task_struct
*tsk
)
1426 struct audit_context
*context
;
1428 context
= audit_get_context(tsk
, 0, 0);
1429 if (likely(!context
))
1432 /* Check for system calls that do not go through the exit
1433 * function (e.g., exit_group), then free context block.
1434 * We use GFP_ATOMIC here because we might be doing this
1435 * in the context of the idle thread */
1436 /* that can happen only if we are called from do_exit() */
1437 if (context
->in_syscall
&& context
->auditable
)
1438 audit_log_exit(context
, tsk
);
1440 audit_free_context(context
);
1444 * audit_syscall_entry - fill in an audit record at syscall entry
1445 * @tsk: task being audited
1446 * @arch: architecture type
1447 * @major: major syscall type (function)
1448 * @a1: additional syscall register 1
1449 * @a2: additional syscall register 2
1450 * @a3: additional syscall register 3
1451 * @a4: additional syscall register 4
1453 * Fill in audit context at syscall entry. This only happens if the
1454 * audit context was created when the task was created and the state or
1455 * filters demand the audit context be built. If the state from the
1456 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1457 * then the record will be written at syscall exit time (otherwise, it
1458 * will only be written if another part of the kernel requests that it
1461 void audit_syscall_entry(int arch
, int major
,
1462 unsigned long a1
, unsigned long a2
,
1463 unsigned long a3
, unsigned long a4
)
1465 struct task_struct
*tsk
= current
;
1466 struct audit_context
*context
= tsk
->audit_context
;
1467 enum audit_state state
;
1472 * This happens only on certain architectures that make system
1473 * calls in kernel_thread via the entry.S interface, instead of
1474 * with direct calls. (If you are porting to a new
1475 * architecture, hitting this condition can indicate that you
1476 * got the _exit/_leave calls backward in entry.S.)
1480 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1482 * This also happens with vm86 emulation in a non-nested manner
1483 * (entries without exits), so this case must be caught.
1485 if (context
->in_syscall
) {
1486 struct audit_context
*newctx
;
1490 "audit(:%d) pid=%d in syscall=%d;"
1491 " entering syscall=%d\n",
1492 context
->serial
, tsk
->pid
, context
->major
, major
);
1494 newctx
= audit_alloc_context(context
->state
);
1496 newctx
->previous
= context
;
1498 tsk
->audit_context
= newctx
;
1500 /* If we can't alloc a new context, the best we
1501 * can do is to leak memory (any pending putname
1502 * will be lost). The only other alternative is
1503 * to abandon auditing. */
1504 audit_zero_context(context
, context
->state
);
1507 BUG_ON(context
->in_syscall
|| context
->name_count
);
1512 context
->arch
= arch
;
1513 context
->major
= major
;
1514 context
->argv
[0] = a1
;
1515 context
->argv
[1] = a2
;
1516 context
->argv
[2] = a3
;
1517 context
->argv
[3] = a4
;
1519 state
= context
->state
;
1520 context
->dummy
= !audit_n_rules
;
1521 if (!context
->dummy
&& (state
== AUDIT_SETUP_CONTEXT
|| state
== AUDIT_BUILD_CONTEXT
))
1522 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1523 if (likely(state
== AUDIT_DISABLED
))
1526 context
->serial
= 0;
1527 context
->ctime
= CURRENT_TIME
;
1528 context
->in_syscall
= 1;
1529 context
->auditable
= !!(state
== AUDIT_RECORD_CONTEXT
);
1534 * audit_syscall_exit - deallocate audit context after a system call
1535 * @tsk: task being audited
1536 * @valid: success/failure flag
1537 * @return_code: syscall return value
1539 * Tear down after system call. If the audit context has been marked as
1540 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1541 * filtering, or because some other part of the kernel write an audit
1542 * message), then write out the syscall information. In call cases,
1543 * free the names stored from getname().
1545 void audit_syscall_exit(int valid
, long return_code
)
1547 struct task_struct
*tsk
= current
;
1548 struct audit_context
*context
;
1550 context
= audit_get_context(tsk
, valid
, return_code
);
1552 if (likely(!context
))
1555 if (context
->in_syscall
&& context
->auditable
)
1556 audit_log_exit(context
, tsk
);
1558 context
->in_syscall
= 0;
1559 context
->auditable
= 0;
1561 if (context
->previous
) {
1562 struct audit_context
*new_context
= context
->previous
;
1563 context
->previous
= NULL
;
1564 audit_free_context(context
);
1565 tsk
->audit_context
= new_context
;
1567 audit_free_names(context
);
1568 unroll_tree_refs(context
, NULL
, 0);
1569 audit_free_aux(context
);
1570 context
->aux
= NULL
;
1571 context
->aux_pids
= NULL
;
1572 context
->target_pid
= 0;
1573 context
->target_sid
= 0;
1574 kfree(context
->filterkey
);
1575 context
->filterkey
= NULL
;
1576 tsk
->audit_context
= context
;
1580 static inline void handle_one(const struct inode
*inode
)
1582 #ifdef CONFIG_AUDIT_TREE
1583 struct audit_context
*context
;
1584 struct audit_tree_refs
*p
;
1585 struct audit_chunk
*chunk
;
1587 if (likely(list_empty(&inode
->inotify_watches
)))
1589 context
= current
->audit_context
;
1591 count
= context
->tree_count
;
1593 chunk
= audit_tree_lookup(inode
);
1597 if (likely(put_tree_ref(context
, chunk
)))
1599 if (unlikely(!grow_tree_refs(context
))) {
1600 printk(KERN_WARNING
"out of memory, audit has lost a tree reference");
1601 audit_set_auditable(context
);
1602 audit_put_chunk(chunk
);
1603 unroll_tree_refs(context
, p
, count
);
1606 put_tree_ref(context
, chunk
);
1610 static void handle_path(const struct dentry
*dentry
)
1612 #ifdef CONFIG_AUDIT_TREE
1613 struct audit_context
*context
;
1614 struct audit_tree_refs
*p
;
1615 const struct dentry
*d
, *parent
;
1616 struct audit_chunk
*drop
;
1620 context
= current
->audit_context
;
1622 count
= context
->tree_count
;
1627 seq
= read_seqbegin(&rename_lock
);
1629 struct inode
*inode
= d
->d_inode
;
1630 if (inode
&& unlikely(!list_empty(&inode
->inotify_watches
))) {
1631 struct audit_chunk
*chunk
;
1632 chunk
= audit_tree_lookup(inode
);
1634 if (unlikely(!put_tree_ref(context
, chunk
))) {
1640 parent
= d
->d_parent
;
1645 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1648 /* just a race with rename */
1649 unroll_tree_refs(context
, p
, count
);
1652 audit_put_chunk(drop
);
1653 if (grow_tree_refs(context
)) {
1654 /* OK, got more space */
1655 unroll_tree_refs(context
, p
, count
);
1660 "out of memory, audit has lost a tree reference");
1661 unroll_tree_refs(context
, p
, count
);
1662 audit_set_auditable(context
);
1670 * audit_getname - add a name to the list
1671 * @name: name to add
1673 * Add a name to the list of audit names for this context.
1674 * Called from fs/namei.c:getname().
1676 void __audit_getname(const char *name
)
1678 struct audit_context
*context
= current
->audit_context
;
1680 if (IS_ERR(name
) || !name
)
1683 if (!context
->in_syscall
) {
1684 #if AUDIT_DEBUG == 2
1685 printk(KERN_ERR
"%s:%d(:%d): ignoring getname(%p)\n",
1686 __FILE__
, __LINE__
, context
->serial
, name
);
1691 BUG_ON(context
->name_count
>= AUDIT_NAMES
);
1692 context
->names
[context
->name_count
].name
= name
;
1693 context
->names
[context
->name_count
].name_len
= AUDIT_NAME_FULL
;
1694 context
->names
[context
->name_count
].name_put
= 1;
1695 context
->names
[context
->name_count
].ino
= (unsigned long)-1;
1696 context
->names
[context
->name_count
].osid
= 0;
1697 ++context
->name_count
;
1698 if (!context
->pwd
) {
1699 read_lock(¤t
->fs
->lock
);
1700 context
->pwd
= dget(current
->fs
->pwd
);
1701 context
->pwdmnt
= mntget(current
->fs
->pwdmnt
);
1702 read_unlock(¤t
->fs
->lock
);
1707 /* audit_putname - intercept a putname request
1708 * @name: name to intercept and delay for putname
1710 * If we have stored the name from getname in the audit context,
1711 * then we delay the putname until syscall exit.
1712 * Called from include/linux/fs.h:putname().
1714 void audit_putname(const char *name
)
1716 struct audit_context
*context
= current
->audit_context
;
1719 if (!context
->in_syscall
) {
1720 #if AUDIT_DEBUG == 2
1721 printk(KERN_ERR
"%s:%d(:%d): __putname(%p)\n",
1722 __FILE__
, __LINE__
, context
->serial
, name
);
1723 if (context
->name_count
) {
1725 for (i
= 0; i
< context
->name_count
; i
++)
1726 printk(KERN_ERR
"name[%d] = %p = %s\n", i
,
1727 context
->names
[i
].name
,
1728 context
->names
[i
].name
?: "(null)");
1735 ++context
->put_count
;
1736 if (context
->put_count
> context
->name_count
) {
1737 printk(KERN_ERR
"%s:%d(:%d): major=%d"
1738 " in_syscall=%d putname(%p) name_count=%d"
1741 context
->serial
, context
->major
,
1742 context
->in_syscall
, name
, context
->name_count
,
1743 context
->put_count
);
1750 static int audit_inc_name_count(struct audit_context
*context
,
1751 const struct inode
*inode
)
1753 if (context
->name_count
>= AUDIT_NAMES
) {
1755 printk(KERN_DEBUG
"name_count maxed, losing inode data: "
1756 "dev=%02x:%02x, inode=%lu",
1757 MAJOR(inode
->i_sb
->s_dev
),
1758 MINOR(inode
->i_sb
->s_dev
),
1762 printk(KERN_DEBUG
"name_count maxed, losing inode data");
1765 context
->name_count
++;
1767 context
->ino_count
++;
1772 /* Copy inode data into an audit_names. */
1773 static void audit_copy_inode(struct audit_names
*name
, const struct inode
*inode
)
1775 name
->ino
= inode
->i_ino
;
1776 name
->dev
= inode
->i_sb
->s_dev
;
1777 name
->mode
= inode
->i_mode
;
1778 name
->uid
= inode
->i_uid
;
1779 name
->gid
= inode
->i_gid
;
1780 name
->rdev
= inode
->i_rdev
;
1781 selinux_get_inode_sid(inode
, &name
->osid
);
1785 * audit_inode - store the inode and device from a lookup
1786 * @name: name being audited
1787 * @dentry: dentry being audited
1789 * Called from fs/namei.c:path_lookup().
1791 void __audit_inode(const char *name
, const struct dentry
*dentry
)
1794 struct audit_context
*context
= current
->audit_context
;
1795 const struct inode
*inode
= dentry
->d_inode
;
1797 if (!context
->in_syscall
)
1799 if (context
->name_count
1800 && context
->names
[context
->name_count
-1].name
1801 && context
->names
[context
->name_count
-1].name
== name
)
1802 idx
= context
->name_count
- 1;
1803 else if (context
->name_count
> 1
1804 && context
->names
[context
->name_count
-2].name
1805 && context
->names
[context
->name_count
-2].name
== name
)
1806 idx
= context
->name_count
- 2;
1808 /* FIXME: how much do we care about inodes that have no
1809 * associated name? */
1810 if (audit_inc_name_count(context
, inode
))
1812 idx
= context
->name_count
- 1;
1813 context
->names
[idx
].name
= NULL
;
1815 handle_path(dentry
);
1816 audit_copy_inode(&context
->names
[idx
], inode
);
1820 * audit_inode_child - collect inode info for created/removed objects
1821 * @dname: inode's dentry name
1822 * @dentry: dentry being audited
1823 * @parent: inode of dentry parent
1825 * For syscalls that create or remove filesystem objects, audit_inode
1826 * can only collect information for the filesystem object's parent.
1827 * This call updates the audit context with the child's information.
1828 * Syscalls that create a new filesystem object must be hooked after
1829 * the object is created. Syscalls that remove a filesystem object
1830 * must be hooked prior, in order to capture the target inode during
1831 * unsuccessful attempts.
1833 void __audit_inode_child(const char *dname
, const struct dentry
*dentry
,
1834 const struct inode
*parent
)
1837 struct audit_context
*context
= current
->audit_context
;
1838 const char *found_parent
= NULL
, *found_child
= NULL
;
1839 const struct inode
*inode
= dentry
->d_inode
;
1842 if (!context
->in_syscall
)
1847 /* determine matching parent */
1851 /* parent is more likely, look for it first */
1852 for (idx
= 0; idx
< context
->name_count
; idx
++) {
1853 struct audit_names
*n
= &context
->names
[idx
];
1858 if (n
->ino
== parent
->i_ino
&&
1859 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
1860 n
->name_len
= dirlen
; /* update parent data in place */
1861 found_parent
= n
->name
;
1866 /* no matching parent, look for matching child */
1867 for (idx
= 0; idx
< context
->name_count
; idx
++) {
1868 struct audit_names
*n
= &context
->names
[idx
];
1873 /* strcmp() is the more likely scenario */
1874 if (!strcmp(dname
, n
->name
) ||
1875 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
1877 audit_copy_inode(n
, inode
);
1879 n
->ino
= (unsigned long)-1;
1880 found_child
= n
->name
;
1886 if (!found_parent
) {
1887 if (audit_inc_name_count(context
, parent
))
1889 idx
= context
->name_count
- 1;
1890 context
->names
[idx
].name
= NULL
;
1891 audit_copy_inode(&context
->names
[idx
], parent
);
1895 if (audit_inc_name_count(context
, inode
))
1897 idx
= context
->name_count
- 1;
1899 /* Re-use the name belonging to the slot for a matching parent
1900 * directory. All names for this context are relinquished in
1901 * audit_free_names() */
1903 context
->names
[idx
].name
= found_parent
;
1904 context
->names
[idx
].name_len
= AUDIT_NAME_FULL
;
1905 /* don't call __putname() */
1906 context
->names
[idx
].name_put
= 0;
1908 context
->names
[idx
].name
= NULL
;
1912 audit_copy_inode(&context
->names
[idx
], inode
);
1914 context
->names
[idx
].ino
= (unsigned long)-1;
1917 EXPORT_SYMBOL_GPL(__audit_inode_child
);
1920 * auditsc_get_stamp - get local copies of audit_context values
1921 * @ctx: audit_context for the task
1922 * @t: timespec to store time recorded in the audit_context
1923 * @serial: serial value that is recorded in the audit_context
1925 * Also sets the context as auditable.
1927 void auditsc_get_stamp(struct audit_context
*ctx
,
1928 struct timespec
*t
, unsigned int *serial
)
1931 ctx
->serial
= audit_serial();
1932 t
->tv_sec
= ctx
->ctime
.tv_sec
;
1933 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
1934 *serial
= ctx
->serial
;
1938 /* global counter which is incremented every time something logs in */
1939 static atomic_t session_id
= ATOMIC_INIT(0);
1942 * audit_set_loginuid - set a task's audit_context loginuid
1943 * @task: task whose audit context is being modified
1944 * @loginuid: loginuid value
1948 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1950 int audit_set_loginuid(struct task_struct
*task
, uid_t loginuid
)
1952 unsigned int sessionid
= atomic_inc_return(&session_id
);
1953 struct audit_context
*context
= task
->audit_context
;
1955 if (context
&& context
->in_syscall
) {
1956 struct audit_buffer
*ab
;
1958 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
1960 audit_log_format(ab
, "login pid=%d uid=%u "
1961 "old auid=%u new auid=%u"
1962 " old ses=%u new ses=%u",
1963 task
->pid
, task
->uid
,
1964 task
->loginuid
, loginuid
,
1965 task
->sessionid
, sessionid
);
1969 task
->sessionid
= sessionid
;
1970 task
->loginuid
= loginuid
;
1975 * __audit_mq_open - record audit data for a POSIX MQ open
1978 * @u_attr: queue attributes
1980 * Returns 0 for success or NULL context or < 0 on error.
1982 int __audit_mq_open(int oflag
, mode_t mode
, struct mq_attr __user
*u_attr
)
1984 struct audit_aux_data_mq_open
*ax
;
1985 struct audit_context
*context
= current
->audit_context
;
1990 if (likely(!context
))
1993 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
1997 if (u_attr
!= NULL
) {
1998 if (copy_from_user(&ax
->attr
, u_attr
, sizeof(ax
->attr
))) {
2003 memset(&ax
->attr
, 0, sizeof(ax
->attr
));
2008 ax
->d
.type
= AUDIT_MQ_OPEN
;
2009 ax
->d
.next
= context
->aux
;
2010 context
->aux
= (void *)ax
;
2015 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2016 * @mqdes: MQ descriptor
2017 * @msg_len: Message length
2018 * @msg_prio: Message priority
2019 * @u_abs_timeout: Message timeout in absolute time
2021 * Returns 0 for success or NULL context or < 0 on error.
2023 int __audit_mq_timedsend(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2024 const struct timespec __user
*u_abs_timeout
)
2026 struct audit_aux_data_mq_sendrecv
*ax
;
2027 struct audit_context
*context
= current
->audit_context
;
2032 if (likely(!context
))
2035 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2039 if (u_abs_timeout
!= NULL
) {
2040 if (copy_from_user(&ax
->abs_timeout
, u_abs_timeout
, sizeof(ax
->abs_timeout
))) {
2045 memset(&ax
->abs_timeout
, 0, sizeof(ax
->abs_timeout
));
2048 ax
->msg_len
= msg_len
;
2049 ax
->msg_prio
= msg_prio
;
2051 ax
->d
.type
= AUDIT_MQ_SENDRECV
;
2052 ax
->d
.next
= context
->aux
;
2053 context
->aux
= (void *)ax
;
2058 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2059 * @mqdes: MQ descriptor
2060 * @msg_len: Message length
2061 * @u_msg_prio: Message priority
2062 * @u_abs_timeout: Message timeout in absolute time
2064 * Returns 0 for success or NULL context or < 0 on error.
2066 int __audit_mq_timedreceive(mqd_t mqdes
, size_t msg_len
,
2067 unsigned int __user
*u_msg_prio
,
2068 const struct timespec __user
*u_abs_timeout
)
2070 struct audit_aux_data_mq_sendrecv
*ax
;
2071 struct audit_context
*context
= current
->audit_context
;
2076 if (likely(!context
))
2079 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2083 if (u_msg_prio
!= NULL
) {
2084 if (get_user(ax
->msg_prio
, u_msg_prio
)) {
2091 if (u_abs_timeout
!= NULL
) {
2092 if (copy_from_user(&ax
->abs_timeout
, u_abs_timeout
, sizeof(ax
->abs_timeout
))) {
2097 memset(&ax
->abs_timeout
, 0, sizeof(ax
->abs_timeout
));
2100 ax
->msg_len
= msg_len
;
2102 ax
->d
.type
= AUDIT_MQ_SENDRECV
;
2103 ax
->d
.next
= context
->aux
;
2104 context
->aux
= (void *)ax
;
2109 * __audit_mq_notify - record audit data for a POSIX MQ notify
2110 * @mqdes: MQ descriptor
2111 * @u_notification: Notification event
2113 * Returns 0 for success or NULL context or < 0 on error.
2116 int __audit_mq_notify(mqd_t mqdes
, const struct sigevent __user
*u_notification
)
2118 struct audit_aux_data_mq_notify
*ax
;
2119 struct audit_context
*context
= current
->audit_context
;
2124 if (likely(!context
))
2127 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2131 if (u_notification
!= NULL
) {
2132 if (copy_from_user(&ax
->notification
, u_notification
, sizeof(ax
->notification
))) {
2137 memset(&ax
->notification
, 0, sizeof(ax
->notification
));
2141 ax
->d
.type
= AUDIT_MQ_NOTIFY
;
2142 ax
->d
.next
= context
->aux
;
2143 context
->aux
= (void *)ax
;
2148 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2149 * @mqdes: MQ descriptor
2152 * Returns 0 for success or NULL context or < 0 on error.
2154 int __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2156 struct audit_aux_data_mq_getsetattr
*ax
;
2157 struct audit_context
*context
= current
->audit_context
;
2162 if (likely(!context
))
2165 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2170 ax
->mqstat
= *mqstat
;
2172 ax
->d
.type
= AUDIT_MQ_GETSETATTR
;
2173 ax
->d
.next
= context
->aux
;
2174 context
->aux
= (void *)ax
;
2179 * audit_ipc_obj - record audit data for ipc object
2180 * @ipcp: ipc permissions
2182 * Returns 0 for success or NULL context or < 0 on error.
2184 int __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2186 struct audit_aux_data_ipcctl
*ax
;
2187 struct audit_context
*context
= current
->audit_context
;
2189 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2193 ax
->uid
= ipcp
->uid
;
2194 ax
->gid
= ipcp
->gid
;
2195 ax
->mode
= ipcp
->mode
;
2196 selinux_get_ipc_sid(ipcp
, &ax
->osid
);
2198 ax
->d
.type
= AUDIT_IPC
;
2199 ax
->d
.next
= context
->aux
;
2200 context
->aux
= (void *)ax
;
2205 * audit_ipc_set_perm - record audit data for new ipc permissions
2206 * @qbytes: msgq bytes
2207 * @uid: msgq user id
2208 * @gid: msgq group id
2209 * @mode: msgq mode (permissions)
2211 * Returns 0 for success or NULL context or < 0 on error.
2213 int __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, mode_t mode
)
2215 struct audit_aux_data_ipcctl
*ax
;
2216 struct audit_context
*context
= current
->audit_context
;
2218 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2222 ax
->qbytes
= qbytes
;
2227 ax
->d
.type
= AUDIT_IPC_SET_PERM
;
2228 ax
->d
.next
= context
->aux
;
2229 context
->aux
= (void *)ax
;
2233 int audit_bprm(struct linux_binprm
*bprm
)
2235 struct audit_aux_data_execve
*ax
;
2236 struct audit_context
*context
= current
->audit_context
;
2238 if (likely(!audit_enabled
|| !context
|| context
->dummy
))
2241 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2245 ax
->argc
= bprm
->argc
;
2246 ax
->envc
= bprm
->envc
;
2248 ax
->d
.type
= AUDIT_EXECVE
;
2249 ax
->d
.next
= context
->aux
;
2250 context
->aux
= (void *)ax
;
2256 * audit_socketcall - record audit data for sys_socketcall
2257 * @nargs: number of args
2260 * Returns 0 for success or NULL context or < 0 on error.
2262 int audit_socketcall(int nargs
, unsigned long *args
)
2264 struct audit_aux_data_socketcall
*ax
;
2265 struct audit_context
*context
= current
->audit_context
;
2267 if (likely(!context
|| context
->dummy
))
2270 ax
= kmalloc(sizeof(*ax
) + nargs
* sizeof(unsigned long), GFP_KERNEL
);
2275 memcpy(ax
->args
, args
, nargs
* sizeof(unsigned long));
2277 ax
->d
.type
= AUDIT_SOCKETCALL
;
2278 ax
->d
.next
= context
->aux
;
2279 context
->aux
= (void *)ax
;
2284 * __audit_fd_pair - record audit data for pipe and socketpair
2285 * @fd1: the first file descriptor
2286 * @fd2: the second file descriptor
2288 * Returns 0 for success or NULL context or < 0 on error.
2290 int __audit_fd_pair(int fd1
, int fd2
)
2292 struct audit_context
*context
= current
->audit_context
;
2293 struct audit_aux_data_fd_pair
*ax
;
2295 if (likely(!context
)) {
2299 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2307 ax
->d
.type
= AUDIT_FD_PAIR
;
2308 ax
->d
.next
= context
->aux
;
2309 context
->aux
= (void *)ax
;
2314 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2315 * @len: data length in user space
2316 * @a: data address in kernel space
2318 * Returns 0 for success or NULL context or < 0 on error.
2320 int audit_sockaddr(int len
, void *a
)
2322 struct audit_aux_data_sockaddr
*ax
;
2323 struct audit_context
*context
= current
->audit_context
;
2325 if (likely(!context
|| context
->dummy
))
2328 ax
= kmalloc(sizeof(*ax
) + len
, GFP_KERNEL
);
2333 memcpy(ax
->a
, a
, len
);
2335 ax
->d
.type
= AUDIT_SOCKADDR
;
2336 ax
->d
.next
= context
->aux
;
2337 context
->aux
= (void *)ax
;
2341 void __audit_ptrace(struct task_struct
*t
)
2343 struct audit_context
*context
= current
->audit_context
;
2345 context
->target_pid
= t
->pid
;
2346 context
->target_auid
= audit_get_loginuid(t
);
2347 context
->target_uid
= t
->uid
;
2348 context
->target_sessionid
= audit_get_sessionid(t
);
2349 selinux_get_task_sid(t
, &context
->target_sid
);
2350 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2354 * audit_signal_info - record signal info for shutting down audit subsystem
2355 * @sig: signal value
2356 * @t: task being signaled
2358 * If the audit subsystem is being terminated, record the task (pid)
2359 * and uid that is doing that.
2361 int __audit_signal_info(int sig
, struct task_struct
*t
)
2363 struct audit_aux_data_pids
*axp
;
2364 struct task_struct
*tsk
= current
;
2365 struct audit_context
*ctx
= tsk
->audit_context
;
2366 extern pid_t audit_sig_pid
;
2367 extern uid_t audit_sig_uid
;
2368 extern u32 audit_sig_sid
;
2370 if (audit_pid
&& t
->tgid
== audit_pid
) {
2371 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
) {
2372 audit_sig_pid
= tsk
->pid
;
2373 if (tsk
->loginuid
!= -1)
2374 audit_sig_uid
= tsk
->loginuid
;
2376 audit_sig_uid
= tsk
->uid
;
2377 selinux_get_task_sid(tsk
, &audit_sig_sid
);
2379 if (!audit_signals
|| audit_dummy_context())
2383 /* optimize the common case by putting first signal recipient directly
2384 * in audit_context */
2385 if (!ctx
->target_pid
) {
2386 ctx
->target_pid
= t
->tgid
;
2387 ctx
->target_auid
= audit_get_loginuid(t
);
2388 ctx
->target_uid
= t
->uid
;
2389 ctx
->target_sessionid
= audit_get_sessionid(t
);
2390 selinux_get_task_sid(t
, &ctx
->target_sid
);
2391 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2395 axp
= (void *)ctx
->aux_pids
;
2396 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2397 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2401 axp
->d
.type
= AUDIT_OBJ_PID
;
2402 axp
->d
.next
= ctx
->aux_pids
;
2403 ctx
->aux_pids
= (void *)axp
;
2405 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2407 axp
->target_pid
[axp
->pid_count
] = t
->tgid
;
2408 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2409 axp
->target_uid
[axp
->pid_count
] = t
->uid
;
2410 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2411 selinux_get_task_sid(t
, &axp
->target_sid
[axp
->pid_count
]);
2412 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2419 * audit_core_dumps - record information about processes that end abnormally
2420 * @signr: signal value
2422 * If a process ends with a core dump, something fishy is going on and we
2423 * should record the event for investigation.
2425 void audit_core_dumps(long signr
)
2427 struct audit_buffer
*ab
;
2429 uid_t auid
= audit_get_loginuid(current
);
2430 unsigned int sessionid
= audit_get_sessionid(current
);
2435 if (signr
== SIGQUIT
) /* don't care for those */
2438 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2439 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2440 auid
, current
->uid
, current
->gid
, sessionid
);
2441 selinux_get_task_sid(current
, &sid
);
2446 if (selinux_sid_to_string(sid
, &ctx
, &len
))
2447 audit_log_format(ab
, " ssid=%u", sid
);
2449 audit_log_format(ab
, " subj=%s", ctx
);
2452 audit_log_format(ab
, " pid=%d comm=", current
->pid
);
2453 audit_log_untrustedstring(ab
, current
->comm
);
2454 audit_log_format(ab
, " sig=%ld", signr
);