2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <linux/reboot.h>
31 #include <linux/debugfs.h>
32 #include <linux/highmem.h>
33 #include <linux/file.h>
34 #include <linux/sysdev.h>
35 #include <linux/cpu.h>
36 #include <linux/sched.h>
37 #include <linux/cpumask.h>
38 #include <linux/smp.h>
39 #include <linux/anon_inodes.h>
41 #include <asm/processor.h>
44 #include <asm/uaccess.h>
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
50 static DEFINE_SPINLOCK(kvm_lock
);
51 static LIST_HEAD(vm_list
);
53 static cpumask_t cpus_hardware_enabled
;
55 struct kvm_arch_ops
*kvm_arch_ops
;
57 static void hardware_disable(void *ignored
);
59 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
61 static struct kvm_stats_debugfs_item
{
64 struct dentry
*dentry
;
65 } debugfs_entries
[] = {
66 { "pf_fixed", STAT_OFFSET(pf_fixed
) },
67 { "pf_guest", STAT_OFFSET(pf_guest
) },
68 { "tlb_flush", STAT_OFFSET(tlb_flush
) },
69 { "invlpg", STAT_OFFSET(invlpg
) },
70 { "exits", STAT_OFFSET(exits
) },
71 { "io_exits", STAT_OFFSET(io_exits
) },
72 { "mmio_exits", STAT_OFFSET(mmio_exits
) },
73 { "signal_exits", STAT_OFFSET(signal_exits
) },
74 { "irq_window", STAT_OFFSET(irq_window_exits
) },
75 { "halt_exits", STAT_OFFSET(halt_exits
) },
76 { "request_irq", STAT_OFFSET(request_irq_exits
) },
77 { "irq_exits", STAT_OFFSET(irq_exits
) },
78 { "light_exits", STAT_OFFSET(light_exits
) },
79 { "efer_reload", STAT_OFFSET(efer_reload
) },
83 static struct dentry
*debugfs_dir
;
85 #define MAX_IO_MSRS 256
87 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
88 #define LMSW_GUEST_MASK 0x0eULL
89 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
90 #define CR8_RESEVED_BITS (~0x0fULL)
91 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
94 // LDT or TSS descriptor in the GDT. 16 bytes.
95 struct segment_descriptor_64
{
96 struct segment_descriptor s
;
103 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
106 unsigned long segment_base(u16 selector
)
108 struct descriptor_table gdt
;
109 struct segment_descriptor
*d
;
110 unsigned long table_base
;
111 typedef unsigned long ul
;
117 asm ("sgdt %0" : "=m"(gdt
));
118 table_base
= gdt
.base
;
120 if (selector
& 4) { /* from ldt */
123 asm ("sldt %0" : "=g"(ldt_selector
));
124 table_base
= segment_base(ldt_selector
);
126 d
= (struct segment_descriptor
*)(table_base
+ (selector
& ~7));
127 v
= d
->base_low
| ((ul
)d
->base_mid
<< 16) | ((ul
)d
->base_high
<< 24);
130 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
131 v
|= ((ul
)((struct segment_descriptor_64
*)d
)->base_higher
) << 32;
135 EXPORT_SYMBOL_GPL(segment_base
);
137 static inline int valid_vcpu(int n
)
139 return likely(n
>= 0 && n
< KVM_MAX_VCPUS
);
142 int kvm_read_guest(struct kvm_vcpu
*vcpu
, gva_t addr
, unsigned long size
,
145 unsigned char *host_buf
= dest
;
146 unsigned long req_size
= size
;
154 paddr
= gva_to_hpa(vcpu
, addr
);
156 if (is_error_hpa(paddr
))
159 guest_buf
= (hva_t
)kmap_atomic(
160 pfn_to_page(paddr
>> PAGE_SHIFT
),
162 offset
= addr
& ~PAGE_MASK
;
164 now
= min(size
, PAGE_SIZE
- offset
);
165 memcpy(host_buf
, (void*)guest_buf
, now
);
169 kunmap_atomic((void *)(guest_buf
& PAGE_MASK
), KM_USER0
);
171 return req_size
- size
;
173 EXPORT_SYMBOL_GPL(kvm_read_guest
);
175 int kvm_write_guest(struct kvm_vcpu
*vcpu
, gva_t addr
, unsigned long size
,
178 unsigned char *host_buf
= data
;
179 unsigned long req_size
= size
;
188 paddr
= gva_to_hpa(vcpu
, addr
);
190 if (is_error_hpa(paddr
))
193 gfn
= vcpu
->mmu
.gva_to_gpa(vcpu
, addr
) >> PAGE_SHIFT
;
194 mark_page_dirty(vcpu
->kvm
, gfn
);
195 guest_buf
= (hva_t
)kmap_atomic(
196 pfn_to_page(paddr
>> PAGE_SHIFT
), KM_USER0
);
197 offset
= addr
& ~PAGE_MASK
;
199 now
= min(size
, PAGE_SIZE
- offset
);
200 memcpy((void*)guest_buf
, host_buf
, now
);
204 kunmap_atomic((void *)(guest_buf
& PAGE_MASK
), KM_USER0
);
206 return req_size
- size
;
208 EXPORT_SYMBOL_GPL(kvm_write_guest
);
210 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
212 if (!vcpu
->fpu_active
|| vcpu
->guest_fpu_loaded
)
215 vcpu
->guest_fpu_loaded
= 1;
216 fx_save(vcpu
->host_fx_image
);
217 fx_restore(vcpu
->guest_fx_image
);
219 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu
);
221 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
223 if (!vcpu
->guest_fpu_loaded
)
226 vcpu
->guest_fpu_loaded
= 0;
227 fx_save(vcpu
->guest_fx_image
);
228 fx_restore(vcpu
->host_fx_image
);
230 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu
);
233 * Switches to specified vcpu, until a matching vcpu_put()
235 static void vcpu_load(struct kvm_vcpu
*vcpu
)
237 mutex_lock(&vcpu
->mutex
);
238 kvm_arch_ops
->vcpu_load(vcpu
);
241 static void vcpu_put(struct kvm_vcpu
*vcpu
)
243 kvm_arch_ops
->vcpu_put(vcpu
);
244 mutex_unlock(&vcpu
->mutex
);
247 static void ack_flush(void *_completed
)
249 atomic_t
*completed
= _completed
;
251 atomic_inc(completed
);
254 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
258 struct kvm_vcpu
*vcpu
;
261 atomic_set(&completed
, 0);
264 for (i
= 0; i
< kvm
->nvcpus
; ++i
) {
265 vcpu
= &kvm
->vcpus
[i
];
266 if (test_and_set_bit(KVM_TLB_FLUSH
, &vcpu
->requests
))
269 if (cpu
!= -1 && cpu
!= raw_smp_processor_id())
270 if (!cpu_isset(cpu
, cpus
)) {
277 * We really want smp_call_function_mask() here. But that's not
278 * available, so ipi all cpus in parallel and wait for them
281 for (cpu
= first_cpu(cpus
); cpu
!= NR_CPUS
; cpu
= next_cpu(cpu
, cpus
))
282 smp_call_function_single(cpu
, ack_flush
, &completed
, 1, 0);
283 while (atomic_read(&completed
) != needed
) {
289 static struct kvm
*kvm_create_vm(void)
291 struct kvm
*kvm
= kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
295 return ERR_PTR(-ENOMEM
);
297 kvm_io_bus_init(&kvm
->pio_bus
);
298 spin_lock_init(&kvm
->lock
);
299 INIT_LIST_HEAD(&kvm
->active_mmu_pages
);
300 kvm_io_bus_init(&kvm
->mmio_bus
);
301 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
302 struct kvm_vcpu
*vcpu
= &kvm
->vcpus
[i
];
304 mutex_init(&vcpu
->mutex
);
307 vcpu
->mmu
.root_hpa
= INVALID_PAGE
;
309 spin_lock(&kvm_lock
);
310 list_add(&kvm
->vm_list
, &vm_list
);
311 spin_unlock(&kvm_lock
);
315 static int kvm_dev_open(struct inode
*inode
, struct file
*filp
)
321 * Free any memory in @free but not in @dont.
323 static void kvm_free_physmem_slot(struct kvm_memory_slot
*free
,
324 struct kvm_memory_slot
*dont
)
328 if (!dont
|| free
->phys_mem
!= dont
->phys_mem
)
329 if (free
->phys_mem
) {
330 for (i
= 0; i
< free
->npages
; ++i
)
331 if (free
->phys_mem
[i
])
332 __free_page(free
->phys_mem
[i
]);
333 vfree(free
->phys_mem
);
336 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
337 vfree(free
->dirty_bitmap
);
339 free
->phys_mem
= NULL
;
341 free
->dirty_bitmap
= NULL
;
344 static void kvm_free_physmem(struct kvm
*kvm
)
348 for (i
= 0; i
< kvm
->nmemslots
; ++i
)
349 kvm_free_physmem_slot(&kvm
->memslots
[i
], NULL
);
352 static void free_pio_guest_pages(struct kvm_vcpu
*vcpu
)
356 for (i
= 0; i
< 2; ++i
)
357 if (vcpu
->pio
.guest_pages
[i
]) {
358 __free_page(vcpu
->pio
.guest_pages
[i
]);
359 vcpu
->pio
.guest_pages
[i
] = NULL
;
363 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
369 kvm_mmu_unload(vcpu
);
373 static void kvm_free_vcpu(struct kvm_vcpu
*vcpu
)
379 kvm_mmu_destroy(vcpu
);
381 kvm_arch_ops
->vcpu_free(vcpu
);
382 free_page((unsigned long)vcpu
->run
);
384 free_page((unsigned long)vcpu
->pio_data
);
385 vcpu
->pio_data
= NULL
;
386 free_pio_guest_pages(vcpu
);
389 static void kvm_free_vcpus(struct kvm
*kvm
)
394 * Unpin any mmu pages first.
396 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
)
397 kvm_unload_vcpu_mmu(&kvm
->vcpus
[i
]);
398 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
)
399 kvm_free_vcpu(&kvm
->vcpus
[i
]);
402 static int kvm_dev_release(struct inode
*inode
, struct file
*filp
)
407 static void kvm_destroy_vm(struct kvm
*kvm
)
409 spin_lock(&kvm_lock
);
410 list_del(&kvm
->vm_list
);
411 spin_unlock(&kvm_lock
);
412 kvm_io_bus_destroy(&kvm
->pio_bus
);
413 kvm_io_bus_destroy(&kvm
->mmio_bus
);
415 kvm_free_physmem(kvm
);
419 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
421 struct kvm
*kvm
= filp
->private_data
;
427 static void inject_gp(struct kvm_vcpu
*vcpu
)
429 kvm_arch_ops
->inject_gp(vcpu
, 0);
433 * Load the pae pdptrs. Return true is they are all valid.
435 static int load_pdptrs(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
437 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
438 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
445 spin_lock(&vcpu
->kvm
->lock
);
446 page
= gfn_to_page(vcpu
->kvm
, pdpt_gfn
);
447 /* FIXME: !page - emulate? 0xff? */
448 pdpt
= kmap_atomic(page
, KM_USER0
);
451 for (i
= 0; i
< 4; ++i
) {
452 pdpte
= pdpt
[offset
+ i
];
453 if ((pdpte
& 1) && (pdpte
& 0xfffffff0000001e6ull
)) {
459 for (i
= 0; i
< 4; ++i
)
460 vcpu
->pdptrs
[i
] = pdpt
[offset
+ i
];
463 kunmap_atomic(pdpt
, KM_USER0
);
464 spin_unlock(&vcpu
->kvm
->lock
);
469 void set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
471 if (cr0
& CR0_RESEVED_BITS
) {
472 printk(KERN_DEBUG
"set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
478 if ((cr0
& CR0_NW_MASK
) && !(cr0
& CR0_CD_MASK
)) {
479 printk(KERN_DEBUG
"set_cr0: #GP, CD == 0 && NW == 1\n");
484 if ((cr0
& CR0_PG_MASK
) && !(cr0
& CR0_PE_MASK
)) {
485 printk(KERN_DEBUG
"set_cr0: #GP, set PG flag "
486 "and a clear PE flag\n");
491 if (!is_paging(vcpu
) && (cr0
& CR0_PG_MASK
)) {
493 if ((vcpu
->shadow_efer
& EFER_LME
)) {
497 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
498 "in long mode while PAE is disabled\n");
502 kvm_arch_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
504 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
505 "in long mode while CS.L == 1\n");
512 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->cr3
)) {
513 printk(KERN_DEBUG
"set_cr0: #GP, pdptrs "
521 kvm_arch_ops
->set_cr0(vcpu
, cr0
);
524 spin_lock(&vcpu
->kvm
->lock
);
525 kvm_mmu_reset_context(vcpu
);
526 spin_unlock(&vcpu
->kvm
->lock
);
529 EXPORT_SYMBOL_GPL(set_cr0
);
531 void lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
533 set_cr0(vcpu
, (vcpu
->cr0
& ~0x0ful
) | (msw
& 0x0f));
535 EXPORT_SYMBOL_GPL(lmsw
);
537 void set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
539 if (cr4
& CR4_RESEVED_BITS
) {
540 printk(KERN_DEBUG
"set_cr4: #GP, reserved bits\n");
545 if (is_long_mode(vcpu
)) {
546 if (!(cr4
& CR4_PAE_MASK
)) {
547 printk(KERN_DEBUG
"set_cr4: #GP, clearing PAE while "
552 } else if (is_paging(vcpu
) && !is_pae(vcpu
) && (cr4
& CR4_PAE_MASK
)
553 && !load_pdptrs(vcpu
, vcpu
->cr3
)) {
554 printk(KERN_DEBUG
"set_cr4: #GP, pdptrs reserved bits\n");
558 if (cr4
& CR4_VMXE_MASK
) {
559 printk(KERN_DEBUG
"set_cr4: #GP, setting VMXE\n");
563 kvm_arch_ops
->set_cr4(vcpu
, cr4
);
564 spin_lock(&vcpu
->kvm
->lock
);
565 kvm_mmu_reset_context(vcpu
);
566 spin_unlock(&vcpu
->kvm
->lock
);
568 EXPORT_SYMBOL_GPL(set_cr4
);
570 void set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
572 if (is_long_mode(vcpu
)) {
573 if (cr3
& CR3_L_MODE_RESEVED_BITS
) {
574 printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
579 if (cr3
& CR3_RESEVED_BITS
) {
580 printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
584 if (is_paging(vcpu
) && is_pae(vcpu
) &&
585 !load_pdptrs(vcpu
, cr3
)) {
586 printk(KERN_DEBUG
"set_cr3: #GP, pdptrs "
594 spin_lock(&vcpu
->kvm
->lock
);
596 * Does the new cr3 value map to physical memory? (Note, we
597 * catch an invalid cr3 even in real-mode, because it would
598 * cause trouble later on when we turn on paging anyway.)
600 * A real CPU would silently accept an invalid cr3 and would
601 * attempt to use it - with largely undefined (and often hard
602 * to debug) behavior on the guest side.
604 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
607 vcpu
->mmu
.new_cr3(vcpu
);
608 spin_unlock(&vcpu
->kvm
->lock
);
610 EXPORT_SYMBOL_GPL(set_cr3
);
612 void set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
614 if ( cr8
& CR8_RESEVED_BITS
) {
615 printk(KERN_DEBUG
"set_cr8: #GP, reserved bits 0x%lx\n", cr8
);
621 EXPORT_SYMBOL_GPL(set_cr8
);
623 void fx_init(struct kvm_vcpu
*vcpu
)
625 struct __attribute__ ((__packed__
)) fx_image_s
{
631 u64 operand
;// fpu dp
637 fx_save(vcpu
->host_fx_image
);
639 fx_save(vcpu
->guest_fx_image
);
640 fx_restore(vcpu
->host_fx_image
);
642 fx_image
= (struct fx_image_s
*)vcpu
->guest_fx_image
;
643 fx_image
->mxcsr
= 0x1f80;
644 memset(vcpu
->guest_fx_image
+ sizeof(struct fx_image_s
),
645 0, FX_IMAGE_SIZE
- sizeof(struct fx_image_s
));
647 EXPORT_SYMBOL_GPL(fx_init
);
650 * Allocate some memory and give it an address in the guest physical address
653 * Discontiguous memory is allowed, mostly for framebuffers.
655 static int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
656 struct kvm_memory_region
*mem
)
660 unsigned long npages
;
662 struct kvm_memory_slot
*memslot
;
663 struct kvm_memory_slot old
, new;
664 int memory_config_version
;
667 /* General sanity checks */
668 if (mem
->memory_size
& (PAGE_SIZE
- 1))
670 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
672 if (mem
->slot
>= KVM_MEMORY_SLOTS
)
674 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
677 memslot
= &kvm
->memslots
[mem
->slot
];
678 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
679 npages
= mem
->memory_size
>> PAGE_SHIFT
;
682 mem
->flags
&= ~KVM_MEM_LOG_DIRTY_PAGES
;
685 spin_lock(&kvm
->lock
);
687 memory_config_version
= kvm
->memory_config_version
;
688 new = old
= *memslot
;
690 new.base_gfn
= base_gfn
;
692 new.flags
= mem
->flags
;
694 /* Disallow changing a memory slot's size. */
696 if (npages
&& old
.npages
&& npages
!= old
.npages
)
699 /* Check for overlaps */
701 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
702 struct kvm_memory_slot
*s
= &kvm
->memslots
[i
];
706 if (!((base_gfn
+ npages
<= s
->base_gfn
) ||
707 (base_gfn
>= s
->base_gfn
+ s
->npages
)))
711 * Do memory allocations outside lock. memory_config_version will
714 spin_unlock(&kvm
->lock
);
716 /* Deallocate if slot is being removed */
720 /* Free page dirty bitmap if unneeded */
721 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
722 new.dirty_bitmap
= NULL
;
726 /* Allocate if a slot is being created */
727 if (npages
&& !new.phys_mem
) {
728 new.phys_mem
= vmalloc(npages
* sizeof(struct page
*));
733 memset(new.phys_mem
, 0, npages
* sizeof(struct page
*));
734 for (i
= 0; i
< npages
; ++i
) {
735 new.phys_mem
[i
] = alloc_page(GFP_HIGHUSER
737 if (!new.phys_mem
[i
])
739 set_page_private(new.phys_mem
[i
],0);
743 /* Allocate page dirty bitmap if needed */
744 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
745 unsigned dirty_bytes
= ALIGN(npages
, BITS_PER_LONG
) / 8;
747 new.dirty_bitmap
= vmalloc(dirty_bytes
);
748 if (!new.dirty_bitmap
)
750 memset(new.dirty_bitmap
, 0, dirty_bytes
);
753 spin_lock(&kvm
->lock
);
755 if (memory_config_version
!= kvm
->memory_config_version
) {
756 spin_unlock(&kvm
->lock
);
757 kvm_free_physmem_slot(&new, &old
);
765 if (mem
->slot
>= kvm
->nmemslots
)
766 kvm
->nmemslots
= mem
->slot
+ 1;
769 ++kvm
->memory_config_version
;
771 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
772 kvm_flush_remote_tlbs(kvm
);
774 spin_unlock(&kvm
->lock
);
776 kvm_free_physmem_slot(&old
, &new);
780 spin_unlock(&kvm
->lock
);
782 kvm_free_physmem_slot(&new, &old
);
788 * Get (and clear) the dirty memory log for a memory slot.
790 static int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
791 struct kvm_dirty_log
*log
)
793 struct kvm_memory_slot
*memslot
;
796 unsigned long any
= 0;
798 spin_lock(&kvm
->lock
);
801 * Prevent changes to guest memory configuration even while the lock
805 spin_unlock(&kvm
->lock
);
807 if (log
->slot
>= KVM_MEMORY_SLOTS
)
810 memslot
= &kvm
->memslots
[log
->slot
];
812 if (!memslot
->dirty_bitmap
)
815 n
= ALIGN(memslot
->npages
, BITS_PER_LONG
) / 8;
817 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
818 any
= memslot
->dirty_bitmap
[i
];
821 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
824 spin_lock(&kvm
->lock
);
825 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
826 kvm_flush_remote_tlbs(kvm
);
827 memset(memslot
->dirty_bitmap
, 0, n
);
828 spin_unlock(&kvm
->lock
);
833 spin_lock(&kvm
->lock
);
835 spin_unlock(&kvm
->lock
);
840 * Set a new alias region. Aliases map a portion of physical memory into
841 * another portion. This is useful for memory windows, for example the PC
844 static int kvm_vm_ioctl_set_memory_alias(struct kvm
*kvm
,
845 struct kvm_memory_alias
*alias
)
848 struct kvm_mem_alias
*p
;
851 /* General sanity checks */
852 if (alias
->memory_size
& (PAGE_SIZE
- 1))
854 if (alias
->guest_phys_addr
& (PAGE_SIZE
- 1))
856 if (alias
->slot
>= KVM_ALIAS_SLOTS
)
858 if (alias
->guest_phys_addr
+ alias
->memory_size
859 < alias
->guest_phys_addr
)
861 if (alias
->target_phys_addr
+ alias
->memory_size
862 < alias
->target_phys_addr
)
865 spin_lock(&kvm
->lock
);
867 p
= &kvm
->aliases
[alias
->slot
];
868 p
->base_gfn
= alias
->guest_phys_addr
>> PAGE_SHIFT
;
869 p
->npages
= alias
->memory_size
>> PAGE_SHIFT
;
870 p
->target_gfn
= alias
->target_phys_addr
>> PAGE_SHIFT
;
872 for (n
= KVM_ALIAS_SLOTS
; n
> 0; --n
)
873 if (kvm
->aliases
[n
- 1].npages
)
877 kvm_mmu_zap_all(kvm
);
879 spin_unlock(&kvm
->lock
);
887 static gfn_t
unalias_gfn(struct kvm
*kvm
, gfn_t gfn
)
890 struct kvm_mem_alias
*alias
;
892 for (i
= 0; i
< kvm
->naliases
; ++i
) {
893 alias
= &kvm
->aliases
[i
];
894 if (gfn
>= alias
->base_gfn
895 && gfn
< alias
->base_gfn
+ alias
->npages
)
896 return alias
->target_gfn
+ gfn
- alias
->base_gfn
;
901 static struct kvm_memory_slot
*__gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
905 for (i
= 0; i
< kvm
->nmemslots
; ++i
) {
906 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[i
];
908 if (gfn
>= memslot
->base_gfn
909 && gfn
< memslot
->base_gfn
+ memslot
->npages
)
915 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
917 gfn
= unalias_gfn(kvm
, gfn
);
918 return __gfn_to_memslot(kvm
, gfn
);
921 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
923 struct kvm_memory_slot
*slot
;
925 gfn
= unalias_gfn(kvm
, gfn
);
926 slot
= __gfn_to_memslot(kvm
, gfn
);
929 return slot
->phys_mem
[gfn
- slot
->base_gfn
];
931 EXPORT_SYMBOL_GPL(gfn_to_page
);
933 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
936 struct kvm_memory_slot
*memslot
;
937 unsigned long rel_gfn
;
939 for (i
= 0; i
< kvm
->nmemslots
; ++i
) {
940 memslot
= &kvm
->memslots
[i
];
942 if (gfn
>= memslot
->base_gfn
943 && gfn
< memslot
->base_gfn
+ memslot
->npages
) {
945 if (!memslot
->dirty_bitmap
)
948 rel_gfn
= gfn
- memslot
->base_gfn
;
951 if (!test_bit(rel_gfn
, memslot
->dirty_bitmap
))
952 set_bit(rel_gfn
, memslot
->dirty_bitmap
);
958 static int emulator_read_std(unsigned long addr
,
961 struct x86_emulate_ctxt
*ctxt
)
963 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
967 gpa_t gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, addr
);
968 unsigned offset
= addr
& (PAGE_SIZE
-1);
969 unsigned tocopy
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
974 if (gpa
== UNMAPPED_GVA
)
975 return X86EMUL_PROPAGATE_FAULT
;
976 pfn
= gpa
>> PAGE_SHIFT
;
977 page
= gfn_to_page(vcpu
->kvm
, pfn
);
979 return X86EMUL_UNHANDLEABLE
;
980 page_virt
= kmap_atomic(page
, KM_USER0
);
982 memcpy(data
, page_virt
+ offset
, tocopy
);
984 kunmap_atomic(page_virt
, KM_USER0
);
991 return X86EMUL_CONTINUE
;
994 static int emulator_write_std(unsigned long addr
,
997 struct x86_emulate_ctxt
*ctxt
)
999 printk(KERN_ERR
"emulator_write_std: addr %lx n %d\n",
1001 return X86EMUL_UNHANDLEABLE
;
1004 static struct kvm_io_device
*vcpu_find_mmio_dev(struct kvm_vcpu
*vcpu
,
1008 * Note that its important to have this wrapper function because
1009 * in the very near future we will be checking for MMIOs against
1010 * the LAPIC as well as the general MMIO bus
1012 return kvm_io_bus_find_dev(&vcpu
->kvm
->mmio_bus
, addr
);
1015 static struct kvm_io_device
*vcpu_find_pio_dev(struct kvm_vcpu
*vcpu
,
1018 return kvm_io_bus_find_dev(&vcpu
->kvm
->pio_bus
, addr
);
1021 static int emulator_read_emulated(unsigned long addr
,
1024 struct x86_emulate_ctxt
*ctxt
)
1026 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
1027 struct kvm_io_device
*mmio_dev
;
1030 if (vcpu
->mmio_read_completed
) {
1031 memcpy(val
, vcpu
->mmio_data
, bytes
);
1032 vcpu
->mmio_read_completed
= 0;
1033 return X86EMUL_CONTINUE
;
1034 } else if (emulator_read_std(addr
, val
, bytes
, ctxt
)
1035 == X86EMUL_CONTINUE
)
1036 return X86EMUL_CONTINUE
;
1038 gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, addr
);
1039 if (gpa
== UNMAPPED_GVA
)
1040 return X86EMUL_PROPAGATE_FAULT
;
1043 * Is this MMIO handled locally?
1045 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
);
1047 kvm_iodevice_read(mmio_dev
, gpa
, bytes
, val
);
1048 return X86EMUL_CONTINUE
;
1051 vcpu
->mmio_needed
= 1;
1052 vcpu
->mmio_phys_addr
= gpa
;
1053 vcpu
->mmio_size
= bytes
;
1054 vcpu
->mmio_is_write
= 0;
1056 return X86EMUL_UNHANDLEABLE
;
1059 static int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1060 const void *val
, int bytes
)
1064 unsigned offset
= offset_in_page(gpa
);
1066 if (((gpa
+ bytes
- 1) >> PAGE_SHIFT
) != (gpa
>> PAGE_SHIFT
))
1068 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
1071 mark_page_dirty(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
1072 virt
= kmap_atomic(page
, KM_USER0
);
1073 kvm_mmu_pte_write(vcpu
, gpa
, virt
+ offset
, val
, bytes
);
1074 memcpy(virt
+ offset_in_page(gpa
), val
, bytes
);
1075 kunmap_atomic(virt
, KM_USER0
);
1079 static int emulator_write_emulated_onepage(unsigned long addr
,
1082 struct x86_emulate_ctxt
*ctxt
)
1084 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
1085 struct kvm_io_device
*mmio_dev
;
1086 gpa_t gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, addr
);
1088 if (gpa
== UNMAPPED_GVA
) {
1089 kvm_arch_ops
->inject_page_fault(vcpu
, addr
, 2);
1090 return X86EMUL_PROPAGATE_FAULT
;
1093 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
1094 return X86EMUL_CONTINUE
;
1097 * Is this MMIO handled locally?
1099 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
);
1101 kvm_iodevice_write(mmio_dev
, gpa
, bytes
, val
);
1102 return X86EMUL_CONTINUE
;
1105 vcpu
->mmio_needed
= 1;
1106 vcpu
->mmio_phys_addr
= gpa
;
1107 vcpu
->mmio_size
= bytes
;
1108 vcpu
->mmio_is_write
= 1;
1109 memcpy(vcpu
->mmio_data
, val
, bytes
);
1111 return X86EMUL_CONTINUE
;
1114 static int emulator_write_emulated(unsigned long addr
,
1117 struct x86_emulate_ctxt
*ctxt
)
1119 /* Crossing a page boundary? */
1120 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
1123 now
= -addr
& ~PAGE_MASK
;
1124 rc
= emulator_write_emulated_onepage(addr
, val
, now
, ctxt
);
1125 if (rc
!= X86EMUL_CONTINUE
)
1131 return emulator_write_emulated_onepage(addr
, val
, bytes
, ctxt
);
1134 static int emulator_cmpxchg_emulated(unsigned long addr
,
1138 struct x86_emulate_ctxt
*ctxt
)
1140 static int reported
;
1144 printk(KERN_WARNING
"kvm: emulating exchange as write\n");
1146 return emulator_write_emulated(addr
, new, bytes
, ctxt
);
1149 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1151 return kvm_arch_ops
->get_segment_base(vcpu
, seg
);
1154 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
1156 return X86EMUL_CONTINUE
;
1159 int emulate_clts(struct kvm_vcpu
*vcpu
)
1163 cr0
= vcpu
->cr0
& ~CR0_TS_MASK
;
1164 kvm_arch_ops
->set_cr0(vcpu
, cr0
);
1165 return X86EMUL_CONTINUE
;
1168 int emulator_get_dr(struct x86_emulate_ctxt
* ctxt
, int dr
, unsigned long *dest
)
1170 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
1174 *dest
= kvm_arch_ops
->get_dr(vcpu
, dr
);
1175 return X86EMUL_CONTINUE
;
1177 printk(KERN_DEBUG
"%s: unexpected dr %u\n",
1179 return X86EMUL_UNHANDLEABLE
;
1183 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
1185 unsigned long mask
= (ctxt
->mode
== X86EMUL_MODE_PROT64
) ? ~0ULL : ~0U;
1188 kvm_arch_ops
->set_dr(ctxt
->vcpu
, dr
, value
& mask
, &exception
);
1190 /* FIXME: better handling */
1191 return X86EMUL_UNHANDLEABLE
;
1193 return X86EMUL_CONTINUE
;
1196 static void report_emulation_failure(struct x86_emulate_ctxt
*ctxt
)
1198 static int reported
;
1200 unsigned long rip
= ctxt
->vcpu
->rip
;
1201 unsigned long rip_linear
;
1203 rip_linear
= rip
+ get_segment_base(ctxt
->vcpu
, VCPU_SREG_CS
);
1208 emulator_read_std(rip_linear
, (void *)opcodes
, 4, ctxt
);
1210 printk(KERN_ERR
"emulation failed but !mmio_needed?"
1211 " rip %lx %02x %02x %02x %02x\n",
1212 rip
, opcodes
[0], opcodes
[1], opcodes
[2], opcodes
[3]);
1216 struct x86_emulate_ops emulate_ops
= {
1217 .read_std
= emulator_read_std
,
1218 .write_std
= emulator_write_std
,
1219 .read_emulated
= emulator_read_emulated
,
1220 .write_emulated
= emulator_write_emulated
,
1221 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
1224 int emulate_instruction(struct kvm_vcpu
*vcpu
,
1225 struct kvm_run
*run
,
1229 struct x86_emulate_ctxt emulate_ctxt
;
1233 vcpu
->mmio_fault_cr2
= cr2
;
1234 kvm_arch_ops
->cache_regs(vcpu
);
1236 kvm_arch_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
1238 emulate_ctxt
.vcpu
= vcpu
;
1239 emulate_ctxt
.eflags
= kvm_arch_ops
->get_rflags(vcpu
);
1240 emulate_ctxt
.cr2
= cr2
;
1241 emulate_ctxt
.mode
= (emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
1242 ? X86EMUL_MODE_REAL
: cs_l
1243 ? X86EMUL_MODE_PROT64
: cs_db
1244 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
1246 if (emulate_ctxt
.mode
== X86EMUL_MODE_PROT64
) {
1247 emulate_ctxt
.cs_base
= 0;
1248 emulate_ctxt
.ds_base
= 0;
1249 emulate_ctxt
.es_base
= 0;
1250 emulate_ctxt
.ss_base
= 0;
1252 emulate_ctxt
.cs_base
= get_segment_base(vcpu
, VCPU_SREG_CS
);
1253 emulate_ctxt
.ds_base
= get_segment_base(vcpu
, VCPU_SREG_DS
);
1254 emulate_ctxt
.es_base
= get_segment_base(vcpu
, VCPU_SREG_ES
);
1255 emulate_ctxt
.ss_base
= get_segment_base(vcpu
, VCPU_SREG_SS
);
1258 emulate_ctxt
.gs_base
= get_segment_base(vcpu
, VCPU_SREG_GS
);
1259 emulate_ctxt
.fs_base
= get_segment_base(vcpu
, VCPU_SREG_FS
);
1261 vcpu
->mmio_is_write
= 0;
1262 r
= x86_emulate_memop(&emulate_ctxt
, &emulate_ops
);
1264 if ((r
|| vcpu
->mmio_is_write
) && run
) {
1265 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
;
1266 memcpy(run
->mmio
.data
, vcpu
->mmio_data
, 8);
1267 run
->mmio
.len
= vcpu
->mmio_size
;
1268 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
1272 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
1273 return EMULATE_DONE
;
1274 if (!vcpu
->mmio_needed
) {
1275 report_emulation_failure(&emulate_ctxt
);
1276 return EMULATE_FAIL
;
1278 return EMULATE_DO_MMIO
;
1281 kvm_arch_ops
->decache_regs(vcpu
);
1282 kvm_arch_ops
->set_rflags(vcpu
, emulate_ctxt
.eflags
);
1284 if (vcpu
->mmio_is_write
) {
1285 vcpu
->mmio_needed
= 0;
1286 return EMULATE_DO_MMIO
;
1289 return EMULATE_DONE
;
1291 EXPORT_SYMBOL_GPL(emulate_instruction
);
1293 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
1295 if (vcpu
->irq_summary
)
1298 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
1299 ++vcpu
->stat
.halt_exits
;
1302 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
1304 int kvm_hypercall(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1306 unsigned long nr
, a0
, a1
, a2
, a3
, a4
, a5
, ret
;
1308 kvm_arch_ops
->cache_regs(vcpu
);
1310 #ifdef CONFIG_X86_64
1311 if (is_long_mode(vcpu
)) {
1312 nr
= vcpu
->regs
[VCPU_REGS_RAX
];
1313 a0
= vcpu
->regs
[VCPU_REGS_RDI
];
1314 a1
= vcpu
->regs
[VCPU_REGS_RSI
];
1315 a2
= vcpu
->regs
[VCPU_REGS_RDX
];
1316 a3
= vcpu
->regs
[VCPU_REGS_RCX
];
1317 a4
= vcpu
->regs
[VCPU_REGS_R8
];
1318 a5
= vcpu
->regs
[VCPU_REGS_R9
];
1322 nr
= vcpu
->regs
[VCPU_REGS_RBX
] & -1u;
1323 a0
= vcpu
->regs
[VCPU_REGS_RAX
] & -1u;
1324 a1
= vcpu
->regs
[VCPU_REGS_RCX
] & -1u;
1325 a2
= vcpu
->regs
[VCPU_REGS_RDX
] & -1u;
1326 a3
= vcpu
->regs
[VCPU_REGS_RSI
] & -1u;
1327 a4
= vcpu
->regs
[VCPU_REGS_RDI
] & -1u;
1328 a5
= vcpu
->regs
[VCPU_REGS_RBP
] & -1u;
1332 run
->hypercall
.args
[0] = a0
;
1333 run
->hypercall
.args
[1] = a1
;
1334 run
->hypercall
.args
[2] = a2
;
1335 run
->hypercall
.args
[3] = a3
;
1336 run
->hypercall
.args
[4] = a4
;
1337 run
->hypercall
.args
[5] = a5
;
1338 run
->hypercall
.ret
= ret
;
1339 run
->hypercall
.longmode
= is_long_mode(vcpu
);
1340 kvm_arch_ops
->decache_regs(vcpu
);
1343 vcpu
->regs
[VCPU_REGS_RAX
] = ret
;
1344 kvm_arch_ops
->decache_regs(vcpu
);
1347 EXPORT_SYMBOL_GPL(kvm_hypercall
);
1349 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
1351 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
1354 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
1356 struct descriptor_table dt
= { limit
, base
};
1358 kvm_arch_ops
->set_gdt(vcpu
, &dt
);
1361 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
1363 struct descriptor_table dt
= { limit
, base
};
1365 kvm_arch_ops
->set_idt(vcpu
, &dt
);
1368 void realmode_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
,
1369 unsigned long *rflags
)
1372 *rflags
= kvm_arch_ops
->get_rflags(vcpu
);
1375 unsigned long realmode_get_cr(struct kvm_vcpu
*vcpu
, int cr
)
1377 kvm_arch_ops
->decache_cr4_guest_bits(vcpu
);
1388 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __FUNCTION__
, cr
);
1393 void realmode_set_cr(struct kvm_vcpu
*vcpu
, int cr
, unsigned long val
,
1394 unsigned long *rflags
)
1398 set_cr0(vcpu
, mk_cr_64(vcpu
->cr0
, val
));
1399 *rflags
= kvm_arch_ops
->get_rflags(vcpu
);
1408 set_cr4(vcpu
, mk_cr_64(vcpu
->cr4
, val
));
1411 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __FUNCTION__
, cr
);
1416 * Register the para guest with the host:
1418 static int vcpu_register_para(struct kvm_vcpu
*vcpu
, gpa_t para_state_gpa
)
1420 struct kvm_vcpu_para_state
*para_state
;
1421 hpa_t para_state_hpa
, hypercall_hpa
;
1422 struct page
*para_state_page
;
1423 unsigned char *hypercall
;
1424 gpa_t hypercall_gpa
;
1426 printk(KERN_DEBUG
"kvm: guest trying to enter paravirtual mode\n");
1427 printk(KERN_DEBUG
".... para_state_gpa: %08Lx\n", para_state_gpa
);
1430 * Needs to be page aligned:
1432 if (para_state_gpa
!= PAGE_ALIGN(para_state_gpa
))
1435 para_state_hpa
= gpa_to_hpa(vcpu
, para_state_gpa
);
1436 printk(KERN_DEBUG
".... para_state_hpa: %08Lx\n", para_state_hpa
);
1437 if (is_error_hpa(para_state_hpa
))
1440 mark_page_dirty(vcpu
->kvm
, para_state_gpa
>> PAGE_SHIFT
);
1441 para_state_page
= pfn_to_page(para_state_hpa
>> PAGE_SHIFT
);
1442 para_state
= kmap_atomic(para_state_page
, KM_USER0
);
1444 printk(KERN_DEBUG
".... guest version: %d\n", para_state
->guest_version
);
1445 printk(KERN_DEBUG
".... size: %d\n", para_state
->size
);
1447 para_state
->host_version
= KVM_PARA_API_VERSION
;
1449 * We cannot support guests that try to register themselves
1450 * with a newer API version than the host supports:
1452 if (para_state
->guest_version
> KVM_PARA_API_VERSION
) {
1453 para_state
->ret
= -KVM_EINVAL
;
1454 goto err_kunmap_skip
;
1457 hypercall_gpa
= para_state
->hypercall_gpa
;
1458 hypercall_hpa
= gpa_to_hpa(vcpu
, hypercall_gpa
);
1459 printk(KERN_DEBUG
".... hypercall_hpa: %08Lx\n", hypercall_hpa
);
1460 if (is_error_hpa(hypercall_hpa
)) {
1461 para_state
->ret
= -KVM_EINVAL
;
1462 goto err_kunmap_skip
;
1465 printk(KERN_DEBUG
"kvm: para guest successfully registered.\n");
1466 vcpu
->para_state_page
= para_state_page
;
1467 vcpu
->para_state_gpa
= para_state_gpa
;
1468 vcpu
->hypercall_gpa
= hypercall_gpa
;
1470 mark_page_dirty(vcpu
->kvm
, hypercall_gpa
>> PAGE_SHIFT
);
1471 hypercall
= kmap_atomic(pfn_to_page(hypercall_hpa
>> PAGE_SHIFT
),
1472 KM_USER1
) + (hypercall_hpa
& ~PAGE_MASK
);
1473 kvm_arch_ops
->patch_hypercall(vcpu
, hypercall
);
1474 kunmap_atomic(hypercall
, KM_USER1
);
1476 para_state
->ret
= 0;
1478 kunmap_atomic(para_state
, KM_USER0
);
1484 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1489 case 0xc0010010: /* SYSCFG */
1490 case 0xc0010015: /* HWCR */
1491 case MSR_IA32_PLATFORM_ID
:
1492 case MSR_IA32_P5_MC_ADDR
:
1493 case MSR_IA32_P5_MC_TYPE
:
1494 case MSR_IA32_MC0_CTL
:
1495 case MSR_IA32_MCG_STATUS
:
1496 case MSR_IA32_MCG_CAP
:
1497 case MSR_IA32_MC0_MISC
:
1498 case MSR_IA32_MC0_MISC
+4:
1499 case MSR_IA32_MC0_MISC
+8:
1500 case MSR_IA32_MC0_MISC
+12:
1501 case MSR_IA32_MC0_MISC
+16:
1502 case MSR_IA32_UCODE_REV
:
1503 case MSR_IA32_PERF_STATUS
:
1504 case MSR_IA32_EBL_CR_POWERON
:
1505 /* MTRR registers */
1507 case 0x200 ... 0x2ff:
1510 case 0xcd: /* fsb frequency */
1513 case MSR_IA32_APICBASE
:
1514 data
= vcpu
->apic_base
;
1516 case MSR_IA32_MISC_ENABLE
:
1517 data
= vcpu
->ia32_misc_enable_msr
;
1519 #ifdef CONFIG_X86_64
1521 data
= vcpu
->shadow_efer
;
1525 printk(KERN_ERR
"kvm: unhandled rdmsr: 0x%x\n", msr
);
1531 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
1534 * Reads an msr value (of 'msr_index') into 'pdata'.
1535 * Returns 0 on success, non-0 otherwise.
1536 * Assumes vcpu_load() was already called.
1538 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
1540 return kvm_arch_ops
->get_msr(vcpu
, msr_index
, pdata
);
1543 #ifdef CONFIG_X86_64
1545 static void set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1547 if (efer
& EFER_RESERVED_BITS
) {
1548 printk(KERN_DEBUG
"set_efer: 0x%llx #GP, reserved bits\n",
1555 && (vcpu
->shadow_efer
& EFER_LME
) != (efer
& EFER_LME
)) {
1556 printk(KERN_DEBUG
"set_efer: #GP, change LME while paging\n");
1561 kvm_arch_ops
->set_efer(vcpu
, efer
);
1564 efer
|= vcpu
->shadow_efer
& EFER_LMA
;
1566 vcpu
->shadow_efer
= efer
;
1571 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1574 #ifdef CONFIG_X86_64
1576 set_efer(vcpu
, data
);
1579 case MSR_IA32_MC0_STATUS
:
1580 printk(KERN_WARNING
"%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1581 __FUNCTION__
, data
);
1583 case MSR_IA32_MCG_STATUS
:
1584 printk(KERN_WARNING
"%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1585 __FUNCTION__
, data
);
1587 case MSR_IA32_UCODE_REV
:
1588 case MSR_IA32_UCODE_WRITE
:
1589 case 0x200 ... 0x2ff: /* MTRRs */
1591 case MSR_IA32_APICBASE
:
1592 vcpu
->apic_base
= data
;
1594 case MSR_IA32_MISC_ENABLE
:
1595 vcpu
->ia32_misc_enable_msr
= data
;
1598 * This is the 'probe whether the host is KVM' logic:
1600 case MSR_KVM_API_MAGIC
:
1601 return vcpu_register_para(vcpu
, data
);
1604 printk(KERN_ERR
"kvm: unhandled wrmsr: 0x%x\n", msr
);
1609 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
1612 * Writes msr value into into the appropriate "register".
1613 * Returns 0 on success, non-0 otherwise.
1614 * Assumes vcpu_load() was already called.
1616 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
1618 return kvm_arch_ops
->set_msr(vcpu
, msr_index
, data
);
1621 void kvm_resched(struct kvm_vcpu
*vcpu
)
1623 if (!need_resched())
1629 EXPORT_SYMBOL_GPL(kvm_resched
);
1631 void load_msrs(struct vmx_msr_entry
*e
, int n
)
1635 for (i
= 0; i
< n
; ++i
)
1636 wrmsrl(e
[i
].index
, e
[i
].data
);
1638 EXPORT_SYMBOL_GPL(load_msrs
);
1640 void save_msrs(struct vmx_msr_entry
*e
, int n
)
1644 for (i
= 0; i
< n
; ++i
)
1645 rdmsrl(e
[i
].index
, e
[i
].data
);
1647 EXPORT_SYMBOL_GPL(save_msrs
);
1649 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
1653 struct kvm_cpuid_entry
*e
, *best
;
1655 kvm_arch_ops
->cache_regs(vcpu
);
1656 function
= vcpu
->regs
[VCPU_REGS_RAX
];
1657 vcpu
->regs
[VCPU_REGS_RAX
] = 0;
1658 vcpu
->regs
[VCPU_REGS_RBX
] = 0;
1659 vcpu
->regs
[VCPU_REGS_RCX
] = 0;
1660 vcpu
->regs
[VCPU_REGS_RDX
] = 0;
1662 for (i
= 0; i
< vcpu
->cpuid_nent
; ++i
) {
1663 e
= &vcpu
->cpuid_entries
[i
];
1664 if (e
->function
== function
) {
1669 * Both basic or both extended?
1671 if (((e
->function
^ function
) & 0x80000000) == 0)
1672 if (!best
|| e
->function
> best
->function
)
1676 vcpu
->regs
[VCPU_REGS_RAX
] = best
->eax
;
1677 vcpu
->regs
[VCPU_REGS_RBX
] = best
->ebx
;
1678 vcpu
->regs
[VCPU_REGS_RCX
] = best
->ecx
;
1679 vcpu
->regs
[VCPU_REGS_RDX
] = best
->edx
;
1681 kvm_arch_ops
->decache_regs(vcpu
);
1682 kvm_arch_ops
->skip_emulated_instruction(vcpu
);
1684 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
1686 static int pio_copy_data(struct kvm_vcpu
*vcpu
)
1688 void *p
= vcpu
->pio_data
;
1691 int nr_pages
= vcpu
->pio
.guest_pages
[1] ? 2 : 1;
1693 kvm_arch_ops
->vcpu_put(vcpu
);
1694 q
= vmap(vcpu
->pio
.guest_pages
, nr_pages
, VM_READ
|VM_WRITE
,
1697 kvm_arch_ops
->vcpu_load(vcpu
);
1698 free_pio_guest_pages(vcpu
);
1701 q
+= vcpu
->pio
.guest_page_offset
;
1702 bytes
= vcpu
->pio
.size
* vcpu
->pio
.cur_count
;
1704 memcpy(q
, p
, bytes
);
1706 memcpy(p
, q
, bytes
);
1707 q
-= vcpu
->pio
.guest_page_offset
;
1709 kvm_arch_ops
->vcpu_load(vcpu
);
1710 free_pio_guest_pages(vcpu
);
1714 static int complete_pio(struct kvm_vcpu
*vcpu
)
1716 struct kvm_pio_request
*io
= &vcpu
->pio
;
1720 kvm_arch_ops
->cache_regs(vcpu
);
1724 memcpy(&vcpu
->regs
[VCPU_REGS_RAX
], vcpu
->pio_data
,
1728 r
= pio_copy_data(vcpu
);
1730 kvm_arch_ops
->cache_regs(vcpu
);
1737 delta
*= io
->cur_count
;
1739 * The size of the register should really depend on
1740 * current address size.
1742 vcpu
->regs
[VCPU_REGS_RCX
] -= delta
;
1748 vcpu
->regs
[VCPU_REGS_RDI
] += delta
;
1750 vcpu
->regs
[VCPU_REGS_RSI
] += delta
;
1753 kvm_arch_ops
->decache_regs(vcpu
);
1755 io
->count
-= io
->cur_count
;
1759 kvm_arch_ops
->skip_emulated_instruction(vcpu
);
1763 void kernel_pio(struct kvm_io_device
*pio_dev
, struct kvm_vcpu
*vcpu
)
1765 /* TODO: String I/O for in kernel device */
1768 kvm_iodevice_read(pio_dev
, vcpu
->pio
.port
,
1772 kvm_iodevice_write(pio_dev
, vcpu
->pio
.port
,
1777 int kvm_setup_pio(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
1778 int size
, unsigned long count
, int string
, int down
,
1779 gva_t address
, int rep
, unsigned port
)
1781 unsigned now
, in_page
;
1785 struct kvm_io_device
*pio_dev
;
1787 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
1788 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
1789 vcpu
->run
->io
.size
= size
;
1790 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
1791 vcpu
->run
->io
.count
= count
;
1792 vcpu
->run
->io
.port
= port
;
1793 vcpu
->pio
.count
= count
;
1794 vcpu
->pio
.cur_count
= count
;
1795 vcpu
->pio
.size
= size
;
1797 vcpu
->pio
.port
= port
;
1798 vcpu
->pio
.string
= string
;
1799 vcpu
->pio
.down
= down
;
1800 vcpu
->pio
.guest_page_offset
= offset_in_page(address
);
1801 vcpu
->pio
.rep
= rep
;
1803 pio_dev
= vcpu_find_pio_dev(vcpu
, port
);
1805 kvm_arch_ops
->cache_regs(vcpu
);
1806 memcpy(vcpu
->pio_data
, &vcpu
->regs
[VCPU_REGS_RAX
], 4);
1807 kvm_arch_ops
->decache_regs(vcpu
);
1809 kernel_pio(pio_dev
, vcpu
);
1815 /* TODO: String I/O for in kernel device */
1817 printk(KERN_ERR
"kvm_setup_pio: no string io support\n");
1820 kvm_arch_ops
->skip_emulated_instruction(vcpu
);
1824 now
= min(count
, PAGE_SIZE
/ size
);
1827 in_page
= PAGE_SIZE
- offset_in_page(address
);
1829 in_page
= offset_in_page(address
) + size
;
1830 now
= min(count
, (unsigned long)in_page
/ size
);
1833 * String I/O straddles page boundary. Pin two guest pages
1834 * so that we satisfy atomicity constraints. Do just one
1835 * transaction to avoid complexity.
1842 * String I/O in reverse. Yuck. Kill the guest, fix later.
1844 printk(KERN_ERR
"kvm: guest string pio down\n");
1848 vcpu
->run
->io
.count
= now
;
1849 vcpu
->pio
.cur_count
= now
;
1851 for (i
= 0; i
< nr_pages
; ++i
) {
1852 spin_lock(&vcpu
->kvm
->lock
);
1853 page
= gva_to_page(vcpu
, address
+ i
* PAGE_SIZE
);
1856 vcpu
->pio
.guest_pages
[i
] = page
;
1857 spin_unlock(&vcpu
->kvm
->lock
);
1860 free_pio_guest_pages(vcpu
);
1866 return pio_copy_data(vcpu
);
1869 EXPORT_SYMBOL_GPL(kvm_setup_pio
);
1871 static int kvm_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1878 if (vcpu
->sigset_active
)
1879 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
1881 /* re-sync apic's tpr */
1882 vcpu
->cr8
= kvm_run
->cr8
;
1884 if (vcpu
->pio
.cur_count
) {
1885 r
= complete_pio(vcpu
);
1890 if (vcpu
->mmio_needed
) {
1891 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
1892 vcpu
->mmio_read_completed
= 1;
1893 vcpu
->mmio_needed
= 0;
1894 r
= emulate_instruction(vcpu
, kvm_run
,
1895 vcpu
->mmio_fault_cr2
, 0);
1896 if (r
== EMULATE_DO_MMIO
) {
1898 * Read-modify-write. Back to userspace.
1900 kvm_run
->exit_reason
= KVM_EXIT_MMIO
;
1906 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
) {
1907 kvm_arch_ops
->cache_regs(vcpu
);
1908 vcpu
->regs
[VCPU_REGS_RAX
] = kvm_run
->hypercall
.ret
;
1909 kvm_arch_ops
->decache_regs(vcpu
);
1912 r
= kvm_arch_ops
->run(vcpu
, kvm_run
);
1915 if (vcpu
->sigset_active
)
1916 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
1922 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
,
1923 struct kvm_regs
*regs
)
1927 kvm_arch_ops
->cache_regs(vcpu
);
1929 regs
->rax
= vcpu
->regs
[VCPU_REGS_RAX
];
1930 regs
->rbx
= vcpu
->regs
[VCPU_REGS_RBX
];
1931 regs
->rcx
= vcpu
->regs
[VCPU_REGS_RCX
];
1932 regs
->rdx
= vcpu
->regs
[VCPU_REGS_RDX
];
1933 regs
->rsi
= vcpu
->regs
[VCPU_REGS_RSI
];
1934 regs
->rdi
= vcpu
->regs
[VCPU_REGS_RDI
];
1935 regs
->rsp
= vcpu
->regs
[VCPU_REGS_RSP
];
1936 regs
->rbp
= vcpu
->regs
[VCPU_REGS_RBP
];
1937 #ifdef CONFIG_X86_64
1938 regs
->r8
= vcpu
->regs
[VCPU_REGS_R8
];
1939 regs
->r9
= vcpu
->regs
[VCPU_REGS_R9
];
1940 regs
->r10
= vcpu
->regs
[VCPU_REGS_R10
];
1941 regs
->r11
= vcpu
->regs
[VCPU_REGS_R11
];
1942 regs
->r12
= vcpu
->regs
[VCPU_REGS_R12
];
1943 regs
->r13
= vcpu
->regs
[VCPU_REGS_R13
];
1944 regs
->r14
= vcpu
->regs
[VCPU_REGS_R14
];
1945 regs
->r15
= vcpu
->regs
[VCPU_REGS_R15
];
1948 regs
->rip
= vcpu
->rip
;
1949 regs
->rflags
= kvm_arch_ops
->get_rflags(vcpu
);
1952 * Don't leak debug flags in case they were set for guest debugging
1954 if (vcpu
->guest_debug
.enabled
&& vcpu
->guest_debug
.singlestep
)
1955 regs
->rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1962 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
,
1963 struct kvm_regs
*regs
)
1967 vcpu
->regs
[VCPU_REGS_RAX
] = regs
->rax
;
1968 vcpu
->regs
[VCPU_REGS_RBX
] = regs
->rbx
;
1969 vcpu
->regs
[VCPU_REGS_RCX
] = regs
->rcx
;
1970 vcpu
->regs
[VCPU_REGS_RDX
] = regs
->rdx
;
1971 vcpu
->regs
[VCPU_REGS_RSI
] = regs
->rsi
;
1972 vcpu
->regs
[VCPU_REGS_RDI
] = regs
->rdi
;
1973 vcpu
->regs
[VCPU_REGS_RSP
] = regs
->rsp
;
1974 vcpu
->regs
[VCPU_REGS_RBP
] = regs
->rbp
;
1975 #ifdef CONFIG_X86_64
1976 vcpu
->regs
[VCPU_REGS_R8
] = regs
->r8
;
1977 vcpu
->regs
[VCPU_REGS_R9
] = regs
->r9
;
1978 vcpu
->regs
[VCPU_REGS_R10
] = regs
->r10
;
1979 vcpu
->regs
[VCPU_REGS_R11
] = regs
->r11
;
1980 vcpu
->regs
[VCPU_REGS_R12
] = regs
->r12
;
1981 vcpu
->regs
[VCPU_REGS_R13
] = regs
->r13
;
1982 vcpu
->regs
[VCPU_REGS_R14
] = regs
->r14
;
1983 vcpu
->regs
[VCPU_REGS_R15
] = regs
->r15
;
1986 vcpu
->rip
= regs
->rip
;
1987 kvm_arch_ops
->set_rflags(vcpu
, regs
->rflags
);
1989 kvm_arch_ops
->decache_regs(vcpu
);
1996 static void get_segment(struct kvm_vcpu
*vcpu
,
1997 struct kvm_segment
*var
, int seg
)
1999 return kvm_arch_ops
->get_segment(vcpu
, var
, seg
);
2002 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
2003 struct kvm_sregs
*sregs
)
2005 struct descriptor_table dt
;
2009 get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
2010 get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
2011 get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
2012 get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
2013 get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
2014 get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
2016 get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
2017 get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
2019 kvm_arch_ops
->get_idt(vcpu
, &dt
);
2020 sregs
->idt
.limit
= dt
.limit
;
2021 sregs
->idt
.base
= dt
.base
;
2022 kvm_arch_ops
->get_gdt(vcpu
, &dt
);
2023 sregs
->gdt
.limit
= dt
.limit
;
2024 sregs
->gdt
.base
= dt
.base
;
2026 kvm_arch_ops
->decache_cr4_guest_bits(vcpu
);
2027 sregs
->cr0
= vcpu
->cr0
;
2028 sregs
->cr2
= vcpu
->cr2
;
2029 sregs
->cr3
= vcpu
->cr3
;
2030 sregs
->cr4
= vcpu
->cr4
;
2031 sregs
->cr8
= vcpu
->cr8
;
2032 sregs
->efer
= vcpu
->shadow_efer
;
2033 sregs
->apic_base
= vcpu
->apic_base
;
2035 memcpy(sregs
->interrupt_bitmap
, vcpu
->irq_pending
,
2036 sizeof sregs
->interrupt_bitmap
);
2043 static void set_segment(struct kvm_vcpu
*vcpu
,
2044 struct kvm_segment
*var
, int seg
)
2046 return kvm_arch_ops
->set_segment(vcpu
, var
, seg
);
2049 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
2050 struct kvm_sregs
*sregs
)
2052 int mmu_reset_needed
= 0;
2054 struct descriptor_table dt
;
2058 dt
.limit
= sregs
->idt
.limit
;
2059 dt
.base
= sregs
->idt
.base
;
2060 kvm_arch_ops
->set_idt(vcpu
, &dt
);
2061 dt
.limit
= sregs
->gdt
.limit
;
2062 dt
.base
= sregs
->gdt
.base
;
2063 kvm_arch_ops
->set_gdt(vcpu
, &dt
);
2065 vcpu
->cr2
= sregs
->cr2
;
2066 mmu_reset_needed
|= vcpu
->cr3
!= sregs
->cr3
;
2067 vcpu
->cr3
= sregs
->cr3
;
2069 vcpu
->cr8
= sregs
->cr8
;
2071 mmu_reset_needed
|= vcpu
->shadow_efer
!= sregs
->efer
;
2072 #ifdef CONFIG_X86_64
2073 kvm_arch_ops
->set_efer(vcpu
, sregs
->efer
);
2075 vcpu
->apic_base
= sregs
->apic_base
;
2077 kvm_arch_ops
->decache_cr4_guest_bits(vcpu
);
2079 mmu_reset_needed
|= vcpu
->cr0
!= sregs
->cr0
;
2080 kvm_arch_ops
->set_cr0(vcpu
, sregs
->cr0
);
2082 mmu_reset_needed
|= vcpu
->cr4
!= sregs
->cr4
;
2083 kvm_arch_ops
->set_cr4(vcpu
, sregs
->cr4
);
2084 if (!is_long_mode(vcpu
) && is_pae(vcpu
))
2085 load_pdptrs(vcpu
, vcpu
->cr3
);
2087 if (mmu_reset_needed
)
2088 kvm_mmu_reset_context(vcpu
);
2090 memcpy(vcpu
->irq_pending
, sregs
->interrupt_bitmap
,
2091 sizeof vcpu
->irq_pending
);
2092 vcpu
->irq_summary
= 0;
2093 for (i
= 0; i
< NR_IRQ_WORDS
; ++i
)
2094 if (vcpu
->irq_pending
[i
])
2095 __set_bit(i
, &vcpu
->irq_summary
);
2097 set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
2098 set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
2099 set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
2100 set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
2101 set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
2102 set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
2104 set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
2105 set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
2113 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2114 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2116 * This list is modified at module load time to reflect the
2117 * capabilities of the host cpu.
2119 static u32 msrs_to_save
[] = {
2120 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
2122 #ifdef CONFIG_X86_64
2123 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
2125 MSR_IA32_TIME_STAMP_COUNTER
,
2128 static unsigned num_msrs_to_save
;
2130 static u32 emulated_msrs
[] = {
2131 MSR_IA32_MISC_ENABLE
,
2134 static __init
void kvm_init_msr_list(void)
2139 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
2140 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
2143 msrs_to_save
[j
] = msrs_to_save
[i
];
2146 num_msrs_to_save
= j
;
2150 * Adapt set_msr() to msr_io()'s calling convention
2152 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
2154 return kvm_set_msr(vcpu
, index
, *data
);
2158 * Read or write a bunch of msrs. All parameters are kernel addresses.
2160 * @return number of msrs set successfully.
2162 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2163 struct kvm_msr_entry
*entries
,
2164 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2165 unsigned index
, u64
*data
))
2171 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2172 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2181 * Read or write a bunch of msrs. Parameters are user addresses.
2183 * @return number of msrs set successfully.
2185 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2186 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2187 unsigned index
, u64
*data
),
2190 struct kvm_msrs msrs
;
2191 struct kvm_msr_entry
*entries
;
2196 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2200 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2204 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2205 entries
= vmalloc(size
);
2210 if (copy_from_user(entries
, user_msrs
->entries
, size
))
2213 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2218 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2230 * Translate a guest virtual address to a guest physical address.
2232 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
2233 struct kvm_translation
*tr
)
2235 unsigned long vaddr
= tr
->linear_address
;
2239 spin_lock(&vcpu
->kvm
->lock
);
2240 gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, vaddr
);
2241 tr
->physical_address
= gpa
;
2242 tr
->valid
= gpa
!= UNMAPPED_GVA
;
2245 spin_unlock(&vcpu
->kvm
->lock
);
2251 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2252 struct kvm_interrupt
*irq
)
2254 if (irq
->irq
< 0 || irq
->irq
>= 256)
2258 set_bit(irq
->irq
, vcpu
->irq_pending
);
2259 set_bit(irq
->irq
/ BITS_PER_LONG
, &vcpu
->irq_summary
);
2266 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu
*vcpu
,
2267 struct kvm_debug_guest
*dbg
)
2273 r
= kvm_arch_ops
->set_guest_debug(vcpu
, dbg
);
2280 static struct page
*kvm_vcpu_nopage(struct vm_area_struct
*vma
,
2281 unsigned long address
,
2284 struct kvm_vcpu
*vcpu
= vma
->vm_file
->private_data
;
2285 unsigned long pgoff
;
2288 *type
= VM_FAULT_MINOR
;
2289 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2291 page
= virt_to_page(vcpu
->run
);
2292 else if (pgoff
== KVM_PIO_PAGE_OFFSET
)
2293 page
= virt_to_page(vcpu
->pio_data
);
2295 return NOPAGE_SIGBUS
;
2300 static struct vm_operations_struct kvm_vcpu_vm_ops
= {
2301 .nopage
= kvm_vcpu_nopage
,
2304 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2306 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
2310 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
2312 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2314 fput(vcpu
->kvm
->filp
);
2318 static struct file_operations kvm_vcpu_fops
= {
2319 .release
= kvm_vcpu_release
,
2320 .unlocked_ioctl
= kvm_vcpu_ioctl
,
2321 .compat_ioctl
= kvm_vcpu_ioctl
,
2322 .mmap
= kvm_vcpu_mmap
,
2326 * Allocates an inode for the vcpu.
2328 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
2331 struct inode
*inode
;
2334 r
= anon_inode_getfd(&fd
, &inode
, &file
,
2335 "kvm-vcpu", &kvm_vcpu_fops
, vcpu
);
2338 atomic_inc(&vcpu
->kvm
->filp
->f_count
);
2343 * Creates some virtual cpus. Good luck creating more than one.
2345 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, int n
)
2348 struct kvm_vcpu
*vcpu
;
2355 vcpu
= &kvm
->vcpus
[n
];
2357 mutex_lock(&vcpu
->mutex
);
2360 mutex_unlock(&vcpu
->mutex
);
2364 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2368 vcpu
->run
= page_address(page
);
2370 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2374 vcpu
->pio_data
= page_address(page
);
2376 vcpu
->host_fx_image
= (char*)ALIGN((hva_t
)vcpu
->fx_buf
,
2378 vcpu
->guest_fx_image
= vcpu
->host_fx_image
+ FX_IMAGE_SIZE
;
2381 r
= kvm_arch_ops
->vcpu_create(vcpu
);
2383 goto out_free_vcpus
;
2385 r
= kvm_mmu_create(vcpu
);
2387 goto out_free_vcpus
;
2389 kvm_arch_ops
->vcpu_load(vcpu
);
2390 r
= kvm_mmu_setup(vcpu
);
2392 r
= kvm_arch_ops
->vcpu_setup(vcpu
);
2396 goto out_free_vcpus
;
2398 r
= create_vcpu_fd(vcpu
);
2400 goto out_free_vcpus
;
2402 spin_lock(&kvm_lock
);
2403 if (n
>= kvm
->nvcpus
)
2404 kvm
->nvcpus
= n
+ 1;
2405 spin_unlock(&kvm_lock
);
2410 kvm_free_vcpu(vcpu
);
2412 free_page((unsigned long)vcpu
->run
);
2415 mutex_unlock(&vcpu
->mutex
);
2420 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
2424 struct kvm_cpuid_entry
*e
, *entry
;
2426 rdmsrl(MSR_EFER
, efer
);
2428 for (i
= 0; i
< vcpu
->cpuid_nent
; ++i
) {
2429 e
= &vcpu
->cpuid_entries
[i
];
2430 if (e
->function
== 0x80000001) {
2435 if (entry
&& (entry
->edx
& (1 << 20)) && !(efer
& EFER_NX
)) {
2436 entry
->edx
&= ~(1 << 20);
2437 printk(KERN_INFO
"kvm: guest NX capability removed\n");
2441 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
2442 struct kvm_cpuid
*cpuid
,
2443 struct kvm_cpuid_entry __user
*entries
)
2448 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
2451 if (copy_from_user(&vcpu
->cpuid_entries
, entries
,
2452 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
2454 vcpu
->cpuid_nent
= cpuid
->nent
;
2455 cpuid_fix_nx_cap(vcpu
);
2462 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
2465 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2466 vcpu
->sigset_active
= 1;
2467 vcpu
->sigset
= *sigset
;
2469 vcpu
->sigset_active
= 0;
2474 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2475 * we have asm/x86/processor.h
2486 u32 st_space
[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2487 #ifdef CONFIG_X86_64
2488 u32 xmm_space
[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2490 u32 xmm_space
[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2494 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
2496 struct fxsave
*fxsave
= (struct fxsave
*)vcpu
->guest_fx_image
;
2500 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
2501 fpu
->fcw
= fxsave
->cwd
;
2502 fpu
->fsw
= fxsave
->swd
;
2503 fpu
->ftwx
= fxsave
->twd
;
2504 fpu
->last_opcode
= fxsave
->fop
;
2505 fpu
->last_ip
= fxsave
->rip
;
2506 fpu
->last_dp
= fxsave
->rdp
;
2507 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
2514 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
2516 struct fxsave
*fxsave
= (struct fxsave
*)vcpu
->guest_fx_image
;
2520 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
2521 fxsave
->cwd
= fpu
->fcw
;
2522 fxsave
->swd
= fpu
->fsw
;
2523 fxsave
->twd
= fpu
->ftwx
;
2524 fxsave
->fop
= fpu
->last_opcode
;
2525 fxsave
->rip
= fpu
->last_ip
;
2526 fxsave
->rdp
= fpu
->last_dp
;
2527 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
2534 static long kvm_vcpu_ioctl(struct file
*filp
,
2535 unsigned int ioctl
, unsigned long arg
)
2537 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2538 void __user
*argp
= (void __user
*)arg
;
2546 r
= kvm_vcpu_ioctl_run(vcpu
, vcpu
->run
);
2548 case KVM_GET_REGS
: {
2549 struct kvm_regs kvm_regs
;
2551 memset(&kvm_regs
, 0, sizeof kvm_regs
);
2552 r
= kvm_vcpu_ioctl_get_regs(vcpu
, &kvm_regs
);
2556 if (copy_to_user(argp
, &kvm_regs
, sizeof kvm_regs
))
2561 case KVM_SET_REGS
: {
2562 struct kvm_regs kvm_regs
;
2565 if (copy_from_user(&kvm_regs
, argp
, sizeof kvm_regs
))
2567 r
= kvm_vcpu_ioctl_set_regs(vcpu
, &kvm_regs
);
2573 case KVM_GET_SREGS
: {
2574 struct kvm_sregs kvm_sregs
;
2576 memset(&kvm_sregs
, 0, sizeof kvm_sregs
);
2577 r
= kvm_vcpu_ioctl_get_sregs(vcpu
, &kvm_sregs
);
2581 if (copy_to_user(argp
, &kvm_sregs
, sizeof kvm_sregs
))
2586 case KVM_SET_SREGS
: {
2587 struct kvm_sregs kvm_sregs
;
2590 if (copy_from_user(&kvm_sregs
, argp
, sizeof kvm_sregs
))
2592 r
= kvm_vcpu_ioctl_set_sregs(vcpu
, &kvm_sregs
);
2598 case KVM_TRANSLATE
: {
2599 struct kvm_translation tr
;
2602 if (copy_from_user(&tr
, argp
, sizeof tr
))
2604 r
= kvm_vcpu_ioctl_translate(vcpu
, &tr
);
2608 if (copy_to_user(argp
, &tr
, sizeof tr
))
2613 case KVM_INTERRUPT
: {
2614 struct kvm_interrupt irq
;
2617 if (copy_from_user(&irq
, argp
, sizeof irq
))
2619 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
2625 case KVM_DEBUG_GUEST
: {
2626 struct kvm_debug_guest dbg
;
2629 if (copy_from_user(&dbg
, argp
, sizeof dbg
))
2631 r
= kvm_vcpu_ioctl_debug_guest(vcpu
, &dbg
);
2638 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
2641 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
2643 case KVM_SET_CPUID
: {
2644 struct kvm_cpuid __user
*cpuid_arg
= argp
;
2645 struct kvm_cpuid cpuid
;
2648 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2650 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
2655 case KVM_SET_SIGNAL_MASK
: {
2656 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2657 struct kvm_signal_mask kvm_sigmask
;
2658 sigset_t sigset
, *p
;
2663 if (copy_from_user(&kvm_sigmask
, argp
,
2664 sizeof kvm_sigmask
))
2667 if (kvm_sigmask
.len
!= sizeof sigset
)
2670 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
2675 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
2681 memset(&fpu
, 0, sizeof fpu
);
2682 r
= kvm_vcpu_ioctl_get_fpu(vcpu
, &fpu
);
2686 if (copy_to_user(argp
, &fpu
, sizeof fpu
))
2695 if (copy_from_user(&fpu
, argp
, sizeof fpu
))
2697 r
= kvm_vcpu_ioctl_set_fpu(vcpu
, &fpu
);
2710 static long kvm_vm_ioctl(struct file
*filp
,
2711 unsigned int ioctl
, unsigned long arg
)
2713 struct kvm
*kvm
= filp
->private_data
;
2714 void __user
*argp
= (void __user
*)arg
;
2718 case KVM_CREATE_VCPU
:
2719 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
2723 case KVM_SET_MEMORY_REGION
: {
2724 struct kvm_memory_region kvm_mem
;
2727 if (copy_from_user(&kvm_mem
, argp
, sizeof kvm_mem
))
2729 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_mem
);
2734 case KVM_GET_DIRTY_LOG
: {
2735 struct kvm_dirty_log log
;
2738 if (copy_from_user(&log
, argp
, sizeof log
))
2740 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2745 case KVM_SET_MEMORY_ALIAS
: {
2746 struct kvm_memory_alias alias
;
2749 if (copy_from_user(&alias
, argp
, sizeof alias
))
2751 r
= kvm_vm_ioctl_set_memory_alias(kvm
, &alias
);
2763 static struct page
*kvm_vm_nopage(struct vm_area_struct
*vma
,
2764 unsigned long address
,
2767 struct kvm
*kvm
= vma
->vm_file
->private_data
;
2768 unsigned long pgoff
;
2771 *type
= VM_FAULT_MINOR
;
2772 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2773 page
= gfn_to_page(kvm
, pgoff
);
2775 return NOPAGE_SIGBUS
;
2780 static struct vm_operations_struct kvm_vm_vm_ops
= {
2781 .nopage
= kvm_vm_nopage
,
2784 static int kvm_vm_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2786 vma
->vm_ops
= &kvm_vm_vm_ops
;
2790 static struct file_operations kvm_vm_fops
= {
2791 .release
= kvm_vm_release
,
2792 .unlocked_ioctl
= kvm_vm_ioctl
,
2793 .compat_ioctl
= kvm_vm_ioctl
,
2794 .mmap
= kvm_vm_mmap
,
2797 static int kvm_dev_ioctl_create_vm(void)
2800 struct inode
*inode
;
2804 kvm
= kvm_create_vm();
2806 return PTR_ERR(kvm
);
2807 r
= anon_inode_getfd(&fd
, &inode
, &file
, "kvm-vm", &kvm_vm_fops
, kvm
);
2809 kvm_destroy_vm(kvm
);
2818 static long kvm_dev_ioctl(struct file
*filp
,
2819 unsigned int ioctl
, unsigned long arg
)
2821 void __user
*argp
= (void __user
*)arg
;
2825 case KVM_GET_API_VERSION
:
2829 r
= KVM_API_VERSION
;
2835 r
= kvm_dev_ioctl_create_vm();
2837 case KVM_GET_MSR_INDEX_LIST
: {
2838 struct kvm_msr_list __user
*user_msr_list
= argp
;
2839 struct kvm_msr_list msr_list
;
2843 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2846 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
2847 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2850 if (n
< num_msrs_to_save
)
2853 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2854 num_msrs_to_save
* sizeof(u32
)))
2856 if (copy_to_user(user_msr_list
->indices
2857 + num_msrs_to_save
* sizeof(u32
),
2859 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
2864 case KVM_CHECK_EXTENSION
:
2866 * No extensions defined at present.
2870 case KVM_GET_VCPU_MMAP_SIZE
:
2883 static struct file_operations kvm_chardev_ops
= {
2884 .open
= kvm_dev_open
,
2885 .release
= kvm_dev_release
,
2886 .unlocked_ioctl
= kvm_dev_ioctl
,
2887 .compat_ioctl
= kvm_dev_ioctl
,
2890 static struct miscdevice kvm_dev
= {
2896 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
2899 if (val
== SYS_RESTART
) {
2901 * Some (well, at least mine) BIOSes hang on reboot if
2904 printk(KERN_INFO
"kvm: exiting hardware virtualization\n");
2905 on_each_cpu(hardware_disable
, NULL
, 0, 1);
2910 static struct notifier_block kvm_reboot_notifier
= {
2911 .notifier_call
= kvm_reboot
,
2916 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2919 static void decache_vcpus_on_cpu(int cpu
)
2922 struct kvm_vcpu
*vcpu
;
2925 spin_lock(&kvm_lock
);
2926 list_for_each_entry(vm
, &vm_list
, vm_list
)
2927 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
2928 vcpu
= &vm
->vcpus
[i
];
2930 * If the vcpu is locked, then it is running on some
2931 * other cpu and therefore it is not cached on the
2934 * If it's not locked, check the last cpu it executed
2937 if (mutex_trylock(&vcpu
->mutex
)) {
2938 if (vcpu
->cpu
== cpu
) {
2939 kvm_arch_ops
->vcpu_decache(vcpu
);
2942 mutex_unlock(&vcpu
->mutex
);
2945 spin_unlock(&kvm_lock
);
2948 static void hardware_enable(void *junk
)
2950 int cpu
= raw_smp_processor_id();
2952 if (cpu_isset(cpu
, cpus_hardware_enabled
))
2954 cpu_set(cpu
, cpus_hardware_enabled
);
2955 kvm_arch_ops
->hardware_enable(NULL
);
2958 static void hardware_disable(void *junk
)
2960 int cpu
= raw_smp_processor_id();
2962 if (!cpu_isset(cpu
, cpus_hardware_enabled
))
2964 cpu_clear(cpu
, cpus_hardware_enabled
);
2965 decache_vcpus_on_cpu(cpu
);
2966 kvm_arch_ops
->hardware_disable(NULL
);
2969 static int kvm_cpu_hotplug(struct notifier_block
*notifier
, unsigned long val
,
2976 case CPU_DYING_FROZEN
:
2977 printk(KERN_INFO
"kvm: disabling virtualization on CPU%d\n",
2979 hardware_disable(NULL
);
2981 case CPU_UP_CANCELED
:
2982 case CPU_UP_CANCELED_FROZEN
:
2983 printk(KERN_INFO
"kvm: disabling virtualization on CPU%d\n",
2985 smp_call_function_single(cpu
, hardware_disable
, NULL
, 0, 1);
2988 case CPU_ONLINE_FROZEN
:
2989 printk(KERN_INFO
"kvm: enabling virtualization on CPU%d\n",
2991 smp_call_function_single(cpu
, hardware_enable
, NULL
, 0, 1);
2997 void kvm_io_bus_init(struct kvm_io_bus
*bus
)
2999 memset(bus
, 0, sizeof(*bus
));
3002 void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
3006 for (i
= 0; i
< bus
->dev_count
; i
++) {
3007 struct kvm_io_device
*pos
= bus
->devs
[i
];
3009 kvm_iodevice_destructor(pos
);
3013 struct kvm_io_device
*kvm_io_bus_find_dev(struct kvm_io_bus
*bus
, gpa_t addr
)
3017 for (i
= 0; i
< bus
->dev_count
; i
++) {
3018 struct kvm_io_device
*pos
= bus
->devs
[i
];
3020 if (pos
->in_range(pos
, addr
))
3027 void kvm_io_bus_register_dev(struct kvm_io_bus
*bus
, struct kvm_io_device
*dev
)
3029 BUG_ON(bus
->dev_count
> (NR_IOBUS_DEVS
-1));
3031 bus
->devs
[bus
->dev_count
++] = dev
;
3034 static struct notifier_block kvm_cpu_notifier
= {
3035 .notifier_call
= kvm_cpu_hotplug
,
3036 .priority
= 20, /* must be > scheduler priority */
3039 static u64
stat_get(void *_offset
)
3041 unsigned offset
= (long)_offset
;
3044 struct kvm_vcpu
*vcpu
;
3047 spin_lock(&kvm_lock
);
3048 list_for_each_entry(kvm
, &vm_list
, vm_list
)
3049 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
3050 vcpu
= &kvm
->vcpus
[i
];
3051 total
+= *(u32
*)((void *)vcpu
+ offset
);
3053 spin_unlock(&kvm_lock
);
3057 static void stat_set(void *offset
, u64 val
)
3061 DEFINE_SIMPLE_ATTRIBUTE(stat_fops
, stat_get
, stat_set
, "%llu\n");
3063 static __init
void kvm_init_debug(void)
3065 struct kvm_stats_debugfs_item
*p
;
3067 debugfs_dir
= debugfs_create_dir("kvm", NULL
);
3068 for (p
= debugfs_entries
; p
->name
; ++p
)
3069 p
->dentry
= debugfs_create_file(p
->name
, 0444, debugfs_dir
,
3070 (void *)(long)p
->offset
,
3074 static void kvm_exit_debug(void)
3076 struct kvm_stats_debugfs_item
*p
;
3078 for (p
= debugfs_entries
; p
->name
; ++p
)
3079 debugfs_remove(p
->dentry
);
3080 debugfs_remove(debugfs_dir
);
3083 static int kvm_suspend(struct sys_device
*dev
, pm_message_t state
)
3085 hardware_disable(NULL
);
3089 static int kvm_resume(struct sys_device
*dev
)
3091 hardware_enable(NULL
);
3095 static struct sysdev_class kvm_sysdev_class
= {
3096 set_kset_name("kvm"),
3097 .suspend
= kvm_suspend
,
3098 .resume
= kvm_resume
,
3101 static struct sys_device kvm_sysdev
= {
3103 .cls
= &kvm_sysdev_class
,
3106 hpa_t bad_page_address
;
3108 int kvm_init_arch(struct kvm_arch_ops
*ops
, struct module
*module
)
3113 printk(KERN_ERR
"kvm: already loaded the other module\n");
3117 if (!ops
->cpu_has_kvm_support()) {
3118 printk(KERN_ERR
"kvm: no hardware support\n");
3121 if (ops
->disabled_by_bios()) {
3122 printk(KERN_ERR
"kvm: disabled by bios\n");
3128 r
= kvm_arch_ops
->hardware_setup();
3132 on_each_cpu(hardware_enable
, NULL
, 0, 1);
3133 r
= register_cpu_notifier(&kvm_cpu_notifier
);
3136 register_reboot_notifier(&kvm_reboot_notifier
);
3138 r
= sysdev_class_register(&kvm_sysdev_class
);
3142 r
= sysdev_register(&kvm_sysdev
);
3146 kvm_chardev_ops
.owner
= module
;
3148 r
= misc_register(&kvm_dev
);
3150 printk (KERN_ERR
"kvm: misc device register failed\n");
3157 sysdev_unregister(&kvm_sysdev
);
3159 sysdev_class_unregister(&kvm_sysdev_class
);
3161 unregister_reboot_notifier(&kvm_reboot_notifier
);
3162 unregister_cpu_notifier(&kvm_cpu_notifier
);
3164 on_each_cpu(hardware_disable
, NULL
, 0, 1);
3165 kvm_arch_ops
->hardware_unsetup();
3167 kvm_arch_ops
= NULL
;
3171 void kvm_exit_arch(void)
3173 misc_deregister(&kvm_dev
);
3174 sysdev_unregister(&kvm_sysdev
);
3175 sysdev_class_unregister(&kvm_sysdev_class
);
3176 unregister_reboot_notifier(&kvm_reboot_notifier
);
3177 unregister_cpu_notifier(&kvm_cpu_notifier
);
3178 on_each_cpu(hardware_disable
, NULL
, 0, 1);
3179 kvm_arch_ops
->hardware_unsetup();
3180 kvm_arch_ops
= NULL
;
3183 static __init
int kvm_init(void)
3185 static struct page
*bad_page
;
3188 r
= kvm_mmu_module_init();
3194 kvm_init_msr_list();
3196 if ((bad_page
= alloc_page(GFP_KERNEL
)) == NULL
) {
3201 bad_page_address
= page_to_pfn(bad_page
) << PAGE_SHIFT
;
3202 memset(__va(bad_page_address
), 0, PAGE_SIZE
);
3208 kvm_mmu_module_exit();
3213 static __exit
void kvm_exit(void)
3216 __free_page(pfn_to_page(bad_page_address
>> PAGE_SHIFT
));
3217 kvm_mmu_module_exit();
3220 module_init(kvm_init
)
3221 module_exit(kvm_exit
)
3223 EXPORT_SYMBOL_GPL(kvm_init_arch
);
3224 EXPORT_SYMBOL_GPL(kvm_exit_arch
);