plip: fix parport_register_device name parameter
[linux-2.6/zen-sources.git] / net / core / skbuff.c
blob32d5826b7177078eb51dd99bc1887b974516888f
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
9 * Fixes:
10 * Alan Cox : Fixed the worst of the load
11 * balancer bugs.
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
25 * NOTE:
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/netdevice.h>
50 #ifdef CONFIG_NET_CLS_ACT
51 #include <net/pkt_sched.h>
52 #endif
53 #include <linux/string.h>
54 #include <linux/skbuff.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
60 #include <net/protocol.h>
61 #include <net/dst.h>
62 #include <net/sock.h>
63 #include <net/checksum.h>
64 #include <net/xfrm.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
69 #include "kmap_skb.h"
71 static struct kmem_cache *skbuff_head_cache __read_mostly;
72 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
75 * Keep out-of-line to prevent kernel bloat.
76 * __builtin_return_address is not used because it is not always
77 * reliable.
80 /**
81 * skb_over_panic - private function
82 * @skb: buffer
83 * @sz: size
84 * @here: address
86 * Out of line support code for skb_put(). Not user callable.
88 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
90 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
91 "data:%p tail:%#lx end:%#lx dev:%s\n",
92 here, skb->len, sz, skb->head, skb->data,
93 (unsigned long)skb->tail, (unsigned long)skb->end,
94 skb->dev ? skb->dev->name : "<NULL>");
95 BUG();
98 /**
99 * skb_under_panic - private function
100 * @skb: buffer
101 * @sz: size
102 * @here: address
104 * Out of line support code for skb_push(). Not user callable.
107 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
109 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
110 "data:%p tail:%#lx end:%#lx dev:%s\n",
111 here, skb->len, sz, skb->head, skb->data,
112 (unsigned long)skb->tail, (unsigned long)skb->end,
113 skb->dev ? skb->dev->name : "<NULL>");
114 BUG();
117 void skb_truesize_bug(struct sk_buff *skb)
119 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
120 "len=%u, sizeof(sk_buff)=%Zd\n",
121 skb->truesize, skb->len, sizeof(struct sk_buff));
123 EXPORT_SYMBOL(skb_truesize_bug);
125 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
126 * 'private' fields and also do memory statistics to find all the
127 * [BEEP] leaks.
132 * __alloc_skb - allocate a network buffer
133 * @size: size to allocate
134 * @gfp_mask: allocation mask
135 * @fclone: allocate from fclone cache instead of head cache
136 * and allocate a cloned (child) skb
137 * @node: numa node to allocate memory on
139 * Allocate a new &sk_buff. The returned buffer has no headroom and a
140 * tail room of size bytes. The object has a reference count of one.
141 * The return is the buffer. On a failure the return is %NULL.
143 * Buffers may only be allocated from interrupts using a @gfp_mask of
144 * %GFP_ATOMIC.
146 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
147 int fclone, int node)
149 struct kmem_cache *cache;
150 struct skb_shared_info *shinfo;
151 struct sk_buff *skb;
152 u8 *data;
154 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
156 /* Get the HEAD */
157 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
158 if (!skb)
159 goto out;
161 size = SKB_DATA_ALIGN(size);
162 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
163 gfp_mask, node);
164 if (!data)
165 goto nodata;
168 * See comment in sk_buff definition, just before the 'tail' member
170 memset(skb, 0, offsetof(struct sk_buff, tail));
171 skb->truesize = size + sizeof(struct sk_buff);
172 atomic_set(&skb->users, 1);
173 skb->head = data;
174 skb->data = data;
175 skb_reset_tail_pointer(skb);
176 skb->end = skb->tail + size;
177 /* make sure we initialize shinfo sequentially */
178 shinfo = skb_shinfo(skb);
179 atomic_set(&shinfo->dataref, 1);
180 shinfo->nr_frags = 0;
181 shinfo->gso_size = 0;
182 shinfo->gso_segs = 0;
183 shinfo->gso_type = 0;
184 shinfo->ip6_frag_id = 0;
185 shinfo->frag_list = NULL;
187 if (fclone) {
188 struct sk_buff *child = skb + 1;
189 atomic_t *fclone_ref = (atomic_t *) (child + 1);
191 skb->fclone = SKB_FCLONE_ORIG;
192 atomic_set(fclone_ref, 1);
194 child->fclone = SKB_FCLONE_UNAVAILABLE;
196 out:
197 return skb;
198 nodata:
199 kmem_cache_free(cache, skb);
200 skb = NULL;
201 goto out;
205 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
206 * @dev: network device to receive on
207 * @length: length to allocate
208 * @gfp_mask: get_free_pages mask, passed to alloc_skb
210 * Allocate a new &sk_buff and assign it a usage count of one. The
211 * buffer has unspecified headroom built in. Users should allocate
212 * the headroom they think they need without accounting for the
213 * built in space. The built in space is used for optimisations.
215 * %NULL is returned if there is no free memory.
217 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
218 unsigned int length, gfp_t gfp_mask)
220 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
221 struct sk_buff *skb;
223 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
224 if (likely(skb)) {
225 skb_reserve(skb, NET_SKB_PAD);
226 skb->dev = dev;
228 return skb;
231 static void skb_drop_list(struct sk_buff **listp)
233 struct sk_buff *list = *listp;
235 *listp = NULL;
237 do {
238 struct sk_buff *this = list;
239 list = list->next;
240 kfree_skb(this);
241 } while (list);
244 static inline void skb_drop_fraglist(struct sk_buff *skb)
246 skb_drop_list(&skb_shinfo(skb)->frag_list);
249 static void skb_clone_fraglist(struct sk_buff *skb)
251 struct sk_buff *list;
253 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
254 skb_get(list);
257 static void skb_release_data(struct sk_buff *skb)
259 if (!skb->cloned ||
260 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
261 &skb_shinfo(skb)->dataref)) {
262 if (skb_shinfo(skb)->nr_frags) {
263 int i;
264 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
265 put_page(skb_shinfo(skb)->frags[i].page);
268 if (skb_shinfo(skb)->frag_list)
269 skb_drop_fraglist(skb);
271 kfree(skb->head);
276 * Free an skbuff by memory without cleaning the state.
278 void kfree_skbmem(struct sk_buff *skb)
280 struct sk_buff *other;
281 atomic_t *fclone_ref;
283 skb_release_data(skb);
284 switch (skb->fclone) {
285 case SKB_FCLONE_UNAVAILABLE:
286 kmem_cache_free(skbuff_head_cache, skb);
287 break;
289 case SKB_FCLONE_ORIG:
290 fclone_ref = (atomic_t *) (skb + 2);
291 if (atomic_dec_and_test(fclone_ref))
292 kmem_cache_free(skbuff_fclone_cache, skb);
293 break;
295 case SKB_FCLONE_CLONE:
296 fclone_ref = (atomic_t *) (skb + 1);
297 other = skb - 1;
299 /* The clone portion is available for
300 * fast-cloning again.
302 skb->fclone = SKB_FCLONE_UNAVAILABLE;
304 if (atomic_dec_and_test(fclone_ref))
305 kmem_cache_free(skbuff_fclone_cache, other);
306 break;
311 * __kfree_skb - private function
312 * @skb: buffer
314 * Free an sk_buff. Release anything attached to the buffer.
315 * Clean the state. This is an internal helper function. Users should
316 * always call kfree_skb
319 void __kfree_skb(struct sk_buff *skb)
321 dst_release(skb->dst);
322 #ifdef CONFIG_XFRM
323 secpath_put(skb->sp);
324 #endif
325 if (skb->destructor) {
326 WARN_ON(in_irq());
327 skb->destructor(skb);
329 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
330 nf_conntrack_put(skb->nfct);
331 nf_conntrack_put_reasm(skb->nfct_reasm);
332 #endif
333 #ifdef CONFIG_BRIDGE_NETFILTER
334 nf_bridge_put(skb->nf_bridge);
335 #endif
336 /* XXX: IS this still necessary? - JHS */
337 #ifdef CONFIG_NET_SCHED
338 skb->tc_index = 0;
339 #ifdef CONFIG_NET_CLS_ACT
340 skb->tc_verd = 0;
341 #endif
342 #endif
344 kfree_skbmem(skb);
348 * kfree_skb - free an sk_buff
349 * @skb: buffer to free
351 * Drop a reference to the buffer and free it if the usage count has
352 * hit zero.
354 void kfree_skb(struct sk_buff *skb)
356 if (unlikely(!skb))
357 return;
358 if (likely(atomic_read(&skb->users) == 1))
359 smp_rmb();
360 else if (likely(!atomic_dec_and_test(&skb->users)))
361 return;
362 __kfree_skb(skb);
365 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
367 new->tstamp = old->tstamp;
368 new->dev = old->dev;
369 new->transport_header = old->transport_header;
370 new->network_header = old->network_header;
371 new->mac_header = old->mac_header;
372 new->dst = dst_clone(old->dst);
373 #ifdef CONFIG_INET
374 new->sp = secpath_get(old->sp);
375 #endif
376 memcpy(new->cb, old->cb, sizeof(old->cb));
377 new->csum_start = old->csum_start;
378 new->csum_offset = old->csum_offset;
379 new->local_df = old->local_df;
380 new->pkt_type = old->pkt_type;
381 new->ip_summed = old->ip_summed;
382 skb_copy_queue_mapping(new, old);
383 new->priority = old->priority;
384 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
385 new->ipvs_property = old->ipvs_property;
386 #endif
387 new->protocol = old->protocol;
388 new->mark = old->mark;
389 __nf_copy(new, old);
390 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
391 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
392 new->nf_trace = old->nf_trace;
393 #endif
394 #ifdef CONFIG_NET_SCHED
395 new->tc_index = old->tc_index;
396 #ifdef CONFIG_NET_CLS_ACT
397 new->tc_verd = old->tc_verd;
398 #endif
399 #endif
400 skb_copy_secmark(new, old);
403 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
405 #define C(x) n->x = skb->x
407 n->next = n->prev = NULL;
408 n->sk = NULL;
409 __copy_skb_header(n, skb);
411 C(len);
412 C(data_len);
413 C(mac_len);
414 n->cloned = 1;
415 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
416 n->nohdr = 0;
417 n->destructor = NULL;
418 C(truesize);
419 atomic_set(&n->users, 1);
420 C(head);
421 C(data);
422 C(tail);
423 C(end);
425 atomic_inc(&(skb_shinfo(skb)->dataref));
426 skb->cloned = 1;
428 return n;
429 #undef C
433 * skb_morph - morph one skb into another
434 * @dst: the skb to receive the contents
435 * @src: the skb to supply the contents
437 * This is identical to skb_clone except that the target skb is
438 * supplied by the user.
440 * The target skb is returned upon exit.
442 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
444 skb_release_data(dst);
445 return __skb_clone(dst, src);
447 EXPORT_SYMBOL_GPL(skb_morph);
450 * skb_clone - duplicate an sk_buff
451 * @skb: buffer to clone
452 * @gfp_mask: allocation priority
454 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
455 * copies share the same packet data but not structure. The new
456 * buffer has a reference count of 1. If the allocation fails the
457 * function returns %NULL otherwise the new buffer is returned.
459 * If this function is called from an interrupt gfp_mask() must be
460 * %GFP_ATOMIC.
463 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
465 struct sk_buff *n;
467 n = skb + 1;
468 if (skb->fclone == SKB_FCLONE_ORIG &&
469 n->fclone == SKB_FCLONE_UNAVAILABLE) {
470 atomic_t *fclone_ref = (atomic_t *) (n + 1);
471 n->fclone = SKB_FCLONE_CLONE;
472 atomic_inc(fclone_ref);
473 } else {
474 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
475 if (!n)
476 return NULL;
477 n->fclone = SKB_FCLONE_UNAVAILABLE;
480 return __skb_clone(n, skb);
483 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
485 #ifndef NET_SKBUFF_DATA_USES_OFFSET
487 * Shift between the two data areas in bytes
489 unsigned long offset = new->data - old->data;
490 #endif
492 __copy_skb_header(new, old);
494 #ifndef NET_SKBUFF_DATA_USES_OFFSET
495 /* {transport,network,mac}_header are relative to skb->head */
496 new->transport_header += offset;
497 new->network_header += offset;
498 new->mac_header += offset;
499 #endif
500 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
501 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
502 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
506 * skb_copy - create private copy of an sk_buff
507 * @skb: buffer to copy
508 * @gfp_mask: allocation priority
510 * Make a copy of both an &sk_buff and its data. This is used when the
511 * caller wishes to modify the data and needs a private copy of the
512 * data to alter. Returns %NULL on failure or the pointer to the buffer
513 * on success. The returned buffer has a reference count of 1.
515 * As by-product this function converts non-linear &sk_buff to linear
516 * one, so that &sk_buff becomes completely private and caller is allowed
517 * to modify all the data of returned buffer. This means that this
518 * function is not recommended for use in circumstances when only
519 * header is going to be modified. Use pskb_copy() instead.
522 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
524 int headerlen = skb->data - skb->head;
526 * Allocate the copy buffer
528 struct sk_buff *n;
529 #ifdef NET_SKBUFF_DATA_USES_OFFSET
530 n = alloc_skb(skb->end + skb->data_len, gfp_mask);
531 #else
532 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
533 #endif
534 if (!n)
535 return NULL;
537 /* Set the data pointer */
538 skb_reserve(n, headerlen);
539 /* Set the tail pointer and length */
540 skb_put(n, skb->len);
542 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
543 BUG();
545 copy_skb_header(n, skb);
546 return n;
551 * pskb_copy - create copy of an sk_buff with private head.
552 * @skb: buffer to copy
553 * @gfp_mask: allocation priority
555 * Make a copy of both an &sk_buff and part of its data, located
556 * in header. Fragmented data remain shared. This is used when
557 * the caller wishes to modify only header of &sk_buff and needs
558 * private copy of the header to alter. Returns %NULL on failure
559 * or the pointer to the buffer on success.
560 * The returned buffer has a reference count of 1.
563 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
566 * Allocate the copy buffer
568 struct sk_buff *n;
569 #ifdef NET_SKBUFF_DATA_USES_OFFSET
570 n = alloc_skb(skb->end, gfp_mask);
571 #else
572 n = alloc_skb(skb->end - skb->head, gfp_mask);
573 #endif
574 if (!n)
575 goto out;
577 /* Set the data pointer */
578 skb_reserve(n, skb->data - skb->head);
579 /* Set the tail pointer and length */
580 skb_put(n, skb_headlen(skb));
581 /* Copy the bytes */
582 skb_copy_from_linear_data(skb, n->data, n->len);
584 n->truesize += skb->data_len;
585 n->data_len = skb->data_len;
586 n->len = skb->len;
588 if (skb_shinfo(skb)->nr_frags) {
589 int i;
591 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
592 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
593 get_page(skb_shinfo(n)->frags[i].page);
595 skb_shinfo(n)->nr_frags = i;
598 if (skb_shinfo(skb)->frag_list) {
599 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
600 skb_clone_fraglist(n);
603 copy_skb_header(n, skb);
604 out:
605 return n;
609 * pskb_expand_head - reallocate header of &sk_buff
610 * @skb: buffer to reallocate
611 * @nhead: room to add at head
612 * @ntail: room to add at tail
613 * @gfp_mask: allocation priority
615 * Expands (or creates identical copy, if &nhead and &ntail are zero)
616 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
617 * reference count of 1. Returns zero in the case of success or error,
618 * if expansion failed. In the last case, &sk_buff is not changed.
620 * All the pointers pointing into skb header may change and must be
621 * reloaded after call to this function.
624 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
625 gfp_t gfp_mask)
627 int i;
628 u8 *data;
629 #ifdef NET_SKBUFF_DATA_USES_OFFSET
630 int size = nhead + skb->end + ntail;
631 #else
632 int size = nhead + (skb->end - skb->head) + ntail;
633 #endif
634 long off;
636 if (skb_shared(skb))
637 BUG();
639 size = SKB_DATA_ALIGN(size);
641 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
642 if (!data)
643 goto nodata;
645 /* Copy only real data... and, alas, header. This should be
646 * optimized for the cases when header is void. */
647 #ifdef NET_SKBUFF_DATA_USES_OFFSET
648 memcpy(data + nhead, skb->head, skb->tail);
649 #else
650 memcpy(data + nhead, skb->head, skb->tail - skb->head);
651 #endif
652 memcpy(data + size, skb_end_pointer(skb),
653 sizeof(struct skb_shared_info));
655 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
656 get_page(skb_shinfo(skb)->frags[i].page);
658 if (skb_shinfo(skb)->frag_list)
659 skb_clone_fraglist(skb);
661 skb_release_data(skb);
663 off = (data + nhead) - skb->head;
665 skb->head = data;
666 skb->data += off;
667 #ifdef NET_SKBUFF_DATA_USES_OFFSET
668 skb->end = size;
669 off = nhead;
670 #else
671 skb->end = skb->head + size;
672 #endif
673 /* {transport,network,mac}_header and tail are relative to skb->head */
674 skb->tail += off;
675 skb->transport_header += off;
676 skb->network_header += off;
677 skb->mac_header += off;
678 skb->csum_start += nhead;
679 skb->cloned = 0;
680 skb->hdr_len = 0;
681 skb->nohdr = 0;
682 atomic_set(&skb_shinfo(skb)->dataref, 1);
683 return 0;
685 nodata:
686 return -ENOMEM;
689 /* Make private copy of skb with writable head and some headroom */
691 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
693 struct sk_buff *skb2;
694 int delta = headroom - skb_headroom(skb);
696 if (delta <= 0)
697 skb2 = pskb_copy(skb, GFP_ATOMIC);
698 else {
699 skb2 = skb_clone(skb, GFP_ATOMIC);
700 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
701 GFP_ATOMIC)) {
702 kfree_skb(skb2);
703 skb2 = NULL;
706 return skb2;
711 * skb_copy_expand - copy and expand sk_buff
712 * @skb: buffer to copy
713 * @newheadroom: new free bytes at head
714 * @newtailroom: new free bytes at tail
715 * @gfp_mask: allocation priority
717 * Make a copy of both an &sk_buff and its data and while doing so
718 * allocate additional space.
720 * This is used when the caller wishes to modify the data and needs a
721 * private copy of the data to alter as well as more space for new fields.
722 * Returns %NULL on failure or the pointer to the buffer
723 * on success. The returned buffer has a reference count of 1.
725 * You must pass %GFP_ATOMIC as the allocation priority if this function
726 * is called from an interrupt.
728 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
729 int newheadroom, int newtailroom,
730 gfp_t gfp_mask)
733 * Allocate the copy buffer
735 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
736 gfp_mask);
737 int oldheadroom = skb_headroom(skb);
738 int head_copy_len, head_copy_off;
739 int off;
741 if (!n)
742 return NULL;
744 skb_reserve(n, newheadroom);
746 /* Set the tail pointer and length */
747 skb_put(n, skb->len);
749 head_copy_len = oldheadroom;
750 head_copy_off = 0;
751 if (newheadroom <= head_copy_len)
752 head_copy_len = newheadroom;
753 else
754 head_copy_off = newheadroom - head_copy_len;
756 /* Copy the linear header and data. */
757 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
758 skb->len + head_copy_len))
759 BUG();
761 copy_skb_header(n, skb);
763 off = newheadroom - oldheadroom;
764 n->csum_start += off;
765 #ifdef NET_SKBUFF_DATA_USES_OFFSET
766 n->transport_header += off;
767 n->network_header += off;
768 n->mac_header += off;
769 #endif
771 return n;
775 * skb_pad - zero pad the tail of an skb
776 * @skb: buffer to pad
777 * @pad: space to pad
779 * Ensure that a buffer is followed by a padding area that is zero
780 * filled. Used by network drivers which may DMA or transfer data
781 * beyond the buffer end onto the wire.
783 * May return error in out of memory cases. The skb is freed on error.
786 int skb_pad(struct sk_buff *skb, int pad)
788 int err;
789 int ntail;
791 /* If the skbuff is non linear tailroom is always zero.. */
792 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
793 memset(skb->data+skb->len, 0, pad);
794 return 0;
797 ntail = skb->data_len + pad - (skb->end - skb->tail);
798 if (likely(skb_cloned(skb) || ntail > 0)) {
799 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
800 if (unlikely(err))
801 goto free_skb;
804 /* FIXME: The use of this function with non-linear skb's really needs
805 * to be audited.
807 err = skb_linearize(skb);
808 if (unlikely(err))
809 goto free_skb;
811 memset(skb->data + skb->len, 0, pad);
812 return 0;
814 free_skb:
815 kfree_skb(skb);
816 return err;
819 /* Trims skb to length len. It can change skb pointers.
822 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
824 struct sk_buff **fragp;
825 struct sk_buff *frag;
826 int offset = skb_headlen(skb);
827 int nfrags = skb_shinfo(skb)->nr_frags;
828 int i;
829 int err;
831 if (skb_cloned(skb) &&
832 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
833 return err;
835 i = 0;
836 if (offset >= len)
837 goto drop_pages;
839 for (; i < nfrags; i++) {
840 int end = offset + skb_shinfo(skb)->frags[i].size;
842 if (end < len) {
843 offset = end;
844 continue;
847 skb_shinfo(skb)->frags[i++].size = len - offset;
849 drop_pages:
850 skb_shinfo(skb)->nr_frags = i;
852 for (; i < nfrags; i++)
853 put_page(skb_shinfo(skb)->frags[i].page);
855 if (skb_shinfo(skb)->frag_list)
856 skb_drop_fraglist(skb);
857 goto done;
860 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
861 fragp = &frag->next) {
862 int end = offset + frag->len;
864 if (skb_shared(frag)) {
865 struct sk_buff *nfrag;
867 nfrag = skb_clone(frag, GFP_ATOMIC);
868 if (unlikely(!nfrag))
869 return -ENOMEM;
871 nfrag->next = frag->next;
872 kfree_skb(frag);
873 frag = nfrag;
874 *fragp = frag;
877 if (end < len) {
878 offset = end;
879 continue;
882 if (end > len &&
883 unlikely((err = pskb_trim(frag, len - offset))))
884 return err;
886 if (frag->next)
887 skb_drop_list(&frag->next);
888 break;
891 done:
892 if (len > skb_headlen(skb)) {
893 skb->data_len -= skb->len - len;
894 skb->len = len;
895 } else {
896 skb->len = len;
897 skb->data_len = 0;
898 skb_set_tail_pointer(skb, len);
901 return 0;
905 * __pskb_pull_tail - advance tail of skb header
906 * @skb: buffer to reallocate
907 * @delta: number of bytes to advance tail
909 * The function makes a sense only on a fragmented &sk_buff,
910 * it expands header moving its tail forward and copying necessary
911 * data from fragmented part.
913 * &sk_buff MUST have reference count of 1.
915 * Returns %NULL (and &sk_buff does not change) if pull failed
916 * or value of new tail of skb in the case of success.
918 * All the pointers pointing into skb header may change and must be
919 * reloaded after call to this function.
922 /* Moves tail of skb head forward, copying data from fragmented part,
923 * when it is necessary.
924 * 1. It may fail due to malloc failure.
925 * 2. It may change skb pointers.
927 * It is pretty complicated. Luckily, it is called only in exceptional cases.
929 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
931 /* If skb has not enough free space at tail, get new one
932 * plus 128 bytes for future expansions. If we have enough
933 * room at tail, reallocate without expansion only if skb is cloned.
935 int i, k, eat = (skb->tail + delta) - skb->end;
937 if (eat > 0 || skb_cloned(skb)) {
938 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
939 GFP_ATOMIC))
940 return NULL;
943 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
944 BUG();
946 /* Optimization: no fragments, no reasons to preestimate
947 * size of pulled pages. Superb.
949 if (!skb_shinfo(skb)->frag_list)
950 goto pull_pages;
952 /* Estimate size of pulled pages. */
953 eat = delta;
954 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
955 if (skb_shinfo(skb)->frags[i].size >= eat)
956 goto pull_pages;
957 eat -= skb_shinfo(skb)->frags[i].size;
960 /* If we need update frag list, we are in troubles.
961 * Certainly, it possible to add an offset to skb data,
962 * but taking into account that pulling is expected to
963 * be very rare operation, it is worth to fight against
964 * further bloating skb head and crucify ourselves here instead.
965 * Pure masohism, indeed. 8)8)
967 if (eat) {
968 struct sk_buff *list = skb_shinfo(skb)->frag_list;
969 struct sk_buff *clone = NULL;
970 struct sk_buff *insp = NULL;
972 do {
973 BUG_ON(!list);
975 if (list->len <= eat) {
976 /* Eaten as whole. */
977 eat -= list->len;
978 list = list->next;
979 insp = list;
980 } else {
981 /* Eaten partially. */
983 if (skb_shared(list)) {
984 /* Sucks! We need to fork list. :-( */
985 clone = skb_clone(list, GFP_ATOMIC);
986 if (!clone)
987 return NULL;
988 insp = list->next;
989 list = clone;
990 } else {
991 /* This may be pulled without
992 * problems. */
993 insp = list;
995 if (!pskb_pull(list, eat)) {
996 if (clone)
997 kfree_skb(clone);
998 return NULL;
1000 break;
1002 } while (eat);
1004 /* Free pulled out fragments. */
1005 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1006 skb_shinfo(skb)->frag_list = list->next;
1007 kfree_skb(list);
1009 /* And insert new clone at head. */
1010 if (clone) {
1011 clone->next = list;
1012 skb_shinfo(skb)->frag_list = clone;
1015 /* Success! Now we may commit changes to skb data. */
1017 pull_pages:
1018 eat = delta;
1019 k = 0;
1020 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1021 if (skb_shinfo(skb)->frags[i].size <= eat) {
1022 put_page(skb_shinfo(skb)->frags[i].page);
1023 eat -= skb_shinfo(skb)->frags[i].size;
1024 } else {
1025 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1026 if (eat) {
1027 skb_shinfo(skb)->frags[k].page_offset += eat;
1028 skb_shinfo(skb)->frags[k].size -= eat;
1029 eat = 0;
1031 k++;
1034 skb_shinfo(skb)->nr_frags = k;
1036 skb->tail += delta;
1037 skb->data_len -= delta;
1039 return skb_tail_pointer(skb);
1042 /* Copy some data bits from skb to kernel buffer. */
1044 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1046 int i, copy;
1047 int start = skb_headlen(skb);
1049 if (offset > (int)skb->len - len)
1050 goto fault;
1052 /* Copy header. */
1053 if ((copy = start - offset) > 0) {
1054 if (copy > len)
1055 copy = len;
1056 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1057 if ((len -= copy) == 0)
1058 return 0;
1059 offset += copy;
1060 to += copy;
1063 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1064 int end;
1066 BUG_TRAP(start <= offset + len);
1068 end = start + skb_shinfo(skb)->frags[i].size;
1069 if ((copy = end - offset) > 0) {
1070 u8 *vaddr;
1072 if (copy > len)
1073 copy = len;
1075 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1076 memcpy(to,
1077 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1078 offset - start, copy);
1079 kunmap_skb_frag(vaddr);
1081 if ((len -= copy) == 0)
1082 return 0;
1083 offset += copy;
1084 to += copy;
1086 start = end;
1089 if (skb_shinfo(skb)->frag_list) {
1090 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1092 for (; list; list = list->next) {
1093 int end;
1095 BUG_TRAP(start <= offset + len);
1097 end = start + list->len;
1098 if ((copy = end - offset) > 0) {
1099 if (copy > len)
1100 copy = len;
1101 if (skb_copy_bits(list, offset - start,
1102 to, copy))
1103 goto fault;
1104 if ((len -= copy) == 0)
1105 return 0;
1106 offset += copy;
1107 to += copy;
1109 start = end;
1112 if (!len)
1113 return 0;
1115 fault:
1116 return -EFAULT;
1120 * skb_store_bits - store bits from kernel buffer to skb
1121 * @skb: destination buffer
1122 * @offset: offset in destination
1123 * @from: source buffer
1124 * @len: number of bytes to copy
1126 * Copy the specified number of bytes from the source buffer to the
1127 * destination skb. This function handles all the messy bits of
1128 * traversing fragment lists and such.
1131 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1133 int i, copy;
1134 int start = skb_headlen(skb);
1136 if (offset > (int)skb->len - len)
1137 goto fault;
1139 if ((copy = start - offset) > 0) {
1140 if (copy > len)
1141 copy = len;
1142 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1143 if ((len -= copy) == 0)
1144 return 0;
1145 offset += copy;
1146 from += copy;
1149 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1150 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1151 int end;
1153 BUG_TRAP(start <= offset + len);
1155 end = start + frag->size;
1156 if ((copy = end - offset) > 0) {
1157 u8 *vaddr;
1159 if (copy > len)
1160 copy = len;
1162 vaddr = kmap_skb_frag(frag);
1163 memcpy(vaddr + frag->page_offset + offset - start,
1164 from, copy);
1165 kunmap_skb_frag(vaddr);
1167 if ((len -= copy) == 0)
1168 return 0;
1169 offset += copy;
1170 from += copy;
1172 start = end;
1175 if (skb_shinfo(skb)->frag_list) {
1176 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1178 for (; list; list = list->next) {
1179 int end;
1181 BUG_TRAP(start <= offset + len);
1183 end = start + list->len;
1184 if ((copy = end - offset) > 0) {
1185 if (copy > len)
1186 copy = len;
1187 if (skb_store_bits(list, offset - start,
1188 from, copy))
1189 goto fault;
1190 if ((len -= copy) == 0)
1191 return 0;
1192 offset += copy;
1193 from += copy;
1195 start = end;
1198 if (!len)
1199 return 0;
1201 fault:
1202 return -EFAULT;
1205 EXPORT_SYMBOL(skb_store_bits);
1207 /* Checksum skb data. */
1209 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1210 int len, __wsum csum)
1212 int start = skb_headlen(skb);
1213 int i, copy = start - offset;
1214 int pos = 0;
1216 /* Checksum header. */
1217 if (copy > 0) {
1218 if (copy > len)
1219 copy = len;
1220 csum = csum_partial(skb->data + offset, copy, csum);
1221 if ((len -= copy) == 0)
1222 return csum;
1223 offset += copy;
1224 pos = copy;
1227 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1228 int end;
1230 BUG_TRAP(start <= offset + len);
1232 end = start + skb_shinfo(skb)->frags[i].size;
1233 if ((copy = end - offset) > 0) {
1234 __wsum csum2;
1235 u8 *vaddr;
1236 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1238 if (copy > len)
1239 copy = len;
1240 vaddr = kmap_skb_frag(frag);
1241 csum2 = csum_partial(vaddr + frag->page_offset +
1242 offset - start, copy, 0);
1243 kunmap_skb_frag(vaddr);
1244 csum = csum_block_add(csum, csum2, pos);
1245 if (!(len -= copy))
1246 return csum;
1247 offset += copy;
1248 pos += copy;
1250 start = end;
1253 if (skb_shinfo(skb)->frag_list) {
1254 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1256 for (; list; list = list->next) {
1257 int end;
1259 BUG_TRAP(start <= offset + len);
1261 end = start + list->len;
1262 if ((copy = end - offset) > 0) {
1263 __wsum csum2;
1264 if (copy > len)
1265 copy = len;
1266 csum2 = skb_checksum(list, offset - start,
1267 copy, 0);
1268 csum = csum_block_add(csum, csum2, pos);
1269 if ((len -= copy) == 0)
1270 return csum;
1271 offset += copy;
1272 pos += copy;
1274 start = end;
1277 BUG_ON(len);
1279 return csum;
1282 /* Both of above in one bottle. */
1284 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1285 u8 *to, int len, __wsum csum)
1287 int start = skb_headlen(skb);
1288 int i, copy = start - offset;
1289 int pos = 0;
1291 /* Copy header. */
1292 if (copy > 0) {
1293 if (copy > len)
1294 copy = len;
1295 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1296 copy, csum);
1297 if ((len -= copy) == 0)
1298 return csum;
1299 offset += copy;
1300 to += copy;
1301 pos = copy;
1304 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1305 int end;
1307 BUG_TRAP(start <= offset + len);
1309 end = start + skb_shinfo(skb)->frags[i].size;
1310 if ((copy = end - offset) > 0) {
1311 __wsum csum2;
1312 u8 *vaddr;
1313 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1315 if (copy > len)
1316 copy = len;
1317 vaddr = kmap_skb_frag(frag);
1318 csum2 = csum_partial_copy_nocheck(vaddr +
1319 frag->page_offset +
1320 offset - start, to,
1321 copy, 0);
1322 kunmap_skb_frag(vaddr);
1323 csum = csum_block_add(csum, csum2, pos);
1324 if (!(len -= copy))
1325 return csum;
1326 offset += copy;
1327 to += copy;
1328 pos += copy;
1330 start = end;
1333 if (skb_shinfo(skb)->frag_list) {
1334 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1336 for (; list; list = list->next) {
1337 __wsum csum2;
1338 int end;
1340 BUG_TRAP(start <= offset + len);
1342 end = start + list->len;
1343 if ((copy = end - offset) > 0) {
1344 if (copy > len)
1345 copy = len;
1346 csum2 = skb_copy_and_csum_bits(list,
1347 offset - start,
1348 to, copy, 0);
1349 csum = csum_block_add(csum, csum2, pos);
1350 if ((len -= copy) == 0)
1351 return csum;
1352 offset += copy;
1353 to += copy;
1354 pos += copy;
1356 start = end;
1359 BUG_ON(len);
1360 return csum;
1363 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1365 __wsum csum;
1366 long csstart;
1368 if (skb->ip_summed == CHECKSUM_PARTIAL)
1369 csstart = skb->csum_start - skb_headroom(skb);
1370 else
1371 csstart = skb_headlen(skb);
1373 BUG_ON(csstart > skb_headlen(skb));
1375 skb_copy_from_linear_data(skb, to, csstart);
1377 csum = 0;
1378 if (csstart != skb->len)
1379 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1380 skb->len - csstart, 0);
1382 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1383 long csstuff = csstart + skb->csum_offset;
1385 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1390 * skb_dequeue - remove from the head of the queue
1391 * @list: list to dequeue from
1393 * Remove the head of the list. The list lock is taken so the function
1394 * may be used safely with other locking list functions. The head item is
1395 * returned or %NULL if the list is empty.
1398 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1400 unsigned long flags;
1401 struct sk_buff *result;
1403 spin_lock_irqsave(&list->lock, flags);
1404 result = __skb_dequeue(list);
1405 spin_unlock_irqrestore(&list->lock, flags);
1406 return result;
1410 * skb_dequeue_tail - remove from the tail of the queue
1411 * @list: list to dequeue from
1413 * Remove the tail of the list. The list lock is taken so the function
1414 * may be used safely with other locking list functions. The tail item is
1415 * returned or %NULL if the list is empty.
1417 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1419 unsigned long flags;
1420 struct sk_buff *result;
1422 spin_lock_irqsave(&list->lock, flags);
1423 result = __skb_dequeue_tail(list);
1424 spin_unlock_irqrestore(&list->lock, flags);
1425 return result;
1429 * skb_queue_purge - empty a list
1430 * @list: list to empty
1432 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1433 * the list and one reference dropped. This function takes the list
1434 * lock and is atomic with respect to other list locking functions.
1436 void skb_queue_purge(struct sk_buff_head *list)
1438 struct sk_buff *skb;
1439 while ((skb = skb_dequeue(list)) != NULL)
1440 kfree_skb(skb);
1444 * skb_queue_head - queue a buffer at the list head
1445 * @list: list to use
1446 * @newsk: buffer to queue
1448 * Queue a buffer at the start of the list. This function takes the
1449 * list lock and can be used safely with other locking &sk_buff functions
1450 * safely.
1452 * A buffer cannot be placed on two lists at the same time.
1454 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1456 unsigned long flags;
1458 spin_lock_irqsave(&list->lock, flags);
1459 __skb_queue_head(list, newsk);
1460 spin_unlock_irqrestore(&list->lock, flags);
1464 * skb_queue_tail - queue a buffer at the list tail
1465 * @list: list to use
1466 * @newsk: buffer to queue
1468 * Queue a buffer at the tail of the list. This function takes the
1469 * list lock and can be used safely with other locking &sk_buff functions
1470 * safely.
1472 * A buffer cannot be placed on two lists at the same time.
1474 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1476 unsigned long flags;
1478 spin_lock_irqsave(&list->lock, flags);
1479 __skb_queue_tail(list, newsk);
1480 spin_unlock_irqrestore(&list->lock, flags);
1484 * skb_unlink - remove a buffer from a list
1485 * @skb: buffer to remove
1486 * @list: list to use
1488 * Remove a packet from a list. The list locks are taken and this
1489 * function is atomic with respect to other list locked calls
1491 * You must know what list the SKB is on.
1493 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1495 unsigned long flags;
1497 spin_lock_irqsave(&list->lock, flags);
1498 __skb_unlink(skb, list);
1499 spin_unlock_irqrestore(&list->lock, flags);
1503 * skb_append - append a buffer
1504 * @old: buffer to insert after
1505 * @newsk: buffer to insert
1506 * @list: list to use
1508 * Place a packet after a given packet in a list. The list locks are taken
1509 * and this function is atomic with respect to other list locked calls.
1510 * A buffer cannot be placed on two lists at the same time.
1512 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1514 unsigned long flags;
1516 spin_lock_irqsave(&list->lock, flags);
1517 __skb_append(old, newsk, list);
1518 spin_unlock_irqrestore(&list->lock, flags);
1523 * skb_insert - insert a buffer
1524 * @old: buffer to insert before
1525 * @newsk: buffer to insert
1526 * @list: list to use
1528 * Place a packet before a given packet in a list. The list locks are
1529 * taken and this function is atomic with respect to other list locked
1530 * calls.
1532 * A buffer cannot be placed on two lists at the same time.
1534 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1536 unsigned long flags;
1538 spin_lock_irqsave(&list->lock, flags);
1539 __skb_insert(newsk, old->prev, old, list);
1540 spin_unlock_irqrestore(&list->lock, flags);
1543 static inline void skb_split_inside_header(struct sk_buff *skb,
1544 struct sk_buff* skb1,
1545 const u32 len, const int pos)
1547 int i;
1549 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1550 pos - len);
1551 /* And move data appendix as is. */
1552 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1553 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1555 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1556 skb_shinfo(skb)->nr_frags = 0;
1557 skb1->data_len = skb->data_len;
1558 skb1->len += skb1->data_len;
1559 skb->data_len = 0;
1560 skb->len = len;
1561 skb_set_tail_pointer(skb, len);
1564 static inline void skb_split_no_header(struct sk_buff *skb,
1565 struct sk_buff* skb1,
1566 const u32 len, int pos)
1568 int i, k = 0;
1569 const int nfrags = skb_shinfo(skb)->nr_frags;
1571 skb_shinfo(skb)->nr_frags = 0;
1572 skb1->len = skb1->data_len = skb->len - len;
1573 skb->len = len;
1574 skb->data_len = len - pos;
1576 for (i = 0; i < nfrags; i++) {
1577 int size = skb_shinfo(skb)->frags[i].size;
1579 if (pos + size > len) {
1580 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1582 if (pos < len) {
1583 /* Split frag.
1584 * We have two variants in this case:
1585 * 1. Move all the frag to the second
1586 * part, if it is possible. F.e.
1587 * this approach is mandatory for TUX,
1588 * where splitting is expensive.
1589 * 2. Split is accurately. We make this.
1591 get_page(skb_shinfo(skb)->frags[i].page);
1592 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1593 skb_shinfo(skb1)->frags[0].size -= len - pos;
1594 skb_shinfo(skb)->frags[i].size = len - pos;
1595 skb_shinfo(skb)->nr_frags++;
1597 k++;
1598 } else
1599 skb_shinfo(skb)->nr_frags++;
1600 pos += size;
1602 skb_shinfo(skb1)->nr_frags = k;
1606 * skb_split - Split fragmented skb to two parts at length len.
1607 * @skb: the buffer to split
1608 * @skb1: the buffer to receive the second part
1609 * @len: new length for skb
1611 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1613 int pos = skb_headlen(skb);
1615 if (len < pos) /* Split line is inside header. */
1616 skb_split_inside_header(skb, skb1, len, pos);
1617 else /* Second chunk has no header, nothing to copy. */
1618 skb_split_no_header(skb, skb1, len, pos);
1622 * skb_prepare_seq_read - Prepare a sequential read of skb data
1623 * @skb: the buffer to read
1624 * @from: lower offset of data to be read
1625 * @to: upper offset of data to be read
1626 * @st: state variable
1628 * Initializes the specified state variable. Must be called before
1629 * invoking skb_seq_read() for the first time.
1631 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1632 unsigned int to, struct skb_seq_state *st)
1634 st->lower_offset = from;
1635 st->upper_offset = to;
1636 st->root_skb = st->cur_skb = skb;
1637 st->frag_idx = st->stepped_offset = 0;
1638 st->frag_data = NULL;
1642 * skb_seq_read - Sequentially read skb data
1643 * @consumed: number of bytes consumed by the caller so far
1644 * @data: destination pointer for data to be returned
1645 * @st: state variable
1647 * Reads a block of skb data at &consumed relative to the
1648 * lower offset specified to skb_prepare_seq_read(). Assigns
1649 * the head of the data block to &data and returns the length
1650 * of the block or 0 if the end of the skb data or the upper
1651 * offset has been reached.
1653 * The caller is not required to consume all of the data
1654 * returned, i.e. &consumed is typically set to the number
1655 * of bytes already consumed and the next call to
1656 * skb_seq_read() will return the remaining part of the block.
1658 * Note: The size of each block of data returned can be arbitary,
1659 * this limitation is the cost for zerocopy seqeuental
1660 * reads of potentially non linear data.
1662 * Note: Fragment lists within fragments are not implemented
1663 * at the moment, state->root_skb could be replaced with
1664 * a stack for this purpose.
1666 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1667 struct skb_seq_state *st)
1669 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1670 skb_frag_t *frag;
1672 if (unlikely(abs_offset >= st->upper_offset))
1673 return 0;
1675 next_skb:
1676 block_limit = skb_headlen(st->cur_skb);
1678 if (abs_offset < block_limit) {
1679 *data = st->cur_skb->data + abs_offset;
1680 return block_limit - abs_offset;
1683 if (st->frag_idx == 0 && !st->frag_data)
1684 st->stepped_offset += skb_headlen(st->cur_skb);
1686 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1687 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1688 block_limit = frag->size + st->stepped_offset;
1690 if (abs_offset < block_limit) {
1691 if (!st->frag_data)
1692 st->frag_data = kmap_skb_frag(frag);
1694 *data = (u8 *) st->frag_data + frag->page_offset +
1695 (abs_offset - st->stepped_offset);
1697 return block_limit - abs_offset;
1700 if (st->frag_data) {
1701 kunmap_skb_frag(st->frag_data);
1702 st->frag_data = NULL;
1705 st->frag_idx++;
1706 st->stepped_offset += frag->size;
1709 if (st->frag_data) {
1710 kunmap_skb_frag(st->frag_data);
1711 st->frag_data = NULL;
1714 if (st->cur_skb->next) {
1715 st->cur_skb = st->cur_skb->next;
1716 st->frag_idx = 0;
1717 goto next_skb;
1718 } else if (st->root_skb == st->cur_skb &&
1719 skb_shinfo(st->root_skb)->frag_list) {
1720 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1721 goto next_skb;
1724 return 0;
1728 * skb_abort_seq_read - Abort a sequential read of skb data
1729 * @st: state variable
1731 * Must be called if skb_seq_read() was not called until it
1732 * returned 0.
1734 void skb_abort_seq_read(struct skb_seq_state *st)
1736 if (st->frag_data)
1737 kunmap_skb_frag(st->frag_data);
1740 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1742 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1743 struct ts_config *conf,
1744 struct ts_state *state)
1746 return skb_seq_read(offset, text, TS_SKB_CB(state));
1749 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1751 skb_abort_seq_read(TS_SKB_CB(state));
1755 * skb_find_text - Find a text pattern in skb data
1756 * @skb: the buffer to look in
1757 * @from: search offset
1758 * @to: search limit
1759 * @config: textsearch configuration
1760 * @state: uninitialized textsearch state variable
1762 * Finds a pattern in the skb data according to the specified
1763 * textsearch configuration. Use textsearch_next() to retrieve
1764 * subsequent occurrences of the pattern. Returns the offset
1765 * to the first occurrence or UINT_MAX if no match was found.
1767 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1768 unsigned int to, struct ts_config *config,
1769 struct ts_state *state)
1771 unsigned int ret;
1773 config->get_next_block = skb_ts_get_next_block;
1774 config->finish = skb_ts_finish;
1776 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1778 ret = textsearch_find(config, state);
1779 return (ret <= to - from ? ret : UINT_MAX);
1783 * skb_append_datato_frags: - append the user data to a skb
1784 * @sk: sock structure
1785 * @skb: skb structure to be appened with user data.
1786 * @getfrag: call back function to be used for getting the user data
1787 * @from: pointer to user message iov
1788 * @length: length of the iov message
1790 * Description: This procedure append the user data in the fragment part
1791 * of the skb if any page alloc fails user this procedure returns -ENOMEM
1793 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1794 int (*getfrag)(void *from, char *to, int offset,
1795 int len, int odd, struct sk_buff *skb),
1796 void *from, int length)
1798 int frg_cnt = 0;
1799 skb_frag_t *frag = NULL;
1800 struct page *page = NULL;
1801 int copy, left;
1802 int offset = 0;
1803 int ret;
1805 do {
1806 /* Return error if we don't have space for new frag */
1807 frg_cnt = skb_shinfo(skb)->nr_frags;
1808 if (frg_cnt >= MAX_SKB_FRAGS)
1809 return -EFAULT;
1811 /* allocate a new page for next frag */
1812 page = alloc_pages(sk->sk_allocation, 0);
1814 /* If alloc_page fails just return failure and caller will
1815 * free previous allocated pages by doing kfree_skb()
1817 if (page == NULL)
1818 return -ENOMEM;
1820 /* initialize the next frag */
1821 sk->sk_sndmsg_page = page;
1822 sk->sk_sndmsg_off = 0;
1823 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1824 skb->truesize += PAGE_SIZE;
1825 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1827 /* get the new initialized frag */
1828 frg_cnt = skb_shinfo(skb)->nr_frags;
1829 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1831 /* copy the user data to page */
1832 left = PAGE_SIZE - frag->page_offset;
1833 copy = (length > left)? left : length;
1835 ret = getfrag(from, (page_address(frag->page) +
1836 frag->page_offset + frag->size),
1837 offset, copy, 0, skb);
1838 if (ret < 0)
1839 return -EFAULT;
1841 /* copy was successful so update the size parameters */
1842 sk->sk_sndmsg_off += copy;
1843 frag->size += copy;
1844 skb->len += copy;
1845 skb->data_len += copy;
1846 offset += copy;
1847 length -= copy;
1849 } while (length > 0);
1851 return 0;
1855 * skb_pull_rcsum - pull skb and update receive checksum
1856 * @skb: buffer to update
1857 * @start: start of data before pull
1858 * @len: length of data pulled
1860 * This function performs an skb_pull on the packet and updates
1861 * update the CHECKSUM_COMPLETE checksum. It should be used on
1862 * receive path processing instead of skb_pull unless you know
1863 * that the checksum difference is zero (e.g., a valid IP header)
1864 * or you are setting ip_summed to CHECKSUM_NONE.
1866 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1868 BUG_ON(len > skb->len);
1869 skb->len -= len;
1870 BUG_ON(skb->len < skb->data_len);
1871 skb_postpull_rcsum(skb, skb->data, len);
1872 return skb->data += len;
1875 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1878 * skb_segment - Perform protocol segmentation on skb.
1879 * @skb: buffer to segment
1880 * @features: features for the output path (see dev->features)
1882 * This function performs segmentation on the given skb. It returns
1883 * the segment at the given position. It returns NULL if there are
1884 * no more segments to generate, or when an error is encountered.
1886 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
1888 struct sk_buff *segs = NULL;
1889 struct sk_buff *tail = NULL;
1890 unsigned int mss = skb_shinfo(skb)->gso_size;
1891 unsigned int doffset = skb->data - skb_mac_header(skb);
1892 unsigned int offset = doffset;
1893 unsigned int headroom;
1894 unsigned int len;
1895 int sg = features & NETIF_F_SG;
1896 int nfrags = skb_shinfo(skb)->nr_frags;
1897 int err = -ENOMEM;
1898 int i = 0;
1899 int pos;
1901 __skb_push(skb, doffset);
1902 headroom = skb_headroom(skb);
1903 pos = skb_headlen(skb);
1905 do {
1906 struct sk_buff *nskb;
1907 skb_frag_t *frag;
1908 int hsize;
1909 int k;
1910 int size;
1912 len = skb->len - offset;
1913 if (len > mss)
1914 len = mss;
1916 hsize = skb_headlen(skb) - offset;
1917 if (hsize < 0)
1918 hsize = 0;
1919 if (hsize > len || !sg)
1920 hsize = len;
1922 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
1923 if (unlikely(!nskb))
1924 goto err;
1926 if (segs)
1927 tail->next = nskb;
1928 else
1929 segs = nskb;
1930 tail = nskb;
1932 nskb->dev = skb->dev;
1933 skb_copy_queue_mapping(nskb, skb);
1934 nskb->priority = skb->priority;
1935 nskb->protocol = skb->protocol;
1936 nskb->dst = dst_clone(skb->dst);
1937 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
1938 nskb->pkt_type = skb->pkt_type;
1939 nskb->mac_len = skb->mac_len;
1941 skb_reserve(nskb, headroom);
1942 skb_reset_mac_header(nskb);
1943 skb_set_network_header(nskb, skb->mac_len);
1944 nskb->transport_header = (nskb->network_header +
1945 skb_network_header_len(skb));
1946 skb_copy_from_linear_data(skb, skb_put(nskb, doffset),
1947 doffset);
1948 if (!sg) {
1949 nskb->csum = skb_copy_and_csum_bits(skb, offset,
1950 skb_put(nskb, len),
1951 len, 0);
1952 continue;
1955 frag = skb_shinfo(nskb)->frags;
1956 k = 0;
1958 nskb->ip_summed = CHECKSUM_PARTIAL;
1959 nskb->csum = skb->csum;
1960 skb_copy_from_linear_data_offset(skb, offset,
1961 skb_put(nskb, hsize), hsize);
1963 while (pos < offset + len) {
1964 BUG_ON(i >= nfrags);
1966 *frag = skb_shinfo(skb)->frags[i];
1967 get_page(frag->page);
1968 size = frag->size;
1970 if (pos < offset) {
1971 frag->page_offset += offset - pos;
1972 frag->size -= offset - pos;
1975 k++;
1977 if (pos + size <= offset + len) {
1978 i++;
1979 pos += size;
1980 } else {
1981 frag->size -= pos + size - (offset + len);
1982 break;
1985 frag++;
1988 skb_shinfo(nskb)->nr_frags = k;
1989 nskb->data_len = len - hsize;
1990 nskb->len += nskb->data_len;
1991 nskb->truesize += nskb->data_len;
1992 } while ((offset += len) < skb->len);
1994 return segs;
1996 err:
1997 while ((skb = segs)) {
1998 segs = skb->next;
1999 kfree_skb(skb);
2001 return ERR_PTR(err);
2004 EXPORT_SYMBOL_GPL(skb_segment);
2006 void __init skb_init(void)
2008 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2009 sizeof(struct sk_buff),
2011 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2012 NULL);
2013 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2014 (2*sizeof(struct sk_buff)) +
2015 sizeof(atomic_t),
2017 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2018 NULL);
2022 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2023 * @skb: Socket buffer containing the buffers to be mapped
2024 * @sg: The scatter-gather list to map into
2025 * @offset: The offset into the buffer's contents to start mapping
2026 * @len: Length of buffer space to be mapped
2028 * Fill the specified scatter-gather list with mappings/pointers into a
2029 * region of the buffer space attached to a socket buffer.
2031 static int
2032 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2034 int start = skb_headlen(skb);
2035 int i, copy = start - offset;
2036 int elt = 0;
2038 if (copy > 0) {
2039 if (copy > len)
2040 copy = len;
2041 sg_set_buf(sg, skb->data + offset, copy);
2042 elt++;
2043 if ((len -= copy) == 0)
2044 return elt;
2045 offset += copy;
2048 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2049 int end;
2051 BUG_TRAP(start <= offset + len);
2053 end = start + skb_shinfo(skb)->frags[i].size;
2054 if ((copy = end - offset) > 0) {
2055 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2057 if (copy > len)
2058 copy = len;
2059 sg_set_page(&sg[elt], frag->page, copy,
2060 frag->page_offset+offset-start);
2061 elt++;
2062 if (!(len -= copy))
2063 return elt;
2064 offset += copy;
2066 start = end;
2069 if (skb_shinfo(skb)->frag_list) {
2070 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2072 for (; list; list = list->next) {
2073 int end;
2075 BUG_TRAP(start <= offset + len);
2077 end = start + list->len;
2078 if ((copy = end - offset) > 0) {
2079 if (copy > len)
2080 copy = len;
2081 elt += __skb_to_sgvec(list, sg+elt, offset - start,
2082 copy);
2083 if ((len -= copy) == 0)
2084 return elt;
2085 offset += copy;
2087 start = end;
2090 BUG_ON(len);
2091 return elt;
2094 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2096 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2098 sg_mark_end(&sg[nsg - 1]);
2100 return nsg;
2104 * skb_cow_data - Check that a socket buffer's data buffers are writable
2105 * @skb: The socket buffer to check.
2106 * @tailbits: Amount of trailing space to be added
2107 * @trailer: Returned pointer to the skb where the @tailbits space begins
2109 * Make sure that the data buffers attached to a socket buffer are
2110 * writable. If they are not, private copies are made of the data buffers
2111 * and the socket buffer is set to use these instead.
2113 * If @tailbits is given, make sure that there is space to write @tailbits
2114 * bytes of data beyond current end of socket buffer. @trailer will be
2115 * set to point to the skb in which this space begins.
2117 * The number of scatterlist elements required to completely map the
2118 * COW'd and extended socket buffer will be returned.
2120 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2122 int copyflag;
2123 int elt;
2124 struct sk_buff *skb1, **skb_p;
2126 /* If skb is cloned or its head is paged, reallocate
2127 * head pulling out all the pages (pages are considered not writable
2128 * at the moment even if they are anonymous).
2130 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2131 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2132 return -ENOMEM;
2134 /* Easy case. Most of packets will go this way. */
2135 if (!skb_shinfo(skb)->frag_list) {
2136 /* A little of trouble, not enough of space for trailer.
2137 * This should not happen, when stack is tuned to generate
2138 * good frames. OK, on miss we reallocate and reserve even more
2139 * space, 128 bytes is fair. */
2141 if (skb_tailroom(skb) < tailbits &&
2142 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2143 return -ENOMEM;
2145 /* Voila! */
2146 *trailer = skb;
2147 return 1;
2150 /* Misery. We are in troubles, going to mincer fragments... */
2152 elt = 1;
2153 skb_p = &skb_shinfo(skb)->frag_list;
2154 copyflag = 0;
2156 while ((skb1 = *skb_p) != NULL) {
2157 int ntail = 0;
2159 /* The fragment is partially pulled by someone,
2160 * this can happen on input. Copy it and everything
2161 * after it. */
2163 if (skb_shared(skb1))
2164 copyflag = 1;
2166 /* If the skb is the last, worry about trailer. */
2168 if (skb1->next == NULL && tailbits) {
2169 if (skb_shinfo(skb1)->nr_frags ||
2170 skb_shinfo(skb1)->frag_list ||
2171 skb_tailroom(skb1) < tailbits)
2172 ntail = tailbits + 128;
2175 if (copyflag ||
2176 skb_cloned(skb1) ||
2177 ntail ||
2178 skb_shinfo(skb1)->nr_frags ||
2179 skb_shinfo(skb1)->frag_list) {
2180 struct sk_buff *skb2;
2182 /* Fuck, we are miserable poor guys... */
2183 if (ntail == 0)
2184 skb2 = skb_copy(skb1, GFP_ATOMIC);
2185 else
2186 skb2 = skb_copy_expand(skb1,
2187 skb_headroom(skb1),
2188 ntail,
2189 GFP_ATOMIC);
2190 if (unlikely(skb2 == NULL))
2191 return -ENOMEM;
2193 if (skb1->sk)
2194 skb_set_owner_w(skb2, skb1->sk);
2196 /* Looking around. Are we still alive?
2197 * OK, link new skb, drop old one */
2199 skb2->next = skb1->next;
2200 *skb_p = skb2;
2201 kfree_skb(skb1);
2202 skb1 = skb2;
2204 elt++;
2205 *trailer = skb1;
2206 skb_p = &skb1->next;
2209 return elt;
2212 EXPORT_SYMBOL(___pskb_trim);
2213 EXPORT_SYMBOL(__kfree_skb);
2214 EXPORT_SYMBOL(kfree_skb);
2215 EXPORT_SYMBOL(__pskb_pull_tail);
2216 EXPORT_SYMBOL(__alloc_skb);
2217 EXPORT_SYMBOL(__netdev_alloc_skb);
2218 EXPORT_SYMBOL(pskb_copy);
2219 EXPORT_SYMBOL(pskb_expand_head);
2220 EXPORT_SYMBOL(skb_checksum);
2221 EXPORT_SYMBOL(skb_clone);
2222 EXPORT_SYMBOL(skb_copy);
2223 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2224 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2225 EXPORT_SYMBOL(skb_copy_bits);
2226 EXPORT_SYMBOL(skb_copy_expand);
2227 EXPORT_SYMBOL(skb_over_panic);
2228 EXPORT_SYMBOL(skb_pad);
2229 EXPORT_SYMBOL(skb_realloc_headroom);
2230 EXPORT_SYMBOL(skb_under_panic);
2231 EXPORT_SYMBOL(skb_dequeue);
2232 EXPORT_SYMBOL(skb_dequeue_tail);
2233 EXPORT_SYMBOL(skb_insert);
2234 EXPORT_SYMBOL(skb_queue_purge);
2235 EXPORT_SYMBOL(skb_queue_head);
2236 EXPORT_SYMBOL(skb_queue_tail);
2237 EXPORT_SYMBOL(skb_unlink);
2238 EXPORT_SYMBOL(skb_append);
2239 EXPORT_SYMBOL(skb_split);
2240 EXPORT_SYMBOL(skb_prepare_seq_read);
2241 EXPORT_SYMBOL(skb_seq_read);
2242 EXPORT_SYMBOL(skb_abort_seq_read);
2243 EXPORT_SYMBOL(skb_find_text);
2244 EXPORT_SYMBOL(skb_append_datato_frags);
2246 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2247 EXPORT_SYMBOL_GPL(skb_cow_data);