2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * This file is released under the GPL.
21 * This virtual memory filesystem is heavily based on the ramfs. It
22 * extends ramfs by the ability to use swap and honor resource limits
23 * which makes it a completely usable filesystem.
26 #include <linux/module.h>
27 #include <linux/init.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
52 #include <linux/seq_file.h>
54 #include <asm/uaccess.h>
55 #include <asm/div64.h>
56 #include <asm/pgtable.h>
58 /* This magic number is used in glibc for posix shared memory */
59 #define TMPFS_MAGIC 0x01021994
61 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
62 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
63 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
65 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
66 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
68 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
70 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
71 #define SHMEM_PAGEIN VM_READ
72 #define SHMEM_TRUNCATE VM_WRITE
74 /* Definition to limit shmem_truncate's steps between cond_rescheds */
75 #define LATENCY_LIMIT 64
77 /* Pretend that each entry is of this size in directory's i_size */
78 #define BOGO_DIRENT_SIZE 20
80 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
82 SGP_READ
, /* don't exceed i_size, don't allocate page */
83 SGP_CACHE
, /* don't exceed i_size, may allocate page */
84 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
85 SGP_WRITE
, /* may exceed i_size, may allocate page */
89 static unsigned long shmem_default_max_blocks(void)
91 return totalram_pages
/ 2;
94 static unsigned long shmem_default_max_inodes(void)
96 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
100 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
101 struct page
**pagep
, enum sgp_type sgp
, int *type
);
103 static inline struct page
*shmem_dir_alloc(gfp_t gfp_mask
)
106 * The above definition of ENTRIES_PER_PAGE, and the use of
107 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
108 * might be reconsidered if it ever diverges from PAGE_SIZE.
110 * Mobility flags are masked out as swap vectors cannot move
112 return alloc_pages((gfp_mask
& ~GFP_MOVABLE_MASK
) | __GFP_ZERO
,
113 PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
116 static inline void shmem_dir_free(struct page
*page
)
118 __free_pages(page
, PAGE_CACHE_SHIFT
-PAGE_SHIFT
);
121 static struct page
**shmem_dir_map(struct page
*page
)
123 return (struct page
**)kmap_atomic(page
, KM_USER0
);
126 static inline void shmem_dir_unmap(struct page
**dir
)
128 kunmap_atomic(dir
, KM_USER0
);
131 static swp_entry_t
*shmem_swp_map(struct page
*page
)
133 return (swp_entry_t
*)kmap_atomic(page
, KM_USER1
);
136 static inline void shmem_swp_balance_unmap(void)
139 * When passing a pointer to an i_direct entry, to code which
140 * also handles indirect entries and so will shmem_swp_unmap,
141 * we must arrange for the preempt count to remain in balance.
142 * What kmap_atomic of a lowmem page does depends on config
143 * and architecture, so pretend to kmap_atomic some lowmem page.
145 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1
);
148 static inline void shmem_swp_unmap(swp_entry_t
*entry
)
150 kunmap_atomic(entry
, KM_USER1
);
153 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
155 return sb
->s_fs_info
;
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
164 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
166 return (flags
& VM_ACCOUNT
)?
167 security_vm_enough_memory(VM_ACCT(size
)): 0;
170 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
172 if (flags
& VM_ACCOUNT
)
173 vm_unacct_memory(VM_ACCT(size
));
177 * ... whereas tmpfs objects are accounted incrementally as
178 * pages are allocated, in order to allow huge sparse files.
179 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
180 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
182 static inline int shmem_acct_block(unsigned long flags
)
184 return (flags
& VM_ACCOUNT
)?
185 0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE
));
188 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
190 if (!(flags
& VM_ACCOUNT
))
191 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
194 static const struct super_operations shmem_ops
;
195 static const struct address_space_operations shmem_aops
;
196 static const struct file_operations shmem_file_operations
;
197 static const struct inode_operations shmem_inode_operations
;
198 static const struct inode_operations shmem_dir_inode_operations
;
199 static const struct inode_operations shmem_special_inode_operations
;
200 static struct vm_operations_struct shmem_vm_ops
;
202 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
203 .ra_pages
= 0, /* No readahead */
204 .capabilities
= BDI_CAP_NO_ACCT_DIRTY
| BDI_CAP_NO_WRITEBACK
,
205 .unplug_io_fn
= default_unplug_io_fn
,
208 static LIST_HEAD(shmem_swaplist
);
209 static DEFINE_MUTEX(shmem_swaplist_mutex
);
211 static void shmem_free_blocks(struct inode
*inode
, long pages
)
213 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
214 if (sbinfo
->max_blocks
) {
215 spin_lock(&sbinfo
->stat_lock
);
216 sbinfo
->free_blocks
+= pages
;
217 inode
->i_blocks
-= pages
*BLOCKS_PER_PAGE
;
218 spin_unlock(&sbinfo
->stat_lock
);
222 static int shmem_reserve_inode(struct super_block
*sb
)
224 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
225 if (sbinfo
->max_inodes
) {
226 spin_lock(&sbinfo
->stat_lock
);
227 if (!sbinfo
->free_inodes
) {
228 spin_unlock(&sbinfo
->stat_lock
);
231 sbinfo
->free_inodes
--;
232 spin_unlock(&sbinfo
->stat_lock
);
237 static void shmem_free_inode(struct super_block
*sb
)
239 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
240 if (sbinfo
->max_inodes
) {
241 spin_lock(&sbinfo
->stat_lock
);
242 sbinfo
->free_inodes
++;
243 spin_unlock(&sbinfo
->stat_lock
);
248 * shmem_recalc_inode - recalculate the size of an inode
249 * @inode: inode to recalc
251 * We have to calculate the free blocks since the mm can drop
252 * undirtied hole pages behind our back.
254 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
255 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
257 * It has to be called with the spinlock held.
259 static void shmem_recalc_inode(struct inode
*inode
)
261 struct shmem_inode_info
*info
= SHMEM_I(inode
);
264 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
266 info
->alloced
-= freed
;
267 shmem_unacct_blocks(info
->flags
, freed
);
268 shmem_free_blocks(inode
, freed
);
273 * shmem_swp_entry - find the swap vector position in the info structure
274 * @info: info structure for the inode
275 * @index: index of the page to find
276 * @page: optional page to add to the structure. Has to be preset to
279 * If there is no space allocated yet it will return NULL when
280 * page is NULL, else it will use the page for the needed block,
281 * setting it to NULL on return to indicate that it has been used.
283 * The swap vector is organized the following way:
285 * There are SHMEM_NR_DIRECT entries directly stored in the
286 * shmem_inode_info structure. So small files do not need an addional
289 * For pages with index > SHMEM_NR_DIRECT there is the pointer
290 * i_indirect which points to a page which holds in the first half
291 * doubly indirect blocks, in the second half triple indirect blocks:
293 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
294 * following layout (for SHMEM_NR_DIRECT == 16):
296 * i_indirect -> dir --> 16-19
309 static swp_entry_t
*shmem_swp_entry(struct shmem_inode_info
*info
, unsigned long index
, struct page
**page
)
311 unsigned long offset
;
315 if (index
< SHMEM_NR_DIRECT
) {
316 shmem_swp_balance_unmap();
317 return info
->i_direct
+index
;
319 if (!info
->i_indirect
) {
321 info
->i_indirect
= *page
;
324 return NULL
; /* need another page */
327 index
-= SHMEM_NR_DIRECT
;
328 offset
= index
% ENTRIES_PER_PAGE
;
329 index
/= ENTRIES_PER_PAGE
;
330 dir
= shmem_dir_map(info
->i_indirect
);
332 if (index
>= ENTRIES_PER_PAGE
/2) {
333 index
-= ENTRIES_PER_PAGE
/2;
334 dir
+= ENTRIES_PER_PAGE
/2 + index
/ENTRIES_PER_PAGE
;
335 index
%= ENTRIES_PER_PAGE
;
342 shmem_dir_unmap(dir
);
343 return NULL
; /* need another page */
345 shmem_dir_unmap(dir
);
346 dir
= shmem_dir_map(subdir
);
352 if (!page
|| !(subdir
= *page
)) {
353 shmem_dir_unmap(dir
);
354 return NULL
; /* need a page */
359 shmem_dir_unmap(dir
);
360 return shmem_swp_map(subdir
) + offset
;
363 static void shmem_swp_set(struct shmem_inode_info
*info
, swp_entry_t
*entry
, unsigned long value
)
365 long incdec
= value
? 1: -1;
368 info
->swapped
+= incdec
;
369 if ((unsigned long)(entry
- info
->i_direct
) >= SHMEM_NR_DIRECT
) {
370 struct page
*page
= kmap_atomic_to_page(entry
);
371 set_page_private(page
, page_private(page
) + incdec
);
376 * shmem_swp_alloc - get the position of the swap entry for the page.
377 * @info: info structure for the inode
378 * @index: index of the page to find
379 * @sgp: check and recheck i_size? skip allocation?
381 * If the entry does not exist, allocate it.
383 static swp_entry_t
*shmem_swp_alloc(struct shmem_inode_info
*info
, unsigned long index
, enum sgp_type sgp
)
385 struct inode
*inode
= &info
->vfs_inode
;
386 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
387 struct page
*page
= NULL
;
390 if (sgp
!= SGP_WRITE
&&
391 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
392 return ERR_PTR(-EINVAL
);
394 while (!(entry
= shmem_swp_entry(info
, index
, &page
))) {
396 return shmem_swp_map(ZERO_PAGE(0));
398 * Test free_blocks against 1 not 0, since we have 1 data
399 * page (and perhaps indirect index pages) yet to allocate:
400 * a waste to allocate index if we cannot allocate data.
402 if (sbinfo
->max_blocks
) {
403 spin_lock(&sbinfo
->stat_lock
);
404 if (sbinfo
->free_blocks
<= 1) {
405 spin_unlock(&sbinfo
->stat_lock
);
406 return ERR_PTR(-ENOSPC
);
408 sbinfo
->free_blocks
--;
409 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
410 spin_unlock(&sbinfo
->stat_lock
);
413 spin_unlock(&info
->lock
);
414 page
= shmem_dir_alloc(mapping_gfp_mask(inode
->i_mapping
));
416 set_page_private(page
, 0);
417 spin_lock(&info
->lock
);
420 shmem_free_blocks(inode
, 1);
421 return ERR_PTR(-ENOMEM
);
423 if (sgp
!= SGP_WRITE
&&
424 ((loff_t
) index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
425 entry
= ERR_PTR(-EINVAL
);
428 if (info
->next_index
<= index
)
429 info
->next_index
= index
+ 1;
432 /* another task gave its page, or truncated the file */
433 shmem_free_blocks(inode
, 1);
434 shmem_dir_free(page
);
436 if (info
->next_index
<= index
&& !IS_ERR(entry
))
437 info
->next_index
= index
+ 1;
442 * shmem_free_swp - free some swap entries in a directory
443 * @dir: pointer to the directory
444 * @edir: pointer after last entry of the directory
445 * @punch_lock: pointer to spinlock when needed for the holepunch case
447 static int shmem_free_swp(swp_entry_t
*dir
, swp_entry_t
*edir
,
448 spinlock_t
*punch_lock
)
450 spinlock_t
*punch_unlock
= NULL
;
454 for (ptr
= dir
; ptr
< edir
; ptr
++) {
456 if (unlikely(punch_lock
)) {
457 punch_unlock
= punch_lock
;
459 spin_lock(punch_unlock
);
463 free_swap_and_cache(*ptr
);
464 *ptr
= (swp_entry_t
){0};
469 spin_unlock(punch_unlock
);
473 static int shmem_map_and_free_swp(struct page
*subdir
, int offset
,
474 int limit
, struct page
***dir
, spinlock_t
*punch_lock
)
479 ptr
= shmem_swp_map(subdir
);
480 for (; offset
< limit
; offset
+= LATENCY_LIMIT
) {
481 int size
= limit
- offset
;
482 if (size
> LATENCY_LIMIT
)
483 size
= LATENCY_LIMIT
;
484 freed
+= shmem_free_swp(ptr
+offset
, ptr
+offset
+size
,
486 if (need_resched()) {
487 shmem_swp_unmap(ptr
);
489 shmem_dir_unmap(*dir
);
493 ptr
= shmem_swp_map(subdir
);
496 shmem_swp_unmap(ptr
);
500 static void shmem_free_pages(struct list_head
*next
)
506 page
= container_of(next
, struct page
, lru
);
508 shmem_dir_free(page
);
510 if (freed
>= LATENCY_LIMIT
) {
517 static void shmem_truncate_range(struct inode
*inode
, loff_t start
, loff_t end
)
519 struct shmem_inode_info
*info
= SHMEM_I(inode
);
524 unsigned long diroff
;
530 LIST_HEAD(pages_to_free
);
531 long nr_pages_to_free
= 0;
532 long nr_swaps_freed
= 0;
536 spinlock_t
*needs_lock
;
537 spinlock_t
*punch_lock
;
538 unsigned long upper_limit
;
540 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
541 idx
= (start
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
542 if (idx
>= info
->next_index
)
545 spin_lock(&info
->lock
);
546 info
->flags
|= SHMEM_TRUNCATE
;
547 if (likely(end
== (loff_t
) -1)) {
548 limit
= info
->next_index
;
549 upper_limit
= SHMEM_MAX_INDEX
;
550 info
->next_index
= idx
;
554 if (end
+ 1 >= inode
->i_size
) { /* we may free a little more */
555 limit
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >>
557 upper_limit
= SHMEM_MAX_INDEX
;
559 limit
= (end
+ 1) >> PAGE_CACHE_SHIFT
;
562 needs_lock
= &info
->lock
;
566 topdir
= info
->i_indirect
;
567 if (topdir
&& idx
<= SHMEM_NR_DIRECT
&& !punch_hole
) {
568 info
->i_indirect
= NULL
;
570 list_add(&topdir
->lru
, &pages_to_free
);
572 spin_unlock(&info
->lock
);
574 if (info
->swapped
&& idx
< SHMEM_NR_DIRECT
) {
575 ptr
= info
->i_direct
;
577 if (size
> SHMEM_NR_DIRECT
)
578 size
= SHMEM_NR_DIRECT
;
579 nr_swaps_freed
= shmem_free_swp(ptr
+idx
, ptr
+size
, needs_lock
);
583 * If there are no indirect blocks or we are punching a hole
584 * below indirect blocks, nothing to be done.
586 if (!topdir
|| limit
<= SHMEM_NR_DIRECT
)
590 * The truncation case has already dropped info->lock, and we're safe
591 * because i_size and next_index have already been lowered, preventing
592 * access beyond. But in the punch_hole case, we still need to take
593 * the lock when updating the swap directory, because there might be
594 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
595 * shmem_writepage. However, whenever we find we can remove a whole
596 * directory page (not at the misaligned start or end of the range),
597 * we first NULLify its pointer in the level above, and then have no
598 * need to take the lock when updating its contents: needs_lock and
599 * punch_lock (either pointing to info->lock or NULL) manage this.
602 upper_limit
-= SHMEM_NR_DIRECT
;
603 limit
-= SHMEM_NR_DIRECT
;
604 idx
= (idx
> SHMEM_NR_DIRECT
)? (idx
- SHMEM_NR_DIRECT
): 0;
605 offset
= idx
% ENTRIES_PER_PAGE
;
608 dir
= shmem_dir_map(topdir
);
609 stage
= ENTRIES_PER_PAGEPAGE
/2;
610 if (idx
< ENTRIES_PER_PAGEPAGE
/2) {
612 diroff
= idx
/ENTRIES_PER_PAGE
;
614 dir
+= ENTRIES_PER_PAGE
/2;
615 dir
+= (idx
- ENTRIES_PER_PAGEPAGE
/2)/ENTRIES_PER_PAGEPAGE
;
617 stage
+= ENTRIES_PER_PAGEPAGE
;
620 diroff
= ((idx
- ENTRIES_PER_PAGEPAGE
/2) %
621 ENTRIES_PER_PAGEPAGE
) / ENTRIES_PER_PAGE
;
622 if (!diroff
&& !offset
&& upper_limit
>= stage
) {
624 spin_lock(needs_lock
);
626 spin_unlock(needs_lock
);
631 list_add(&middir
->lru
, &pages_to_free
);
633 shmem_dir_unmap(dir
);
634 dir
= shmem_dir_map(middir
);
642 for (; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, diroff
++) {
643 if (unlikely(idx
== stage
)) {
644 shmem_dir_unmap(dir
);
645 dir
= shmem_dir_map(topdir
) +
646 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
649 idx
+= ENTRIES_PER_PAGEPAGE
;
653 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
656 needs_lock
= &info
->lock
;
657 if (upper_limit
>= stage
) {
659 spin_lock(needs_lock
);
661 spin_unlock(needs_lock
);
666 list_add(&middir
->lru
, &pages_to_free
);
668 shmem_dir_unmap(dir
);
670 dir
= shmem_dir_map(middir
);
673 punch_lock
= needs_lock
;
674 subdir
= dir
[diroff
];
675 if (subdir
&& !offset
&& upper_limit
-idx
>= ENTRIES_PER_PAGE
) {
677 spin_lock(needs_lock
);
679 spin_unlock(needs_lock
);
684 list_add(&subdir
->lru
, &pages_to_free
);
686 if (subdir
&& page_private(subdir
) /* has swap entries */) {
688 if (size
> ENTRIES_PER_PAGE
)
689 size
= ENTRIES_PER_PAGE
;
690 freed
= shmem_map_and_free_swp(subdir
,
691 offset
, size
, &dir
, punch_lock
);
693 dir
= shmem_dir_map(middir
);
694 nr_swaps_freed
+= freed
;
695 if (offset
|| punch_lock
) {
696 spin_lock(&info
->lock
);
697 set_page_private(subdir
,
698 page_private(subdir
) - freed
);
699 spin_unlock(&info
->lock
);
701 BUG_ON(page_private(subdir
) != freed
);
706 shmem_dir_unmap(dir
);
708 if (inode
->i_mapping
->nrpages
&& (info
->flags
& SHMEM_PAGEIN
)) {
710 * Call truncate_inode_pages again: racing shmem_unuse_inode
711 * may have swizzled a page in from swap since vmtruncate or
712 * generic_delete_inode did it, before we lowered next_index.
713 * Also, though shmem_getpage checks i_size before adding to
714 * cache, no recheck after: so fix the narrow window there too.
716 * Recalling truncate_inode_pages_range and unmap_mapping_range
717 * every time for punch_hole (which never got a chance to clear
718 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
719 * yet hardly ever necessary: try to optimize them out later.
721 truncate_inode_pages_range(inode
->i_mapping
, start
, end
);
723 unmap_mapping_range(inode
->i_mapping
, start
,
727 spin_lock(&info
->lock
);
728 info
->flags
&= ~SHMEM_TRUNCATE
;
729 info
->swapped
-= nr_swaps_freed
;
730 if (nr_pages_to_free
)
731 shmem_free_blocks(inode
, nr_pages_to_free
);
732 shmem_recalc_inode(inode
);
733 spin_unlock(&info
->lock
);
736 * Empty swap vector directory pages to be freed?
738 if (!list_empty(&pages_to_free
)) {
739 pages_to_free
.prev
->next
= NULL
;
740 shmem_free_pages(pages_to_free
.next
);
744 static void shmem_truncate(struct inode
*inode
)
746 shmem_truncate_range(inode
, inode
->i_size
, (loff_t
)-1);
749 static int shmem_notify_change(struct dentry
*dentry
, struct iattr
*attr
)
751 struct inode
*inode
= dentry
->d_inode
;
752 struct page
*page
= NULL
;
755 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
756 if (attr
->ia_size
< inode
->i_size
) {
758 * If truncating down to a partial page, then
759 * if that page is already allocated, hold it
760 * in memory until the truncation is over, so
761 * truncate_partial_page cannnot miss it were
762 * it assigned to swap.
764 if (attr
->ia_size
& (PAGE_CACHE_SIZE
-1)) {
765 (void) shmem_getpage(inode
,
766 attr
->ia_size
>>PAGE_CACHE_SHIFT
,
767 &page
, SGP_READ
, NULL
);
772 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
773 * detect if any pages might have been added to cache
774 * after truncate_inode_pages. But we needn't bother
775 * if it's being fully truncated to zero-length: the
776 * nrpages check is efficient enough in that case.
779 struct shmem_inode_info
*info
= SHMEM_I(inode
);
780 spin_lock(&info
->lock
);
781 info
->flags
&= ~SHMEM_PAGEIN
;
782 spin_unlock(&info
->lock
);
787 error
= inode_change_ok(inode
, attr
);
789 error
= inode_setattr(inode
, attr
);
790 #ifdef CONFIG_TMPFS_POSIX_ACL
791 if (!error
&& (attr
->ia_valid
& ATTR_MODE
))
792 error
= generic_acl_chmod(inode
, &shmem_acl_ops
);
795 page_cache_release(page
);
799 static void shmem_delete_inode(struct inode
*inode
)
801 struct shmem_inode_info
*info
= SHMEM_I(inode
);
803 if (inode
->i_op
->truncate
== shmem_truncate
) {
804 truncate_inode_pages(inode
->i_mapping
, 0);
805 shmem_unacct_size(info
->flags
, inode
->i_size
);
807 shmem_truncate(inode
);
808 if (!list_empty(&info
->swaplist
)) {
809 mutex_lock(&shmem_swaplist_mutex
);
810 list_del_init(&info
->swaplist
);
811 mutex_unlock(&shmem_swaplist_mutex
);
814 BUG_ON(inode
->i_blocks
);
815 shmem_free_inode(inode
->i_sb
);
819 static inline int shmem_find_swp(swp_entry_t entry
, swp_entry_t
*dir
, swp_entry_t
*edir
)
823 for (ptr
= dir
; ptr
< edir
; ptr
++) {
824 if (ptr
->val
== entry
.val
)
830 static int shmem_unuse_inode(struct shmem_inode_info
*info
, swp_entry_t entry
, struct page
*page
)
844 ptr
= info
->i_direct
;
845 spin_lock(&info
->lock
);
846 if (!info
->swapped
) {
847 list_del_init(&info
->swaplist
);
850 limit
= info
->next_index
;
852 if (size
> SHMEM_NR_DIRECT
)
853 size
= SHMEM_NR_DIRECT
;
854 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
857 if (!info
->i_indirect
)
860 dir
= shmem_dir_map(info
->i_indirect
);
861 stage
= SHMEM_NR_DIRECT
+ ENTRIES_PER_PAGEPAGE
/2;
863 for (idx
= SHMEM_NR_DIRECT
; idx
< limit
; idx
+= ENTRIES_PER_PAGE
, dir
++) {
864 if (unlikely(idx
== stage
)) {
865 shmem_dir_unmap(dir
-1);
866 if (cond_resched_lock(&info
->lock
)) {
867 /* check it has not been truncated */
868 if (limit
> info
->next_index
) {
869 limit
= info
->next_index
;
874 dir
= shmem_dir_map(info
->i_indirect
) +
875 ENTRIES_PER_PAGE
/2 + idx
/ENTRIES_PER_PAGEPAGE
;
878 idx
+= ENTRIES_PER_PAGEPAGE
;
882 stage
= idx
+ ENTRIES_PER_PAGEPAGE
;
884 shmem_dir_unmap(dir
);
885 dir
= shmem_dir_map(subdir
);
888 if (subdir
&& page_private(subdir
)) {
889 ptr
= shmem_swp_map(subdir
);
891 if (size
> ENTRIES_PER_PAGE
)
892 size
= ENTRIES_PER_PAGE
;
893 offset
= shmem_find_swp(entry
, ptr
, ptr
+size
);
894 shmem_swp_unmap(ptr
);
896 shmem_dir_unmap(dir
);
902 shmem_dir_unmap(dir
-1);
904 spin_unlock(&info
->lock
);
908 inode
= igrab(&info
->vfs_inode
);
909 spin_unlock(&info
->lock
);
912 * Move _head_ to start search for next from here.
913 * But be careful: shmem_delete_inode checks list_empty without taking
914 * mutex, and there's an instant in list_move_tail when info->swaplist
915 * would appear empty, if it were the only one on shmem_swaplist. We
916 * could avoid doing it if inode NULL; or use this minor optimization.
918 if (shmem_swaplist
.next
!= &info
->swaplist
)
919 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
920 mutex_unlock(&shmem_swaplist_mutex
);
925 /* Precharge page while we can wait, compensate afterwards */
926 error
= mem_cgroup_cache_charge(page
, current
->mm
, GFP_KERNEL
);
929 error
= radix_tree_preload(GFP_KERNEL
);
934 spin_lock(&info
->lock
);
935 ptr
= shmem_swp_entry(info
, idx
, NULL
);
936 if (ptr
&& ptr
->val
== entry
.val
)
937 error
= add_to_page_cache(page
, inode
->i_mapping
,
939 if (error
== -EEXIST
) {
940 struct page
*filepage
= find_get_page(inode
->i_mapping
, idx
);
944 * There might be a more uptodate page coming down
945 * from a stacked writepage: forget our swappage if so.
947 if (PageUptodate(filepage
))
949 page_cache_release(filepage
);
953 delete_from_swap_cache(page
);
954 set_page_dirty(page
);
955 info
->flags
|= SHMEM_PAGEIN
;
956 shmem_swp_set(info
, ptr
, 0);
958 error
= 1; /* not an error, but entry was found */
961 shmem_swp_unmap(ptr
);
962 spin_unlock(&info
->lock
);
963 radix_tree_preload_end();
965 mem_cgroup_uncharge_page(page
);
968 page_cache_release(page
);
969 iput(inode
); /* allows for NULL */
974 * shmem_unuse() search for an eventually swapped out shmem page.
976 int shmem_unuse(swp_entry_t entry
, struct page
*page
)
978 struct list_head
*p
, *next
;
979 struct shmem_inode_info
*info
;
982 mutex_lock(&shmem_swaplist_mutex
);
983 list_for_each_safe(p
, next
, &shmem_swaplist
) {
984 info
= list_entry(p
, struct shmem_inode_info
, swaplist
);
985 found
= shmem_unuse_inode(info
, entry
, page
);
990 mutex_unlock(&shmem_swaplist_mutex
);
991 out
: return found
; /* 0 or 1 or -ENOMEM */
995 * Move the page from the page cache to the swap cache.
997 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
999 struct shmem_inode_info
*info
;
1000 swp_entry_t
*entry
, swap
;
1001 struct address_space
*mapping
;
1002 unsigned long index
;
1003 struct inode
*inode
;
1005 BUG_ON(!PageLocked(page
));
1006 mapping
= page
->mapping
;
1007 index
= page
->index
;
1008 inode
= mapping
->host
;
1009 info
= SHMEM_I(inode
);
1010 if (info
->flags
& VM_LOCKED
)
1012 if (!total_swap_pages
)
1016 * shmem_backing_dev_info's capabilities prevent regular writeback or
1017 * sync from ever calling shmem_writepage; but a stacking filesystem
1018 * may use the ->writepage of its underlying filesystem, in which case
1019 * tmpfs should write out to swap only in response to memory pressure,
1020 * and not for pdflush or sync. However, in those cases, we do still
1021 * want to check if there's a redundant swappage to be discarded.
1023 if (wbc
->for_reclaim
)
1024 swap
= get_swap_page();
1028 spin_lock(&info
->lock
);
1029 if (index
>= info
->next_index
) {
1030 BUG_ON(!(info
->flags
& SHMEM_TRUNCATE
));
1033 entry
= shmem_swp_entry(info
, index
, NULL
);
1036 * The more uptodate page coming down from a stacked
1037 * writepage should replace our old swappage.
1039 free_swap_and_cache(*entry
);
1040 shmem_swp_set(info
, entry
, 0);
1042 shmem_recalc_inode(inode
);
1044 if (swap
.val
&& add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1045 remove_from_page_cache(page
);
1046 shmem_swp_set(info
, entry
, swap
.val
);
1047 shmem_swp_unmap(entry
);
1048 if (list_empty(&info
->swaplist
))
1049 inode
= igrab(inode
);
1052 spin_unlock(&info
->lock
);
1053 swap_duplicate(swap
);
1054 BUG_ON(page_mapped(page
));
1055 page_cache_release(page
); /* pagecache ref */
1056 set_page_dirty(page
);
1059 mutex_lock(&shmem_swaplist_mutex
);
1060 /* move instead of add in case we're racing */
1061 list_move_tail(&info
->swaplist
, &shmem_swaplist
);
1062 mutex_unlock(&shmem_swaplist_mutex
);
1068 shmem_swp_unmap(entry
);
1070 spin_unlock(&info
->lock
);
1073 set_page_dirty(page
);
1074 if (wbc
->for_reclaim
)
1075 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1082 static int shmem_parse_mpol(char *value
, int *policy
, nodemask_t
*policy_nodes
)
1084 char *nodelist
= strchr(value
, ':');
1088 /* NUL-terminate policy string */
1090 if (nodelist_parse(nodelist
, *policy_nodes
))
1092 if (!nodes_subset(*policy_nodes
, node_states
[N_HIGH_MEMORY
]))
1095 if (!strcmp(value
, "default")) {
1096 *policy
= MPOL_DEFAULT
;
1097 /* Don't allow a nodelist */
1100 } else if (!strcmp(value
, "prefer")) {
1101 *policy
= MPOL_PREFERRED
;
1102 /* Insist on a nodelist of one node only */
1104 char *rest
= nodelist
;
1105 while (isdigit(*rest
))
1110 } else if (!strcmp(value
, "bind")) {
1111 *policy
= MPOL_BIND
;
1112 /* Insist on a nodelist */
1115 } else if (!strcmp(value
, "interleave")) {
1116 *policy
= MPOL_INTERLEAVE
;
1118 * Default to online nodes with memory if no nodelist
1121 *policy_nodes
= node_states
[N_HIGH_MEMORY
];
1125 /* Restore string for error message */
1131 static void shmem_show_mpol(struct seq_file
*seq
, int policy
,
1132 const nodemask_t policy_nodes
)
1134 char *policy_string
;
1137 case MPOL_PREFERRED
:
1138 policy_string
= "prefer";
1141 policy_string
= "bind";
1143 case MPOL_INTERLEAVE
:
1144 policy_string
= "interleave";
1151 seq_printf(seq
, ",mpol=%s", policy_string
);
1153 if (policy
!= MPOL_INTERLEAVE
||
1154 !nodes_equal(policy_nodes
, node_states
[N_HIGH_MEMORY
])) {
1158 len
= nodelist_scnprintf(buffer
, sizeof(buffer
), policy_nodes
);
1159 if (len
< sizeof(buffer
))
1160 seq_printf(seq
, ":%s", buffer
);
1162 seq_printf(seq
, ":?");
1165 #endif /* CONFIG_TMPFS */
1167 static struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1168 struct shmem_inode_info
*info
, unsigned long idx
)
1170 struct vm_area_struct pvma
;
1173 /* Create a pseudo vma that just contains the policy */
1175 pvma
.vm_pgoff
= idx
;
1177 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, idx
);
1178 page
= swapin_readahead(entry
, gfp
, &pvma
, 0);
1179 mpol_free(pvma
.vm_policy
);
1183 static struct page
*shmem_alloc_page(gfp_t gfp
,
1184 struct shmem_inode_info
*info
, unsigned long idx
)
1186 struct vm_area_struct pvma
;
1189 /* Create a pseudo vma that just contains the policy */
1191 pvma
.vm_pgoff
= idx
;
1193 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, idx
);
1194 page
= alloc_page_vma(gfp
, &pvma
, 0);
1195 mpol_free(pvma
.vm_policy
);
1198 #else /* !CONFIG_NUMA */
1200 static inline int shmem_parse_mpol(char *value
, int *policy
,
1201 nodemask_t
*policy_nodes
)
1206 static inline void shmem_show_mpol(struct seq_file
*seq
, int policy
,
1207 const nodemask_t policy_nodes
)
1210 #endif /* CONFIG_TMPFS */
1212 static inline struct page
*shmem_swapin(swp_entry_t entry
, gfp_t gfp
,
1213 struct shmem_inode_info
*info
, unsigned long idx
)
1215 return swapin_readahead(entry
, gfp
, NULL
, 0);
1218 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
1219 struct shmem_inode_info
*info
, unsigned long idx
)
1221 return alloc_page(gfp
);
1223 #endif /* CONFIG_NUMA */
1226 * shmem_getpage - either get the page from swap or allocate a new one
1228 * If we allocate a new one we do not mark it dirty. That's up to the
1229 * vm. If we swap it in we mark it dirty since we also free the swap
1230 * entry since a page cannot live in both the swap and page cache
1232 static int shmem_getpage(struct inode
*inode
, unsigned long idx
,
1233 struct page
**pagep
, enum sgp_type sgp
, int *type
)
1235 struct address_space
*mapping
= inode
->i_mapping
;
1236 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1237 struct shmem_sb_info
*sbinfo
;
1238 struct page
*filepage
= *pagep
;
1239 struct page
*swappage
;
1245 if (idx
>= SHMEM_MAX_INDEX
)
1252 * Normally, filepage is NULL on entry, and either found
1253 * uptodate immediately, or allocated and zeroed, or read
1254 * in under swappage, which is then assigned to filepage.
1255 * But shmem_readpage (required for splice) passes in a locked
1256 * filepage, which may be found not uptodate by other callers
1257 * too, and may need to be copied from the swappage read in.
1261 filepage
= find_lock_page(mapping
, idx
);
1262 if (filepage
&& PageUptodate(filepage
))
1265 gfp
= mapping_gfp_mask(mapping
);
1268 * Try to preload while we can wait, to not make a habit of
1269 * draining atomic reserves; but don't latch on to this cpu.
1271 error
= radix_tree_preload(gfp
& ~__GFP_HIGHMEM
);
1274 radix_tree_preload_end();
1277 spin_lock(&info
->lock
);
1278 shmem_recalc_inode(inode
);
1279 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1280 if (IS_ERR(entry
)) {
1281 spin_unlock(&info
->lock
);
1282 error
= PTR_ERR(entry
);
1288 /* Look it up and read it in.. */
1289 swappage
= lookup_swap_cache(swap
);
1291 shmem_swp_unmap(entry
);
1292 /* here we actually do the io */
1293 if (type
&& !(*type
& VM_FAULT_MAJOR
)) {
1294 __count_vm_event(PGMAJFAULT
);
1295 *type
|= VM_FAULT_MAJOR
;
1297 spin_unlock(&info
->lock
);
1298 swappage
= shmem_swapin(swap
, gfp
, info
, idx
);
1300 spin_lock(&info
->lock
);
1301 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1303 error
= PTR_ERR(entry
);
1305 if (entry
->val
== swap
.val
)
1307 shmem_swp_unmap(entry
);
1309 spin_unlock(&info
->lock
);
1314 wait_on_page_locked(swappage
);
1315 page_cache_release(swappage
);
1319 /* We have to do this with page locked to prevent races */
1320 if (TestSetPageLocked(swappage
)) {
1321 shmem_swp_unmap(entry
);
1322 spin_unlock(&info
->lock
);
1323 wait_on_page_locked(swappage
);
1324 page_cache_release(swappage
);
1327 if (PageWriteback(swappage
)) {
1328 shmem_swp_unmap(entry
);
1329 spin_unlock(&info
->lock
);
1330 wait_on_page_writeback(swappage
);
1331 unlock_page(swappage
);
1332 page_cache_release(swappage
);
1335 if (!PageUptodate(swappage
)) {
1336 shmem_swp_unmap(entry
);
1337 spin_unlock(&info
->lock
);
1338 unlock_page(swappage
);
1339 page_cache_release(swappage
);
1345 shmem_swp_set(info
, entry
, 0);
1346 shmem_swp_unmap(entry
);
1347 delete_from_swap_cache(swappage
);
1348 spin_unlock(&info
->lock
);
1349 copy_highpage(filepage
, swappage
);
1350 unlock_page(swappage
);
1351 page_cache_release(swappage
);
1352 flush_dcache_page(filepage
);
1353 SetPageUptodate(filepage
);
1354 set_page_dirty(filepage
);
1356 } else if (!(error
= add_to_page_cache(
1357 swappage
, mapping
, idx
, GFP_NOWAIT
))) {
1358 info
->flags
|= SHMEM_PAGEIN
;
1359 shmem_swp_set(info
, entry
, 0);
1360 shmem_swp_unmap(entry
);
1361 delete_from_swap_cache(swappage
);
1362 spin_unlock(&info
->lock
);
1363 filepage
= swappage
;
1364 set_page_dirty(filepage
);
1367 shmem_swp_unmap(entry
);
1368 spin_unlock(&info
->lock
);
1369 unlock_page(swappage
);
1370 if (error
== -ENOMEM
) {
1371 /* allow reclaim from this memory cgroup */
1372 error
= mem_cgroup_cache_charge(swappage
,
1373 current
->mm
, gfp
& ~__GFP_HIGHMEM
);
1375 page_cache_release(swappage
);
1378 mem_cgroup_uncharge_page(swappage
);
1380 page_cache_release(swappage
);
1383 } else if (sgp
== SGP_READ
&& !filepage
) {
1384 shmem_swp_unmap(entry
);
1385 filepage
= find_get_page(mapping
, idx
);
1387 (!PageUptodate(filepage
) || TestSetPageLocked(filepage
))) {
1388 spin_unlock(&info
->lock
);
1389 wait_on_page_locked(filepage
);
1390 page_cache_release(filepage
);
1394 spin_unlock(&info
->lock
);
1396 shmem_swp_unmap(entry
);
1397 sbinfo
= SHMEM_SB(inode
->i_sb
);
1398 if (sbinfo
->max_blocks
) {
1399 spin_lock(&sbinfo
->stat_lock
);
1400 if (sbinfo
->free_blocks
== 0 ||
1401 shmem_acct_block(info
->flags
)) {
1402 spin_unlock(&sbinfo
->stat_lock
);
1403 spin_unlock(&info
->lock
);
1407 sbinfo
->free_blocks
--;
1408 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1409 spin_unlock(&sbinfo
->stat_lock
);
1410 } else if (shmem_acct_block(info
->flags
)) {
1411 spin_unlock(&info
->lock
);
1417 spin_unlock(&info
->lock
);
1418 filepage
= shmem_alloc_page(gfp
, info
, idx
);
1420 shmem_unacct_blocks(info
->flags
, 1);
1421 shmem_free_blocks(inode
, 1);
1426 /* Precharge page while we can wait, compensate after */
1427 error
= mem_cgroup_cache_charge(filepage
, current
->mm
,
1428 gfp
& ~__GFP_HIGHMEM
);
1430 page_cache_release(filepage
);
1431 shmem_unacct_blocks(info
->flags
, 1);
1432 shmem_free_blocks(inode
, 1);
1437 spin_lock(&info
->lock
);
1438 entry
= shmem_swp_alloc(info
, idx
, sgp
);
1440 error
= PTR_ERR(entry
);
1443 shmem_swp_unmap(entry
);
1445 if (error
|| swap
.val
|| 0 != add_to_page_cache_lru(
1446 filepage
, mapping
, idx
, GFP_NOWAIT
)) {
1447 spin_unlock(&info
->lock
);
1448 mem_cgroup_uncharge_page(filepage
);
1449 page_cache_release(filepage
);
1450 shmem_unacct_blocks(info
->flags
, 1);
1451 shmem_free_blocks(inode
, 1);
1457 mem_cgroup_uncharge_page(filepage
);
1458 info
->flags
|= SHMEM_PAGEIN
;
1462 spin_unlock(&info
->lock
);
1463 clear_highpage(filepage
);
1464 flush_dcache_page(filepage
);
1465 SetPageUptodate(filepage
);
1466 if (sgp
== SGP_DIRTY
)
1467 set_page_dirty(filepage
);
1474 if (*pagep
!= filepage
) {
1475 unlock_page(filepage
);
1476 page_cache_release(filepage
);
1481 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1483 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1487 if (((loff_t
)vmf
->pgoff
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
))
1488 return VM_FAULT_SIGBUS
;
1490 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1492 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1494 mark_page_accessed(vmf
->page
);
1495 return ret
| VM_FAULT_LOCKED
;
1499 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*new)
1501 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1502 return mpol_set_shared_policy(&SHMEM_I(i
)->policy
, vma
, new);
1505 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1508 struct inode
*i
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1511 idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1512 return mpol_shared_policy_lookup(&SHMEM_I(i
)->policy
, idx
);
1516 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1518 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1519 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1520 int retval
= -ENOMEM
;
1522 spin_lock(&info
->lock
);
1523 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1524 if (!user_shm_lock(inode
->i_size
, user
))
1526 info
->flags
|= VM_LOCKED
;
1528 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1529 user_shm_unlock(inode
->i_size
, user
);
1530 info
->flags
&= ~VM_LOCKED
;
1534 spin_unlock(&info
->lock
);
1538 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1540 file_accessed(file
);
1541 vma
->vm_ops
= &shmem_vm_ops
;
1542 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1546 static struct inode
*
1547 shmem_get_inode(struct super_block
*sb
, int mode
, dev_t dev
)
1549 struct inode
*inode
;
1550 struct shmem_inode_info
*info
;
1551 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1553 if (shmem_reserve_inode(sb
))
1556 inode
= new_inode(sb
);
1558 inode
->i_mode
= mode
;
1559 inode
->i_uid
= current
->fsuid
;
1560 inode
->i_gid
= current
->fsgid
;
1561 inode
->i_blocks
= 0;
1562 inode
->i_mapping
->a_ops
= &shmem_aops
;
1563 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1564 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1565 inode
->i_generation
= get_seconds();
1566 info
= SHMEM_I(inode
);
1567 memset(info
, 0, (char *)inode
- (char *)info
);
1568 spin_lock_init(&info
->lock
);
1569 INIT_LIST_HEAD(&info
->swaplist
);
1571 switch (mode
& S_IFMT
) {
1573 inode
->i_op
= &shmem_special_inode_operations
;
1574 init_special_inode(inode
, mode
, dev
);
1577 inode
->i_op
= &shmem_inode_operations
;
1578 inode
->i_fop
= &shmem_file_operations
;
1579 mpol_shared_policy_init(&info
->policy
, sbinfo
->policy
,
1580 &sbinfo
->policy_nodes
);
1584 /* Some things misbehave if size == 0 on a directory */
1585 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1586 inode
->i_op
= &shmem_dir_inode_operations
;
1587 inode
->i_fop
= &simple_dir_operations
;
1591 * Must not load anything in the rbtree,
1592 * mpol_free_shared_policy will not be called.
1594 mpol_shared_policy_init(&info
->policy
, MPOL_DEFAULT
,
1599 shmem_free_inode(sb
);
1604 static const struct inode_operations shmem_symlink_inode_operations
;
1605 static const struct inode_operations shmem_symlink_inline_operations
;
1608 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1609 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1610 * below the loop driver, in the generic fashion that many filesystems support.
1612 static int shmem_readpage(struct file
*file
, struct page
*page
)
1614 struct inode
*inode
= page
->mapping
->host
;
1615 int error
= shmem_getpage(inode
, page
->index
, &page
, SGP_CACHE
, NULL
);
1621 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1622 loff_t pos
, unsigned len
, unsigned flags
,
1623 struct page
**pagep
, void **fsdata
)
1625 struct inode
*inode
= mapping
->host
;
1626 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1628 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1632 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1633 loff_t pos
, unsigned len
, unsigned copied
,
1634 struct page
*page
, void *fsdata
)
1636 struct inode
*inode
= mapping
->host
;
1638 if (pos
+ copied
> inode
->i_size
)
1639 i_size_write(inode
, pos
+ copied
);
1642 set_page_dirty(page
);
1643 page_cache_release(page
);
1648 static void do_shmem_file_read(struct file
*filp
, loff_t
*ppos
, read_descriptor_t
*desc
, read_actor_t actor
)
1650 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
1651 struct address_space
*mapping
= inode
->i_mapping
;
1652 unsigned long index
, offset
;
1653 enum sgp_type sgp
= SGP_READ
;
1656 * Might this read be for a stacking filesystem? Then when reading
1657 * holes of a sparse file, we actually need to allocate those pages,
1658 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1660 if (segment_eq(get_fs(), KERNEL_DS
))
1663 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1664 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1667 struct page
*page
= NULL
;
1668 unsigned long end_index
, nr
, ret
;
1669 loff_t i_size
= i_size_read(inode
);
1671 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1672 if (index
> end_index
)
1674 if (index
== end_index
) {
1675 nr
= i_size
& ~PAGE_CACHE_MASK
;
1680 desc
->error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1682 if (desc
->error
== -EINVAL
)
1690 * We must evaluate after, since reads (unlike writes)
1691 * are called without i_mutex protection against truncate
1693 nr
= PAGE_CACHE_SIZE
;
1694 i_size
= i_size_read(inode
);
1695 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1696 if (index
== end_index
) {
1697 nr
= i_size
& ~PAGE_CACHE_MASK
;
1700 page_cache_release(page
);
1708 * If users can be writing to this page using arbitrary
1709 * virtual addresses, take care about potential aliasing
1710 * before reading the page on the kernel side.
1712 if (mapping_writably_mapped(mapping
))
1713 flush_dcache_page(page
);
1715 * Mark the page accessed if we read the beginning.
1718 mark_page_accessed(page
);
1720 page
= ZERO_PAGE(0);
1721 page_cache_get(page
);
1725 * Ok, we have the page, and it's up-to-date, so
1726 * now we can copy it to user space...
1728 * The actor routine returns how many bytes were actually used..
1729 * NOTE! This may not be the same as how much of a user buffer
1730 * we filled up (we may be padding etc), so we can only update
1731 * "pos" here (the actor routine has to update the user buffer
1732 * pointers and the remaining count).
1734 ret
= actor(desc
, page
, offset
, nr
);
1736 index
+= offset
>> PAGE_CACHE_SHIFT
;
1737 offset
&= ~PAGE_CACHE_MASK
;
1739 page_cache_release(page
);
1740 if (ret
!= nr
|| !desc
->count
)
1746 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1747 file_accessed(filp
);
1750 static ssize_t
shmem_file_read(struct file
*filp
, char __user
*buf
, size_t count
, loff_t
*ppos
)
1752 read_descriptor_t desc
;
1754 if ((ssize_t
) count
< 0)
1756 if (!access_ok(VERIFY_WRITE
, buf
, count
))
1766 do_shmem_file_read(filp
, ppos
, &desc
, file_read_actor
);
1768 return desc
.written
;
1772 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1774 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
1776 buf
->f_type
= TMPFS_MAGIC
;
1777 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1778 buf
->f_namelen
= NAME_MAX
;
1779 spin_lock(&sbinfo
->stat_lock
);
1780 if (sbinfo
->max_blocks
) {
1781 buf
->f_blocks
= sbinfo
->max_blocks
;
1782 buf
->f_bavail
= buf
->f_bfree
= sbinfo
->free_blocks
;
1784 if (sbinfo
->max_inodes
) {
1785 buf
->f_files
= sbinfo
->max_inodes
;
1786 buf
->f_ffree
= sbinfo
->free_inodes
;
1788 /* else leave those fields 0 like simple_statfs */
1789 spin_unlock(&sbinfo
->stat_lock
);
1794 * File creation. Allocate an inode, and we're done..
1797 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, int mode
, dev_t dev
)
1799 struct inode
*inode
= shmem_get_inode(dir
->i_sb
, mode
, dev
);
1800 int error
= -ENOSPC
;
1803 error
= security_inode_init_security(inode
, dir
, NULL
, NULL
,
1806 if (error
!= -EOPNOTSUPP
) {
1811 error
= shmem_acl_init(inode
, dir
);
1816 if (dir
->i_mode
& S_ISGID
) {
1817 inode
->i_gid
= dir
->i_gid
;
1819 inode
->i_mode
|= S_ISGID
;
1821 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1822 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1823 d_instantiate(dentry
, inode
);
1824 dget(dentry
); /* Extra count - pin the dentry in core */
1829 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
1833 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
1839 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, int mode
,
1840 struct nameidata
*nd
)
1842 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
1848 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1850 struct inode
*inode
= old_dentry
->d_inode
;
1854 * No ordinary (disk based) filesystem counts links as inodes;
1855 * but each new link needs a new dentry, pinning lowmem, and
1856 * tmpfs dentries cannot be pruned until they are unlinked.
1858 ret
= shmem_reserve_inode(inode
->i_sb
);
1862 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1863 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1865 atomic_inc(&inode
->i_count
); /* New dentry reference */
1866 dget(dentry
); /* Extra pinning count for the created dentry */
1867 d_instantiate(dentry
, inode
);
1872 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
1874 struct inode
*inode
= dentry
->d_inode
;
1876 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
1877 shmem_free_inode(inode
->i_sb
);
1879 dir
->i_size
-= BOGO_DIRENT_SIZE
;
1880 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1882 dput(dentry
); /* Undo the count from "create" - this does all the work */
1886 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1888 if (!simple_empty(dentry
))
1891 drop_nlink(dentry
->d_inode
);
1893 return shmem_unlink(dir
, dentry
);
1897 * The VFS layer already does all the dentry stuff for rename,
1898 * we just have to decrement the usage count for the target if
1899 * it exists so that the VFS layer correctly free's it when it
1902 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
1904 struct inode
*inode
= old_dentry
->d_inode
;
1905 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
1907 if (!simple_empty(new_dentry
))
1910 if (new_dentry
->d_inode
) {
1911 (void) shmem_unlink(new_dir
, new_dentry
);
1913 drop_nlink(old_dir
);
1914 } else if (they_are_dirs
) {
1915 drop_nlink(old_dir
);
1919 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
1920 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
1921 old_dir
->i_ctime
= old_dir
->i_mtime
=
1922 new_dir
->i_ctime
= new_dir
->i_mtime
=
1923 inode
->i_ctime
= CURRENT_TIME
;
1927 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1931 struct inode
*inode
;
1932 struct page
*page
= NULL
;
1934 struct shmem_inode_info
*info
;
1936 len
= strlen(symname
) + 1;
1937 if (len
> PAGE_CACHE_SIZE
)
1938 return -ENAMETOOLONG
;
1940 inode
= shmem_get_inode(dir
->i_sb
, S_IFLNK
|S_IRWXUGO
, 0);
1944 error
= security_inode_init_security(inode
, dir
, NULL
, NULL
,
1947 if (error
!= -EOPNOTSUPP
) {
1954 info
= SHMEM_I(inode
);
1955 inode
->i_size
= len
-1;
1956 if (len
<= (char *)inode
- (char *)info
) {
1958 memcpy(info
, symname
, len
);
1959 inode
->i_op
= &shmem_symlink_inline_operations
;
1961 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
1967 inode
->i_op
= &shmem_symlink_inode_operations
;
1968 kaddr
= kmap_atomic(page
, KM_USER0
);
1969 memcpy(kaddr
, symname
, len
);
1970 kunmap_atomic(kaddr
, KM_USER0
);
1971 set_page_dirty(page
);
1972 page_cache_release(page
);
1974 if (dir
->i_mode
& S_ISGID
)
1975 inode
->i_gid
= dir
->i_gid
;
1976 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1977 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1978 d_instantiate(dentry
, inode
);
1983 static void *shmem_follow_link_inline(struct dentry
*dentry
, struct nameidata
*nd
)
1985 nd_set_link(nd
, (char *)SHMEM_I(dentry
->d_inode
));
1989 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
1991 struct page
*page
= NULL
;
1992 int res
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
1993 nd_set_link(nd
, res
? ERR_PTR(res
) : kmap(page
));
1999 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
2001 if (!IS_ERR(nd_get_link(nd
))) {
2002 struct page
*page
= cookie
;
2004 mark_page_accessed(page
);
2005 page_cache_release(page
);
2009 static const struct inode_operations shmem_symlink_inline_operations
= {
2010 .readlink
= generic_readlink
,
2011 .follow_link
= shmem_follow_link_inline
,
2014 static const struct inode_operations shmem_symlink_inode_operations
= {
2015 .truncate
= shmem_truncate
,
2016 .readlink
= generic_readlink
,
2017 .follow_link
= shmem_follow_link
,
2018 .put_link
= shmem_put_link
,
2021 #ifdef CONFIG_TMPFS_POSIX_ACL
2023 * Superblocks without xattr inode operations will get security.* xattr
2024 * support from the VFS "for free". As soon as we have any other xattrs
2025 * like ACLs, we also need to implement the security.* handlers at
2026 * filesystem level, though.
2029 static size_t shmem_xattr_security_list(struct inode
*inode
, char *list
,
2030 size_t list_len
, const char *name
,
2033 return security_inode_listsecurity(inode
, list
, list_len
);
2036 static int shmem_xattr_security_get(struct inode
*inode
, const char *name
,
2037 void *buffer
, size_t size
)
2039 if (strcmp(name
, "") == 0)
2041 return xattr_getsecurity(inode
, name
, buffer
, size
);
2044 static int shmem_xattr_security_set(struct inode
*inode
, const char *name
,
2045 const void *value
, size_t size
, int flags
)
2047 if (strcmp(name
, "") == 0)
2049 return security_inode_setsecurity(inode
, name
, value
, size
, flags
);
2052 static struct xattr_handler shmem_xattr_security_handler
= {
2053 .prefix
= XATTR_SECURITY_PREFIX
,
2054 .list
= shmem_xattr_security_list
,
2055 .get
= shmem_xattr_security_get
,
2056 .set
= shmem_xattr_security_set
,
2059 static struct xattr_handler
*shmem_xattr_handlers
[] = {
2060 &shmem_xattr_acl_access_handler
,
2061 &shmem_xattr_acl_default_handler
,
2062 &shmem_xattr_security_handler
,
2067 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2069 return ERR_PTR(-ESTALE
);
2072 static int shmem_match(struct inode
*ino
, void *vfh
)
2076 inum
= (inum
<< 32) | fh
[1];
2077 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2080 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2081 struct fid
*fid
, int fh_len
, int fh_type
)
2083 struct inode
*inode
;
2084 struct dentry
*dentry
= NULL
;
2085 u64 inum
= fid
->raw
[2];
2086 inum
= (inum
<< 32) | fid
->raw
[1];
2091 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2092 shmem_match
, fid
->raw
);
2094 dentry
= d_find_alias(inode
);
2101 static int shmem_encode_fh(struct dentry
*dentry
, __u32
*fh
, int *len
,
2104 struct inode
*inode
= dentry
->d_inode
;
2109 if (hlist_unhashed(&inode
->i_hash
)) {
2110 /* Unfortunately insert_inode_hash is not idempotent,
2111 * so as we hash inodes here rather than at creation
2112 * time, we need a lock to ensure we only try
2115 static DEFINE_SPINLOCK(lock
);
2117 if (hlist_unhashed(&inode
->i_hash
))
2118 __insert_inode_hash(inode
,
2119 inode
->i_ino
+ inode
->i_generation
);
2123 fh
[0] = inode
->i_generation
;
2124 fh
[1] = inode
->i_ino
;
2125 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2131 static const struct export_operations shmem_export_ops
= {
2132 .get_parent
= shmem_get_parent
,
2133 .encode_fh
= shmem_encode_fh
,
2134 .fh_to_dentry
= shmem_fh_to_dentry
,
2137 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2140 char *this_char
, *value
, *rest
;
2142 while (options
!= NULL
) {
2143 this_char
= options
;
2146 * NUL-terminate this option: unfortunately,
2147 * mount options form a comma-separated list,
2148 * but mpol's nodelist may also contain commas.
2150 options
= strchr(options
, ',');
2151 if (options
== NULL
)
2154 if (!isdigit(*options
)) {
2161 if ((value
= strchr(this_char
,'=')) != NULL
) {
2165 "tmpfs: No value for mount option '%s'\n",
2170 if (!strcmp(this_char
,"size")) {
2171 unsigned long long size
;
2172 size
= memparse(value
,&rest
);
2174 size
<<= PAGE_SHIFT
;
2175 size
*= totalram_pages
;
2181 sbinfo
->max_blocks
=
2182 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2183 } else if (!strcmp(this_char
,"nr_blocks")) {
2184 sbinfo
->max_blocks
= memparse(value
, &rest
);
2187 } else if (!strcmp(this_char
,"nr_inodes")) {
2188 sbinfo
->max_inodes
= memparse(value
, &rest
);
2191 } else if (!strcmp(this_char
,"mode")) {
2194 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2197 } else if (!strcmp(this_char
,"uid")) {
2200 sbinfo
->uid
= simple_strtoul(value
, &rest
, 0);
2203 } else if (!strcmp(this_char
,"gid")) {
2206 sbinfo
->gid
= simple_strtoul(value
, &rest
, 0);
2209 } else if (!strcmp(this_char
,"mpol")) {
2210 if (shmem_parse_mpol(value
, &sbinfo
->policy
,
2211 &sbinfo
->policy_nodes
))
2214 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2222 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2228 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2230 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2231 struct shmem_sb_info config
= *sbinfo
;
2232 unsigned long blocks
;
2233 unsigned long inodes
;
2234 int error
= -EINVAL
;
2236 if (shmem_parse_options(data
, &config
, true))
2239 spin_lock(&sbinfo
->stat_lock
);
2240 blocks
= sbinfo
->max_blocks
- sbinfo
->free_blocks
;
2241 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2242 if (config
.max_blocks
< blocks
)
2244 if (config
.max_inodes
< inodes
)
2247 * Those tests also disallow limited->unlimited while any are in
2248 * use, so i_blocks will always be zero when max_blocks is zero;
2249 * but we must separately disallow unlimited->limited, because
2250 * in that case we have no record of how much is already in use.
2252 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2254 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2258 sbinfo
->max_blocks
= config
.max_blocks
;
2259 sbinfo
->free_blocks
= config
.max_blocks
- blocks
;
2260 sbinfo
->max_inodes
= config
.max_inodes
;
2261 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2262 sbinfo
->policy
= config
.policy
;
2263 sbinfo
->policy_nodes
= config
.policy_nodes
;
2265 spin_unlock(&sbinfo
->stat_lock
);
2269 static int shmem_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
2271 struct shmem_sb_info
*sbinfo
= SHMEM_SB(vfs
->mnt_sb
);
2273 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2274 seq_printf(seq
, ",size=%luk",
2275 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2276 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2277 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2278 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2279 seq_printf(seq
, ",mode=%03o", sbinfo
->mode
);
2280 if (sbinfo
->uid
!= 0)
2281 seq_printf(seq
, ",uid=%u", sbinfo
->uid
);
2282 if (sbinfo
->gid
!= 0)
2283 seq_printf(seq
, ",gid=%u", sbinfo
->gid
);
2284 shmem_show_mpol(seq
, sbinfo
->policy
, sbinfo
->policy_nodes
);
2287 #endif /* CONFIG_TMPFS */
2289 static void shmem_put_super(struct super_block
*sb
)
2291 kfree(sb
->s_fs_info
);
2292 sb
->s_fs_info
= NULL
;
2295 static int shmem_fill_super(struct super_block
*sb
,
2296 void *data
, int silent
)
2298 struct inode
*inode
;
2299 struct dentry
*root
;
2300 struct shmem_sb_info
*sbinfo
;
2303 /* Round up to L1_CACHE_BYTES to resist false sharing */
2304 sbinfo
= kmalloc(max((int)sizeof(struct shmem_sb_info
),
2305 L1_CACHE_BYTES
), GFP_KERNEL
);
2309 sbinfo
->max_blocks
= 0;
2310 sbinfo
->max_inodes
= 0;
2311 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
2312 sbinfo
->uid
= current
->fsuid
;
2313 sbinfo
->gid
= current
->fsgid
;
2314 sbinfo
->policy
= MPOL_DEFAULT
;
2315 sbinfo
->policy_nodes
= node_states
[N_HIGH_MEMORY
];
2316 sb
->s_fs_info
= sbinfo
;
2320 * Per default we only allow half of the physical ram per
2321 * tmpfs instance, limiting inodes to one per page of lowmem;
2322 * but the internal instance is left unlimited.
2324 if (!(sb
->s_flags
& MS_NOUSER
)) {
2325 sbinfo
->max_blocks
= shmem_default_max_blocks();
2326 sbinfo
->max_inodes
= shmem_default_max_inodes();
2327 if (shmem_parse_options(data
, sbinfo
, false)) {
2332 sb
->s_export_op
= &shmem_export_ops
;
2334 sb
->s_flags
|= MS_NOUSER
;
2337 spin_lock_init(&sbinfo
->stat_lock
);
2338 sbinfo
->free_blocks
= sbinfo
->max_blocks
;
2339 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
2341 sb
->s_maxbytes
= SHMEM_MAX_BYTES
;
2342 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
2343 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
2344 sb
->s_magic
= TMPFS_MAGIC
;
2345 sb
->s_op
= &shmem_ops
;
2346 sb
->s_time_gran
= 1;
2347 #ifdef CONFIG_TMPFS_POSIX_ACL
2348 sb
->s_xattr
= shmem_xattr_handlers
;
2349 sb
->s_flags
|= MS_POSIXACL
;
2352 inode
= shmem_get_inode(sb
, S_IFDIR
| sbinfo
->mode
, 0);
2355 inode
->i_uid
= sbinfo
->uid
;
2356 inode
->i_gid
= sbinfo
->gid
;
2357 root
= d_alloc_root(inode
);
2366 shmem_put_super(sb
);
2370 static struct kmem_cache
*shmem_inode_cachep
;
2372 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2374 struct shmem_inode_info
*p
;
2375 p
= (struct shmem_inode_info
*)kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
2378 return &p
->vfs_inode
;
2381 static void shmem_destroy_inode(struct inode
*inode
)
2383 if ((inode
->i_mode
& S_IFMT
) == S_IFREG
) {
2384 /* only struct inode is valid if it's an inline symlink */
2385 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2387 shmem_acl_destroy_inode(inode
);
2388 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2391 static void init_once(struct kmem_cache
*cachep
, void *foo
)
2393 struct shmem_inode_info
*p
= (struct shmem_inode_info
*) foo
;
2395 inode_init_once(&p
->vfs_inode
);
2396 #ifdef CONFIG_TMPFS_POSIX_ACL
2398 p
->i_default_acl
= NULL
;
2402 static int init_inodecache(void)
2404 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2405 sizeof(struct shmem_inode_info
),
2406 0, SLAB_PANIC
, init_once
);
2410 static void destroy_inodecache(void)
2412 kmem_cache_destroy(shmem_inode_cachep
);
2415 static const struct address_space_operations shmem_aops
= {
2416 .writepage
= shmem_writepage
,
2417 .set_page_dirty
= __set_page_dirty_no_writeback
,
2419 .readpage
= shmem_readpage
,
2420 .write_begin
= shmem_write_begin
,
2421 .write_end
= shmem_write_end
,
2423 .migratepage
= migrate_page
,
2426 static const struct file_operations shmem_file_operations
= {
2429 .llseek
= generic_file_llseek
,
2430 .read
= shmem_file_read
,
2431 .write
= do_sync_write
,
2432 .aio_write
= generic_file_aio_write
,
2433 .fsync
= simple_sync_file
,
2434 .splice_read
= generic_file_splice_read
,
2435 .splice_write
= generic_file_splice_write
,
2439 static const struct inode_operations shmem_inode_operations
= {
2440 .truncate
= shmem_truncate
,
2441 .setattr
= shmem_notify_change
,
2442 .truncate_range
= shmem_truncate_range
,
2443 #ifdef CONFIG_TMPFS_POSIX_ACL
2444 .setxattr
= generic_setxattr
,
2445 .getxattr
= generic_getxattr
,
2446 .listxattr
= generic_listxattr
,
2447 .removexattr
= generic_removexattr
,
2448 .permission
= shmem_permission
,
2453 static const struct inode_operations shmem_dir_inode_operations
= {
2455 .create
= shmem_create
,
2456 .lookup
= simple_lookup
,
2458 .unlink
= shmem_unlink
,
2459 .symlink
= shmem_symlink
,
2460 .mkdir
= shmem_mkdir
,
2461 .rmdir
= shmem_rmdir
,
2462 .mknod
= shmem_mknod
,
2463 .rename
= shmem_rename
,
2465 #ifdef CONFIG_TMPFS_POSIX_ACL
2466 .setattr
= shmem_notify_change
,
2467 .setxattr
= generic_setxattr
,
2468 .getxattr
= generic_getxattr
,
2469 .listxattr
= generic_listxattr
,
2470 .removexattr
= generic_removexattr
,
2471 .permission
= shmem_permission
,
2475 static const struct inode_operations shmem_special_inode_operations
= {
2476 #ifdef CONFIG_TMPFS_POSIX_ACL
2477 .setattr
= shmem_notify_change
,
2478 .setxattr
= generic_setxattr
,
2479 .getxattr
= generic_getxattr
,
2480 .listxattr
= generic_listxattr
,
2481 .removexattr
= generic_removexattr
,
2482 .permission
= shmem_permission
,
2486 static const struct super_operations shmem_ops
= {
2487 .alloc_inode
= shmem_alloc_inode
,
2488 .destroy_inode
= shmem_destroy_inode
,
2490 .statfs
= shmem_statfs
,
2491 .remount_fs
= shmem_remount_fs
,
2492 .show_options
= shmem_show_options
,
2494 .delete_inode
= shmem_delete_inode
,
2495 .drop_inode
= generic_delete_inode
,
2496 .put_super
= shmem_put_super
,
2499 static struct vm_operations_struct shmem_vm_ops
= {
2500 .fault
= shmem_fault
,
2502 .set_policy
= shmem_set_policy
,
2503 .get_policy
= shmem_get_policy
,
2508 static int shmem_get_sb(struct file_system_type
*fs_type
,
2509 int flags
, const char *dev_name
, void *data
, struct vfsmount
*mnt
)
2511 return get_sb_nodev(fs_type
, flags
, data
, shmem_fill_super
, mnt
);
2514 static struct file_system_type tmpfs_fs_type
= {
2515 .owner
= THIS_MODULE
,
2517 .get_sb
= shmem_get_sb
,
2518 .kill_sb
= kill_litter_super
,
2520 static struct vfsmount
*shm_mnt
;
2522 static int __init
init_tmpfs(void)
2526 error
= bdi_init(&shmem_backing_dev_info
);
2530 error
= init_inodecache();
2534 error
= register_filesystem(&tmpfs_fs_type
);
2536 printk(KERN_ERR
"Could not register tmpfs\n");
2540 shm_mnt
= vfs_kern_mount(&tmpfs_fs_type
, MS_NOUSER
,
2541 tmpfs_fs_type
.name
, NULL
);
2542 if (IS_ERR(shm_mnt
)) {
2543 error
= PTR_ERR(shm_mnt
);
2544 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2550 unregister_filesystem(&tmpfs_fs_type
);
2552 destroy_inodecache();
2554 bdi_destroy(&shmem_backing_dev_info
);
2556 shm_mnt
= ERR_PTR(error
);
2559 module_init(init_tmpfs
)
2562 * shmem_file_setup - get an unlinked file living in tmpfs
2563 * @name: name for dentry (to be seen in /proc/<pid>/maps
2564 * @size: size to be set for the file
2567 struct file
*shmem_file_setup(char *name
, loff_t size
, unsigned long flags
)
2571 struct inode
*inode
;
2572 struct dentry
*dentry
, *root
;
2575 if (IS_ERR(shm_mnt
))
2576 return (void *)shm_mnt
;
2578 if (size
< 0 || size
> SHMEM_MAX_BYTES
)
2579 return ERR_PTR(-EINVAL
);
2581 if (shmem_acct_size(flags
, size
))
2582 return ERR_PTR(-ENOMEM
);
2586 this.len
= strlen(name
);
2587 this.hash
= 0; /* will go */
2588 root
= shm_mnt
->mnt_root
;
2589 dentry
= d_alloc(root
, &this);
2594 file
= get_empty_filp();
2599 inode
= shmem_get_inode(root
->d_sb
, S_IFREG
| S_IRWXUGO
, 0);
2603 SHMEM_I(inode
)->flags
= flags
& VM_ACCOUNT
;
2604 d_instantiate(dentry
, inode
);
2605 inode
->i_size
= size
;
2606 inode
->i_nlink
= 0; /* It is unlinked */
2607 init_file(file
, shm_mnt
, dentry
, FMODE_WRITE
| FMODE_READ
,
2608 &shmem_file_operations
);
2616 shmem_unacct_size(flags
, size
);
2617 return ERR_PTR(error
);
2621 * shmem_zero_setup - setup a shared anonymous mapping
2622 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2624 int shmem_zero_setup(struct vm_area_struct
*vma
)
2627 loff_t size
= vma
->vm_end
- vma
->vm_start
;
2629 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
2631 return PTR_ERR(file
);
2635 vma
->vm_file
= file
;
2636 vma
->vm_ops
= &shmem_vm_ops
;