KVM: Per-vcpu inodes
[linux-2.6/zen-sources.git] / drivers / kvm / vmx.c
blobc07178e61122c7ed9534f598100ef61a7c3b8008
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "kvm.h"
19 #include "vmx.h"
20 #include "kvm_vmx.h"
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/profile.h>
26 #include <asm/io.h>
27 #include <asm/desc.h>
29 #include "segment_descriptor.h"
31 MODULE_AUTHOR("Qumranet");
32 MODULE_LICENSE("GPL");
34 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
35 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
37 #ifdef CONFIG_X86_64
38 #define HOST_IS_64 1
39 #else
40 #define HOST_IS_64 0
41 #endif
43 static struct vmcs_descriptor {
44 int size;
45 int order;
46 u32 revision_id;
47 } vmcs_descriptor;
49 #define VMX_SEGMENT_FIELD(seg) \
50 [VCPU_SREG_##seg] = { \
51 .selector = GUEST_##seg##_SELECTOR, \
52 .base = GUEST_##seg##_BASE, \
53 .limit = GUEST_##seg##_LIMIT, \
54 .ar_bytes = GUEST_##seg##_AR_BYTES, \
57 static struct kvm_vmx_segment_field {
58 unsigned selector;
59 unsigned base;
60 unsigned limit;
61 unsigned ar_bytes;
62 } kvm_vmx_segment_fields[] = {
63 VMX_SEGMENT_FIELD(CS),
64 VMX_SEGMENT_FIELD(DS),
65 VMX_SEGMENT_FIELD(ES),
66 VMX_SEGMENT_FIELD(FS),
67 VMX_SEGMENT_FIELD(GS),
68 VMX_SEGMENT_FIELD(SS),
69 VMX_SEGMENT_FIELD(TR),
70 VMX_SEGMENT_FIELD(LDTR),
73 static const u32 vmx_msr_index[] = {
74 #ifdef CONFIG_X86_64
75 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
76 #endif
77 MSR_EFER, MSR_K6_STAR,
79 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
81 static inline int is_page_fault(u32 intr_info)
83 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
84 INTR_INFO_VALID_MASK)) ==
85 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
88 static inline int is_external_interrupt(u32 intr_info)
90 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
91 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
94 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
96 int i;
98 for (i = 0; i < vcpu->nmsrs; ++i)
99 if (vcpu->guest_msrs[i].index == msr)
100 return &vcpu->guest_msrs[i];
101 return NULL;
104 static void vmcs_clear(struct vmcs *vmcs)
106 u64 phys_addr = __pa(vmcs);
107 u8 error;
109 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
110 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
111 : "cc", "memory");
112 if (error)
113 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
114 vmcs, phys_addr);
117 static void __vcpu_clear(void *arg)
119 struct kvm_vcpu *vcpu = arg;
120 int cpu = raw_smp_processor_id();
122 if (vcpu->cpu == cpu)
123 vmcs_clear(vcpu->vmcs);
124 if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
125 per_cpu(current_vmcs, cpu) = NULL;
128 static void vcpu_clear(struct kvm_vcpu *vcpu)
130 if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
131 smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
132 else
133 __vcpu_clear(vcpu);
134 vcpu->launched = 0;
137 static unsigned long vmcs_readl(unsigned long field)
139 unsigned long value;
141 asm volatile (ASM_VMX_VMREAD_RDX_RAX
142 : "=a"(value) : "d"(field) : "cc");
143 return value;
146 static u16 vmcs_read16(unsigned long field)
148 return vmcs_readl(field);
151 static u32 vmcs_read32(unsigned long field)
153 return vmcs_readl(field);
156 static u64 vmcs_read64(unsigned long field)
158 #ifdef CONFIG_X86_64
159 return vmcs_readl(field);
160 #else
161 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
162 #endif
165 static noinline void vmwrite_error(unsigned long field, unsigned long value)
167 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
168 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
169 dump_stack();
172 static void vmcs_writel(unsigned long field, unsigned long value)
174 u8 error;
176 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
177 : "=q"(error) : "a"(value), "d"(field) : "cc" );
178 if (unlikely(error))
179 vmwrite_error(field, value);
182 static void vmcs_write16(unsigned long field, u16 value)
184 vmcs_writel(field, value);
187 static void vmcs_write32(unsigned long field, u32 value)
189 vmcs_writel(field, value);
192 static void vmcs_write64(unsigned long field, u64 value)
194 #ifdef CONFIG_X86_64
195 vmcs_writel(field, value);
196 #else
197 vmcs_writel(field, value);
198 asm volatile ("");
199 vmcs_writel(field+1, value >> 32);
200 #endif
204 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
205 * vcpu mutex is already taken.
207 static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
209 u64 phys_addr = __pa(vcpu->vmcs);
210 int cpu;
212 cpu = get_cpu();
214 if (vcpu->cpu != cpu)
215 vcpu_clear(vcpu);
217 if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
218 u8 error;
220 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
221 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
222 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
223 : "cc");
224 if (error)
225 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
226 vcpu->vmcs, phys_addr);
229 if (vcpu->cpu != cpu) {
230 struct descriptor_table dt;
231 unsigned long sysenter_esp;
233 vcpu->cpu = cpu;
235 * Linux uses per-cpu TSS and GDT, so set these when switching
236 * processors.
238 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
239 get_gdt(&dt);
240 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
242 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
243 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
247 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
249 put_cpu();
252 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
254 vcpu_clear(vcpu);
257 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
259 return vmcs_readl(GUEST_RFLAGS);
262 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
264 vmcs_writel(GUEST_RFLAGS, rflags);
267 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
269 unsigned long rip;
270 u32 interruptibility;
272 rip = vmcs_readl(GUEST_RIP);
273 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
274 vmcs_writel(GUEST_RIP, rip);
277 * We emulated an instruction, so temporary interrupt blocking
278 * should be removed, if set.
280 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
281 if (interruptibility & 3)
282 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
283 interruptibility & ~3);
284 vcpu->interrupt_window_open = 1;
287 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
289 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
290 vmcs_readl(GUEST_RIP));
291 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
292 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
293 GP_VECTOR |
294 INTR_TYPE_EXCEPTION |
295 INTR_INFO_DELIEVER_CODE_MASK |
296 INTR_INFO_VALID_MASK);
300 * reads and returns guest's timestamp counter "register"
301 * guest_tsc = host_tsc + tsc_offset -- 21.3
303 static u64 guest_read_tsc(void)
305 u64 host_tsc, tsc_offset;
307 rdtscll(host_tsc);
308 tsc_offset = vmcs_read64(TSC_OFFSET);
309 return host_tsc + tsc_offset;
313 * writes 'guest_tsc' into guest's timestamp counter "register"
314 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
316 static void guest_write_tsc(u64 guest_tsc)
318 u64 host_tsc;
320 rdtscll(host_tsc);
321 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
324 static void reload_tss(void)
326 #ifndef CONFIG_X86_64
329 * VT restores TR but not its size. Useless.
331 struct descriptor_table gdt;
332 struct segment_descriptor *descs;
334 get_gdt(&gdt);
335 descs = (void *)gdt.base;
336 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
337 load_TR_desc();
338 #endif
342 * Reads an msr value (of 'msr_index') into 'pdata'.
343 * Returns 0 on success, non-0 otherwise.
344 * Assumes vcpu_load() was already called.
346 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
348 u64 data;
349 struct vmx_msr_entry *msr;
351 if (!pdata) {
352 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
353 return -EINVAL;
356 switch (msr_index) {
357 #ifdef CONFIG_X86_64
358 case MSR_FS_BASE:
359 data = vmcs_readl(GUEST_FS_BASE);
360 break;
361 case MSR_GS_BASE:
362 data = vmcs_readl(GUEST_GS_BASE);
363 break;
364 case MSR_EFER:
365 return kvm_get_msr_common(vcpu, msr_index, pdata);
366 #endif
367 case MSR_IA32_TIME_STAMP_COUNTER:
368 data = guest_read_tsc();
369 break;
370 case MSR_IA32_SYSENTER_CS:
371 data = vmcs_read32(GUEST_SYSENTER_CS);
372 break;
373 case MSR_IA32_SYSENTER_EIP:
374 data = vmcs_read32(GUEST_SYSENTER_EIP);
375 break;
376 case MSR_IA32_SYSENTER_ESP:
377 data = vmcs_read32(GUEST_SYSENTER_ESP);
378 break;
379 default:
380 msr = find_msr_entry(vcpu, msr_index);
381 if (msr) {
382 data = msr->data;
383 break;
385 return kvm_get_msr_common(vcpu, msr_index, pdata);
388 *pdata = data;
389 return 0;
393 * Writes msr value into into the appropriate "register".
394 * Returns 0 on success, non-0 otherwise.
395 * Assumes vcpu_load() was already called.
397 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
399 struct vmx_msr_entry *msr;
400 switch (msr_index) {
401 #ifdef CONFIG_X86_64
402 case MSR_EFER:
403 return kvm_set_msr_common(vcpu, msr_index, data);
404 case MSR_FS_BASE:
405 vmcs_writel(GUEST_FS_BASE, data);
406 break;
407 case MSR_GS_BASE:
408 vmcs_writel(GUEST_GS_BASE, data);
409 break;
410 #endif
411 case MSR_IA32_SYSENTER_CS:
412 vmcs_write32(GUEST_SYSENTER_CS, data);
413 break;
414 case MSR_IA32_SYSENTER_EIP:
415 vmcs_write32(GUEST_SYSENTER_EIP, data);
416 break;
417 case MSR_IA32_SYSENTER_ESP:
418 vmcs_write32(GUEST_SYSENTER_ESP, data);
419 break;
420 case MSR_IA32_TIME_STAMP_COUNTER:
421 guest_write_tsc(data);
422 break;
423 default:
424 msr = find_msr_entry(vcpu, msr_index);
425 if (msr) {
426 msr->data = data;
427 break;
429 return kvm_set_msr_common(vcpu, msr_index, data);
430 msr->data = data;
431 break;
434 return 0;
438 * Sync the rsp and rip registers into the vcpu structure. This allows
439 * registers to be accessed by indexing vcpu->regs.
441 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
443 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
444 vcpu->rip = vmcs_readl(GUEST_RIP);
448 * Syncs rsp and rip back into the vmcs. Should be called after possible
449 * modification.
451 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
453 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
454 vmcs_writel(GUEST_RIP, vcpu->rip);
457 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
459 unsigned long dr7 = 0x400;
460 u32 exception_bitmap;
461 int old_singlestep;
463 exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
464 old_singlestep = vcpu->guest_debug.singlestep;
466 vcpu->guest_debug.enabled = dbg->enabled;
467 if (vcpu->guest_debug.enabled) {
468 int i;
470 dr7 |= 0x200; /* exact */
471 for (i = 0; i < 4; ++i) {
472 if (!dbg->breakpoints[i].enabled)
473 continue;
474 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
475 dr7 |= 2 << (i*2); /* global enable */
476 dr7 |= 0 << (i*4+16); /* execution breakpoint */
479 exception_bitmap |= (1u << 1); /* Trap debug exceptions */
481 vcpu->guest_debug.singlestep = dbg->singlestep;
482 } else {
483 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
484 vcpu->guest_debug.singlestep = 0;
487 if (old_singlestep && !vcpu->guest_debug.singlestep) {
488 unsigned long flags;
490 flags = vmcs_readl(GUEST_RFLAGS);
491 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
492 vmcs_writel(GUEST_RFLAGS, flags);
495 vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
496 vmcs_writel(GUEST_DR7, dr7);
498 return 0;
501 static __init int cpu_has_kvm_support(void)
503 unsigned long ecx = cpuid_ecx(1);
504 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
507 static __init int vmx_disabled_by_bios(void)
509 u64 msr;
511 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
512 return (msr & 5) == 1; /* locked but not enabled */
515 static void hardware_enable(void *garbage)
517 int cpu = raw_smp_processor_id();
518 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
519 u64 old;
521 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
522 if ((old & 5) != 5)
523 /* enable and lock */
524 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
525 write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
526 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
527 : "memory", "cc");
530 static void hardware_disable(void *garbage)
532 asm volatile (ASM_VMX_VMXOFF : : : "cc");
535 static __init void setup_vmcs_descriptor(void)
537 u32 vmx_msr_low, vmx_msr_high;
539 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
540 vmcs_descriptor.size = vmx_msr_high & 0x1fff;
541 vmcs_descriptor.order = get_order(vmcs_descriptor.size);
542 vmcs_descriptor.revision_id = vmx_msr_low;
545 static struct vmcs *alloc_vmcs_cpu(int cpu)
547 int node = cpu_to_node(cpu);
548 struct page *pages;
549 struct vmcs *vmcs;
551 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
552 if (!pages)
553 return NULL;
554 vmcs = page_address(pages);
555 memset(vmcs, 0, vmcs_descriptor.size);
556 vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
557 return vmcs;
560 static struct vmcs *alloc_vmcs(void)
562 return alloc_vmcs_cpu(raw_smp_processor_id());
565 static void free_vmcs(struct vmcs *vmcs)
567 free_pages((unsigned long)vmcs, vmcs_descriptor.order);
570 static __exit void free_kvm_area(void)
572 int cpu;
574 for_each_online_cpu(cpu)
575 free_vmcs(per_cpu(vmxarea, cpu));
578 extern struct vmcs *alloc_vmcs_cpu(int cpu);
580 static __init int alloc_kvm_area(void)
582 int cpu;
584 for_each_online_cpu(cpu) {
585 struct vmcs *vmcs;
587 vmcs = alloc_vmcs_cpu(cpu);
588 if (!vmcs) {
589 free_kvm_area();
590 return -ENOMEM;
593 per_cpu(vmxarea, cpu) = vmcs;
595 return 0;
598 static __init int hardware_setup(void)
600 setup_vmcs_descriptor();
601 return alloc_kvm_area();
604 static __exit void hardware_unsetup(void)
606 free_kvm_area();
609 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
611 if (vcpu->rmode.active)
612 vmcs_write32(EXCEPTION_BITMAP, ~0);
613 else
614 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
617 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
619 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
621 if (vmcs_readl(sf->base) == save->base) {
622 vmcs_write16(sf->selector, save->selector);
623 vmcs_writel(sf->base, save->base);
624 vmcs_write32(sf->limit, save->limit);
625 vmcs_write32(sf->ar_bytes, save->ar);
626 } else {
627 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
628 << AR_DPL_SHIFT;
629 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
633 static void enter_pmode(struct kvm_vcpu *vcpu)
635 unsigned long flags;
637 vcpu->rmode.active = 0;
639 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
640 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
641 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
643 flags = vmcs_readl(GUEST_RFLAGS);
644 flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
645 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
646 vmcs_writel(GUEST_RFLAGS, flags);
648 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
649 (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
651 update_exception_bitmap(vcpu);
653 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
654 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
655 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
656 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
658 vmcs_write16(GUEST_SS_SELECTOR, 0);
659 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
661 vmcs_write16(GUEST_CS_SELECTOR,
662 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
663 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
666 static int rmode_tss_base(struct kvm* kvm)
668 gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
669 return base_gfn << PAGE_SHIFT;
672 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
674 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
676 save->selector = vmcs_read16(sf->selector);
677 save->base = vmcs_readl(sf->base);
678 save->limit = vmcs_read32(sf->limit);
679 save->ar = vmcs_read32(sf->ar_bytes);
680 vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
681 vmcs_write32(sf->limit, 0xffff);
682 vmcs_write32(sf->ar_bytes, 0xf3);
685 static void enter_rmode(struct kvm_vcpu *vcpu)
687 unsigned long flags;
689 vcpu->rmode.active = 1;
691 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
692 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
694 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
695 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
697 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
698 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
700 flags = vmcs_readl(GUEST_RFLAGS);
701 vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
703 flags |= IOPL_MASK | X86_EFLAGS_VM;
705 vmcs_writel(GUEST_RFLAGS, flags);
706 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
707 update_exception_bitmap(vcpu);
709 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
710 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
711 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
713 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
714 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
715 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
717 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
718 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
719 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
720 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
723 #ifdef CONFIG_X86_64
725 static void enter_lmode(struct kvm_vcpu *vcpu)
727 u32 guest_tr_ar;
729 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
730 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
731 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
732 __FUNCTION__);
733 vmcs_write32(GUEST_TR_AR_BYTES,
734 (guest_tr_ar & ~AR_TYPE_MASK)
735 | AR_TYPE_BUSY_64_TSS);
738 vcpu->shadow_efer |= EFER_LMA;
740 find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
741 vmcs_write32(VM_ENTRY_CONTROLS,
742 vmcs_read32(VM_ENTRY_CONTROLS)
743 | VM_ENTRY_CONTROLS_IA32E_MASK);
746 static void exit_lmode(struct kvm_vcpu *vcpu)
748 vcpu->shadow_efer &= ~EFER_LMA;
750 vmcs_write32(VM_ENTRY_CONTROLS,
751 vmcs_read32(VM_ENTRY_CONTROLS)
752 & ~VM_ENTRY_CONTROLS_IA32E_MASK);
755 #endif
757 static void vmx_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
759 vcpu->cr0 &= KVM_GUEST_CR0_MASK;
760 vcpu->cr0 |= vmcs_readl(GUEST_CR0) & ~KVM_GUEST_CR0_MASK;
762 vcpu->cr4 &= KVM_GUEST_CR4_MASK;
763 vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
766 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
768 if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
769 enter_pmode(vcpu);
771 if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
772 enter_rmode(vcpu);
774 #ifdef CONFIG_X86_64
775 if (vcpu->shadow_efer & EFER_LME) {
776 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
777 enter_lmode(vcpu);
778 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
779 exit_lmode(vcpu);
781 #endif
783 vmcs_writel(CR0_READ_SHADOW, cr0);
784 vmcs_writel(GUEST_CR0,
785 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
786 vcpu->cr0 = cr0;
790 * Used when restoring the VM to avoid corrupting segment registers
792 static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
794 if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
795 enter_rmode(vcpu);
797 vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
798 update_exception_bitmap(vcpu);
799 vmcs_writel(CR0_READ_SHADOW, cr0);
800 vmcs_writel(GUEST_CR0,
801 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
802 vcpu->cr0 = cr0;
805 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
807 vmcs_writel(GUEST_CR3, cr3);
810 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
812 vmcs_writel(CR4_READ_SHADOW, cr4);
813 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
814 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
815 vcpu->cr4 = cr4;
818 #ifdef CONFIG_X86_64
820 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
822 struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
824 vcpu->shadow_efer = efer;
825 if (efer & EFER_LMA) {
826 vmcs_write32(VM_ENTRY_CONTROLS,
827 vmcs_read32(VM_ENTRY_CONTROLS) |
828 VM_ENTRY_CONTROLS_IA32E_MASK);
829 msr->data = efer;
831 } else {
832 vmcs_write32(VM_ENTRY_CONTROLS,
833 vmcs_read32(VM_ENTRY_CONTROLS) &
834 ~VM_ENTRY_CONTROLS_IA32E_MASK);
836 msr->data = efer & ~EFER_LME;
840 #endif
842 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
844 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
846 return vmcs_readl(sf->base);
849 static void vmx_get_segment(struct kvm_vcpu *vcpu,
850 struct kvm_segment *var, int seg)
852 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
853 u32 ar;
855 var->base = vmcs_readl(sf->base);
856 var->limit = vmcs_read32(sf->limit);
857 var->selector = vmcs_read16(sf->selector);
858 ar = vmcs_read32(sf->ar_bytes);
859 if (ar & AR_UNUSABLE_MASK)
860 ar = 0;
861 var->type = ar & 15;
862 var->s = (ar >> 4) & 1;
863 var->dpl = (ar >> 5) & 3;
864 var->present = (ar >> 7) & 1;
865 var->avl = (ar >> 12) & 1;
866 var->l = (ar >> 13) & 1;
867 var->db = (ar >> 14) & 1;
868 var->g = (ar >> 15) & 1;
869 var->unusable = (ar >> 16) & 1;
872 static void vmx_set_segment(struct kvm_vcpu *vcpu,
873 struct kvm_segment *var, int seg)
875 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
876 u32 ar;
878 vmcs_writel(sf->base, var->base);
879 vmcs_write32(sf->limit, var->limit);
880 vmcs_write16(sf->selector, var->selector);
881 if (var->unusable)
882 ar = 1 << 16;
883 else {
884 ar = var->type & 15;
885 ar |= (var->s & 1) << 4;
886 ar |= (var->dpl & 3) << 5;
887 ar |= (var->present & 1) << 7;
888 ar |= (var->avl & 1) << 12;
889 ar |= (var->l & 1) << 13;
890 ar |= (var->db & 1) << 14;
891 ar |= (var->g & 1) << 15;
893 if (ar == 0) /* a 0 value means unusable */
894 ar = AR_UNUSABLE_MASK;
895 vmcs_write32(sf->ar_bytes, ar);
898 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
900 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
902 *db = (ar >> 14) & 1;
903 *l = (ar >> 13) & 1;
906 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
908 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
909 dt->base = vmcs_readl(GUEST_IDTR_BASE);
912 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
914 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
915 vmcs_writel(GUEST_IDTR_BASE, dt->base);
918 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
920 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
921 dt->base = vmcs_readl(GUEST_GDTR_BASE);
924 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
926 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
927 vmcs_writel(GUEST_GDTR_BASE, dt->base);
930 static int init_rmode_tss(struct kvm* kvm)
932 struct page *p1, *p2, *p3;
933 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
934 char *page;
936 p1 = _gfn_to_page(kvm, fn++);
937 p2 = _gfn_to_page(kvm, fn++);
938 p3 = _gfn_to_page(kvm, fn);
940 if (!p1 || !p2 || !p3) {
941 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
942 return 0;
945 page = kmap_atomic(p1, KM_USER0);
946 memset(page, 0, PAGE_SIZE);
947 *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
948 kunmap_atomic(page, KM_USER0);
950 page = kmap_atomic(p2, KM_USER0);
951 memset(page, 0, PAGE_SIZE);
952 kunmap_atomic(page, KM_USER0);
954 page = kmap_atomic(p3, KM_USER0);
955 memset(page, 0, PAGE_SIZE);
956 *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
957 kunmap_atomic(page, KM_USER0);
959 return 1;
962 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
964 u32 msr_high, msr_low;
966 rdmsr(msr, msr_low, msr_high);
968 val &= msr_high;
969 val |= msr_low;
970 vmcs_write32(vmcs_field, val);
973 static void seg_setup(int seg)
975 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
977 vmcs_write16(sf->selector, 0);
978 vmcs_writel(sf->base, 0);
979 vmcs_write32(sf->limit, 0xffff);
980 vmcs_write32(sf->ar_bytes, 0x93);
984 * Sets up the vmcs for emulated real mode.
986 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
988 u32 host_sysenter_cs;
989 u32 junk;
990 unsigned long a;
991 struct descriptor_table dt;
992 int i;
993 int ret = 0;
994 int nr_good_msrs;
995 extern asmlinkage void kvm_vmx_return(void);
997 if (!init_rmode_tss(vcpu->kvm)) {
998 ret = -ENOMEM;
999 goto out;
1002 memset(vcpu->regs, 0, sizeof(vcpu->regs));
1003 vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
1004 vcpu->cr8 = 0;
1005 vcpu->apic_base = 0xfee00000 |
1006 /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
1007 MSR_IA32_APICBASE_ENABLE;
1009 fx_init(vcpu);
1012 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1013 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1015 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1016 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1017 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1018 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1020 seg_setup(VCPU_SREG_DS);
1021 seg_setup(VCPU_SREG_ES);
1022 seg_setup(VCPU_SREG_FS);
1023 seg_setup(VCPU_SREG_GS);
1024 seg_setup(VCPU_SREG_SS);
1026 vmcs_write16(GUEST_TR_SELECTOR, 0);
1027 vmcs_writel(GUEST_TR_BASE, 0);
1028 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1029 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1031 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1032 vmcs_writel(GUEST_LDTR_BASE, 0);
1033 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1034 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1036 vmcs_write32(GUEST_SYSENTER_CS, 0);
1037 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1038 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1040 vmcs_writel(GUEST_RFLAGS, 0x02);
1041 vmcs_writel(GUEST_RIP, 0xfff0);
1042 vmcs_writel(GUEST_RSP, 0);
1044 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1045 vmcs_writel(GUEST_DR7, 0x400);
1047 vmcs_writel(GUEST_GDTR_BASE, 0);
1048 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1050 vmcs_writel(GUEST_IDTR_BASE, 0);
1051 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1053 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1054 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1055 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1057 /* I/O */
1058 vmcs_write64(IO_BITMAP_A, 0);
1059 vmcs_write64(IO_BITMAP_B, 0);
1061 guest_write_tsc(0);
1063 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1065 /* Special registers */
1066 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1068 /* Control */
1069 vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1070 PIN_BASED_VM_EXEC_CONTROL,
1071 PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
1072 | PIN_BASED_NMI_EXITING /* 20.6.1 */
1074 vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1075 CPU_BASED_VM_EXEC_CONTROL,
1076 CPU_BASED_HLT_EXITING /* 20.6.2 */
1077 | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
1078 | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
1079 | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
1080 | CPU_BASED_MOV_DR_EXITING
1081 | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
1084 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1085 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1086 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1087 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1089 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1090 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1091 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1093 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1094 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1095 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1096 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1097 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1098 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1099 #ifdef CONFIG_X86_64
1100 rdmsrl(MSR_FS_BASE, a);
1101 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1102 rdmsrl(MSR_GS_BASE, a);
1103 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1104 #else
1105 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1106 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1107 #endif
1109 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1111 get_idt(&dt);
1112 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1115 vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1117 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1118 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1119 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1120 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1121 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1122 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1124 for (i = 0; i < NR_VMX_MSR; ++i) {
1125 u32 index = vmx_msr_index[i];
1126 u32 data_low, data_high;
1127 u64 data;
1128 int j = vcpu->nmsrs;
1130 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1131 continue;
1132 if (wrmsr_safe(index, data_low, data_high) < 0)
1133 continue;
1134 data = data_low | ((u64)data_high << 32);
1135 vcpu->host_msrs[j].index = index;
1136 vcpu->host_msrs[j].reserved = 0;
1137 vcpu->host_msrs[j].data = data;
1138 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1139 ++vcpu->nmsrs;
1141 printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
1143 nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
1144 vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
1145 virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1146 vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
1147 virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1148 vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
1149 virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
1150 vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1151 (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
1152 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
1153 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1154 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1157 /* 22.2.1, 20.8.1 */
1158 vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1159 VM_ENTRY_CONTROLS, 0);
1160 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1162 #ifdef CONFIG_X86_64
1163 vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1164 vmcs_writel(TPR_THRESHOLD, 0);
1165 #endif
1167 vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
1168 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1170 vcpu->cr0 = 0x60000010;
1171 vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1172 vmx_set_cr4(vcpu, 0);
1173 #ifdef CONFIG_X86_64
1174 vmx_set_efer(vcpu, 0);
1175 #endif
1177 return 0;
1179 out:
1180 return ret;
1183 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1185 u16 ent[2];
1186 u16 cs;
1187 u16 ip;
1188 unsigned long flags;
1189 unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1190 u16 sp = vmcs_readl(GUEST_RSP);
1191 u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1193 if (sp > ss_limit || sp - 6 > sp) {
1194 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1195 __FUNCTION__,
1196 vmcs_readl(GUEST_RSP),
1197 vmcs_readl(GUEST_SS_BASE),
1198 vmcs_read32(GUEST_SS_LIMIT));
1199 return;
1202 if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1203 sizeof(ent)) {
1204 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1205 return;
1208 flags = vmcs_readl(GUEST_RFLAGS);
1209 cs = vmcs_readl(GUEST_CS_BASE) >> 4;
1210 ip = vmcs_readl(GUEST_RIP);
1213 if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1214 kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1215 kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1216 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1217 return;
1220 vmcs_writel(GUEST_RFLAGS, flags &
1221 ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1222 vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1223 vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1224 vmcs_writel(GUEST_RIP, ent[0]);
1225 vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1228 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1230 int word_index = __ffs(vcpu->irq_summary);
1231 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1232 int irq = word_index * BITS_PER_LONG + bit_index;
1234 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1235 if (!vcpu->irq_pending[word_index])
1236 clear_bit(word_index, &vcpu->irq_summary);
1238 if (vcpu->rmode.active) {
1239 inject_rmode_irq(vcpu, irq);
1240 return;
1242 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1243 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1247 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1248 struct kvm_run *kvm_run)
1250 u32 cpu_based_vm_exec_control;
1252 vcpu->interrupt_window_open =
1253 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1254 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1256 if (vcpu->interrupt_window_open &&
1257 vcpu->irq_summary &&
1258 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1260 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1262 kvm_do_inject_irq(vcpu);
1264 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1265 if (!vcpu->interrupt_window_open &&
1266 (vcpu->irq_summary || kvm_run->request_interrupt_window))
1268 * Interrupts blocked. Wait for unblock.
1270 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1271 else
1272 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1273 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1276 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1278 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1280 set_debugreg(dbg->bp[0], 0);
1281 set_debugreg(dbg->bp[1], 1);
1282 set_debugreg(dbg->bp[2], 2);
1283 set_debugreg(dbg->bp[3], 3);
1285 if (dbg->singlestep) {
1286 unsigned long flags;
1288 flags = vmcs_readl(GUEST_RFLAGS);
1289 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1290 vmcs_writel(GUEST_RFLAGS, flags);
1294 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1295 int vec, u32 err_code)
1297 if (!vcpu->rmode.active)
1298 return 0;
1300 if (vec == GP_VECTOR && err_code == 0)
1301 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1302 return 1;
1303 return 0;
1306 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1308 u32 intr_info, error_code;
1309 unsigned long cr2, rip;
1310 u32 vect_info;
1311 enum emulation_result er;
1312 int r;
1314 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1315 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1317 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1318 !is_page_fault(intr_info)) {
1319 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1320 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1323 if (is_external_interrupt(vect_info)) {
1324 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1325 set_bit(irq, vcpu->irq_pending);
1326 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1329 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1330 asm ("int $2");
1331 return 1;
1333 error_code = 0;
1334 rip = vmcs_readl(GUEST_RIP);
1335 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1336 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1337 if (is_page_fault(intr_info)) {
1338 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1340 spin_lock(&vcpu->kvm->lock);
1341 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1342 if (r < 0) {
1343 spin_unlock(&vcpu->kvm->lock);
1344 return r;
1346 if (!r) {
1347 spin_unlock(&vcpu->kvm->lock);
1348 return 1;
1351 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1352 spin_unlock(&vcpu->kvm->lock);
1354 switch (er) {
1355 case EMULATE_DONE:
1356 return 1;
1357 case EMULATE_DO_MMIO:
1358 ++kvm_stat.mmio_exits;
1359 kvm_run->exit_reason = KVM_EXIT_MMIO;
1360 return 0;
1361 case EMULATE_FAIL:
1362 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1363 break;
1364 default:
1365 BUG();
1369 if (vcpu->rmode.active &&
1370 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1371 error_code))
1372 return 1;
1374 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1375 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1376 return 0;
1378 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1379 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1380 kvm_run->ex.error_code = error_code;
1381 return 0;
1384 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1385 struct kvm_run *kvm_run)
1387 ++kvm_stat.irq_exits;
1388 return 1;
1391 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1393 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1394 return 0;
1397 static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
1399 u64 inst;
1400 gva_t rip;
1401 int countr_size;
1402 int i, n;
1404 if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1405 countr_size = 2;
1406 } else {
1407 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1409 countr_size = (cs_ar & AR_L_MASK) ? 8:
1410 (cs_ar & AR_DB_MASK) ? 4: 2;
1413 rip = vmcs_readl(GUEST_RIP);
1414 if (countr_size != 8)
1415 rip += vmcs_readl(GUEST_CS_BASE);
1417 n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1419 for (i = 0; i < n; i++) {
1420 switch (((u8*)&inst)[i]) {
1421 case 0xf0:
1422 case 0xf2:
1423 case 0xf3:
1424 case 0x2e:
1425 case 0x36:
1426 case 0x3e:
1427 case 0x26:
1428 case 0x64:
1429 case 0x65:
1430 case 0x66:
1431 break;
1432 case 0x67:
1433 countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1434 default:
1435 goto done;
1438 return 0;
1439 done:
1440 countr_size *= 8;
1441 *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1442 return 1;
1445 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1447 u64 exit_qualification;
1449 ++kvm_stat.io_exits;
1450 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1451 kvm_run->exit_reason = KVM_EXIT_IO;
1452 if (exit_qualification & 8)
1453 kvm_run->io.direction = KVM_EXIT_IO_IN;
1454 else
1455 kvm_run->io.direction = KVM_EXIT_IO_OUT;
1456 kvm_run->io.size = (exit_qualification & 7) + 1;
1457 kvm_run->io.string = (exit_qualification & 16) != 0;
1458 kvm_run->io.string_down
1459 = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1460 kvm_run->io.rep = (exit_qualification & 32) != 0;
1461 kvm_run->io.port = exit_qualification >> 16;
1462 if (kvm_run->io.string) {
1463 if (!get_io_count(vcpu, &kvm_run->io.count))
1464 return 1;
1465 kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1466 } else
1467 kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
1468 return 0;
1471 static void
1472 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1475 * Patch in the VMCALL instruction:
1477 hypercall[0] = 0x0f;
1478 hypercall[1] = 0x01;
1479 hypercall[2] = 0xc1;
1480 hypercall[3] = 0xc3;
1483 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1485 u64 exit_qualification;
1486 int cr;
1487 int reg;
1489 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1490 cr = exit_qualification & 15;
1491 reg = (exit_qualification >> 8) & 15;
1492 switch ((exit_qualification >> 4) & 3) {
1493 case 0: /* mov to cr */
1494 switch (cr) {
1495 case 0:
1496 vcpu_load_rsp_rip(vcpu);
1497 set_cr0(vcpu, vcpu->regs[reg]);
1498 skip_emulated_instruction(vcpu);
1499 return 1;
1500 case 3:
1501 vcpu_load_rsp_rip(vcpu);
1502 set_cr3(vcpu, vcpu->regs[reg]);
1503 skip_emulated_instruction(vcpu);
1504 return 1;
1505 case 4:
1506 vcpu_load_rsp_rip(vcpu);
1507 set_cr4(vcpu, vcpu->regs[reg]);
1508 skip_emulated_instruction(vcpu);
1509 return 1;
1510 case 8:
1511 vcpu_load_rsp_rip(vcpu);
1512 set_cr8(vcpu, vcpu->regs[reg]);
1513 skip_emulated_instruction(vcpu);
1514 return 1;
1516 break;
1517 case 1: /*mov from cr*/
1518 switch (cr) {
1519 case 3:
1520 vcpu_load_rsp_rip(vcpu);
1521 vcpu->regs[reg] = vcpu->cr3;
1522 vcpu_put_rsp_rip(vcpu);
1523 skip_emulated_instruction(vcpu);
1524 return 1;
1525 case 8:
1526 printk(KERN_DEBUG "handle_cr: read CR8 "
1527 "cpu erratum AA15\n");
1528 vcpu_load_rsp_rip(vcpu);
1529 vcpu->regs[reg] = vcpu->cr8;
1530 vcpu_put_rsp_rip(vcpu);
1531 skip_emulated_instruction(vcpu);
1532 return 1;
1534 break;
1535 case 3: /* lmsw */
1536 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1538 skip_emulated_instruction(vcpu);
1539 return 1;
1540 default:
1541 break;
1543 kvm_run->exit_reason = 0;
1544 printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1545 (int)(exit_qualification >> 4) & 3, cr);
1546 return 0;
1549 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1551 u64 exit_qualification;
1552 unsigned long val;
1553 int dr, reg;
1556 * FIXME: this code assumes the host is debugging the guest.
1557 * need to deal with guest debugging itself too.
1559 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1560 dr = exit_qualification & 7;
1561 reg = (exit_qualification >> 8) & 15;
1562 vcpu_load_rsp_rip(vcpu);
1563 if (exit_qualification & 16) {
1564 /* mov from dr */
1565 switch (dr) {
1566 case 6:
1567 val = 0xffff0ff0;
1568 break;
1569 case 7:
1570 val = 0x400;
1571 break;
1572 default:
1573 val = 0;
1575 vcpu->regs[reg] = val;
1576 } else {
1577 /* mov to dr */
1579 vcpu_put_rsp_rip(vcpu);
1580 skip_emulated_instruction(vcpu);
1581 return 1;
1584 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1586 kvm_run->exit_reason = KVM_EXIT_CPUID;
1587 return 0;
1590 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1592 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1593 u64 data;
1595 if (vmx_get_msr(vcpu, ecx, &data)) {
1596 vmx_inject_gp(vcpu, 0);
1597 return 1;
1600 /* FIXME: handling of bits 32:63 of rax, rdx */
1601 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1602 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1603 skip_emulated_instruction(vcpu);
1604 return 1;
1607 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1609 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1610 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1611 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1613 if (vmx_set_msr(vcpu, ecx, data) != 0) {
1614 vmx_inject_gp(vcpu, 0);
1615 return 1;
1618 skip_emulated_instruction(vcpu);
1619 return 1;
1622 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1623 struct kvm_run *kvm_run)
1625 kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1626 kvm_run->cr8 = vcpu->cr8;
1627 kvm_run->apic_base = vcpu->apic_base;
1628 kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1629 vcpu->irq_summary == 0);
1632 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1633 struct kvm_run *kvm_run)
1636 * If the user space waits to inject interrupts, exit as soon as
1637 * possible
1639 if (kvm_run->request_interrupt_window &&
1640 !vcpu->irq_summary) {
1641 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1642 ++kvm_stat.irq_window_exits;
1643 return 0;
1645 return 1;
1648 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1650 skip_emulated_instruction(vcpu);
1651 if (vcpu->irq_summary)
1652 return 1;
1654 kvm_run->exit_reason = KVM_EXIT_HLT;
1655 ++kvm_stat.halt_exits;
1656 return 0;
1659 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1661 vmcs_writel(GUEST_RIP, vmcs_readl(GUEST_RIP)+3);
1662 return kvm_hypercall(vcpu, kvm_run);
1666 * The exit handlers return 1 if the exit was handled fully and guest execution
1667 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
1668 * to be done to userspace and return 0.
1670 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1671 struct kvm_run *kvm_run) = {
1672 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
1673 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
1674 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
1675 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
1676 [EXIT_REASON_CR_ACCESS] = handle_cr,
1677 [EXIT_REASON_DR_ACCESS] = handle_dr,
1678 [EXIT_REASON_CPUID] = handle_cpuid,
1679 [EXIT_REASON_MSR_READ] = handle_rdmsr,
1680 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
1681 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
1682 [EXIT_REASON_HLT] = handle_halt,
1683 [EXIT_REASON_VMCALL] = handle_vmcall,
1686 static const int kvm_vmx_max_exit_handlers =
1687 sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1690 * The guest has exited. See if we can fix it or if we need userspace
1691 * assistance.
1693 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1695 u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1696 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1698 if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1699 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1700 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1701 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1702 kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1703 if (exit_reason < kvm_vmx_max_exit_handlers
1704 && kvm_vmx_exit_handlers[exit_reason])
1705 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1706 else {
1707 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1708 kvm_run->hw.hardware_exit_reason = exit_reason;
1710 return 0;
1714 * Check if userspace requested an interrupt window, and that the
1715 * interrupt window is open.
1717 * No need to exit to userspace if we already have an interrupt queued.
1719 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1720 struct kvm_run *kvm_run)
1722 return (!vcpu->irq_summary &&
1723 kvm_run->request_interrupt_window &&
1724 vcpu->interrupt_window_open &&
1725 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
1728 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1730 u8 fail;
1731 u16 fs_sel, gs_sel, ldt_sel;
1732 int fs_gs_ldt_reload_needed;
1733 int r;
1735 again:
1737 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1738 * allow segment selectors with cpl > 0 or ti == 1.
1740 fs_sel = read_fs();
1741 gs_sel = read_gs();
1742 ldt_sel = read_ldt();
1743 fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1744 if (!fs_gs_ldt_reload_needed) {
1745 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1746 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1747 } else {
1748 vmcs_write16(HOST_FS_SELECTOR, 0);
1749 vmcs_write16(HOST_GS_SELECTOR, 0);
1752 #ifdef CONFIG_X86_64
1753 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1754 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1755 #else
1756 vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1757 vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1758 #endif
1760 if (!vcpu->mmio_read_completed)
1761 do_interrupt_requests(vcpu, kvm_run);
1763 if (vcpu->guest_debug.enabled)
1764 kvm_guest_debug_pre(vcpu);
1766 fx_save(vcpu->host_fx_image);
1767 fx_restore(vcpu->guest_fx_image);
1769 save_msrs(vcpu->host_msrs, vcpu->nmsrs);
1770 load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1772 asm (
1773 /* Store host registers */
1774 "pushf \n\t"
1775 #ifdef CONFIG_X86_64
1776 "push %%rax; push %%rbx; push %%rdx;"
1777 "push %%rsi; push %%rdi; push %%rbp;"
1778 "push %%r8; push %%r9; push %%r10; push %%r11;"
1779 "push %%r12; push %%r13; push %%r14; push %%r15;"
1780 "push %%rcx \n\t"
1781 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1782 #else
1783 "pusha; push %%ecx \n\t"
1784 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1785 #endif
1786 /* Check if vmlaunch of vmresume is needed */
1787 "cmp $0, %1 \n\t"
1788 /* Load guest registers. Don't clobber flags. */
1789 #ifdef CONFIG_X86_64
1790 "mov %c[cr2](%3), %%rax \n\t"
1791 "mov %%rax, %%cr2 \n\t"
1792 "mov %c[rax](%3), %%rax \n\t"
1793 "mov %c[rbx](%3), %%rbx \n\t"
1794 "mov %c[rdx](%3), %%rdx \n\t"
1795 "mov %c[rsi](%3), %%rsi \n\t"
1796 "mov %c[rdi](%3), %%rdi \n\t"
1797 "mov %c[rbp](%3), %%rbp \n\t"
1798 "mov %c[r8](%3), %%r8 \n\t"
1799 "mov %c[r9](%3), %%r9 \n\t"
1800 "mov %c[r10](%3), %%r10 \n\t"
1801 "mov %c[r11](%3), %%r11 \n\t"
1802 "mov %c[r12](%3), %%r12 \n\t"
1803 "mov %c[r13](%3), %%r13 \n\t"
1804 "mov %c[r14](%3), %%r14 \n\t"
1805 "mov %c[r15](%3), %%r15 \n\t"
1806 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1807 #else
1808 "mov %c[cr2](%3), %%eax \n\t"
1809 "mov %%eax, %%cr2 \n\t"
1810 "mov %c[rax](%3), %%eax \n\t"
1811 "mov %c[rbx](%3), %%ebx \n\t"
1812 "mov %c[rdx](%3), %%edx \n\t"
1813 "mov %c[rsi](%3), %%esi \n\t"
1814 "mov %c[rdi](%3), %%edi \n\t"
1815 "mov %c[rbp](%3), %%ebp \n\t"
1816 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1817 #endif
1818 /* Enter guest mode */
1819 "jne launched \n\t"
1820 ASM_VMX_VMLAUNCH "\n\t"
1821 "jmp kvm_vmx_return \n\t"
1822 "launched: " ASM_VMX_VMRESUME "\n\t"
1823 ".globl kvm_vmx_return \n\t"
1824 "kvm_vmx_return: "
1825 /* Save guest registers, load host registers, keep flags */
1826 #ifdef CONFIG_X86_64
1827 "xchg %3, (%%rsp) \n\t"
1828 "mov %%rax, %c[rax](%3) \n\t"
1829 "mov %%rbx, %c[rbx](%3) \n\t"
1830 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
1831 "mov %%rdx, %c[rdx](%3) \n\t"
1832 "mov %%rsi, %c[rsi](%3) \n\t"
1833 "mov %%rdi, %c[rdi](%3) \n\t"
1834 "mov %%rbp, %c[rbp](%3) \n\t"
1835 "mov %%r8, %c[r8](%3) \n\t"
1836 "mov %%r9, %c[r9](%3) \n\t"
1837 "mov %%r10, %c[r10](%3) \n\t"
1838 "mov %%r11, %c[r11](%3) \n\t"
1839 "mov %%r12, %c[r12](%3) \n\t"
1840 "mov %%r13, %c[r13](%3) \n\t"
1841 "mov %%r14, %c[r14](%3) \n\t"
1842 "mov %%r15, %c[r15](%3) \n\t"
1843 "mov %%cr2, %%rax \n\t"
1844 "mov %%rax, %c[cr2](%3) \n\t"
1845 "mov (%%rsp), %3 \n\t"
1847 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
1848 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
1849 "pop %%rbp; pop %%rdi; pop %%rsi;"
1850 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
1851 #else
1852 "xchg %3, (%%esp) \n\t"
1853 "mov %%eax, %c[rax](%3) \n\t"
1854 "mov %%ebx, %c[rbx](%3) \n\t"
1855 "pushl (%%esp); popl %c[rcx](%3) \n\t"
1856 "mov %%edx, %c[rdx](%3) \n\t"
1857 "mov %%esi, %c[rsi](%3) \n\t"
1858 "mov %%edi, %c[rdi](%3) \n\t"
1859 "mov %%ebp, %c[rbp](%3) \n\t"
1860 "mov %%cr2, %%eax \n\t"
1861 "mov %%eax, %c[cr2](%3) \n\t"
1862 "mov (%%esp), %3 \n\t"
1864 "pop %%ecx; popa \n\t"
1865 #endif
1866 "setbe %0 \n\t"
1867 "popf \n\t"
1868 : "=q" (fail)
1869 : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1870 "c"(vcpu),
1871 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1872 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1873 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1874 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1875 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1876 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1877 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1878 #ifdef CONFIG_X86_64
1879 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1880 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1881 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1882 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1883 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1884 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1885 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1886 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1887 #endif
1888 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1889 : "cc", "memory" );
1891 ++kvm_stat.exits;
1893 save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1894 load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
1896 fx_save(vcpu->guest_fx_image);
1897 fx_restore(vcpu->host_fx_image);
1898 vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
1900 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
1902 kvm_run->exit_type = 0;
1903 if (fail) {
1904 kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
1905 kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
1906 r = 0;
1907 } else {
1908 if (fs_gs_ldt_reload_needed) {
1909 load_ldt(ldt_sel);
1910 load_fs(fs_sel);
1912 * If we have to reload gs, we must take care to
1913 * preserve our gs base.
1915 local_irq_disable();
1916 load_gs(gs_sel);
1917 #ifdef CONFIG_X86_64
1918 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
1919 #endif
1920 local_irq_enable();
1922 reload_tss();
1925 * Profile KVM exit RIPs:
1927 if (unlikely(prof_on == KVM_PROFILING))
1928 profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
1930 vcpu->launched = 1;
1931 kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
1932 r = kvm_handle_exit(kvm_run, vcpu);
1933 if (r > 0) {
1934 /* Give scheduler a change to reschedule. */
1935 if (signal_pending(current)) {
1936 ++kvm_stat.signal_exits;
1937 post_kvm_run_save(vcpu, kvm_run);
1938 return -EINTR;
1941 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1942 ++kvm_stat.request_irq_exits;
1943 post_kvm_run_save(vcpu, kvm_run);
1944 return -EINTR;
1947 kvm_resched(vcpu);
1948 goto again;
1952 post_kvm_run_save(vcpu, kvm_run);
1953 return r;
1956 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1958 vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
1961 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
1962 unsigned long addr,
1963 u32 err_code)
1965 u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1967 ++kvm_stat.pf_guest;
1969 if (is_page_fault(vect_info)) {
1970 printk(KERN_DEBUG "inject_page_fault: "
1971 "double fault 0x%lx @ 0x%lx\n",
1972 addr, vmcs_readl(GUEST_RIP));
1973 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
1974 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1975 DF_VECTOR |
1976 INTR_TYPE_EXCEPTION |
1977 INTR_INFO_DELIEVER_CODE_MASK |
1978 INTR_INFO_VALID_MASK);
1979 return;
1981 vcpu->cr2 = addr;
1982 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
1983 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1984 PF_VECTOR |
1985 INTR_TYPE_EXCEPTION |
1986 INTR_INFO_DELIEVER_CODE_MASK |
1987 INTR_INFO_VALID_MASK);
1991 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
1993 if (vcpu->vmcs) {
1994 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
1995 free_vmcs(vcpu->vmcs);
1996 vcpu->vmcs = NULL;
2000 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2002 vmx_free_vmcs(vcpu);
2005 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
2007 struct vmcs *vmcs;
2009 vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2010 if (!vcpu->guest_msrs)
2011 return -ENOMEM;
2013 vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2014 if (!vcpu->host_msrs)
2015 goto out_free_guest_msrs;
2017 vmcs = alloc_vmcs();
2018 if (!vmcs)
2019 goto out_free_msrs;
2021 vmcs_clear(vmcs);
2022 vcpu->vmcs = vmcs;
2023 vcpu->launched = 0;
2025 return 0;
2027 out_free_msrs:
2028 kfree(vcpu->host_msrs);
2029 vcpu->host_msrs = NULL;
2031 out_free_guest_msrs:
2032 kfree(vcpu->guest_msrs);
2033 vcpu->guest_msrs = NULL;
2035 return -ENOMEM;
2038 static struct kvm_arch_ops vmx_arch_ops = {
2039 .cpu_has_kvm_support = cpu_has_kvm_support,
2040 .disabled_by_bios = vmx_disabled_by_bios,
2041 .hardware_setup = hardware_setup,
2042 .hardware_unsetup = hardware_unsetup,
2043 .hardware_enable = hardware_enable,
2044 .hardware_disable = hardware_disable,
2046 .vcpu_create = vmx_create_vcpu,
2047 .vcpu_free = vmx_free_vcpu,
2049 .vcpu_load = vmx_vcpu_load,
2050 .vcpu_put = vmx_vcpu_put,
2051 .vcpu_decache = vmx_vcpu_decache,
2053 .set_guest_debug = set_guest_debug,
2054 .get_msr = vmx_get_msr,
2055 .set_msr = vmx_set_msr,
2056 .get_segment_base = vmx_get_segment_base,
2057 .get_segment = vmx_get_segment,
2058 .set_segment = vmx_set_segment,
2059 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2060 .decache_cr0_cr4_guest_bits = vmx_decache_cr0_cr4_guest_bits,
2061 .set_cr0 = vmx_set_cr0,
2062 .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
2063 .set_cr3 = vmx_set_cr3,
2064 .set_cr4 = vmx_set_cr4,
2065 #ifdef CONFIG_X86_64
2066 .set_efer = vmx_set_efer,
2067 #endif
2068 .get_idt = vmx_get_idt,
2069 .set_idt = vmx_set_idt,
2070 .get_gdt = vmx_get_gdt,
2071 .set_gdt = vmx_set_gdt,
2072 .cache_regs = vcpu_load_rsp_rip,
2073 .decache_regs = vcpu_put_rsp_rip,
2074 .get_rflags = vmx_get_rflags,
2075 .set_rflags = vmx_set_rflags,
2077 .tlb_flush = vmx_flush_tlb,
2078 .inject_page_fault = vmx_inject_page_fault,
2080 .inject_gp = vmx_inject_gp,
2082 .run = vmx_vcpu_run,
2083 .skip_emulated_instruction = skip_emulated_instruction,
2084 .vcpu_setup = vmx_vcpu_setup,
2085 .patch_hypercall = vmx_patch_hypercall,
2088 static int __init vmx_init(void)
2090 return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2093 static void __exit vmx_exit(void)
2095 kvm_exit_arch();
2098 module_init(vmx_init)
2099 module_exit(vmx_exit)