2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/ctype.h>
31 #include <linux/cache.h>
32 #include <linux/init.h>
33 #include <linux/signal.h>
34 #include <linux/lmb.h>
36 #include <asm/processor.h>
37 #include <asm/pgtable.h>
39 #include <asm/mmu_context.h>
41 #include <asm/types.h>
42 #include <asm/system.h>
43 #include <asm/uaccess.h>
44 #include <asm/machdep.h>
46 #include <asm/abs_addr.h>
47 #include <asm/tlbflush.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
58 #define DBG(fmt...) udbg_printf(fmt)
64 #define DBG_LOW(fmt...) udbg_printf(fmt)
66 #define DBG_LOW(fmt...)
73 * Note: pte --> Linux PTE
74 * HPTE --> PowerPC Hashed Page Table Entry
77 * htab_initialize is called with the MMU off (of course), but
78 * the kernel has been copied down to zero so it can directly
79 * reference global data. At this point it is very difficult
80 * to print debug info.
85 extern unsigned long dart_tablebase
;
86 #endif /* CONFIG_U3_DART */
88 static unsigned long _SDR1
;
89 struct mmu_psize_def mmu_psize_defs
[MMU_PAGE_COUNT
];
91 struct hash_pte
*htab_address
;
92 unsigned long htab_size_bytes
;
93 unsigned long htab_hash_mask
;
94 int mmu_linear_psize
= MMU_PAGE_4K
;
95 int mmu_virtual_psize
= MMU_PAGE_4K
;
96 int mmu_vmalloc_psize
= MMU_PAGE_4K
;
97 #ifdef CONFIG_SPARSEMEM_VMEMMAP
98 int mmu_vmemmap_psize
= MMU_PAGE_4K
;
100 int mmu_io_psize
= MMU_PAGE_4K
;
101 int mmu_kernel_ssize
= MMU_SEGSIZE_256M
;
102 int mmu_highuser_ssize
= MMU_SEGSIZE_256M
;
103 u16 mmu_slb_size
= 64;
104 #ifdef CONFIG_HUGETLB_PAGE
105 int mmu_huge_psize
= MMU_PAGE_16M
;
106 unsigned int HPAGE_SHIFT
;
108 #ifdef CONFIG_PPC_64K_PAGES
109 int mmu_ci_restrictions
;
111 #ifdef CONFIG_DEBUG_PAGEALLOC
112 static u8
*linear_map_hash_slots
;
113 static unsigned long linear_map_hash_count
;
114 static DEFINE_SPINLOCK(linear_map_hash_lock
);
115 #endif /* CONFIG_DEBUG_PAGEALLOC */
117 /* There are definitions of page sizes arrays to be used when none
118 * is provided by the firmware.
121 /* Pre-POWER4 CPUs (4k pages only)
123 struct mmu_psize_def mmu_psize_defaults_old
[] = {
133 /* POWER4, GPUL, POWER5
135 * Support for 16Mb large pages
137 struct mmu_psize_def mmu_psize_defaults_gp
[] = {
155 int htab_bolt_mapping(unsigned long vstart
, unsigned long vend
,
156 unsigned long pstart
, unsigned long mode
,
157 int psize
, int ssize
)
159 unsigned long vaddr
, paddr
;
160 unsigned int step
, shift
;
161 unsigned long tmp_mode
;
164 shift
= mmu_psize_defs
[psize
].shift
;
167 for (vaddr
= vstart
, paddr
= pstart
; vaddr
< vend
;
168 vaddr
+= step
, paddr
+= step
) {
169 unsigned long hash
, hpteg
;
170 unsigned long vsid
= get_kernel_vsid(vaddr
, ssize
);
171 unsigned long va
= hpt_va(vaddr
, vsid
, ssize
);
175 /* Make non-kernel text non-executable */
176 if (!in_kernel_text(vaddr
))
177 tmp_mode
= mode
| HPTE_R_N
;
179 hash
= hpt_hash(va
, shift
, ssize
);
180 hpteg
= ((hash
& htab_hash_mask
) * HPTES_PER_GROUP
);
182 DBG("htab_bolt_mapping: calling %p\n", ppc_md
.hpte_insert
);
184 BUG_ON(!ppc_md
.hpte_insert
);
185 ret
= ppc_md
.hpte_insert(hpteg
, va
, paddr
,
186 tmp_mode
, HPTE_V_BOLTED
, psize
, ssize
);
190 #ifdef CONFIG_DEBUG_PAGEALLOC
191 if ((paddr
>> PAGE_SHIFT
) < linear_map_hash_count
)
192 linear_map_hash_slots
[paddr
>> PAGE_SHIFT
] = ret
| 0x80;
193 #endif /* CONFIG_DEBUG_PAGEALLOC */
195 return ret
< 0 ? ret
: 0;
198 #ifdef CONFIG_MEMORY_HOTPLUG
199 static int htab_remove_mapping(unsigned long vstart
, unsigned long vend
,
200 int psize
, int ssize
)
203 unsigned int step
, shift
;
205 shift
= mmu_psize_defs
[psize
].shift
;
208 if (!ppc_md
.hpte_removebolted
) {
209 printk(KERN_WARNING
"Platform doesn't implement "
210 "hpte_removebolted\n");
214 for (vaddr
= vstart
; vaddr
< vend
; vaddr
+= step
)
215 ppc_md
.hpte_removebolted(vaddr
, psize
, ssize
);
219 #endif /* CONFIG_MEMORY_HOTPLUG */
221 static int __init
htab_dt_scan_seg_sizes(unsigned long node
,
222 const char *uname
, int depth
,
225 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
227 unsigned long size
= 0;
229 /* We are scanning "cpu" nodes only */
230 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
233 prop
= (u32
*)of_get_flat_dt_prop(node
, "ibm,processor-segment-sizes",
237 for (; size
>= 4; size
-= 4, ++prop
) {
239 DBG("1T segment support detected\n");
240 cur_cpu_spec
->cpu_features
|= CPU_FTR_1T_SEGMENT
;
244 cur_cpu_spec
->cpu_features
&= ~CPU_FTR_NO_SLBIE_B
;
248 static void __init
htab_init_seg_sizes(void)
250 of_scan_flat_dt(htab_dt_scan_seg_sizes
, NULL
);
253 static int __init
htab_dt_scan_page_sizes(unsigned long node
,
254 const char *uname
, int depth
,
257 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
259 unsigned long size
= 0;
261 /* We are scanning "cpu" nodes only */
262 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
265 prop
= (u32
*)of_get_flat_dt_prop(node
,
266 "ibm,segment-page-sizes", &size
);
268 DBG("Page sizes from device-tree:\n");
270 cur_cpu_spec
->cpu_features
&= ~(CPU_FTR_16M_PAGE
);
272 unsigned int shift
= prop
[0];
273 unsigned int slbenc
= prop
[1];
274 unsigned int lpnum
= prop
[2];
275 unsigned int lpenc
= 0;
276 struct mmu_psize_def
*def
;
279 size
-= 3; prop
+= 3;
280 while(size
> 0 && lpnum
) {
281 if (prop
[0] == shift
)
283 prop
+= 2; size
-= 2;
298 cur_cpu_spec
->cpu_features
|= CPU_FTR_16M_PAGE
;
306 def
= &mmu_psize_defs
[idx
];
311 def
->avpnm
= (1 << (shift
- 23)) - 1;
314 /* We don't know for sure what's up with tlbiel, so
315 * for now we only set it for 4K and 64K pages
317 if (idx
== MMU_PAGE_4K
|| idx
== MMU_PAGE_64K
)
322 DBG(" %d: shift=%02x, sllp=%04x, avpnm=%08x, "
323 "tlbiel=%d, penc=%d\n",
324 idx
, shift
, def
->sllp
, def
->avpnm
, def
->tlbiel
,
332 static void __init
htab_init_page_sizes(void)
336 /* Default to 4K pages only */
337 memcpy(mmu_psize_defs
, mmu_psize_defaults_old
,
338 sizeof(mmu_psize_defaults_old
));
341 * Try to find the available page sizes in the device-tree
343 rc
= of_scan_flat_dt(htab_dt_scan_page_sizes
, NULL
);
344 if (rc
!= 0) /* Found */
348 * Not in the device-tree, let's fallback on known size
349 * list for 16M capable GP & GR
351 if (cpu_has_feature(CPU_FTR_16M_PAGE
))
352 memcpy(mmu_psize_defs
, mmu_psize_defaults_gp
,
353 sizeof(mmu_psize_defaults_gp
));
355 #ifndef CONFIG_DEBUG_PAGEALLOC
357 * Pick a size for the linear mapping. Currently, we only support
358 * 16M, 1M and 4K which is the default
360 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
)
361 mmu_linear_psize
= MMU_PAGE_16M
;
362 else if (mmu_psize_defs
[MMU_PAGE_1M
].shift
)
363 mmu_linear_psize
= MMU_PAGE_1M
;
364 #endif /* CONFIG_DEBUG_PAGEALLOC */
366 #ifdef CONFIG_PPC_64K_PAGES
368 * Pick a size for the ordinary pages. Default is 4K, we support
369 * 64K for user mappings and vmalloc if supported by the processor.
370 * We only use 64k for ioremap if the processor
371 * (and firmware) support cache-inhibited large pages.
372 * If not, we use 4k and set mmu_ci_restrictions so that
373 * hash_page knows to switch processes that use cache-inhibited
374 * mappings to 4k pages.
376 if (mmu_psize_defs
[MMU_PAGE_64K
].shift
) {
377 mmu_virtual_psize
= MMU_PAGE_64K
;
378 mmu_vmalloc_psize
= MMU_PAGE_64K
;
379 if (mmu_linear_psize
== MMU_PAGE_4K
)
380 mmu_linear_psize
= MMU_PAGE_64K
;
381 if (cpu_has_feature(CPU_FTR_CI_LARGE_PAGE
)) {
383 * Don't use 64k pages for ioremap on pSeries, since
384 * that would stop us accessing the HEA ethernet.
386 if (!machine_is(pseries
))
387 mmu_io_psize
= MMU_PAGE_64K
;
389 mmu_ci_restrictions
= 1;
391 #endif /* CONFIG_PPC_64K_PAGES */
393 #ifdef CONFIG_SPARSEMEM_VMEMMAP
394 /* We try to use 16M pages for vmemmap if that is supported
395 * and we have at least 1G of RAM at boot
397 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
&&
398 lmb_phys_mem_size() >= 0x40000000)
399 mmu_vmemmap_psize
= MMU_PAGE_16M
;
400 else if (mmu_psize_defs
[MMU_PAGE_64K
].shift
)
401 mmu_vmemmap_psize
= MMU_PAGE_64K
;
403 mmu_vmemmap_psize
= MMU_PAGE_4K
;
404 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
406 printk(KERN_DEBUG
"Page orders: linear mapping = %d, "
407 "virtual = %d, io = %d"
408 #ifdef CONFIG_SPARSEMEM_VMEMMAP
412 mmu_psize_defs
[mmu_linear_psize
].shift
,
413 mmu_psize_defs
[mmu_virtual_psize
].shift
,
414 mmu_psize_defs
[mmu_io_psize
].shift
415 #ifdef CONFIG_SPARSEMEM_VMEMMAP
416 ,mmu_psize_defs
[mmu_vmemmap_psize
].shift
420 #ifdef CONFIG_HUGETLB_PAGE
421 /* Init large page size. Currently, we pick 16M or 1M depending
422 * on what is available
424 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
)
425 set_huge_psize(MMU_PAGE_16M
);
426 /* With 4k/4level pagetables, we can't (for now) cope with a
427 * huge page size < PMD_SIZE */
428 else if (mmu_psize_defs
[MMU_PAGE_1M
].shift
)
429 set_huge_psize(MMU_PAGE_1M
);
430 #endif /* CONFIG_HUGETLB_PAGE */
433 static int __init
htab_dt_scan_pftsize(unsigned long node
,
434 const char *uname
, int depth
,
437 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
440 /* We are scanning "cpu" nodes only */
441 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
444 prop
= (u32
*)of_get_flat_dt_prop(node
, "ibm,pft-size", NULL
);
446 /* pft_size[0] is the NUMA CEC cookie */
447 ppc64_pft_size
= prop
[1];
453 static unsigned long __init
htab_get_table_size(void)
455 unsigned long mem_size
, rnd_mem_size
, pteg_count
;
457 /* If hash size isn't already provided by the platform, we try to
458 * retrieve it from the device-tree. If it's not there neither, we
459 * calculate it now based on the total RAM size
461 if (ppc64_pft_size
== 0)
462 of_scan_flat_dt(htab_dt_scan_pftsize
, NULL
);
464 return 1UL << ppc64_pft_size
;
466 /* round mem_size up to next power of 2 */
467 mem_size
= lmb_phys_mem_size();
468 rnd_mem_size
= 1UL << __ilog2(mem_size
);
469 if (rnd_mem_size
< mem_size
)
473 pteg_count
= max(rnd_mem_size
>> (12 + 1), 1UL << 11);
475 return pteg_count
<< 7;
478 #ifdef CONFIG_MEMORY_HOTPLUG
479 void create_section_mapping(unsigned long start
, unsigned long end
)
481 BUG_ON(htab_bolt_mapping(start
, end
, __pa(start
),
482 _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_COHERENT
| PP_RWXX
,
483 mmu_linear_psize
, mmu_kernel_ssize
));
486 int remove_section_mapping(unsigned long start
, unsigned long end
)
488 return htab_remove_mapping(start
, end
, mmu_linear_psize
,
491 #endif /* CONFIG_MEMORY_HOTPLUG */
493 static inline void make_bl(unsigned int *insn_addr
, void *func
)
495 unsigned long funcp
= *((unsigned long *)func
);
496 int offset
= funcp
- (unsigned long)insn_addr
;
498 *insn_addr
= (unsigned int)(0x48000001 | (offset
& 0x03fffffc));
499 flush_icache_range((unsigned long)insn_addr
, 4+
500 (unsigned long)insn_addr
);
503 static void __init
htab_finish_init(void)
505 extern unsigned int *htab_call_hpte_insert1
;
506 extern unsigned int *htab_call_hpte_insert2
;
507 extern unsigned int *htab_call_hpte_remove
;
508 extern unsigned int *htab_call_hpte_updatepp
;
510 #ifdef CONFIG_PPC_HAS_HASH_64K
511 extern unsigned int *ht64_call_hpte_insert1
;
512 extern unsigned int *ht64_call_hpte_insert2
;
513 extern unsigned int *ht64_call_hpte_remove
;
514 extern unsigned int *ht64_call_hpte_updatepp
;
516 make_bl(ht64_call_hpte_insert1
, ppc_md
.hpte_insert
);
517 make_bl(ht64_call_hpte_insert2
, ppc_md
.hpte_insert
);
518 make_bl(ht64_call_hpte_remove
, ppc_md
.hpte_remove
);
519 make_bl(ht64_call_hpte_updatepp
, ppc_md
.hpte_updatepp
);
520 #endif /* CONFIG_PPC_HAS_HASH_64K */
522 make_bl(htab_call_hpte_insert1
, ppc_md
.hpte_insert
);
523 make_bl(htab_call_hpte_insert2
, ppc_md
.hpte_insert
);
524 make_bl(htab_call_hpte_remove
, ppc_md
.hpte_remove
);
525 make_bl(htab_call_hpte_updatepp
, ppc_md
.hpte_updatepp
);
528 void __init
htab_initialize(void)
531 unsigned long pteg_count
;
532 unsigned long mode_rw
;
533 unsigned long base
= 0, size
= 0, limit
;
536 extern unsigned long tce_alloc_start
, tce_alloc_end
;
538 DBG(" -> htab_initialize()\n");
540 /* Initialize segment sizes */
541 htab_init_seg_sizes();
543 /* Initialize page sizes */
544 htab_init_page_sizes();
546 if (cpu_has_feature(CPU_FTR_1T_SEGMENT
)) {
547 mmu_kernel_ssize
= MMU_SEGSIZE_1T
;
548 mmu_highuser_ssize
= MMU_SEGSIZE_1T
;
549 printk(KERN_INFO
"Using 1TB segments\n");
553 * Calculate the required size of the htab. We want the number of
554 * PTEGs to equal one half the number of real pages.
556 htab_size_bytes
= htab_get_table_size();
557 pteg_count
= htab_size_bytes
>> 7;
559 htab_hash_mask
= pteg_count
- 1;
561 if (firmware_has_feature(FW_FEATURE_LPAR
)) {
562 /* Using a hypervisor which owns the htab */
566 /* Find storage for the HPT. Must be contiguous in
567 * the absolute address space. On cell we want it to be
568 * in the first 2 Gig so we can use it for IOMMU hacks.
570 if (machine_is(cell
))
575 table
= lmb_alloc_base(htab_size_bytes
, htab_size_bytes
, limit
);
577 DBG("Hash table allocated at %lx, size: %lx\n", table
,
580 htab_address
= abs_to_virt(table
);
582 /* htab absolute addr + encoded htabsize */
583 _SDR1
= table
+ __ilog2(pteg_count
) - 11;
585 /* Initialize the HPT with no entries */
586 memset((void *)table
, 0, htab_size_bytes
);
589 mtspr(SPRN_SDR1
, _SDR1
);
592 mode_rw
= _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_COHERENT
| PP_RWXX
;
594 #ifdef CONFIG_DEBUG_PAGEALLOC
595 linear_map_hash_count
= lmb_end_of_DRAM() >> PAGE_SHIFT
;
596 linear_map_hash_slots
= __va(lmb_alloc_base(linear_map_hash_count
,
598 memset(linear_map_hash_slots
, 0, linear_map_hash_count
);
599 #endif /* CONFIG_DEBUG_PAGEALLOC */
601 /* On U3 based machines, we need to reserve the DART area and
602 * _NOT_ map it to avoid cache paradoxes as it's remapped non
606 /* create bolted the linear mapping in the hash table */
607 for (i
=0; i
< lmb
.memory
.cnt
; i
++) {
608 base
= (unsigned long)__va(lmb
.memory
.region
[i
].base
);
609 size
= lmb
.memory
.region
[i
].size
;
611 DBG("creating mapping for region: %lx : %lx\n", base
, size
);
613 #ifdef CONFIG_U3_DART
614 /* Do not map the DART space. Fortunately, it will be aligned
615 * in such a way that it will not cross two lmb regions and
616 * will fit within a single 16Mb page.
617 * The DART space is assumed to be a full 16Mb region even if
618 * we only use 2Mb of that space. We will use more of it later
619 * for AGP GART. We have to use a full 16Mb large page.
621 DBG("DART base: %lx\n", dart_tablebase
);
623 if (dart_tablebase
!= 0 && dart_tablebase
>= base
624 && dart_tablebase
< (base
+ size
)) {
625 unsigned long dart_table_end
= dart_tablebase
+ 16 * MB
;
626 if (base
!= dart_tablebase
)
627 BUG_ON(htab_bolt_mapping(base
, dart_tablebase
,
631 if ((base
+ size
) > dart_table_end
)
632 BUG_ON(htab_bolt_mapping(dart_tablebase
+16*MB
,
634 __pa(dart_table_end
),
640 #endif /* CONFIG_U3_DART */
641 BUG_ON(htab_bolt_mapping(base
, base
+ size
, __pa(base
),
642 mode_rw
, mmu_linear_psize
, mmu_kernel_ssize
));
646 * If we have a memory_limit and we've allocated TCEs then we need to
647 * explicitly map the TCE area at the top of RAM. We also cope with the
648 * case that the TCEs start below memory_limit.
649 * tce_alloc_start/end are 16MB aligned so the mapping should work
650 * for either 4K or 16MB pages.
652 if (tce_alloc_start
) {
653 tce_alloc_start
= (unsigned long)__va(tce_alloc_start
);
654 tce_alloc_end
= (unsigned long)__va(tce_alloc_end
);
656 if (base
+ size
>= tce_alloc_start
)
657 tce_alloc_start
= base
+ size
+ 1;
659 BUG_ON(htab_bolt_mapping(tce_alloc_start
, tce_alloc_end
,
660 __pa(tce_alloc_start
), mode_rw
,
661 mmu_linear_psize
, mmu_kernel_ssize
));
666 DBG(" <- htab_initialize()\n");
671 void htab_initialize_secondary(void)
673 if (!firmware_has_feature(FW_FEATURE_LPAR
))
674 mtspr(SPRN_SDR1
, _SDR1
);
678 * Called by asm hashtable.S for doing lazy icache flush
680 unsigned int hash_page_do_lazy_icache(unsigned int pp
, pte_t pte
, int trap
)
684 if (!pfn_valid(pte_pfn(pte
)))
687 page
= pte_page(pte
);
690 if (!test_bit(PG_arch_1
, &page
->flags
) && !PageReserved(page
)) {
692 __flush_dcache_icache(page_address(page
));
693 set_bit(PG_arch_1
, &page
->flags
);
701 * Demote a segment to using 4k pages.
702 * For now this makes the whole process use 4k pages.
704 #ifdef CONFIG_PPC_64K_PAGES
705 void demote_segment_4k(struct mm_struct
*mm
, unsigned long addr
)
707 if (mm
->context
.user_psize
== MMU_PAGE_4K
)
709 slice_set_user_psize(mm
, MMU_PAGE_4K
);
710 #ifdef CONFIG_SPU_BASE
711 spu_flush_all_slbs(mm
);
713 if (get_paca()->context
.user_psize
!= MMU_PAGE_4K
) {
714 get_paca()->context
= mm
->context
;
715 slb_flush_and_rebolt();
718 #endif /* CONFIG_PPC_64K_PAGES */
720 #ifdef CONFIG_PPC_SUBPAGE_PROT
722 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
723 * Userspace sets the subpage permissions using the subpage_prot system call.
725 * Result is 0: full permissions, _PAGE_RW: read-only,
726 * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
728 static int subpage_protection(pgd_t
*pgdir
, unsigned long ea
)
730 struct subpage_prot_table
*spt
= pgd_subpage_prot(pgdir
);
734 if (ea
>= spt
->maxaddr
)
736 if (ea
< 0x100000000) {
737 /* addresses below 4GB use spt->low_prot */
738 sbpm
= spt
->low_prot
;
740 sbpm
= spt
->protptrs
[ea
>> SBP_L3_SHIFT
];
744 sbpp
= sbpm
[(ea
>> SBP_L2_SHIFT
) & (SBP_L2_COUNT
- 1)];
747 spp
= sbpp
[(ea
>> PAGE_SHIFT
) & (SBP_L1_COUNT
- 1)];
749 /* extract 2-bit bitfield for this 4k subpage */
750 spp
>>= 30 - 2 * ((ea
>> 12) & 0xf);
752 /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
753 spp
= ((spp
& 2) ? _PAGE_USER
: 0) | ((spp
& 1) ? _PAGE_RW
: 0);
757 #else /* CONFIG_PPC_SUBPAGE_PROT */
758 static inline int subpage_protection(pgd_t
*pgdir
, unsigned long ea
)
766 * 1 - normal page fault
767 * -1 - critical hash insertion error
768 * -2 - access not permitted by subpage protection mechanism
770 int hash_page(unsigned long ea
, unsigned long access
, unsigned long trap
)
774 struct mm_struct
*mm
;
777 int rc
, user_region
= 0, local
= 0;
780 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
783 if ((ea
& ~REGION_MASK
) >= PGTABLE_RANGE
) {
784 DBG_LOW(" out of pgtable range !\n");
788 /* Get region & vsid */
789 switch (REGION_ID(ea
)) {
794 DBG_LOW(" user region with no mm !\n");
797 #ifdef CONFIG_PPC_MM_SLICES
798 psize
= get_slice_psize(mm
, ea
);
800 psize
= mm
->context
.user_psize
;
802 ssize
= user_segment_size(ea
);
803 vsid
= get_vsid(mm
->context
.id
, ea
, ssize
);
805 case VMALLOC_REGION_ID
:
807 vsid
= get_kernel_vsid(ea
, mmu_kernel_ssize
);
808 if (ea
< VMALLOC_END
)
809 psize
= mmu_vmalloc_psize
;
811 psize
= mmu_io_psize
;
812 ssize
= mmu_kernel_ssize
;
816 * Send the problem up to do_page_fault
820 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm
, mm
->pgd
, vsid
);
827 /* Check CPU locality */
828 tmp
= cpumask_of_cpu(smp_processor_id());
829 if (user_region
&& cpus_equal(mm
->cpu_vm_mask
, tmp
))
832 #ifdef CONFIG_HUGETLB_PAGE
833 /* Handle hugepage regions */
834 if (HPAGE_SHIFT
&& psize
== mmu_huge_psize
) {
835 DBG_LOW(" -> huge page !\n");
836 return hash_huge_page(mm
, access
, ea
, vsid
, local
, trap
);
838 #endif /* CONFIG_HUGETLB_PAGE */
840 #ifndef CONFIG_PPC_64K_PAGES
841 /* If we use 4K pages and our psize is not 4K, then we are hitting
842 * a special driver mapping, we need to align the address before
845 if (psize
!= MMU_PAGE_4K
)
846 ea
&= ~((1ul << mmu_psize_defs
[psize
].shift
) - 1);
847 #endif /* CONFIG_PPC_64K_PAGES */
849 /* Get PTE and page size from page tables */
850 ptep
= find_linux_pte(pgdir
, ea
);
851 if (ptep
== NULL
|| !pte_present(*ptep
)) {
852 DBG_LOW(" no PTE !\n");
856 #ifndef CONFIG_PPC_64K_PAGES
857 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep
));
859 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep
),
860 pte_val(*(ptep
+ PTRS_PER_PTE
)));
862 /* Pre-check access permissions (will be re-checked atomically
863 * in __hash_page_XX but this pre-check is a fast path
865 if (access
& ~pte_val(*ptep
)) {
866 DBG_LOW(" no access !\n");
870 /* Do actual hashing */
871 #ifdef CONFIG_PPC_64K_PAGES
872 /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
873 if (pte_val(*ptep
) & _PAGE_4K_PFN
) {
874 demote_segment_4k(mm
, ea
);
878 /* If this PTE is non-cacheable and we have restrictions on
879 * using non cacheable large pages, then we switch to 4k
881 if (mmu_ci_restrictions
&& psize
== MMU_PAGE_64K
&&
882 (pte_val(*ptep
) & _PAGE_NO_CACHE
)) {
884 demote_segment_4k(mm
, ea
);
886 } else if (ea
< VMALLOC_END
) {
888 * some driver did a non-cacheable mapping
889 * in vmalloc space, so switch vmalloc
892 printk(KERN_ALERT
"Reducing vmalloc segment "
893 "to 4kB pages because of "
894 "non-cacheable mapping\n");
895 psize
= mmu_vmalloc_psize
= MMU_PAGE_4K
;
896 #ifdef CONFIG_SPU_BASE
897 spu_flush_all_slbs(mm
);
902 if (psize
!= get_paca()->context
.user_psize
) {
903 get_paca()->context
= mm
->context
;
904 slb_flush_and_rebolt();
906 } else if (get_paca()->vmalloc_sllp
!=
907 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
) {
908 get_paca()->vmalloc_sllp
=
909 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
;
910 slb_vmalloc_update();
912 #endif /* CONFIG_PPC_64K_PAGES */
914 #ifdef CONFIG_PPC_HAS_HASH_64K
915 if (psize
== MMU_PAGE_64K
)
916 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
, local
, ssize
);
918 #endif /* CONFIG_PPC_HAS_HASH_64K */
920 int spp
= subpage_protection(pgdir
, ea
);
924 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
,
928 #ifndef CONFIG_PPC_64K_PAGES
929 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep
));
931 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep
),
932 pte_val(*(ptep
+ PTRS_PER_PTE
)));
934 DBG_LOW(" -> rc=%d\n", rc
);
937 EXPORT_SYMBOL_GPL(hash_page
);
939 void hash_preload(struct mm_struct
*mm
, unsigned long ea
,
940 unsigned long access
, unsigned long trap
)
950 BUG_ON(REGION_ID(ea
) != USER_REGION_ID
);
952 #ifdef CONFIG_PPC_MM_SLICES
953 /* We only prefault standard pages for now */
954 if (unlikely(get_slice_psize(mm
, ea
) != mm
->context
.user_psize
))
958 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
959 " trap=%lx\n", mm
, mm
->pgd
, ea
, access
, trap
);
961 /* Get Linux PTE if available */
965 ptep
= find_linux_pte(pgdir
, ea
);
969 #ifdef CONFIG_PPC_64K_PAGES
970 /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
971 * a 64K kernel), then we don't preload, hash_page() will take
972 * care of it once we actually try to access the page.
973 * That way we don't have to duplicate all of the logic for segment
974 * page size demotion here
976 if (pte_val(*ptep
) & (_PAGE_4K_PFN
| _PAGE_NO_CACHE
))
978 #endif /* CONFIG_PPC_64K_PAGES */
981 ssize
= user_segment_size(ea
);
982 vsid
= get_vsid(mm
->context
.id
, ea
, ssize
);
984 /* Hash doesn't like irqs */
985 local_irq_save(flags
);
987 /* Is that local to this CPU ? */
988 mask
= cpumask_of_cpu(smp_processor_id());
989 if (cpus_equal(mm
->cpu_vm_mask
, mask
))
993 #ifdef CONFIG_PPC_HAS_HASH_64K
994 if (mm
->context
.user_psize
== MMU_PAGE_64K
)
995 __hash_page_64K(ea
, access
, vsid
, ptep
, trap
, local
, ssize
);
997 #endif /* CONFIG_PPC_HAS_HASH_64K */
998 __hash_page_4K(ea
, access
, vsid
, ptep
, trap
, local
, ssize
,
999 subpage_protection(pgdir
, ea
));
1001 local_irq_restore(flags
);
1004 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1005 * do not forget to update the assembly call site !
1007 void flush_hash_page(unsigned long va
, real_pte_t pte
, int psize
, int ssize
,
1010 unsigned long hash
, index
, shift
, hidx
, slot
;
1012 DBG_LOW("flush_hash_page(va=%016x)\n", va
);
1013 pte_iterate_hashed_subpages(pte
, psize
, va
, index
, shift
) {
1014 hash
= hpt_hash(va
, shift
, ssize
);
1015 hidx
= __rpte_to_hidx(pte
, index
);
1016 if (hidx
& _PTEIDX_SECONDARY
)
1018 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1019 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1020 DBG_LOW(" sub %d: hash=%x, hidx=%x\n", index
, slot
, hidx
);
1021 ppc_md
.hpte_invalidate(slot
, va
, psize
, ssize
, local
);
1022 } pte_iterate_hashed_end();
1025 void flush_hash_range(unsigned long number
, int local
)
1027 if (ppc_md
.flush_hash_range
)
1028 ppc_md
.flush_hash_range(number
, local
);
1031 struct ppc64_tlb_batch
*batch
=
1032 &__get_cpu_var(ppc64_tlb_batch
);
1034 for (i
= 0; i
< number
; i
++)
1035 flush_hash_page(batch
->vaddr
[i
], batch
->pte
[i
],
1036 batch
->psize
, batch
->ssize
, local
);
1041 * low_hash_fault is called when we the low level hash code failed
1042 * to instert a PTE due to an hypervisor error
1044 void low_hash_fault(struct pt_regs
*regs
, unsigned long address
, int rc
)
1046 if (user_mode(regs
)) {
1047 #ifdef CONFIG_PPC_SUBPAGE_PROT
1049 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, address
);
1052 _exception(SIGBUS
, regs
, BUS_ADRERR
, address
);
1054 bad_page_fault(regs
, address
, SIGBUS
);
1057 #ifdef CONFIG_DEBUG_PAGEALLOC
1058 static void kernel_map_linear_page(unsigned long vaddr
, unsigned long lmi
)
1060 unsigned long hash
, hpteg
;
1061 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1062 unsigned long va
= hpt_va(vaddr
, vsid
, mmu_kernel_ssize
);
1063 unsigned long mode
= _PAGE_ACCESSED
| _PAGE_DIRTY
|
1064 _PAGE_COHERENT
| PP_RWXX
| HPTE_R_N
;
1067 hash
= hpt_hash(va
, PAGE_SHIFT
, mmu_kernel_ssize
);
1068 hpteg
= ((hash
& htab_hash_mask
) * HPTES_PER_GROUP
);
1070 ret
= ppc_md
.hpte_insert(hpteg
, va
, __pa(vaddr
),
1071 mode
, HPTE_V_BOLTED
,
1072 mmu_linear_psize
, mmu_kernel_ssize
);
1074 spin_lock(&linear_map_hash_lock
);
1075 BUG_ON(linear_map_hash_slots
[lmi
] & 0x80);
1076 linear_map_hash_slots
[lmi
] = ret
| 0x80;
1077 spin_unlock(&linear_map_hash_lock
);
1080 static void kernel_unmap_linear_page(unsigned long vaddr
, unsigned long lmi
)
1082 unsigned long hash
, hidx
, slot
;
1083 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1084 unsigned long va
= hpt_va(vaddr
, vsid
, mmu_kernel_ssize
);
1086 hash
= hpt_hash(va
, PAGE_SHIFT
, mmu_kernel_ssize
);
1087 spin_lock(&linear_map_hash_lock
);
1088 BUG_ON(!(linear_map_hash_slots
[lmi
] & 0x80));
1089 hidx
= linear_map_hash_slots
[lmi
] & 0x7f;
1090 linear_map_hash_slots
[lmi
] = 0;
1091 spin_unlock(&linear_map_hash_lock
);
1092 if (hidx
& _PTEIDX_SECONDARY
)
1094 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1095 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1096 ppc_md
.hpte_invalidate(slot
, va
, mmu_linear_psize
, mmu_kernel_ssize
, 0);
1099 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1101 unsigned long flags
, vaddr
, lmi
;
1104 local_irq_save(flags
);
1105 for (i
= 0; i
< numpages
; i
++, page
++) {
1106 vaddr
= (unsigned long)page_address(page
);
1107 lmi
= __pa(vaddr
) >> PAGE_SHIFT
;
1108 if (lmi
>= linear_map_hash_count
)
1111 kernel_map_linear_page(vaddr
, lmi
);
1113 kernel_unmap_linear_page(vaddr
, lmi
);
1115 local_irq_restore(flags
);
1117 #endif /* CONFIG_DEBUG_PAGEALLOC */