Merge branches 'release' and 'hp-cid' into release
[linux-2.6/zen-sources.git] / kernel / auditsc.c
blob1c06ecf38d7b059208b456a604c284e68ab409c4
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/selinux.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/inotify.h>
70 #include "audit.h"
72 extern struct list_head audit_filter_list[];
73 extern int audit_ever_enabled;
75 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
76 * for saving names from getname(). */
77 #define AUDIT_NAMES 20
79 /* Indicates that audit should log the full pathname. */
80 #define AUDIT_NAME_FULL -1
82 /* no execve audit message should be longer than this (userspace limits) */
83 #define MAX_EXECVE_AUDIT_LEN 7500
85 /* number of audit rules */
86 int audit_n_rules;
88 /* determines whether we collect data for signals sent */
89 int audit_signals;
91 /* When fs/namei.c:getname() is called, we store the pointer in name and
92 * we don't let putname() free it (instead we free all of the saved
93 * pointers at syscall exit time).
95 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
96 struct audit_names {
97 const char *name;
98 int name_len; /* number of name's characters to log */
99 unsigned name_put; /* call __putname() for this name */
100 unsigned long ino;
101 dev_t dev;
102 umode_t mode;
103 uid_t uid;
104 gid_t gid;
105 dev_t rdev;
106 u32 osid;
109 struct audit_aux_data {
110 struct audit_aux_data *next;
111 int type;
114 #define AUDIT_AUX_IPCPERM 0
116 /* Number of target pids per aux struct. */
117 #define AUDIT_AUX_PIDS 16
119 struct audit_aux_data_mq_open {
120 struct audit_aux_data d;
121 int oflag;
122 mode_t mode;
123 struct mq_attr attr;
126 struct audit_aux_data_mq_sendrecv {
127 struct audit_aux_data d;
128 mqd_t mqdes;
129 size_t msg_len;
130 unsigned int msg_prio;
131 struct timespec abs_timeout;
134 struct audit_aux_data_mq_notify {
135 struct audit_aux_data d;
136 mqd_t mqdes;
137 struct sigevent notification;
140 struct audit_aux_data_mq_getsetattr {
141 struct audit_aux_data d;
142 mqd_t mqdes;
143 struct mq_attr mqstat;
146 struct audit_aux_data_ipcctl {
147 struct audit_aux_data d;
148 struct ipc_perm p;
149 unsigned long qbytes;
150 uid_t uid;
151 gid_t gid;
152 mode_t mode;
153 u32 osid;
156 struct audit_aux_data_execve {
157 struct audit_aux_data d;
158 int argc;
159 int envc;
160 struct mm_struct *mm;
163 struct audit_aux_data_socketcall {
164 struct audit_aux_data d;
165 int nargs;
166 unsigned long args[0];
169 struct audit_aux_data_sockaddr {
170 struct audit_aux_data d;
171 int len;
172 char a[0];
175 struct audit_aux_data_fd_pair {
176 struct audit_aux_data d;
177 int fd[2];
180 struct audit_aux_data_pids {
181 struct audit_aux_data d;
182 pid_t target_pid[AUDIT_AUX_PIDS];
183 uid_t target_auid[AUDIT_AUX_PIDS];
184 uid_t target_uid[AUDIT_AUX_PIDS];
185 unsigned int target_sessionid[AUDIT_AUX_PIDS];
186 u32 target_sid[AUDIT_AUX_PIDS];
187 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
188 int pid_count;
191 struct audit_tree_refs {
192 struct audit_tree_refs *next;
193 struct audit_chunk *c[31];
196 /* The per-task audit context. */
197 struct audit_context {
198 int dummy; /* must be the first element */
199 int in_syscall; /* 1 if task is in a syscall */
200 enum audit_state state;
201 unsigned int serial; /* serial number for record */
202 struct timespec ctime; /* time of syscall entry */
203 int major; /* syscall number */
204 unsigned long argv[4]; /* syscall arguments */
205 int return_valid; /* return code is valid */
206 long return_code;/* syscall return code */
207 int auditable; /* 1 if record should be written */
208 int name_count;
209 struct audit_names names[AUDIT_NAMES];
210 char * filterkey; /* key for rule that triggered record */
211 struct dentry * pwd;
212 struct vfsmount * pwdmnt;
213 struct audit_context *previous; /* For nested syscalls */
214 struct audit_aux_data *aux;
215 struct audit_aux_data *aux_pids;
217 /* Save things to print about task_struct */
218 pid_t pid, ppid;
219 uid_t uid, euid, suid, fsuid;
220 gid_t gid, egid, sgid, fsgid;
221 unsigned long personality;
222 int arch;
224 pid_t target_pid;
225 uid_t target_auid;
226 uid_t target_uid;
227 unsigned int target_sessionid;
228 u32 target_sid;
229 char target_comm[TASK_COMM_LEN];
231 struct audit_tree_refs *trees, *first_trees;
232 int tree_count;
234 #if AUDIT_DEBUG
235 int put_count;
236 int ino_count;
237 #endif
240 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
241 static inline int open_arg(int flags, int mask)
243 int n = ACC_MODE(flags);
244 if (flags & (O_TRUNC | O_CREAT))
245 n |= AUDIT_PERM_WRITE;
246 return n & mask;
249 static int audit_match_perm(struct audit_context *ctx, int mask)
251 unsigned n = ctx->major;
252 switch (audit_classify_syscall(ctx->arch, n)) {
253 case 0: /* native */
254 if ((mask & AUDIT_PERM_WRITE) &&
255 audit_match_class(AUDIT_CLASS_WRITE, n))
256 return 1;
257 if ((mask & AUDIT_PERM_READ) &&
258 audit_match_class(AUDIT_CLASS_READ, n))
259 return 1;
260 if ((mask & AUDIT_PERM_ATTR) &&
261 audit_match_class(AUDIT_CLASS_CHATTR, n))
262 return 1;
263 return 0;
264 case 1: /* 32bit on biarch */
265 if ((mask & AUDIT_PERM_WRITE) &&
266 audit_match_class(AUDIT_CLASS_WRITE_32, n))
267 return 1;
268 if ((mask & AUDIT_PERM_READ) &&
269 audit_match_class(AUDIT_CLASS_READ_32, n))
270 return 1;
271 if ((mask & AUDIT_PERM_ATTR) &&
272 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
273 return 1;
274 return 0;
275 case 2: /* open */
276 return mask & ACC_MODE(ctx->argv[1]);
277 case 3: /* openat */
278 return mask & ACC_MODE(ctx->argv[2]);
279 case 4: /* socketcall */
280 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
281 case 5: /* execve */
282 return mask & AUDIT_PERM_EXEC;
283 default:
284 return 0;
289 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
290 * ->first_trees points to its beginning, ->trees - to the current end of data.
291 * ->tree_count is the number of free entries in array pointed to by ->trees.
292 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
293 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
294 * it's going to remain 1-element for almost any setup) until we free context itself.
295 * References in it _are_ dropped - at the same time we free/drop aux stuff.
298 #ifdef CONFIG_AUDIT_TREE
299 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
301 struct audit_tree_refs *p = ctx->trees;
302 int left = ctx->tree_count;
303 if (likely(left)) {
304 p->c[--left] = chunk;
305 ctx->tree_count = left;
306 return 1;
308 if (!p)
309 return 0;
310 p = p->next;
311 if (p) {
312 p->c[30] = chunk;
313 ctx->trees = p;
314 ctx->tree_count = 30;
315 return 1;
317 return 0;
320 static int grow_tree_refs(struct audit_context *ctx)
322 struct audit_tree_refs *p = ctx->trees;
323 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
324 if (!ctx->trees) {
325 ctx->trees = p;
326 return 0;
328 if (p)
329 p->next = ctx->trees;
330 else
331 ctx->first_trees = ctx->trees;
332 ctx->tree_count = 31;
333 return 1;
335 #endif
337 static void unroll_tree_refs(struct audit_context *ctx,
338 struct audit_tree_refs *p, int count)
340 #ifdef CONFIG_AUDIT_TREE
341 struct audit_tree_refs *q;
342 int n;
343 if (!p) {
344 /* we started with empty chain */
345 p = ctx->first_trees;
346 count = 31;
347 /* if the very first allocation has failed, nothing to do */
348 if (!p)
349 return;
351 n = count;
352 for (q = p; q != ctx->trees; q = q->next, n = 31) {
353 while (n--) {
354 audit_put_chunk(q->c[n]);
355 q->c[n] = NULL;
358 while (n-- > ctx->tree_count) {
359 audit_put_chunk(q->c[n]);
360 q->c[n] = NULL;
362 ctx->trees = p;
363 ctx->tree_count = count;
364 #endif
367 static void free_tree_refs(struct audit_context *ctx)
369 struct audit_tree_refs *p, *q;
370 for (p = ctx->first_trees; p; p = q) {
371 q = p->next;
372 kfree(p);
376 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
378 #ifdef CONFIG_AUDIT_TREE
379 struct audit_tree_refs *p;
380 int n;
381 if (!tree)
382 return 0;
383 /* full ones */
384 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
385 for (n = 0; n < 31; n++)
386 if (audit_tree_match(p->c[n], tree))
387 return 1;
389 /* partial */
390 if (p) {
391 for (n = ctx->tree_count; n < 31; n++)
392 if (audit_tree_match(p->c[n], tree))
393 return 1;
395 #endif
396 return 0;
399 /* Determine if any context name data matches a rule's watch data */
400 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
401 * otherwise. */
402 static int audit_filter_rules(struct task_struct *tsk,
403 struct audit_krule *rule,
404 struct audit_context *ctx,
405 struct audit_names *name,
406 enum audit_state *state)
408 int i, j, need_sid = 1;
409 u32 sid;
411 for (i = 0; i < rule->field_count; i++) {
412 struct audit_field *f = &rule->fields[i];
413 int result = 0;
415 switch (f->type) {
416 case AUDIT_PID:
417 result = audit_comparator(tsk->pid, f->op, f->val);
418 break;
419 case AUDIT_PPID:
420 if (ctx) {
421 if (!ctx->ppid)
422 ctx->ppid = sys_getppid();
423 result = audit_comparator(ctx->ppid, f->op, f->val);
425 break;
426 case AUDIT_UID:
427 result = audit_comparator(tsk->uid, f->op, f->val);
428 break;
429 case AUDIT_EUID:
430 result = audit_comparator(tsk->euid, f->op, f->val);
431 break;
432 case AUDIT_SUID:
433 result = audit_comparator(tsk->suid, f->op, f->val);
434 break;
435 case AUDIT_FSUID:
436 result = audit_comparator(tsk->fsuid, f->op, f->val);
437 break;
438 case AUDIT_GID:
439 result = audit_comparator(tsk->gid, f->op, f->val);
440 break;
441 case AUDIT_EGID:
442 result = audit_comparator(tsk->egid, f->op, f->val);
443 break;
444 case AUDIT_SGID:
445 result = audit_comparator(tsk->sgid, f->op, f->val);
446 break;
447 case AUDIT_FSGID:
448 result = audit_comparator(tsk->fsgid, f->op, f->val);
449 break;
450 case AUDIT_PERS:
451 result = audit_comparator(tsk->personality, f->op, f->val);
452 break;
453 case AUDIT_ARCH:
454 if (ctx)
455 result = audit_comparator(ctx->arch, f->op, f->val);
456 break;
458 case AUDIT_EXIT:
459 if (ctx && ctx->return_valid)
460 result = audit_comparator(ctx->return_code, f->op, f->val);
461 break;
462 case AUDIT_SUCCESS:
463 if (ctx && ctx->return_valid) {
464 if (f->val)
465 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
466 else
467 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
469 break;
470 case AUDIT_DEVMAJOR:
471 if (name)
472 result = audit_comparator(MAJOR(name->dev),
473 f->op, f->val);
474 else if (ctx) {
475 for (j = 0; j < ctx->name_count; j++) {
476 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
477 ++result;
478 break;
482 break;
483 case AUDIT_DEVMINOR:
484 if (name)
485 result = audit_comparator(MINOR(name->dev),
486 f->op, f->val);
487 else if (ctx) {
488 for (j = 0; j < ctx->name_count; j++) {
489 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
490 ++result;
491 break;
495 break;
496 case AUDIT_INODE:
497 if (name)
498 result = (name->ino == f->val);
499 else if (ctx) {
500 for (j = 0; j < ctx->name_count; j++) {
501 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
502 ++result;
503 break;
507 break;
508 case AUDIT_WATCH:
509 if (name && rule->watch->ino != (unsigned long)-1)
510 result = (name->dev == rule->watch->dev &&
511 name->ino == rule->watch->ino);
512 break;
513 case AUDIT_DIR:
514 if (ctx)
515 result = match_tree_refs(ctx, rule->tree);
516 break;
517 case AUDIT_LOGINUID:
518 result = 0;
519 if (ctx)
520 result = audit_comparator(tsk->loginuid, f->op, f->val);
521 break;
522 case AUDIT_SUBJ_USER:
523 case AUDIT_SUBJ_ROLE:
524 case AUDIT_SUBJ_TYPE:
525 case AUDIT_SUBJ_SEN:
526 case AUDIT_SUBJ_CLR:
527 /* NOTE: this may return negative values indicating
528 a temporary error. We simply treat this as a
529 match for now to avoid losing information that
530 may be wanted. An error message will also be
531 logged upon error */
532 if (f->se_rule) {
533 if (need_sid) {
534 selinux_get_task_sid(tsk, &sid);
535 need_sid = 0;
537 result = selinux_audit_rule_match(sid, f->type,
538 f->op,
539 f->se_rule,
540 ctx);
542 break;
543 case AUDIT_OBJ_USER:
544 case AUDIT_OBJ_ROLE:
545 case AUDIT_OBJ_TYPE:
546 case AUDIT_OBJ_LEV_LOW:
547 case AUDIT_OBJ_LEV_HIGH:
548 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
549 also applies here */
550 if (f->se_rule) {
551 /* Find files that match */
552 if (name) {
553 result = selinux_audit_rule_match(
554 name->osid, f->type, f->op,
555 f->se_rule, ctx);
556 } else if (ctx) {
557 for (j = 0; j < ctx->name_count; j++) {
558 if (selinux_audit_rule_match(
559 ctx->names[j].osid,
560 f->type, f->op,
561 f->se_rule, ctx)) {
562 ++result;
563 break;
567 /* Find ipc objects that match */
568 if (ctx) {
569 struct audit_aux_data *aux;
570 for (aux = ctx->aux; aux;
571 aux = aux->next) {
572 if (aux->type == AUDIT_IPC) {
573 struct audit_aux_data_ipcctl *axi = (void *)aux;
574 if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) {
575 ++result;
576 break;
582 break;
583 case AUDIT_ARG0:
584 case AUDIT_ARG1:
585 case AUDIT_ARG2:
586 case AUDIT_ARG3:
587 if (ctx)
588 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
589 break;
590 case AUDIT_FILTERKEY:
591 /* ignore this field for filtering */
592 result = 1;
593 break;
594 case AUDIT_PERM:
595 result = audit_match_perm(ctx, f->val);
596 break;
599 if (!result)
600 return 0;
602 if (rule->filterkey)
603 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
604 switch (rule->action) {
605 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
606 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
608 return 1;
611 /* At process creation time, we can determine if system-call auditing is
612 * completely disabled for this task. Since we only have the task
613 * structure at this point, we can only check uid and gid.
615 static enum audit_state audit_filter_task(struct task_struct *tsk)
617 struct audit_entry *e;
618 enum audit_state state;
620 rcu_read_lock();
621 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
622 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
623 rcu_read_unlock();
624 return state;
627 rcu_read_unlock();
628 return AUDIT_BUILD_CONTEXT;
631 /* At syscall entry and exit time, this filter is called if the
632 * audit_state is not low enough that auditing cannot take place, but is
633 * also not high enough that we already know we have to write an audit
634 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
636 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
637 struct audit_context *ctx,
638 struct list_head *list)
640 struct audit_entry *e;
641 enum audit_state state;
643 if (audit_pid && tsk->tgid == audit_pid)
644 return AUDIT_DISABLED;
646 rcu_read_lock();
647 if (!list_empty(list)) {
648 int word = AUDIT_WORD(ctx->major);
649 int bit = AUDIT_BIT(ctx->major);
651 list_for_each_entry_rcu(e, list, list) {
652 if ((e->rule.mask[word] & bit) == bit &&
653 audit_filter_rules(tsk, &e->rule, ctx, NULL,
654 &state)) {
655 rcu_read_unlock();
656 return state;
660 rcu_read_unlock();
661 return AUDIT_BUILD_CONTEXT;
664 /* At syscall exit time, this filter is called if any audit_names[] have been
665 * collected during syscall processing. We only check rules in sublists at hash
666 * buckets applicable to the inode numbers in audit_names[].
667 * Regarding audit_state, same rules apply as for audit_filter_syscall().
669 enum audit_state audit_filter_inodes(struct task_struct *tsk,
670 struct audit_context *ctx)
672 int i;
673 struct audit_entry *e;
674 enum audit_state state;
676 if (audit_pid && tsk->tgid == audit_pid)
677 return AUDIT_DISABLED;
679 rcu_read_lock();
680 for (i = 0; i < ctx->name_count; i++) {
681 int word = AUDIT_WORD(ctx->major);
682 int bit = AUDIT_BIT(ctx->major);
683 struct audit_names *n = &ctx->names[i];
684 int h = audit_hash_ino((u32)n->ino);
685 struct list_head *list = &audit_inode_hash[h];
687 if (list_empty(list))
688 continue;
690 list_for_each_entry_rcu(e, list, list) {
691 if ((e->rule.mask[word] & bit) == bit &&
692 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
693 rcu_read_unlock();
694 return state;
698 rcu_read_unlock();
699 return AUDIT_BUILD_CONTEXT;
702 void audit_set_auditable(struct audit_context *ctx)
704 ctx->auditable = 1;
707 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
708 int return_valid,
709 int return_code)
711 struct audit_context *context = tsk->audit_context;
713 if (likely(!context))
714 return NULL;
715 context->return_valid = return_valid;
718 * we need to fix up the return code in the audit logs if the actual
719 * return codes are later going to be fixed up by the arch specific
720 * signal handlers
722 * This is actually a test for:
723 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
724 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
726 * but is faster than a bunch of ||
728 if (unlikely(return_code <= -ERESTARTSYS) &&
729 (return_code >= -ERESTART_RESTARTBLOCK) &&
730 (return_code != -ENOIOCTLCMD))
731 context->return_code = -EINTR;
732 else
733 context->return_code = return_code;
735 if (context->in_syscall && !context->dummy && !context->auditable) {
736 enum audit_state state;
738 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
739 if (state == AUDIT_RECORD_CONTEXT) {
740 context->auditable = 1;
741 goto get_context;
744 state = audit_filter_inodes(tsk, context);
745 if (state == AUDIT_RECORD_CONTEXT)
746 context->auditable = 1;
750 get_context:
752 tsk->audit_context = NULL;
753 return context;
756 static inline void audit_free_names(struct audit_context *context)
758 int i;
760 #if AUDIT_DEBUG == 2
761 if (context->auditable
762 ||context->put_count + context->ino_count != context->name_count) {
763 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
764 " name_count=%d put_count=%d"
765 " ino_count=%d [NOT freeing]\n",
766 __FILE__, __LINE__,
767 context->serial, context->major, context->in_syscall,
768 context->name_count, context->put_count,
769 context->ino_count);
770 for (i = 0; i < context->name_count; i++) {
771 printk(KERN_ERR "names[%d] = %p = %s\n", i,
772 context->names[i].name,
773 context->names[i].name ?: "(null)");
775 dump_stack();
776 return;
778 #endif
779 #if AUDIT_DEBUG
780 context->put_count = 0;
781 context->ino_count = 0;
782 #endif
784 for (i = 0; i < context->name_count; i++) {
785 if (context->names[i].name && context->names[i].name_put)
786 __putname(context->names[i].name);
788 context->name_count = 0;
789 if (context->pwd)
790 dput(context->pwd);
791 if (context->pwdmnt)
792 mntput(context->pwdmnt);
793 context->pwd = NULL;
794 context->pwdmnt = NULL;
797 static inline void audit_free_aux(struct audit_context *context)
799 struct audit_aux_data *aux;
801 while ((aux = context->aux)) {
802 context->aux = aux->next;
803 kfree(aux);
805 while ((aux = context->aux_pids)) {
806 context->aux_pids = aux->next;
807 kfree(aux);
811 static inline void audit_zero_context(struct audit_context *context,
812 enum audit_state state)
814 memset(context, 0, sizeof(*context));
815 context->state = state;
818 static inline struct audit_context *audit_alloc_context(enum audit_state state)
820 struct audit_context *context;
822 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
823 return NULL;
824 audit_zero_context(context, state);
825 return context;
829 * audit_alloc - allocate an audit context block for a task
830 * @tsk: task
832 * Filter on the task information and allocate a per-task audit context
833 * if necessary. Doing so turns on system call auditing for the
834 * specified task. This is called from copy_process, so no lock is
835 * needed.
837 int audit_alloc(struct task_struct *tsk)
839 struct audit_context *context;
840 enum audit_state state;
842 if (likely(!audit_ever_enabled))
843 return 0; /* Return if not auditing. */
845 state = audit_filter_task(tsk);
846 if (likely(state == AUDIT_DISABLED))
847 return 0;
849 if (!(context = audit_alloc_context(state))) {
850 audit_log_lost("out of memory in audit_alloc");
851 return -ENOMEM;
854 tsk->audit_context = context;
855 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
856 return 0;
859 static inline void audit_free_context(struct audit_context *context)
861 struct audit_context *previous;
862 int count = 0;
864 do {
865 previous = context->previous;
866 if (previous || (count && count < 10)) {
867 ++count;
868 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
869 " freeing multiple contexts (%d)\n",
870 context->serial, context->major,
871 context->name_count, count);
873 audit_free_names(context);
874 unroll_tree_refs(context, NULL, 0);
875 free_tree_refs(context);
876 audit_free_aux(context);
877 kfree(context->filterkey);
878 kfree(context);
879 context = previous;
880 } while (context);
881 if (count >= 10)
882 printk(KERN_ERR "audit: freed %d contexts\n", count);
885 void audit_log_task_context(struct audit_buffer *ab)
887 char *ctx = NULL;
888 unsigned len;
889 int error;
890 u32 sid;
892 selinux_get_task_sid(current, &sid);
893 if (!sid)
894 return;
896 error = selinux_sid_to_string(sid, &ctx, &len);
897 if (error) {
898 if (error != -EINVAL)
899 goto error_path;
900 return;
903 audit_log_format(ab, " subj=%s", ctx);
904 kfree(ctx);
905 return;
907 error_path:
908 audit_panic("error in audit_log_task_context");
909 return;
912 EXPORT_SYMBOL(audit_log_task_context);
914 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
916 char name[sizeof(tsk->comm)];
917 struct mm_struct *mm = tsk->mm;
918 struct vm_area_struct *vma;
920 /* tsk == current */
922 get_task_comm(name, tsk);
923 audit_log_format(ab, " comm=");
924 audit_log_untrustedstring(ab, name);
926 if (mm) {
927 down_read(&mm->mmap_sem);
928 vma = mm->mmap;
929 while (vma) {
930 if ((vma->vm_flags & VM_EXECUTABLE) &&
931 vma->vm_file) {
932 audit_log_d_path(ab, "exe=",
933 vma->vm_file->f_path.dentry,
934 vma->vm_file->f_path.mnt);
935 break;
937 vma = vma->vm_next;
939 up_read(&mm->mmap_sem);
941 audit_log_task_context(ab);
944 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
945 uid_t auid, uid_t uid, unsigned int sessionid,
946 u32 sid, char *comm)
948 struct audit_buffer *ab;
949 char *s = NULL;
950 u32 len;
951 int rc = 0;
953 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
954 if (!ab)
955 return rc;
957 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
958 uid, sessionid);
959 if (selinux_sid_to_string(sid, &s, &len)) {
960 audit_log_format(ab, " obj=(none)");
961 rc = 1;
962 } else
963 audit_log_format(ab, " obj=%s", s);
964 audit_log_format(ab, " ocomm=");
965 audit_log_untrustedstring(ab, comm);
966 audit_log_end(ab);
967 kfree(s);
969 return rc;
973 * to_send and len_sent accounting are very loose estimates. We aren't
974 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
975 * within about 500 bytes (next page boundry)
977 * why snprintf? an int is up to 12 digits long. if we just assumed when
978 * logging that a[%d]= was going to be 16 characters long we would be wasting
979 * space in every audit message. In one 7500 byte message we can log up to
980 * about 1000 min size arguments. That comes down to about 50% waste of space
981 * if we didn't do the snprintf to find out how long arg_num_len was.
983 static int audit_log_single_execve_arg(struct audit_context *context,
984 struct audit_buffer **ab,
985 int arg_num,
986 size_t *len_sent,
987 const char __user *p,
988 char *buf)
990 char arg_num_len_buf[12];
991 const char __user *tmp_p = p;
992 /* how many digits are in arg_num? 3 is the length of a=\n */
993 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
994 size_t len, len_left, to_send;
995 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
996 unsigned int i, has_cntl = 0, too_long = 0;
997 int ret;
999 /* strnlen_user includes the null we don't want to send */
1000 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1003 * We just created this mm, if we can't find the strings
1004 * we just copied into it something is _very_ wrong. Similar
1005 * for strings that are too long, we should not have created
1006 * any.
1008 if (unlikely((len = -1) || len > MAX_ARG_STRLEN - 1)) {
1009 WARN_ON(1);
1010 send_sig(SIGKILL, current, 0);
1013 /* walk the whole argument looking for non-ascii chars */
1014 do {
1015 if (len_left > MAX_EXECVE_AUDIT_LEN)
1016 to_send = MAX_EXECVE_AUDIT_LEN;
1017 else
1018 to_send = len_left;
1019 ret = copy_from_user(buf, tmp_p, to_send);
1021 * There is no reason for this copy to be short. We just
1022 * copied them here, and the mm hasn't been exposed to user-
1023 * space yet.
1025 if (ret) {
1026 WARN_ON(1);
1027 send_sig(SIGKILL, current, 0);
1029 buf[to_send] = '\0';
1030 has_cntl = audit_string_contains_control(buf, to_send);
1031 if (has_cntl) {
1033 * hex messages get logged as 2 bytes, so we can only
1034 * send half as much in each message
1036 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1037 break;
1039 len_left -= to_send;
1040 tmp_p += to_send;
1041 } while (len_left > 0);
1043 len_left = len;
1045 if (len > max_execve_audit_len)
1046 too_long = 1;
1048 /* rewalk the argument actually logging the message */
1049 for (i = 0; len_left > 0; i++) {
1050 int room_left;
1052 if (len_left > max_execve_audit_len)
1053 to_send = max_execve_audit_len;
1054 else
1055 to_send = len_left;
1057 /* do we have space left to send this argument in this ab? */
1058 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1059 if (has_cntl)
1060 room_left -= (to_send * 2);
1061 else
1062 room_left -= to_send;
1063 if (room_left < 0) {
1064 *len_sent = 0;
1065 audit_log_end(*ab);
1066 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1067 if (!*ab)
1068 return 0;
1072 * first record needs to say how long the original string was
1073 * so we can be sure nothing was lost.
1075 if ((i == 0) && (too_long))
1076 audit_log_format(*ab, "a%d_len=%ld ", arg_num,
1077 has_cntl ? 2*len : len);
1080 * normally arguments are small enough to fit and we already
1081 * filled buf above when we checked for control characters
1082 * so don't bother with another copy_from_user
1084 if (len >= max_execve_audit_len)
1085 ret = copy_from_user(buf, p, to_send);
1086 else
1087 ret = 0;
1088 if (ret) {
1089 WARN_ON(1);
1090 send_sig(SIGKILL, current, 0);
1092 buf[to_send] = '\0';
1094 /* actually log it */
1095 audit_log_format(*ab, "a%d", arg_num);
1096 if (too_long)
1097 audit_log_format(*ab, "[%d]", i);
1098 audit_log_format(*ab, "=");
1099 if (has_cntl)
1100 audit_log_hex(*ab, buf, to_send);
1101 else
1102 audit_log_format(*ab, "\"%s\"", buf);
1103 audit_log_format(*ab, "\n");
1105 p += to_send;
1106 len_left -= to_send;
1107 *len_sent += arg_num_len;
1108 if (has_cntl)
1109 *len_sent += to_send * 2;
1110 else
1111 *len_sent += to_send;
1113 /* include the null we didn't log */
1114 return len + 1;
1117 static void audit_log_execve_info(struct audit_context *context,
1118 struct audit_buffer **ab,
1119 struct audit_aux_data_execve *axi)
1121 int i;
1122 size_t len, len_sent = 0;
1123 const char __user *p;
1124 char *buf;
1126 if (axi->mm != current->mm)
1127 return; /* execve failed, no additional info */
1129 p = (const char __user *)axi->mm->arg_start;
1131 audit_log_format(*ab, "argc=%d ", axi->argc);
1134 * we need some kernel buffer to hold the userspace args. Just
1135 * allocate one big one rather than allocating one of the right size
1136 * for every single argument inside audit_log_single_execve_arg()
1137 * should be <8k allocation so should be pretty safe.
1139 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1140 if (!buf) {
1141 audit_panic("out of memory for argv string\n");
1142 return;
1145 for (i = 0; i < axi->argc; i++) {
1146 len = audit_log_single_execve_arg(context, ab, i,
1147 &len_sent, p, buf);
1148 if (len <= 0)
1149 break;
1150 p += len;
1152 kfree(buf);
1155 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1157 int i, call_panic = 0;
1158 struct audit_buffer *ab;
1159 struct audit_aux_data *aux;
1160 const char *tty;
1162 /* tsk == current */
1163 context->pid = tsk->pid;
1164 if (!context->ppid)
1165 context->ppid = sys_getppid();
1166 context->uid = tsk->uid;
1167 context->gid = tsk->gid;
1168 context->euid = tsk->euid;
1169 context->suid = tsk->suid;
1170 context->fsuid = tsk->fsuid;
1171 context->egid = tsk->egid;
1172 context->sgid = tsk->sgid;
1173 context->fsgid = tsk->fsgid;
1174 context->personality = tsk->personality;
1176 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1177 if (!ab)
1178 return; /* audit_panic has been called */
1179 audit_log_format(ab, "arch=%x syscall=%d",
1180 context->arch, context->major);
1181 if (context->personality != PER_LINUX)
1182 audit_log_format(ab, " per=%lx", context->personality);
1183 if (context->return_valid)
1184 audit_log_format(ab, " success=%s exit=%ld",
1185 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1186 context->return_code);
1188 mutex_lock(&tty_mutex);
1189 read_lock(&tasklist_lock);
1190 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1191 tty = tsk->signal->tty->name;
1192 else
1193 tty = "(none)";
1194 read_unlock(&tasklist_lock);
1195 audit_log_format(ab,
1196 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1197 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1198 " euid=%u suid=%u fsuid=%u"
1199 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1200 context->argv[0],
1201 context->argv[1],
1202 context->argv[2],
1203 context->argv[3],
1204 context->name_count,
1205 context->ppid,
1206 context->pid,
1207 tsk->loginuid,
1208 context->uid,
1209 context->gid,
1210 context->euid, context->suid, context->fsuid,
1211 context->egid, context->sgid, context->fsgid, tty,
1212 tsk->sessionid);
1214 mutex_unlock(&tty_mutex);
1216 audit_log_task_info(ab, tsk);
1217 if (context->filterkey) {
1218 audit_log_format(ab, " key=");
1219 audit_log_untrustedstring(ab, context->filterkey);
1220 } else
1221 audit_log_format(ab, " key=(null)");
1222 audit_log_end(ab);
1224 for (aux = context->aux; aux; aux = aux->next) {
1226 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1227 if (!ab)
1228 continue; /* audit_panic has been called */
1230 switch (aux->type) {
1231 case AUDIT_MQ_OPEN: {
1232 struct audit_aux_data_mq_open *axi = (void *)aux;
1233 audit_log_format(ab,
1234 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1235 "mq_msgsize=%ld mq_curmsgs=%ld",
1236 axi->oflag, axi->mode, axi->attr.mq_flags,
1237 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1238 axi->attr.mq_curmsgs);
1239 break; }
1241 case AUDIT_MQ_SENDRECV: {
1242 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1243 audit_log_format(ab,
1244 "mqdes=%d msg_len=%zd msg_prio=%u "
1245 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1246 axi->mqdes, axi->msg_len, axi->msg_prio,
1247 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1248 break; }
1250 case AUDIT_MQ_NOTIFY: {
1251 struct audit_aux_data_mq_notify *axi = (void *)aux;
1252 audit_log_format(ab,
1253 "mqdes=%d sigev_signo=%d",
1254 axi->mqdes,
1255 axi->notification.sigev_signo);
1256 break; }
1258 case AUDIT_MQ_GETSETATTR: {
1259 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1260 audit_log_format(ab,
1261 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1262 "mq_curmsgs=%ld ",
1263 axi->mqdes,
1264 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1265 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1266 break; }
1268 case AUDIT_IPC: {
1269 struct audit_aux_data_ipcctl *axi = (void *)aux;
1270 audit_log_format(ab,
1271 "ouid=%u ogid=%u mode=%#o",
1272 axi->uid, axi->gid, axi->mode);
1273 if (axi->osid != 0) {
1274 char *ctx = NULL;
1275 u32 len;
1276 if (selinux_sid_to_string(
1277 axi->osid, &ctx, &len)) {
1278 audit_log_format(ab, " osid=%u",
1279 axi->osid);
1280 call_panic = 1;
1281 } else
1282 audit_log_format(ab, " obj=%s", ctx);
1283 kfree(ctx);
1285 break; }
1287 case AUDIT_IPC_SET_PERM: {
1288 struct audit_aux_data_ipcctl *axi = (void *)aux;
1289 audit_log_format(ab,
1290 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1291 axi->qbytes, axi->uid, axi->gid, axi->mode);
1292 break; }
1294 case AUDIT_EXECVE: {
1295 struct audit_aux_data_execve *axi = (void *)aux;
1296 audit_log_execve_info(context, &ab, axi);
1297 break; }
1299 case AUDIT_SOCKETCALL: {
1300 int i;
1301 struct audit_aux_data_socketcall *axs = (void *)aux;
1302 audit_log_format(ab, "nargs=%d", axs->nargs);
1303 for (i=0; i<axs->nargs; i++)
1304 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1305 break; }
1307 case AUDIT_SOCKADDR: {
1308 struct audit_aux_data_sockaddr *axs = (void *)aux;
1310 audit_log_format(ab, "saddr=");
1311 audit_log_hex(ab, axs->a, axs->len);
1312 break; }
1314 case AUDIT_FD_PAIR: {
1315 struct audit_aux_data_fd_pair *axs = (void *)aux;
1316 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1317 break; }
1320 audit_log_end(ab);
1323 for (aux = context->aux_pids; aux; aux = aux->next) {
1324 struct audit_aux_data_pids *axs = (void *)aux;
1325 int i;
1327 for (i = 0; i < axs->pid_count; i++)
1328 if (audit_log_pid_context(context, axs->target_pid[i],
1329 axs->target_auid[i],
1330 axs->target_uid[i],
1331 axs->target_sessionid[i],
1332 axs->target_sid[i],
1333 axs->target_comm[i]))
1334 call_panic = 1;
1337 if (context->target_pid &&
1338 audit_log_pid_context(context, context->target_pid,
1339 context->target_auid, context->target_uid,
1340 context->target_sessionid,
1341 context->target_sid, context->target_comm))
1342 call_panic = 1;
1344 if (context->pwd && context->pwdmnt) {
1345 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1346 if (ab) {
1347 audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt);
1348 audit_log_end(ab);
1351 for (i = 0; i < context->name_count; i++) {
1352 struct audit_names *n = &context->names[i];
1354 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1355 if (!ab)
1356 continue; /* audit_panic has been called */
1358 audit_log_format(ab, "item=%d", i);
1360 if (n->name) {
1361 switch(n->name_len) {
1362 case AUDIT_NAME_FULL:
1363 /* log the full path */
1364 audit_log_format(ab, " name=");
1365 audit_log_untrustedstring(ab, n->name);
1366 break;
1367 case 0:
1368 /* name was specified as a relative path and the
1369 * directory component is the cwd */
1370 audit_log_d_path(ab, " name=", context->pwd,
1371 context->pwdmnt);
1372 break;
1373 default:
1374 /* log the name's directory component */
1375 audit_log_format(ab, " name=");
1376 audit_log_n_untrustedstring(ab, n->name_len,
1377 n->name);
1379 } else
1380 audit_log_format(ab, " name=(null)");
1382 if (n->ino != (unsigned long)-1) {
1383 audit_log_format(ab, " inode=%lu"
1384 " dev=%02x:%02x mode=%#o"
1385 " ouid=%u ogid=%u rdev=%02x:%02x",
1386 n->ino,
1387 MAJOR(n->dev),
1388 MINOR(n->dev),
1389 n->mode,
1390 n->uid,
1391 n->gid,
1392 MAJOR(n->rdev),
1393 MINOR(n->rdev));
1395 if (n->osid != 0) {
1396 char *ctx = NULL;
1397 u32 len;
1398 if (selinux_sid_to_string(
1399 n->osid, &ctx, &len)) {
1400 audit_log_format(ab, " osid=%u", n->osid);
1401 call_panic = 2;
1402 } else
1403 audit_log_format(ab, " obj=%s", ctx);
1404 kfree(ctx);
1407 audit_log_end(ab);
1410 /* Send end of event record to help user space know we are finished */
1411 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1412 if (ab)
1413 audit_log_end(ab);
1414 if (call_panic)
1415 audit_panic("error converting sid to string");
1419 * audit_free - free a per-task audit context
1420 * @tsk: task whose audit context block to free
1422 * Called from copy_process and do_exit
1424 void audit_free(struct task_struct *tsk)
1426 struct audit_context *context;
1428 context = audit_get_context(tsk, 0, 0);
1429 if (likely(!context))
1430 return;
1432 /* Check for system calls that do not go through the exit
1433 * function (e.g., exit_group), then free context block.
1434 * We use GFP_ATOMIC here because we might be doing this
1435 * in the context of the idle thread */
1436 /* that can happen only if we are called from do_exit() */
1437 if (context->in_syscall && context->auditable)
1438 audit_log_exit(context, tsk);
1440 audit_free_context(context);
1444 * audit_syscall_entry - fill in an audit record at syscall entry
1445 * @tsk: task being audited
1446 * @arch: architecture type
1447 * @major: major syscall type (function)
1448 * @a1: additional syscall register 1
1449 * @a2: additional syscall register 2
1450 * @a3: additional syscall register 3
1451 * @a4: additional syscall register 4
1453 * Fill in audit context at syscall entry. This only happens if the
1454 * audit context was created when the task was created and the state or
1455 * filters demand the audit context be built. If the state from the
1456 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1457 * then the record will be written at syscall exit time (otherwise, it
1458 * will only be written if another part of the kernel requests that it
1459 * be written).
1461 void audit_syscall_entry(int arch, int major,
1462 unsigned long a1, unsigned long a2,
1463 unsigned long a3, unsigned long a4)
1465 struct task_struct *tsk = current;
1466 struct audit_context *context = tsk->audit_context;
1467 enum audit_state state;
1469 BUG_ON(!context);
1472 * This happens only on certain architectures that make system
1473 * calls in kernel_thread via the entry.S interface, instead of
1474 * with direct calls. (If you are porting to a new
1475 * architecture, hitting this condition can indicate that you
1476 * got the _exit/_leave calls backward in entry.S.)
1478 * i386 no
1479 * x86_64 no
1480 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1482 * This also happens with vm86 emulation in a non-nested manner
1483 * (entries without exits), so this case must be caught.
1485 if (context->in_syscall) {
1486 struct audit_context *newctx;
1488 #if AUDIT_DEBUG
1489 printk(KERN_ERR
1490 "audit(:%d) pid=%d in syscall=%d;"
1491 " entering syscall=%d\n",
1492 context->serial, tsk->pid, context->major, major);
1493 #endif
1494 newctx = audit_alloc_context(context->state);
1495 if (newctx) {
1496 newctx->previous = context;
1497 context = newctx;
1498 tsk->audit_context = newctx;
1499 } else {
1500 /* If we can't alloc a new context, the best we
1501 * can do is to leak memory (any pending putname
1502 * will be lost). The only other alternative is
1503 * to abandon auditing. */
1504 audit_zero_context(context, context->state);
1507 BUG_ON(context->in_syscall || context->name_count);
1509 if (!audit_enabled)
1510 return;
1512 context->arch = arch;
1513 context->major = major;
1514 context->argv[0] = a1;
1515 context->argv[1] = a2;
1516 context->argv[2] = a3;
1517 context->argv[3] = a4;
1519 state = context->state;
1520 context->dummy = !audit_n_rules;
1521 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1522 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1523 if (likely(state == AUDIT_DISABLED))
1524 return;
1526 context->serial = 0;
1527 context->ctime = CURRENT_TIME;
1528 context->in_syscall = 1;
1529 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1530 context->ppid = 0;
1534 * audit_syscall_exit - deallocate audit context after a system call
1535 * @tsk: task being audited
1536 * @valid: success/failure flag
1537 * @return_code: syscall return value
1539 * Tear down after system call. If the audit context has been marked as
1540 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1541 * filtering, or because some other part of the kernel write an audit
1542 * message), then write out the syscall information. In call cases,
1543 * free the names stored from getname().
1545 void audit_syscall_exit(int valid, long return_code)
1547 struct task_struct *tsk = current;
1548 struct audit_context *context;
1550 context = audit_get_context(tsk, valid, return_code);
1552 if (likely(!context))
1553 return;
1555 if (context->in_syscall && context->auditable)
1556 audit_log_exit(context, tsk);
1558 context->in_syscall = 0;
1559 context->auditable = 0;
1561 if (context->previous) {
1562 struct audit_context *new_context = context->previous;
1563 context->previous = NULL;
1564 audit_free_context(context);
1565 tsk->audit_context = new_context;
1566 } else {
1567 audit_free_names(context);
1568 unroll_tree_refs(context, NULL, 0);
1569 audit_free_aux(context);
1570 context->aux = NULL;
1571 context->aux_pids = NULL;
1572 context->target_pid = 0;
1573 context->target_sid = 0;
1574 kfree(context->filterkey);
1575 context->filterkey = NULL;
1576 tsk->audit_context = context;
1580 static inline void handle_one(const struct inode *inode)
1582 #ifdef CONFIG_AUDIT_TREE
1583 struct audit_context *context;
1584 struct audit_tree_refs *p;
1585 struct audit_chunk *chunk;
1586 int count;
1587 if (likely(list_empty(&inode->inotify_watches)))
1588 return;
1589 context = current->audit_context;
1590 p = context->trees;
1591 count = context->tree_count;
1592 rcu_read_lock();
1593 chunk = audit_tree_lookup(inode);
1594 rcu_read_unlock();
1595 if (!chunk)
1596 return;
1597 if (likely(put_tree_ref(context, chunk)))
1598 return;
1599 if (unlikely(!grow_tree_refs(context))) {
1600 printk(KERN_WARNING "out of memory, audit has lost a tree reference");
1601 audit_set_auditable(context);
1602 audit_put_chunk(chunk);
1603 unroll_tree_refs(context, p, count);
1604 return;
1606 put_tree_ref(context, chunk);
1607 #endif
1610 static void handle_path(const struct dentry *dentry)
1612 #ifdef CONFIG_AUDIT_TREE
1613 struct audit_context *context;
1614 struct audit_tree_refs *p;
1615 const struct dentry *d, *parent;
1616 struct audit_chunk *drop;
1617 unsigned long seq;
1618 int count;
1620 context = current->audit_context;
1621 p = context->trees;
1622 count = context->tree_count;
1623 retry:
1624 drop = NULL;
1625 d = dentry;
1626 rcu_read_lock();
1627 seq = read_seqbegin(&rename_lock);
1628 for(;;) {
1629 struct inode *inode = d->d_inode;
1630 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1631 struct audit_chunk *chunk;
1632 chunk = audit_tree_lookup(inode);
1633 if (chunk) {
1634 if (unlikely(!put_tree_ref(context, chunk))) {
1635 drop = chunk;
1636 break;
1640 parent = d->d_parent;
1641 if (parent == d)
1642 break;
1643 d = parent;
1645 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1646 rcu_read_unlock();
1647 if (!drop) {
1648 /* just a race with rename */
1649 unroll_tree_refs(context, p, count);
1650 goto retry;
1652 audit_put_chunk(drop);
1653 if (grow_tree_refs(context)) {
1654 /* OK, got more space */
1655 unroll_tree_refs(context, p, count);
1656 goto retry;
1658 /* too bad */
1659 printk(KERN_WARNING
1660 "out of memory, audit has lost a tree reference");
1661 unroll_tree_refs(context, p, count);
1662 audit_set_auditable(context);
1663 return;
1665 rcu_read_unlock();
1666 #endif
1670 * audit_getname - add a name to the list
1671 * @name: name to add
1673 * Add a name to the list of audit names for this context.
1674 * Called from fs/namei.c:getname().
1676 void __audit_getname(const char *name)
1678 struct audit_context *context = current->audit_context;
1680 if (IS_ERR(name) || !name)
1681 return;
1683 if (!context->in_syscall) {
1684 #if AUDIT_DEBUG == 2
1685 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1686 __FILE__, __LINE__, context->serial, name);
1687 dump_stack();
1688 #endif
1689 return;
1691 BUG_ON(context->name_count >= AUDIT_NAMES);
1692 context->names[context->name_count].name = name;
1693 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1694 context->names[context->name_count].name_put = 1;
1695 context->names[context->name_count].ino = (unsigned long)-1;
1696 context->names[context->name_count].osid = 0;
1697 ++context->name_count;
1698 if (!context->pwd) {
1699 read_lock(&current->fs->lock);
1700 context->pwd = dget(current->fs->pwd);
1701 context->pwdmnt = mntget(current->fs->pwdmnt);
1702 read_unlock(&current->fs->lock);
1707 /* audit_putname - intercept a putname request
1708 * @name: name to intercept and delay for putname
1710 * If we have stored the name from getname in the audit context,
1711 * then we delay the putname until syscall exit.
1712 * Called from include/linux/fs.h:putname().
1714 void audit_putname(const char *name)
1716 struct audit_context *context = current->audit_context;
1718 BUG_ON(!context);
1719 if (!context->in_syscall) {
1720 #if AUDIT_DEBUG == 2
1721 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1722 __FILE__, __LINE__, context->serial, name);
1723 if (context->name_count) {
1724 int i;
1725 for (i = 0; i < context->name_count; i++)
1726 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1727 context->names[i].name,
1728 context->names[i].name ?: "(null)");
1730 #endif
1731 __putname(name);
1733 #if AUDIT_DEBUG
1734 else {
1735 ++context->put_count;
1736 if (context->put_count > context->name_count) {
1737 printk(KERN_ERR "%s:%d(:%d): major=%d"
1738 " in_syscall=%d putname(%p) name_count=%d"
1739 " put_count=%d\n",
1740 __FILE__, __LINE__,
1741 context->serial, context->major,
1742 context->in_syscall, name, context->name_count,
1743 context->put_count);
1744 dump_stack();
1747 #endif
1750 static int audit_inc_name_count(struct audit_context *context,
1751 const struct inode *inode)
1753 if (context->name_count >= AUDIT_NAMES) {
1754 if (inode)
1755 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1756 "dev=%02x:%02x, inode=%lu",
1757 MAJOR(inode->i_sb->s_dev),
1758 MINOR(inode->i_sb->s_dev),
1759 inode->i_ino);
1761 else
1762 printk(KERN_DEBUG "name_count maxed, losing inode data");
1763 return 1;
1765 context->name_count++;
1766 #if AUDIT_DEBUG
1767 context->ino_count++;
1768 #endif
1769 return 0;
1772 /* Copy inode data into an audit_names. */
1773 static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
1775 name->ino = inode->i_ino;
1776 name->dev = inode->i_sb->s_dev;
1777 name->mode = inode->i_mode;
1778 name->uid = inode->i_uid;
1779 name->gid = inode->i_gid;
1780 name->rdev = inode->i_rdev;
1781 selinux_get_inode_sid(inode, &name->osid);
1785 * audit_inode - store the inode and device from a lookup
1786 * @name: name being audited
1787 * @dentry: dentry being audited
1789 * Called from fs/namei.c:path_lookup().
1791 void __audit_inode(const char *name, const struct dentry *dentry)
1793 int idx;
1794 struct audit_context *context = current->audit_context;
1795 const struct inode *inode = dentry->d_inode;
1797 if (!context->in_syscall)
1798 return;
1799 if (context->name_count
1800 && context->names[context->name_count-1].name
1801 && context->names[context->name_count-1].name == name)
1802 idx = context->name_count - 1;
1803 else if (context->name_count > 1
1804 && context->names[context->name_count-2].name
1805 && context->names[context->name_count-2].name == name)
1806 idx = context->name_count - 2;
1807 else {
1808 /* FIXME: how much do we care about inodes that have no
1809 * associated name? */
1810 if (audit_inc_name_count(context, inode))
1811 return;
1812 idx = context->name_count - 1;
1813 context->names[idx].name = NULL;
1815 handle_path(dentry);
1816 audit_copy_inode(&context->names[idx], inode);
1820 * audit_inode_child - collect inode info for created/removed objects
1821 * @dname: inode's dentry name
1822 * @dentry: dentry being audited
1823 * @parent: inode of dentry parent
1825 * For syscalls that create or remove filesystem objects, audit_inode
1826 * can only collect information for the filesystem object's parent.
1827 * This call updates the audit context with the child's information.
1828 * Syscalls that create a new filesystem object must be hooked after
1829 * the object is created. Syscalls that remove a filesystem object
1830 * must be hooked prior, in order to capture the target inode during
1831 * unsuccessful attempts.
1833 void __audit_inode_child(const char *dname, const struct dentry *dentry,
1834 const struct inode *parent)
1836 int idx;
1837 struct audit_context *context = current->audit_context;
1838 const char *found_parent = NULL, *found_child = NULL;
1839 const struct inode *inode = dentry->d_inode;
1840 int dirlen = 0;
1842 if (!context->in_syscall)
1843 return;
1845 if (inode)
1846 handle_one(inode);
1847 /* determine matching parent */
1848 if (!dname)
1849 goto add_names;
1851 /* parent is more likely, look for it first */
1852 for (idx = 0; idx < context->name_count; idx++) {
1853 struct audit_names *n = &context->names[idx];
1855 if (!n->name)
1856 continue;
1858 if (n->ino == parent->i_ino &&
1859 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1860 n->name_len = dirlen; /* update parent data in place */
1861 found_parent = n->name;
1862 goto add_names;
1866 /* no matching parent, look for matching child */
1867 for (idx = 0; idx < context->name_count; idx++) {
1868 struct audit_names *n = &context->names[idx];
1870 if (!n->name)
1871 continue;
1873 /* strcmp() is the more likely scenario */
1874 if (!strcmp(dname, n->name) ||
1875 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1876 if (inode)
1877 audit_copy_inode(n, inode);
1878 else
1879 n->ino = (unsigned long)-1;
1880 found_child = n->name;
1881 goto add_names;
1885 add_names:
1886 if (!found_parent) {
1887 if (audit_inc_name_count(context, parent))
1888 return;
1889 idx = context->name_count - 1;
1890 context->names[idx].name = NULL;
1891 audit_copy_inode(&context->names[idx], parent);
1894 if (!found_child) {
1895 if (audit_inc_name_count(context, inode))
1896 return;
1897 idx = context->name_count - 1;
1899 /* Re-use the name belonging to the slot for a matching parent
1900 * directory. All names for this context are relinquished in
1901 * audit_free_names() */
1902 if (found_parent) {
1903 context->names[idx].name = found_parent;
1904 context->names[idx].name_len = AUDIT_NAME_FULL;
1905 /* don't call __putname() */
1906 context->names[idx].name_put = 0;
1907 } else {
1908 context->names[idx].name = NULL;
1911 if (inode)
1912 audit_copy_inode(&context->names[idx], inode);
1913 else
1914 context->names[idx].ino = (unsigned long)-1;
1917 EXPORT_SYMBOL_GPL(__audit_inode_child);
1920 * auditsc_get_stamp - get local copies of audit_context values
1921 * @ctx: audit_context for the task
1922 * @t: timespec to store time recorded in the audit_context
1923 * @serial: serial value that is recorded in the audit_context
1925 * Also sets the context as auditable.
1927 void auditsc_get_stamp(struct audit_context *ctx,
1928 struct timespec *t, unsigned int *serial)
1930 if (!ctx->serial)
1931 ctx->serial = audit_serial();
1932 t->tv_sec = ctx->ctime.tv_sec;
1933 t->tv_nsec = ctx->ctime.tv_nsec;
1934 *serial = ctx->serial;
1935 ctx->auditable = 1;
1938 /* global counter which is incremented every time something logs in */
1939 static atomic_t session_id = ATOMIC_INIT(0);
1942 * audit_set_loginuid - set a task's audit_context loginuid
1943 * @task: task whose audit context is being modified
1944 * @loginuid: loginuid value
1946 * Returns 0.
1948 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1950 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1952 unsigned int sessionid = atomic_inc_return(&session_id);
1953 struct audit_context *context = task->audit_context;
1955 if (context && context->in_syscall) {
1956 struct audit_buffer *ab;
1958 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1959 if (ab) {
1960 audit_log_format(ab, "login pid=%d uid=%u "
1961 "old auid=%u new auid=%u"
1962 " old ses=%u new ses=%u",
1963 task->pid, task->uid,
1964 task->loginuid, loginuid,
1965 task->sessionid, sessionid);
1966 audit_log_end(ab);
1969 task->sessionid = sessionid;
1970 task->loginuid = loginuid;
1971 return 0;
1975 * __audit_mq_open - record audit data for a POSIX MQ open
1976 * @oflag: open flag
1977 * @mode: mode bits
1978 * @u_attr: queue attributes
1980 * Returns 0 for success or NULL context or < 0 on error.
1982 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1984 struct audit_aux_data_mq_open *ax;
1985 struct audit_context *context = current->audit_context;
1987 if (!audit_enabled)
1988 return 0;
1990 if (likely(!context))
1991 return 0;
1993 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1994 if (!ax)
1995 return -ENOMEM;
1997 if (u_attr != NULL) {
1998 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1999 kfree(ax);
2000 return -EFAULT;
2002 } else
2003 memset(&ax->attr, 0, sizeof(ax->attr));
2005 ax->oflag = oflag;
2006 ax->mode = mode;
2008 ax->d.type = AUDIT_MQ_OPEN;
2009 ax->d.next = context->aux;
2010 context->aux = (void *)ax;
2011 return 0;
2015 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2016 * @mqdes: MQ descriptor
2017 * @msg_len: Message length
2018 * @msg_prio: Message priority
2019 * @u_abs_timeout: Message timeout in absolute time
2021 * Returns 0 for success or NULL context or < 0 on error.
2023 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2024 const struct timespec __user *u_abs_timeout)
2026 struct audit_aux_data_mq_sendrecv *ax;
2027 struct audit_context *context = current->audit_context;
2029 if (!audit_enabled)
2030 return 0;
2032 if (likely(!context))
2033 return 0;
2035 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2036 if (!ax)
2037 return -ENOMEM;
2039 if (u_abs_timeout != NULL) {
2040 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2041 kfree(ax);
2042 return -EFAULT;
2044 } else
2045 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2047 ax->mqdes = mqdes;
2048 ax->msg_len = msg_len;
2049 ax->msg_prio = msg_prio;
2051 ax->d.type = AUDIT_MQ_SENDRECV;
2052 ax->d.next = context->aux;
2053 context->aux = (void *)ax;
2054 return 0;
2058 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2059 * @mqdes: MQ descriptor
2060 * @msg_len: Message length
2061 * @u_msg_prio: Message priority
2062 * @u_abs_timeout: Message timeout in absolute time
2064 * Returns 0 for success or NULL context or < 0 on error.
2066 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2067 unsigned int __user *u_msg_prio,
2068 const struct timespec __user *u_abs_timeout)
2070 struct audit_aux_data_mq_sendrecv *ax;
2071 struct audit_context *context = current->audit_context;
2073 if (!audit_enabled)
2074 return 0;
2076 if (likely(!context))
2077 return 0;
2079 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2080 if (!ax)
2081 return -ENOMEM;
2083 if (u_msg_prio != NULL) {
2084 if (get_user(ax->msg_prio, u_msg_prio)) {
2085 kfree(ax);
2086 return -EFAULT;
2088 } else
2089 ax->msg_prio = 0;
2091 if (u_abs_timeout != NULL) {
2092 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2093 kfree(ax);
2094 return -EFAULT;
2096 } else
2097 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2099 ax->mqdes = mqdes;
2100 ax->msg_len = msg_len;
2102 ax->d.type = AUDIT_MQ_SENDRECV;
2103 ax->d.next = context->aux;
2104 context->aux = (void *)ax;
2105 return 0;
2109 * __audit_mq_notify - record audit data for a POSIX MQ notify
2110 * @mqdes: MQ descriptor
2111 * @u_notification: Notification event
2113 * Returns 0 for success or NULL context or < 0 on error.
2116 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
2118 struct audit_aux_data_mq_notify *ax;
2119 struct audit_context *context = current->audit_context;
2121 if (!audit_enabled)
2122 return 0;
2124 if (likely(!context))
2125 return 0;
2127 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2128 if (!ax)
2129 return -ENOMEM;
2131 if (u_notification != NULL) {
2132 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
2133 kfree(ax);
2134 return -EFAULT;
2136 } else
2137 memset(&ax->notification, 0, sizeof(ax->notification));
2139 ax->mqdes = mqdes;
2141 ax->d.type = AUDIT_MQ_NOTIFY;
2142 ax->d.next = context->aux;
2143 context->aux = (void *)ax;
2144 return 0;
2148 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2149 * @mqdes: MQ descriptor
2150 * @mqstat: MQ flags
2152 * Returns 0 for success or NULL context or < 0 on error.
2154 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2156 struct audit_aux_data_mq_getsetattr *ax;
2157 struct audit_context *context = current->audit_context;
2159 if (!audit_enabled)
2160 return 0;
2162 if (likely(!context))
2163 return 0;
2165 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2166 if (!ax)
2167 return -ENOMEM;
2169 ax->mqdes = mqdes;
2170 ax->mqstat = *mqstat;
2172 ax->d.type = AUDIT_MQ_GETSETATTR;
2173 ax->d.next = context->aux;
2174 context->aux = (void *)ax;
2175 return 0;
2179 * audit_ipc_obj - record audit data for ipc object
2180 * @ipcp: ipc permissions
2182 * Returns 0 for success or NULL context or < 0 on error.
2184 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2186 struct audit_aux_data_ipcctl *ax;
2187 struct audit_context *context = current->audit_context;
2189 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2190 if (!ax)
2191 return -ENOMEM;
2193 ax->uid = ipcp->uid;
2194 ax->gid = ipcp->gid;
2195 ax->mode = ipcp->mode;
2196 selinux_get_ipc_sid(ipcp, &ax->osid);
2198 ax->d.type = AUDIT_IPC;
2199 ax->d.next = context->aux;
2200 context->aux = (void *)ax;
2201 return 0;
2205 * audit_ipc_set_perm - record audit data for new ipc permissions
2206 * @qbytes: msgq bytes
2207 * @uid: msgq user id
2208 * @gid: msgq group id
2209 * @mode: msgq mode (permissions)
2211 * Returns 0 for success or NULL context or < 0 on error.
2213 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2215 struct audit_aux_data_ipcctl *ax;
2216 struct audit_context *context = current->audit_context;
2218 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2219 if (!ax)
2220 return -ENOMEM;
2222 ax->qbytes = qbytes;
2223 ax->uid = uid;
2224 ax->gid = gid;
2225 ax->mode = mode;
2227 ax->d.type = AUDIT_IPC_SET_PERM;
2228 ax->d.next = context->aux;
2229 context->aux = (void *)ax;
2230 return 0;
2233 int audit_bprm(struct linux_binprm *bprm)
2235 struct audit_aux_data_execve *ax;
2236 struct audit_context *context = current->audit_context;
2238 if (likely(!audit_enabled || !context || context->dummy))
2239 return 0;
2241 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2242 if (!ax)
2243 return -ENOMEM;
2245 ax->argc = bprm->argc;
2246 ax->envc = bprm->envc;
2247 ax->mm = bprm->mm;
2248 ax->d.type = AUDIT_EXECVE;
2249 ax->d.next = context->aux;
2250 context->aux = (void *)ax;
2251 return 0;
2256 * audit_socketcall - record audit data for sys_socketcall
2257 * @nargs: number of args
2258 * @args: args array
2260 * Returns 0 for success or NULL context or < 0 on error.
2262 int audit_socketcall(int nargs, unsigned long *args)
2264 struct audit_aux_data_socketcall *ax;
2265 struct audit_context *context = current->audit_context;
2267 if (likely(!context || context->dummy))
2268 return 0;
2270 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2271 if (!ax)
2272 return -ENOMEM;
2274 ax->nargs = nargs;
2275 memcpy(ax->args, args, nargs * sizeof(unsigned long));
2277 ax->d.type = AUDIT_SOCKETCALL;
2278 ax->d.next = context->aux;
2279 context->aux = (void *)ax;
2280 return 0;
2284 * __audit_fd_pair - record audit data for pipe and socketpair
2285 * @fd1: the first file descriptor
2286 * @fd2: the second file descriptor
2288 * Returns 0 for success or NULL context or < 0 on error.
2290 int __audit_fd_pair(int fd1, int fd2)
2292 struct audit_context *context = current->audit_context;
2293 struct audit_aux_data_fd_pair *ax;
2295 if (likely(!context)) {
2296 return 0;
2299 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2300 if (!ax) {
2301 return -ENOMEM;
2304 ax->fd[0] = fd1;
2305 ax->fd[1] = fd2;
2307 ax->d.type = AUDIT_FD_PAIR;
2308 ax->d.next = context->aux;
2309 context->aux = (void *)ax;
2310 return 0;
2314 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2315 * @len: data length in user space
2316 * @a: data address in kernel space
2318 * Returns 0 for success or NULL context or < 0 on error.
2320 int audit_sockaddr(int len, void *a)
2322 struct audit_aux_data_sockaddr *ax;
2323 struct audit_context *context = current->audit_context;
2325 if (likely(!context || context->dummy))
2326 return 0;
2328 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
2329 if (!ax)
2330 return -ENOMEM;
2332 ax->len = len;
2333 memcpy(ax->a, a, len);
2335 ax->d.type = AUDIT_SOCKADDR;
2336 ax->d.next = context->aux;
2337 context->aux = (void *)ax;
2338 return 0;
2341 void __audit_ptrace(struct task_struct *t)
2343 struct audit_context *context = current->audit_context;
2345 context->target_pid = t->pid;
2346 context->target_auid = audit_get_loginuid(t);
2347 context->target_uid = t->uid;
2348 context->target_sessionid = audit_get_sessionid(t);
2349 selinux_get_task_sid(t, &context->target_sid);
2350 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2354 * audit_signal_info - record signal info for shutting down audit subsystem
2355 * @sig: signal value
2356 * @t: task being signaled
2358 * If the audit subsystem is being terminated, record the task (pid)
2359 * and uid that is doing that.
2361 int __audit_signal_info(int sig, struct task_struct *t)
2363 struct audit_aux_data_pids *axp;
2364 struct task_struct *tsk = current;
2365 struct audit_context *ctx = tsk->audit_context;
2366 extern pid_t audit_sig_pid;
2367 extern uid_t audit_sig_uid;
2368 extern u32 audit_sig_sid;
2370 if (audit_pid && t->tgid == audit_pid) {
2371 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
2372 audit_sig_pid = tsk->pid;
2373 if (tsk->loginuid != -1)
2374 audit_sig_uid = tsk->loginuid;
2375 else
2376 audit_sig_uid = tsk->uid;
2377 selinux_get_task_sid(tsk, &audit_sig_sid);
2379 if (!audit_signals || audit_dummy_context())
2380 return 0;
2383 /* optimize the common case by putting first signal recipient directly
2384 * in audit_context */
2385 if (!ctx->target_pid) {
2386 ctx->target_pid = t->tgid;
2387 ctx->target_auid = audit_get_loginuid(t);
2388 ctx->target_uid = t->uid;
2389 ctx->target_sessionid = audit_get_sessionid(t);
2390 selinux_get_task_sid(t, &ctx->target_sid);
2391 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2392 return 0;
2395 axp = (void *)ctx->aux_pids;
2396 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2397 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2398 if (!axp)
2399 return -ENOMEM;
2401 axp->d.type = AUDIT_OBJ_PID;
2402 axp->d.next = ctx->aux_pids;
2403 ctx->aux_pids = (void *)axp;
2405 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2407 axp->target_pid[axp->pid_count] = t->tgid;
2408 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2409 axp->target_uid[axp->pid_count] = t->uid;
2410 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2411 selinux_get_task_sid(t, &axp->target_sid[axp->pid_count]);
2412 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2413 axp->pid_count++;
2415 return 0;
2419 * audit_core_dumps - record information about processes that end abnormally
2420 * @signr: signal value
2422 * If a process ends with a core dump, something fishy is going on and we
2423 * should record the event for investigation.
2425 void audit_core_dumps(long signr)
2427 struct audit_buffer *ab;
2428 u32 sid;
2429 uid_t auid = audit_get_loginuid(current);
2430 unsigned int sessionid = audit_get_sessionid(current);
2432 if (!audit_enabled)
2433 return;
2435 if (signr == SIGQUIT) /* don't care for those */
2436 return;
2438 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2439 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2440 auid, current->uid, current->gid, sessionid);
2441 selinux_get_task_sid(current, &sid);
2442 if (sid) {
2443 char *ctx = NULL;
2444 u32 len;
2446 if (selinux_sid_to_string(sid, &ctx, &len))
2447 audit_log_format(ab, " ssid=%u", sid);
2448 else
2449 audit_log_format(ab, " subj=%s", ctx);
2450 kfree(ctx);
2452 audit_log_format(ab, " pid=%d comm=", current->pid);
2453 audit_log_untrustedstring(ab, current->comm);
2454 audit_log_format(ab, " sig=%ld", signr);
2455 audit_log_end(ab);