[PATCH] sparsemem base: early_pfn_to_nid() (works before sparse is initialized)
[linux-2.6/zen-sources.git] / arch / i386 / mm / discontig.c
blob85d2fcbe10793db952aca8556a0f93d1b9a11444
1 /*
2 * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
3 * August 2002: added remote node KVA remap - Martin J. Bligh
5 * Copyright (C) 2002, IBM Corp.
7 * All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
17 * NON INFRINGEMENT. See the GNU General Public License for more
18 * details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/config.h>
26 #include <linux/mm.h>
27 #include <linux/bootmem.h>
28 #include <linux/mmzone.h>
29 #include <linux/highmem.h>
30 #include <linux/initrd.h>
31 #include <linux/nodemask.h>
32 #include <asm/e820.h>
33 #include <asm/setup.h>
34 #include <asm/mmzone.h>
35 #include <bios_ebda.h>
37 struct pglist_data *node_data[MAX_NUMNODES];
38 bootmem_data_t node0_bdata;
41 * numa interface - we expect the numa architecture specfic code to have
42 * populated the following initialisation.
44 * 1) node_online_map - the map of all nodes configured (online) in the system
45 * 2) physnode_map - the mapping between a pfn and owning node
46 * 3) node_start_pfn - the starting page frame number for a node
47 * 3) node_end_pfn - the ending page fram number for a node
51 * physnode_map keeps track of the physical memory layout of a generic
52 * numa node on a 256Mb break (each element of the array will
53 * represent 256Mb of memory and will be marked by the node id. so,
54 * if the first gig is on node 0, and the second gig is on node 1
55 * physnode_map will contain:
57 * physnode_map[0-3] = 0;
58 * physnode_map[4-7] = 1;
59 * physnode_map[8- ] = -1;
61 s8 physnode_map[MAX_ELEMENTS] = { [0 ... (MAX_ELEMENTS - 1)] = -1};
63 void memory_present(int nid, unsigned long start, unsigned long end)
65 unsigned long pfn;
67 printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n",
68 nid, start, end);
69 printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
70 printk(KERN_DEBUG " ");
71 for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
72 physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
73 printk("%ld ", pfn);
75 printk("\n");
78 unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
79 unsigned long end_pfn)
81 unsigned long nr_pages = end_pfn - start_pfn;
83 if (!nr_pages)
84 return 0;
86 return (nr_pages + 1) * sizeof(struct page);
89 unsigned long node_start_pfn[MAX_NUMNODES];
90 unsigned long node_end_pfn[MAX_NUMNODES];
92 extern unsigned long find_max_low_pfn(void);
93 extern void find_max_pfn(void);
94 extern void one_highpage_init(struct page *, int, int);
96 extern struct e820map e820;
97 extern unsigned long init_pg_tables_end;
98 extern unsigned long highend_pfn, highstart_pfn;
99 extern unsigned long max_low_pfn;
100 extern unsigned long totalram_pages;
101 extern unsigned long totalhigh_pages;
103 #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
105 unsigned long node_remap_start_pfn[MAX_NUMNODES];
106 unsigned long node_remap_size[MAX_NUMNODES];
107 unsigned long node_remap_offset[MAX_NUMNODES];
108 void *node_remap_start_vaddr[MAX_NUMNODES];
109 void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
112 * FLAT - support for basic PC memory model with discontig enabled, essentially
113 * a single node with all available processors in it with a flat
114 * memory map.
116 int __init get_memcfg_numa_flat(void)
118 printk("NUMA - single node, flat memory mode\n");
120 /* Run the memory configuration and find the top of memory. */
121 find_max_pfn();
122 node_start_pfn[0] = 0;
123 node_end_pfn[0] = max_pfn;
124 memory_present(0, 0, max_pfn);
126 /* Indicate there is one node available. */
127 nodes_clear(node_online_map);
128 node_set_online(0);
129 return 1;
133 * Find the highest page frame number we have available for the node
135 static void __init find_max_pfn_node(int nid)
137 if (node_end_pfn[nid] > max_pfn)
138 node_end_pfn[nid] = max_pfn;
140 * if a user has given mem=XXXX, then we need to make sure
141 * that the node _starts_ before that, too, not just ends
143 if (node_start_pfn[nid] > max_pfn)
144 node_start_pfn[nid] = max_pfn;
145 if (node_start_pfn[nid] > node_end_pfn[nid])
146 BUG();
149 /* Find the owning node for a pfn. */
150 int early_pfn_to_nid(unsigned long pfn)
152 int nid;
154 for_each_node(nid) {
155 if (node_end_pfn[nid] == 0)
156 break;
157 if (node_start_pfn[nid] <= pfn && node_end_pfn[nid] >= pfn)
158 return nid;
161 return 0;
165 * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
166 * method. For node zero take this from the bottom of memory, for
167 * subsequent nodes place them at node_remap_start_vaddr which contains
168 * node local data in physically node local memory. See setup_memory()
169 * for details.
171 static void __init allocate_pgdat(int nid)
173 if (nid && node_has_online_mem(nid))
174 NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
175 else {
176 NODE_DATA(nid) = (pg_data_t *)(__va(min_low_pfn << PAGE_SHIFT));
177 min_low_pfn += PFN_UP(sizeof(pg_data_t));
181 void __init remap_numa_kva(void)
183 void *vaddr;
184 unsigned long pfn;
185 int node;
187 for_each_online_node(node) {
188 if (node == 0)
189 continue;
190 for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
191 vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
192 set_pmd_pfn((ulong) vaddr,
193 node_remap_start_pfn[node] + pfn,
194 PAGE_KERNEL_LARGE);
199 static unsigned long calculate_numa_remap_pages(void)
201 int nid;
202 unsigned long size, reserve_pages = 0;
204 for_each_online_node(nid) {
205 if (nid == 0)
206 continue;
207 if (!node_remap_size[nid])
208 continue;
211 * The acpi/srat node info can show hot-add memroy zones
212 * where memory could be added but not currently present.
214 if (node_start_pfn[nid] > max_pfn)
215 continue;
216 if (node_end_pfn[nid] > max_pfn)
217 node_end_pfn[nid] = max_pfn;
219 /* ensure the remap includes space for the pgdat. */
220 size = node_remap_size[nid] + sizeof(pg_data_t);
222 /* convert size to large (pmd size) pages, rounding up */
223 size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
224 /* now the roundup is correct, convert to PAGE_SIZE pages */
225 size = size * PTRS_PER_PTE;
226 printk("Reserving %ld pages of KVA for lmem_map of node %d\n",
227 size, nid);
228 node_remap_size[nid] = size;
229 reserve_pages += size;
230 node_remap_offset[nid] = reserve_pages;
231 printk("Shrinking node %d from %ld pages to %ld pages\n",
232 nid, node_end_pfn[nid], node_end_pfn[nid] - size);
233 node_end_pfn[nid] -= size;
234 node_remap_start_pfn[nid] = node_end_pfn[nid];
236 printk("Reserving total of %ld pages for numa KVA remap\n",
237 reserve_pages);
238 return reserve_pages;
241 extern void setup_bootmem_allocator(void);
242 unsigned long __init setup_memory(void)
244 int nid;
245 unsigned long system_start_pfn, system_max_low_pfn;
246 unsigned long reserve_pages;
249 * When mapping a NUMA machine we allocate the node_mem_map arrays
250 * from node local memory. They are then mapped directly into KVA
251 * between zone normal and vmalloc space. Calculate the size of
252 * this space and use it to adjust the boundry between ZONE_NORMAL
253 * and ZONE_HIGHMEM.
255 find_max_pfn();
256 get_memcfg_numa();
258 reserve_pages = calculate_numa_remap_pages();
260 /* partially used pages are not usable - thus round upwards */
261 system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end);
263 system_max_low_pfn = max_low_pfn = find_max_low_pfn() - reserve_pages;
264 printk("reserve_pages = %ld find_max_low_pfn() ~ %ld\n",
265 reserve_pages, max_low_pfn + reserve_pages);
266 printk("max_pfn = %ld\n", max_pfn);
267 #ifdef CONFIG_HIGHMEM
268 highstart_pfn = highend_pfn = max_pfn;
269 if (max_pfn > system_max_low_pfn)
270 highstart_pfn = system_max_low_pfn;
271 printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
272 pages_to_mb(highend_pfn - highstart_pfn));
273 #endif
274 printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
275 pages_to_mb(system_max_low_pfn));
276 printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n",
277 min_low_pfn, max_low_pfn, highstart_pfn);
279 printk("Low memory ends at vaddr %08lx\n",
280 (ulong) pfn_to_kaddr(max_low_pfn));
281 for_each_online_node(nid) {
282 node_remap_start_vaddr[nid] = pfn_to_kaddr(
283 (highstart_pfn + reserve_pages) - node_remap_offset[nid]);
284 allocate_pgdat(nid);
285 printk ("node %d will remap to vaddr %08lx - %08lx\n", nid,
286 (ulong) node_remap_start_vaddr[nid],
287 (ulong) pfn_to_kaddr(highstart_pfn + reserve_pages
288 - node_remap_offset[nid] + node_remap_size[nid]));
290 printk("High memory starts at vaddr %08lx\n",
291 (ulong) pfn_to_kaddr(highstart_pfn));
292 vmalloc_earlyreserve = reserve_pages * PAGE_SIZE;
293 for_each_online_node(nid)
294 find_max_pfn_node(nid);
296 memset(NODE_DATA(0), 0, sizeof(struct pglist_data));
297 NODE_DATA(0)->bdata = &node0_bdata;
298 setup_bootmem_allocator();
299 return max_low_pfn;
302 void __init zone_sizes_init(void)
304 int nid;
307 * Insert nodes into pgdat_list backward so they appear in order.
308 * Clobber node 0's links and NULL out pgdat_list before starting.
310 pgdat_list = NULL;
311 for (nid = MAX_NUMNODES - 1; nid >= 0; nid--) {
312 if (!node_online(nid))
313 continue;
314 NODE_DATA(nid)->pgdat_next = pgdat_list;
315 pgdat_list = NODE_DATA(nid);
318 for_each_online_node(nid) {
319 unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0};
320 unsigned long *zholes_size;
321 unsigned int max_dma;
323 unsigned long low = max_low_pfn;
324 unsigned long start = node_start_pfn[nid];
325 unsigned long high = node_end_pfn[nid];
327 max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
329 if (node_has_online_mem(nid)){
330 if (start > low) {
331 #ifdef CONFIG_HIGHMEM
332 BUG_ON(start > high);
333 zones_size[ZONE_HIGHMEM] = high - start;
334 #endif
335 } else {
336 if (low < max_dma)
337 zones_size[ZONE_DMA] = low;
338 else {
339 BUG_ON(max_dma > low);
340 BUG_ON(low > high);
341 zones_size[ZONE_DMA] = max_dma;
342 zones_size[ZONE_NORMAL] = low - max_dma;
343 #ifdef CONFIG_HIGHMEM
344 zones_size[ZONE_HIGHMEM] = high - low;
345 #endif
350 zholes_size = get_zholes_size(nid);
352 * We let the lmem_map for node 0 be allocated from the
353 * normal bootmem allocator, but other nodes come from the
354 * remapped KVA area - mbligh
356 if (!nid)
357 free_area_init_node(nid, NODE_DATA(nid),
358 zones_size, start, zholes_size);
359 else {
360 unsigned long lmem_map;
361 lmem_map = (unsigned long)node_remap_start_vaddr[nid];
362 lmem_map += sizeof(pg_data_t) + PAGE_SIZE - 1;
363 lmem_map &= PAGE_MASK;
364 NODE_DATA(nid)->node_mem_map = (struct page *)lmem_map;
365 free_area_init_node(nid, NODE_DATA(nid), zones_size,
366 start, zholes_size);
369 return;
372 void __init set_highmem_pages_init(int bad_ppro)
374 #ifdef CONFIG_HIGHMEM
375 struct zone *zone;
377 for_each_zone(zone) {
378 unsigned long node_pfn, node_high_size, zone_start_pfn;
379 struct page * zone_mem_map;
381 if (!is_highmem(zone))
382 continue;
384 printk("Initializing %s for node %d\n", zone->name,
385 zone->zone_pgdat->node_id);
387 node_high_size = zone->spanned_pages;
388 zone_mem_map = zone->zone_mem_map;
389 zone_start_pfn = zone->zone_start_pfn;
391 for (node_pfn = 0; node_pfn < node_high_size; node_pfn++) {
392 one_highpage_init((struct page *)(zone_mem_map + node_pfn),
393 zone_start_pfn + node_pfn, bad_ppro);
396 totalram_pages += totalhigh_pages;
397 #endif