sched: hierarchical load vs affine wakeups
[linux-2.6/zen-sources.git] / kernel / sched.c
blob6a6b0139eb3264fc6bc3441c645ca6c72b13f2b0
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
74 #include <asm/tlb.h>
75 #include <asm/irq_regs.h>
77 #include "sched_cpupri.h"
80 * Convert user-nice values [ -20 ... 0 ... 19 ]
81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 * and back.
84 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
85 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
86 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
89 * 'User priority' is the nice value converted to something we
90 * can work with better when scaling various scheduler parameters,
91 * it's a [ 0 ... 39 ] range.
93 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
94 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
95 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
98 * Helpers for converting nanosecond timing to jiffy resolution
100 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
109 * Timeslices get refilled after they expire.
111 #define DEF_TIMESLICE (100 * HZ / 1000)
114 * single value that denotes runtime == period, ie unlimited time.
116 #define RUNTIME_INF ((u64)~0ULL)
118 #ifdef CONFIG_SMP
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
132 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137 #endif
139 static inline int rt_policy(int policy)
141 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
142 return 1;
143 return 0;
146 static inline int task_has_rt_policy(struct task_struct *p)
148 return rt_policy(p->policy);
152 * This is the priority-queue data structure of the RT scheduling class:
154 struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156 struct list_head queue[MAX_RT_PRIO];
159 struct rt_bandwidth {
160 /* nests inside the rq lock: */
161 spinlock_t rt_runtime_lock;
162 ktime_t rt_period;
163 u64 rt_runtime;
164 struct hrtimer rt_period_timer;
167 static struct rt_bandwidth def_rt_bandwidth;
169 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173 struct rt_bandwidth *rt_b =
174 container_of(timer, struct rt_bandwidth, rt_period_timer);
175 ktime_t now;
176 int overrun;
177 int idle = 0;
179 for (;;) {
180 now = hrtimer_cb_get_time(timer);
181 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
183 if (!overrun)
184 break;
186 idle = do_sched_rt_period_timer(rt_b, overrun);
189 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
192 static
193 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195 rt_b->rt_period = ns_to_ktime(period);
196 rt_b->rt_runtime = runtime;
198 spin_lock_init(&rt_b->rt_runtime_lock);
200 hrtimer_init(&rt_b->rt_period_timer,
201 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
202 rt_b->rt_period_timer.function = sched_rt_period_timer;
203 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
206 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
208 ktime_t now;
210 if (rt_b->rt_runtime == RUNTIME_INF)
211 return;
213 if (hrtimer_active(&rt_b->rt_period_timer))
214 return;
216 spin_lock(&rt_b->rt_runtime_lock);
217 for (;;) {
218 if (hrtimer_active(&rt_b->rt_period_timer))
219 break;
221 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
222 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
223 hrtimer_start(&rt_b->rt_period_timer,
224 rt_b->rt_period_timer.expires,
225 HRTIMER_MODE_ABS);
227 spin_unlock(&rt_b->rt_runtime_lock);
230 #ifdef CONFIG_RT_GROUP_SCHED
231 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
233 hrtimer_cancel(&rt_b->rt_period_timer);
235 #endif
238 * sched_domains_mutex serializes calls to arch_init_sched_domains,
239 * detach_destroy_domains and partition_sched_domains.
241 static DEFINE_MUTEX(sched_domains_mutex);
243 #ifdef CONFIG_GROUP_SCHED
245 #include <linux/cgroup.h>
247 struct cfs_rq;
249 static LIST_HEAD(task_groups);
251 /* task group related information */
252 struct task_group {
253 #ifdef CONFIG_CGROUP_SCHED
254 struct cgroup_subsys_state css;
255 #endif
257 #ifdef CONFIG_FAIR_GROUP_SCHED
258 /* schedulable entities of this group on each cpu */
259 struct sched_entity **se;
260 /* runqueue "owned" by this group on each cpu */
261 struct cfs_rq **cfs_rq;
262 unsigned long shares;
263 #endif
265 #ifdef CONFIG_RT_GROUP_SCHED
266 struct sched_rt_entity **rt_se;
267 struct rt_rq **rt_rq;
269 struct rt_bandwidth rt_bandwidth;
270 #endif
272 struct rcu_head rcu;
273 struct list_head list;
275 struct task_group *parent;
276 struct list_head siblings;
277 struct list_head children;
280 #ifdef CONFIG_USER_SCHED
283 * Root task group.
284 * Every UID task group (including init_task_group aka UID-0) will
285 * be a child to this group.
287 struct task_group root_task_group;
289 #ifdef CONFIG_FAIR_GROUP_SCHED
290 /* Default task group's sched entity on each cpu */
291 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
292 /* Default task group's cfs_rq on each cpu */
293 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
294 #endif /* CONFIG_FAIR_GROUP_SCHED */
296 #ifdef CONFIG_RT_GROUP_SCHED
297 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
298 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
299 #endif /* CONFIG_RT_GROUP_SCHED */
300 #else /* !CONFIG_FAIR_GROUP_SCHED */
301 #define root_task_group init_task_group
302 #endif /* CONFIG_FAIR_GROUP_SCHED */
304 /* task_group_lock serializes add/remove of task groups and also changes to
305 * a task group's cpu shares.
307 static DEFINE_SPINLOCK(task_group_lock);
309 #ifdef CONFIG_FAIR_GROUP_SCHED
310 #ifdef CONFIG_USER_SCHED
311 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
312 #else /* !CONFIG_USER_SCHED */
313 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
314 #endif /* CONFIG_USER_SCHED */
317 * A weight of 0 or 1 can cause arithmetics problems.
318 * A weight of a cfs_rq is the sum of weights of which entities
319 * are queued on this cfs_rq, so a weight of a entity should not be
320 * too large, so as the shares value of a task group.
321 * (The default weight is 1024 - so there's no practical
322 * limitation from this.)
324 #define MIN_SHARES 2
325 #define MAX_SHARES (1UL << 18)
327 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
328 #endif
330 /* Default task group.
331 * Every task in system belong to this group at bootup.
333 struct task_group init_task_group;
335 /* return group to which a task belongs */
336 static inline struct task_group *task_group(struct task_struct *p)
338 struct task_group *tg;
340 #ifdef CONFIG_USER_SCHED
341 tg = p->user->tg;
342 #elif defined(CONFIG_CGROUP_SCHED)
343 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
344 struct task_group, css);
345 #else
346 tg = &init_task_group;
347 #endif
348 return tg;
351 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
352 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
354 #ifdef CONFIG_FAIR_GROUP_SCHED
355 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
356 p->se.parent = task_group(p)->se[cpu];
357 #endif
359 #ifdef CONFIG_RT_GROUP_SCHED
360 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
361 p->rt.parent = task_group(p)->rt_se[cpu];
362 #endif
365 #else
367 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
369 #endif /* CONFIG_GROUP_SCHED */
371 /* CFS-related fields in a runqueue */
372 struct cfs_rq {
373 struct load_weight load;
374 unsigned long nr_running;
376 u64 exec_clock;
377 u64 min_vruntime;
378 u64 pair_start;
380 struct rb_root tasks_timeline;
381 struct rb_node *rb_leftmost;
383 struct list_head tasks;
384 struct list_head *balance_iterator;
387 * 'curr' points to currently running entity on this cfs_rq.
388 * It is set to NULL otherwise (i.e when none are currently running).
390 struct sched_entity *curr, *next;
392 unsigned long nr_spread_over;
394 #ifdef CONFIG_FAIR_GROUP_SCHED
395 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
398 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
399 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
400 * (like users, containers etc.)
402 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
403 * list is used during load balance.
405 struct list_head leaf_cfs_rq_list;
406 struct task_group *tg; /* group that "owns" this runqueue */
408 #ifdef CONFIG_SMP
410 * the part of load.weight contributed by tasks
412 unsigned long task_weight;
415 * h_load = weight * f(tg)
417 * Where f(tg) is the recursive weight fraction assigned to
418 * this group.
420 unsigned long h_load;
423 * this cpu's part of tg->shares
425 unsigned long shares;
426 #endif
427 #endif
430 /* Real-Time classes' related field in a runqueue: */
431 struct rt_rq {
432 struct rt_prio_array active;
433 unsigned long rt_nr_running;
434 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
435 int highest_prio; /* highest queued rt task prio */
436 #endif
437 #ifdef CONFIG_SMP
438 unsigned long rt_nr_migratory;
439 int overloaded;
440 #endif
441 int rt_throttled;
442 u64 rt_time;
443 u64 rt_runtime;
444 /* Nests inside the rq lock: */
445 spinlock_t rt_runtime_lock;
447 #ifdef CONFIG_RT_GROUP_SCHED
448 unsigned long rt_nr_boosted;
450 struct rq *rq;
451 struct list_head leaf_rt_rq_list;
452 struct task_group *tg;
453 struct sched_rt_entity *rt_se;
454 #endif
457 #ifdef CONFIG_SMP
460 * We add the notion of a root-domain which will be used to define per-domain
461 * variables. Each exclusive cpuset essentially defines an island domain by
462 * fully partitioning the member cpus from any other cpuset. Whenever a new
463 * exclusive cpuset is created, we also create and attach a new root-domain
464 * object.
467 struct root_domain {
468 atomic_t refcount;
469 cpumask_t span;
470 cpumask_t online;
473 * The "RT overload" flag: it gets set if a CPU has more than
474 * one runnable RT task.
476 cpumask_t rto_mask;
477 atomic_t rto_count;
478 #ifdef CONFIG_SMP
479 struct cpupri cpupri;
480 #endif
484 * By default the system creates a single root-domain with all cpus as
485 * members (mimicking the global state we have today).
487 static struct root_domain def_root_domain;
489 #endif
492 * This is the main, per-CPU runqueue data structure.
494 * Locking rule: those places that want to lock multiple runqueues
495 * (such as the load balancing or the thread migration code), lock
496 * acquire operations must be ordered by ascending &runqueue.
498 struct rq {
499 /* runqueue lock: */
500 spinlock_t lock;
503 * nr_running and cpu_load should be in the same cacheline because
504 * remote CPUs use both these fields when doing load calculation.
506 unsigned long nr_running;
507 #define CPU_LOAD_IDX_MAX 5
508 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
509 unsigned char idle_at_tick;
510 #ifdef CONFIG_NO_HZ
511 unsigned long last_tick_seen;
512 unsigned char in_nohz_recently;
513 #endif
514 /* capture load from *all* tasks on this cpu: */
515 struct load_weight load;
516 unsigned long nr_load_updates;
517 u64 nr_switches;
519 struct cfs_rq cfs;
520 struct rt_rq rt;
522 #ifdef CONFIG_FAIR_GROUP_SCHED
523 /* list of leaf cfs_rq on this cpu: */
524 struct list_head leaf_cfs_rq_list;
525 #endif
526 #ifdef CONFIG_RT_GROUP_SCHED
527 struct list_head leaf_rt_rq_list;
528 #endif
531 * This is part of a global counter where only the total sum
532 * over all CPUs matters. A task can increase this counter on
533 * one CPU and if it got migrated afterwards it may decrease
534 * it on another CPU. Always updated under the runqueue lock:
536 unsigned long nr_uninterruptible;
538 struct task_struct *curr, *idle;
539 unsigned long next_balance;
540 struct mm_struct *prev_mm;
542 u64 clock;
544 atomic_t nr_iowait;
546 #ifdef CONFIG_SMP
547 struct root_domain *rd;
548 struct sched_domain *sd;
550 /* For active balancing */
551 int active_balance;
552 int push_cpu;
553 /* cpu of this runqueue: */
554 int cpu;
555 int online;
557 unsigned long avg_load_per_task;
559 struct task_struct *migration_thread;
560 struct list_head migration_queue;
561 #endif
563 #ifdef CONFIG_SCHED_HRTICK
564 unsigned long hrtick_flags;
565 ktime_t hrtick_expire;
566 struct hrtimer hrtick_timer;
567 #endif
569 #ifdef CONFIG_SCHEDSTATS
570 /* latency stats */
571 struct sched_info rq_sched_info;
573 /* sys_sched_yield() stats */
574 unsigned int yld_exp_empty;
575 unsigned int yld_act_empty;
576 unsigned int yld_both_empty;
577 unsigned int yld_count;
579 /* schedule() stats */
580 unsigned int sched_switch;
581 unsigned int sched_count;
582 unsigned int sched_goidle;
584 /* try_to_wake_up() stats */
585 unsigned int ttwu_count;
586 unsigned int ttwu_local;
588 /* BKL stats */
589 unsigned int bkl_count;
590 #endif
591 struct lock_class_key rq_lock_key;
594 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
596 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
598 rq->curr->sched_class->check_preempt_curr(rq, p);
601 static inline int cpu_of(struct rq *rq)
603 #ifdef CONFIG_SMP
604 return rq->cpu;
605 #else
606 return 0;
607 #endif
611 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
612 * See detach_destroy_domains: synchronize_sched for details.
614 * The domain tree of any CPU may only be accessed from within
615 * preempt-disabled sections.
617 #define for_each_domain(cpu, __sd) \
618 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
620 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
621 #define this_rq() (&__get_cpu_var(runqueues))
622 #define task_rq(p) cpu_rq(task_cpu(p))
623 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
625 static inline void update_rq_clock(struct rq *rq)
627 rq->clock = sched_clock_cpu(cpu_of(rq));
631 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
633 #ifdef CONFIG_SCHED_DEBUG
634 # define const_debug __read_mostly
635 #else
636 # define const_debug static const
637 #endif
640 * Debugging: various feature bits
643 #define SCHED_FEAT(name, enabled) \
644 __SCHED_FEAT_##name ,
646 enum {
647 #include "sched_features.h"
650 #undef SCHED_FEAT
652 #define SCHED_FEAT(name, enabled) \
653 (1UL << __SCHED_FEAT_##name) * enabled |
655 const_debug unsigned int sysctl_sched_features =
656 #include "sched_features.h"
659 #undef SCHED_FEAT
661 #ifdef CONFIG_SCHED_DEBUG
662 #define SCHED_FEAT(name, enabled) \
663 #name ,
665 static __read_mostly char *sched_feat_names[] = {
666 #include "sched_features.h"
667 NULL
670 #undef SCHED_FEAT
672 static int sched_feat_open(struct inode *inode, struct file *filp)
674 filp->private_data = inode->i_private;
675 return 0;
678 static ssize_t
679 sched_feat_read(struct file *filp, char __user *ubuf,
680 size_t cnt, loff_t *ppos)
682 char *buf;
683 int r = 0;
684 int len = 0;
685 int i;
687 for (i = 0; sched_feat_names[i]; i++) {
688 len += strlen(sched_feat_names[i]);
689 len += 4;
692 buf = kmalloc(len + 2, GFP_KERNEL);
693 if (!buf)
694 return -ENOMEM;
696 for (i = 0; sched_feat_names[i]; i++) {
697 if (sysctl_sched_features & (1UL << i))
698 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
699 else
700 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
703 r += sprintf(buf + r, "\n");
704 WARN_ON(r >= len + 2);
706 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
708 kfree(buf);
710 return r;
713 static ssize_t
714 sched_feat_write(struct file *filp, const char __user *ubuf,
715 size_t cnt, loff_t *ppos)
717 char buf[64];
718 char *cmp = buf;
719 int neg = 0;
720 int i;
722 if (cnt > 63)
723 cnt = 63;
725 if (copy_from_user(&buf, ubuf, cnt))
726 return -EFAULT;
728 buf[cnt] = 0;
730 if (strncmp(buf, "NO_", 3) == 0) {
731 neg = 1;
732 cmp += 3;
735 for (i = 0; sched_feat_names[i]; i++) {
736 int len = strlen(sched_feat_names[i]);
738 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
739 if (neg)
740 sysctl_sched_features &= ~(1UL << i);
741 else
742 sysctl_sched_features |= (1UL << i);
743 break;
747 if (!sched_feat_names[i])
748 return -EINVAL;
750 filp->f_pos += cnt;
752 return cnt;
755 static struct file_operations sched_feat_fops = {
756 .open = sched_feat_open,
757 .read = sched_feat_read,
758 .write = sched_feat_write,
761 static __init int sched_init_debug(void)
763 debugfs_create_file("sched_features", 0644, NULL, NULL,
764 &sched_feat_fops);
766 return 0;
768 late_initcall(sched_init_debug);
770 #endif
772 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
775 * Number of tasks to iterate in a single balance run.
776 * Limited because this is done with IRQs disabled.
778 const_debug unsigned int sysctl_sched_nr_migrate = 32;
781 * period over which we measure -rt task cpu usage in us.
782 * default: 1s
784 unsigned int sysctl_sched_rt_period = 1000000;
786 static __read_mostly int scheduler_running;
789 * part of the period that we allow rt tasks to run in us.
790 * default: 0.95s
792 int sysctl_sched_rt_runtime = 950000;
794 static inline u64 global_rt_period(void)
796 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
799 static inline u64 global_rt_runtime(void)
801 if (sysctl_sched_rt_period < 0)
802 return RUNTIME_INF;
804 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
807 #ifndef prepare_arch_switch
808 # define prepare_arch_switch(next) do { } while (0)
809 #endif
810 #ifndef finish_arch_switch
811 # define finish_arch_switch(prev) do { } while (0)
812 #endif
814 static inline int task_current(struct rq *rq, struct task_struct *p)
816 return rq->curr == p;
819 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
820 static inline int task_running(struct rq *rq, struct task_struct *p)
822 return task_current(rq, p);
825 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
829 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
831 #ifdef CONFIG_DEBUG_SPINLOCK
832 /* this is a valid case when another task releases the spinlock */
833 rq->lock.owner = current;
834 #endif
836 * If we are tracking spinlock dependencies then we have to
837 * fix up the runqueue lock - which gets 'carried over' from
838 * prev into current:
840 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
842 spin_unlock_irq(&rq->lock);
845 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
846 static inline int task_running(struct rq *rq, struct task_struct *p)
848 #ifdef CONFIG_SMP
849 return p->oncpu;
850 #else
851 return task_current(rq, p);
852 #endif
855 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
857 #ifdef CONFIG_SMP
859 * We can optimise this out completely for !SMP, because the
860 * SMP rebalancing from interrupt is the only thing that cares
861 * here.
863 next->oncpu = 1;
864 #endif
865 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
866 spin_unlock_irq(&rq->lock);
867 #else
868 spin_unlock(&rq->lock);
869 #endif
872 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
874 #ifdef CONFIG_SMP
876 * After ->oncpu is cleared, the task can be moved to a different CPU.
877 * We must ensure this doesn't happen until the switch is completely
878 * finished.
880 smp_wmb();
881 prev->oncpu = 0;
882 #endif
883 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
884 local_irq_enable();
885 #endif
887 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
890 * __task_rq_lock - lock the runqueue a given task resides on.
891 * Must be called interrupts disabled.
893 static inline struct rq *__task_rq_lock(struct task_struct *p)
894 __acquires(rq->lock)
896 for (;;) {
897 struct rq *rq = task_rq(p);
898 spin_lock(&rq->lock);
899 if (likely(rq == task_rq(p)))
900 return rq;
901 spin_unlock(&rq->lock);
906 * task_rq_lock - lock the runqueue a given task resides on and disable
907 * interrupts. Note the ordering: we can safely lookup the task_rq without
908 * explicitly disabling preemption.
910 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
911 __acquires(rq->lock)
913 struct rq *rq;
915 for (;;) {
916 local_irq_save(*flags);
917 rq = task_rq(p);
918 spin_lock(&rq->lock);
919 if (likely(rq == task_rq(p)))
920 return rq;
921 spin_unlock_irqrestore(&rq->lock, *flags);
925 static void __task_rq_unlock(struct rq *rq)
926 __releases(rq->lock)
928 spin_unlock(&rq->lock);
931 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
932 __releases(rq->lock)
934 spin_unlock_irqrestore(&rq->lock, *flags);
938 * this_rq_lock - lock this runqueue and disable interrupts.
940 static struct rq *this_rq_lock(void)
941 __acquires(rq->lock)
943 struct rq *rq;
945 local_irq_disable();
946 rq = this_rq();
947 spin_lock(&rq->lock);
949 return rq;
952 static void __resched_task(struct task_struct *p, int tif_bit);
954 static inline void resched_task(struct task_struct *p)
956 __resched_task(p, TIF_NEED_RESCHED);
959 #ifdef CONFIG_SCHED_HRTICK
961 * Use HR-timers to deliver accurate preemption points.
963 * Its all a bit involved since we cannot program an hrt while holding the
964 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
965 * reschedule event.
967 * When we get rescheduled we reprogram the hrtick_timer outside of the
968 * rq->lock.
970 static inline void resched_hrt(struct task_struct *p)
972 __resched_task(p, TIF_HRTICK_RESCHED);
975 static inline void resched_rq(struct rq *rq)
977 unsigned long flags;
979 spin_lock_irqsave(&rq->lock, flags);
980 resched_task(rq->curr);
981 spin_unlock_irqrestore(&rq->lock, flags);
984 enum {
985 HRTICK_SET, /* re-programm hrtick_timer */
986 HRTICK_RESET, /* not a new slice */
987 HRTICK_BLOCK, /* stop hrtick operations */
991 * Use hrtick when:
992 * - enabled by features
993 * - hrtimer is actually high res
995 static inline int hrtick_enabled(struct rq *rq)
997 if (!sched_feat(HRTICK))
998 return 0;
999 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1000 return 0;
1001 return hrtimer_is_hres_active(&rq->hrtick_timer);
1005 * Called to set the hrtick timer state.
1007 * called with rq->lock held and irqs disabled
1009 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1011 assert_spin_locked(&rq->lock);
1014 * preempt at: now + delay
1016 rq->hrtick_expire =
1017 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1019 * indicate we need to program the timer
1021 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1022 if (reset)
1023 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1026 * New slices are called from the schedule path and don't need a
1027 * forced reschedule.
1029 if (reset)
1030 resched_hrt(rq->curr);
1033 static void hrtick_clear(struct rq *rq)
1035 if (hrtimer_active(&rq->hrtick_timer))
1036 hrtimer_cancel(&rq->hrtick_timer);
1040 * Update the timer from the possible pending state.
1042 static void hrtick_set(struct rq *rq)
1044 ktime_t time;
1045 int set, reset;
1046 unsigned long flags;
1048 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1050 spin_lock_irqsave(&rq->lock, flags);
1051 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1052 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1053 time = rq->hrtick_expire;
1054 clear_thread_flag(TIF_HRTICK_RESCHED);
1055 spin_unlock_irqrestore(&rq->lock, flags);
1057 if (set) {
1058 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1059 if (reset && !hrtimer_active(&rq->hrtick_timer))
1060 resched_rq(rq);
1061 } else
1062 hrtick_clear(rq);
1066 * High-resolution timer tick.
1067 * Runs from hardirq context with interrupts disabled.
1069 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1071 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1073 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1075 spin_lock(&rq->lock);
1076 update_rq_clock(rq);
1077 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1078 spin_unlock(&rq->lock);
1080 return HRTIMER_NORESTART;
1083 #ifdef CONFIG_SMP
1084 static void hotplug_hrtick_disable(int cpu)
1086 struct rq *rq = cpu_rq(cpu);
1087 unsigned long flags;
1089 spin_lock_irqsave(&rq->lock, flags);
1090 rq->hrtick_flags = 0;
1091 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1092 spin_unlock_irqrestore(&rq->lock, flags);
1094 hrtick_clear(rq);
1097 static void hotplug_hrtick_enable(int cpu)
1099 struct rq *rq = cpu_rq(cpu);
1100 unsigned long flags;
1102 spin_lock_irqsave(&rq->lock, flags);
1103 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1104 spin_unlock_irqrestore(&rq->lock, flags);
1107 static int
1108 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1110 int cpu = (int)(long)hcpu;
1112 switch (action) {
1113 case CPU_UP_CANCELED:
1114 case CPU_UP_CANCELED_FROZEN:
1115 case CPU_DOWN_PREPARE:
1116 case CPU_DOWN_PREPARE_FROZEN:
1117 case CPU_DEAD:
1118 case CPU_DEAD_FROZEN:
1119 hotplug_hrtick_disable(cpu);
1120 return NOTIFY_OK;
1122 case CPU_UP_PREPARE:
1123 case CPU_UP_PREPARE_FROZEN:
1124 case CPU_DOWN_FAILED:
1125 case CPU_DOWN_FAILED_FROZEN:
1126 case CPU_ONLINE:
1127 case CPU_ONLINE_FROZEN:
1128 hotplug_hrtick_enable(cpu);
1129 return NOTIFY_OK;
1132 return NOTIFY_DONE;
1135 static void init_hrtick(void)
1137 hotcpu_notifier(hotplug_hrtick, 0);
1139 #endif /* CONFIG_SMP */
1141 static void init_rq_hrtick(struct rq *rq)
1143 rq->hrtick_flags = 0;
1144 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1145 rq->hrtick_timer.function = hrtick;
1146 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1149 void hrtick_resched(void)
1151 struct rq *rq;
1152 unsigned long flags;
1154 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1155 return;
1157 local_irq_save(flags);
1158 rq = cpu_rq(smp_processor_id());
1159 hrtick_set(rq);
1160 local_irq_restore(flags);
1162 #else
1163 static inline void hrtick_clear(struct rq *rq)
1167 static inline void hrtick_set(struct rq *rq)
1171 static inline void init_rq_hrtick(struct rq *rq)
1175 void hrtick_resched(void)
1179 static inline void init_hrtick(void)
1182 #endif
1185 * resched_task - mark a task 'to be rescheduled now'.
1187 * On UP this means the setting of the need_resched flag, on SMP it
1188 * might also involve a cross-CPU call to trigger the scheduler on
1189 * the target CPU.
1191 #ifdef CONFIG_SMP
1193 #ifndef tsk_is_polling
1194 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1195 #endif
1197 static void __resched_task(struct task_struct *p, int tif_bit)
1199 int cpu;
1201 assert_spin_locked(&task_rq(p)->lock);
1203 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1204 return;
1206 set_tsk_thread_flag(p, tif_bit);
1208 cpu = task_cpu(p);
1209 if (cpu == smp_processor_id())
1210 return;
1212 /* NEED_RESCHED must be visible before we test polling */
1213 smp_mb();
1214 if (!tsk_is_polling(p))
1215 smp_send_reschedule(cpu);
1218 static void resched_cpu(int cpu)
1220 struct rq *rq = cpu_rq(cpu);
1221 unsigned long flags;
1223 if (!spin_trylock_irqsave(&rq->lock, flags))
1224 return;
1225 resched_task(cpu_curr(cpu));
1226 spin_unlock_irqrestore(&rq->lock, flags);
1229 #ifdef CONFIG_NO_HZ
1231 * When add_timer_on() enqueues a timer into the timer wheel of an
1232 * idle CPU then this timer might expire before the next timer event
1233 * which is scheduled to wake up that CPU. In case of a completely
1234 * idle system the next event might even be infinite time into the
1235 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1236 * leaves the inner idle loop so the newly added timer is taken into
1237 * account when the CPU goes back to idle and evaluates the timer
1238 * wheel for the next timer event.
1240 void wake_up_idle_cpu(int cpu)
1242 struct rq *rq = cpu_rq(cpu);
1244 if (cpu == smp_processor_id())
1245 return;
1248 * This is safe, as this function is called with the timer
1249 * wheel base lock of (cpu) held. When the CPU is on the way
1250 * to idle and has not yet set rq->curr to idle then it will
1251 * be serialized on the timer wheel base lock and take the new
1252 * timer into account automatically.
1254 if (rq->curr != rq->idle)
1255 return;
1258 * We can set TIF_RESCHED on the idle task of the other CPU
1259 * lockless. The worst case is that the other CPU runs the
1260 * idle task through an additional NOOP schedule()
1262 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1264 /* NEED_RESCHED must be visible before we test polling */
1265 smp_mb();
1266 if (!tsk_is_polling(rq->idle))
1267 smp_send_reschedule(cpu);
1269 #endif /* CONFIG_NO_HZ */
1271 #else /* !CONFIG_SMP */
1272 static void __resched_task(struct task_struct *p, int tif_bit)
1274 assert_spin_locked(&task_rq(p)->lock);
1275 set_tsk_thread_flag(p, tif_bit);
1277 #endif /* CONFIG_SMP */
1279 #if BITS_PER_LONG == 32
1280 # define WMULT_CONST (~0UL)
1281 #else
1282 # define WMULT_CONST (1UL << 32)
1283 #endif
1285 #define WMULT_SHIFT 32
1288 * Shift right and round:
1290 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1293 * delta *= weight / lw
1295 static unsigned long
1296 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1297 struct load_weight *lw)
1299 u64 tmp;
1301 if (!lw->inv_weight) {
1302 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1303 lw->inv_weight = 1;
1304 else
1305 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1306 / (lw->weight+1);
1309 tmp = (u64)delta_exec * weight;
1311 * Check whether we'd overflow the 64-bit multiplication:
1313 if (unlikely(tmp > WMULT_CONST))
1314 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1315 WMULT_SHIFT/2);
1316 else
1317 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1319 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1322 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1324 lw->weight += inc;
1325 lw->inv_weight = 0;
1328 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1330 lw->weight -= dec;
1331 lw->inv_weight = 0;
1335 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1336 * of tasks with abnormal "nice" values across CPUs the contribution that
1337 * each task makes to its run queue's load is weighted according to its
1338 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1339 * scaled version of the new time slice allocation that they receive on time
1340 * slice expiry etc.
1343 #define WEIGHT_IDLEPRIO 2
1344 #define WMULT_IDLEPRIO (1 << 31)
1347 * Nice levels are multiplicative, with a gentle 10% change for every
1348 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1349 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1350 * that remained on nice 0.
1352 * The "10% effect" is relative and cumulative: from _any_ nice level,
1353 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1354 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1355 * If a task goes up by ~10% and another task goes down by ~10% then
1356 * the relative distance between them is ~25%.)
1358 static const int prio_to_weight[40] = {
1359 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1360 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1361 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1362 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1363 /* 0 */ 1024, 820, 655, 526, 423,
1364 /* 5 */ 335, 272, 215, 172, 137,
1365 /* 10 */ 110, 87, 70, 56, 45,
1366 /* 15 */ 36, 29, 23, 18, 15,
1370 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1372 * In cases where the weight does not change often, we can use the
1373 * precalculated inverse to speed up arithmetics by turning divisions
1374 * into multiplications:
1376 static const u32 prio_to_wmult[40] = {
1377 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1378 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1379 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1380 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1381 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1382 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1383 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1384 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1387 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1390 * runqueue iterator, to support SMP load-balancing between different
1391 * scheduling classes, without having to expose their internal data
1392 * structures to the load-balancing proper:
1394 struct rq_iterator {
1395 void *arg;
1396 struct task_struct *(*start)(void *);
1397 struct task_struct *(*next)(void *);
1400 #ifdef CONFIG_SMP
1401 static unsigned long
1402 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1403 unsigned long max_load_move, struct sched_domain *sd,
1404 enum cpu_idle_type idle, int *all_pinned,
1405 int *this_best_prio, struct rq_iterator *iterator);
1407 static int
1408 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 struct sched_domain *sd, enum cpu_idle_type idle,
1410 struct rq_iterator *iterator);
1411 #endif
1413 #ifdef CONFIG_CGROUP_CPUACCT
1414 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1415 #else
1416 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1417 #endif
1419 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1421 update_load_add(&rq->load, load);
1424 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1426 update_load_sub(&rq->load, load);
1429 #ifdef CONFIG_SMP
1430 static unsigned long source_load(int cpu, int type);
1431 static unsigned long target_load(int cpu, int type);
1432 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1434 static unsigned long cpu_avg_load_per_task(int cpu)
1436 struct rq *rq = cpu_rq(cpu);
1438 if (rq->nr_running)
1439 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1441 return rq->avg_load_per_task;
1444 #ifdef CONFIG_FAIR_GROUP_SCHED
1446 typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1449 * Iterate the full tree, calling @down when first entering a node and @up when
1450 * leaving it for the final time.
1452 static void
1453 walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1455 struct task_group *parent, *child;
1457 rcu_read_lock();
1458 parent = &root_task_group;
1459 down:
1460 (*down)(parent, cpu, sd);
1461 list_for_each_entry_rcu(child, &parent->children, siblings) {
1462 parent = child;
1463 goto down;
1466 continue;
1468 (*up)(parent, cpu, sd);
1470 child = parent;
1471 parent = parent->parent;
1472 if (parent)
1473 goto up;
1474 rcu_read_unlock();
1477 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1480 * Calculate and set the cpu's group shares.
1482 static void
1483 __update_group_shares_cpu(struct task_group *tg, int cpu,
1484 unsigned long sd_shares, unsigned long sd_rq_weight)
1486 int boost = 0;
1487 unsigned long shares;
1488 unsigned long rq_weight;
1490 if (!tg->se[cpu])
1491 return;
1493 rq_weight = tg->cfs_rq[cpu]->load.weight;
1496 * If there are currently no tasks on the cpu pretend there is one of
1497 * average load so that when a new task gets to run here it will not
1498 * get delayed by group starvation.
1500 if (!rq_weight) {
1501 boost = 1;
1502 rq_weight = NICE_0_LOAD;
1505 if (unlikely(rq_weight > sd_rq_weight))
1506 rq_weight = sd_rq_weight;
1509 * \Sum shares * rq_weight
1510 * shares = -----------------------
1511 * \Sum rq_weight
1514 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1517 * record the actual number of shares, not the boosted amount.
1519 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1521 if (shares < MIN_SHARES)
1522 shares = MIN_SHARES;
1523 else if (shares > MAX_SHARES)
1524 shares = MAX_SHARES;
1526 __set_se_shares(tg->se[cpu], shares);
1530 * Re-compute the task group their per cpu shares over the given domain.
1531 * This needs to be done in a bottom-up fashion because the rq weight of a
1532 * parent group depends on the shares of its child groups.
1534 static void
1535 tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1537 unsigned long rq_weight = 0;
1538 unsigned long shares = 0;
1539 int i;
1541 for_each_cpu_mask(i, sd->span) {
1542 rq_weight += tg->cfs_rq[i]->load.weight;
1543 shares += tg->cfs_rq[i]->shares;
1546 if ((!shares && rq_weight) || shares > tg->shares)
1547 shares = tg->shares;
1549 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1550 shares = tg->shares;
1552 for_each_cpu_mask(i, sd->span) {
1553 struct rq *rq = cpu_rq(i);
1554 unsigned long flags;
1556 spin_lock_irqsave(&rq->lock, flags);
1557 __update_group_shares_cpu(tg, i, shares, rq_weight);
1558 spin_unlock_irqrestore(&rq->lock, flags);
1563 * Compute the cpu's hierarchical load factor for each task group.
1564 * This needs to be done in a top-down fashion because the load of a child
1565 * group is a fraction of its parents load.
1567 static void
1568 tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1570 unsigned long load;
1572 if (!tg->parent) {
1573 load = cpu_rq(cpu)->load.weight;
1574 } else {
1575 load = tg->parent->cfs_rq[cpu]->h_load;
1576 load *= tg->cfs_rq[cpu]->shares;
1577 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1580 tg->cfs_rq[cpu]->h_load = load;
1583 static void
1584 tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1588 static void update_shares(struct sched_domain *sd)
1590 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1593 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1595 spin_unlock(&rq->lock);
1596 update_shares(sd);
1597 spin_lock(&rq->lock);
1600 static void update_h_load(int cpu)
1602 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1605 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1607 cfs_rq->shares = shares;
1610 #else
1612 static inline void update_shares(struct sched_domain *sd)
1616 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1620 #endif
1622 #endif
1624 #include "sched_stats.h"
1625 #include "sched_idletask.c"
1626 #include "sched_fair.c"
1627 #include "sched_rt.c"
1628 #ifdef CONFIG_SCHED_DEBUG
1629 # include "sched_debug.c"
1630 #endif
1632 #define sched_class_highest (&rt_sched_class)
1633 #define for_each_class(class) \
1634 for (class = sched_class_highest; class; class = class->next)
1636 static void inc_nr_running(struct rq *rq)
1638 rq->nr_running++;
1641 static void dec_nr_running(struct rq *rq)
1643 rq->nr_running--;
1646 static void set_load_weight(struct task_struct *p)
1648 if (task_has_rt_policy(p)) {
1649 p->se.load.weight = prio_to_weight[0] * 2;
1650 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1651 return;
1655 * SCHED_IDLE tasks get minimal weight:
1657 if (p->policy == SCHED_IDLE) {
1658 p->se.load.weight = WEIGHT_IDLEPRIO;
1659 p->se.load.inv_weight = WMULT_IDLEPRIO;
1660 return;
1663 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1664 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1667 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1669 sched_info_queued(p);
1670 p->sched_class->enqueue_task(rq, p, wakeup);
1671 p->se.on_rq = 1;
1674 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1676 p->sched_class->dequeue_task(rq, p, sleep);
1677 p->se.on_rq = 0;
1681 * __normal_prio - return the priority that is based on the static prio
1683 static inline int __normal_prio(struct task_struct *p)
1685 return p->static_prio;
1689 * Calculate the expected normal priority: i.e. priority
1690 * without taking RT-inheritance into account. Might be
1691 * boosted by interactivity modifiers. Changes upon fork,
1692 * setprio syscalls, and whenever the interactivity
1693 * estimator recalculates.
1695 static inline int normal_prio(struct task_struct *p)
1697 int prio;
1699 if (task_has_rt_policy(p))
1700 prio = MAX_RT_PRIO-1 - p->rt_priority;
1701 else
1702 prio = __normal_prio(p);
1703 return prio;
1707 * Calculate the current priority, i.e. the priority
1708 * taken into account by the scheduler. This value might
1709 * be boosted by RT tasks, or might be boosted by
1710 * interactivity modifiers. Will be RT if the task got
1711 * RT-boosted. If not then it returns p->normal_prio.
1713 static int effective_prio(struct task_struct *p)
1715 p->normal_prio = normal_prio(p);
1717 * If we are RT tasks or we were boosted to RT priority,
1718 * keep the priority unchanged. Otherwise, update priority
1719 * to the normal priority:
1721 if (!rt_prio(p->prio))
1722 return p->normal_prio;
1723 return p->prio;
1727 * activate_task - move a task to the runqueue.
1729 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1731 if (task_contributes_to_load(p))
1732 rq->nr_uninterruptible--;
1734 enqueue_task(rq, p, wakeup);
1735 inc_nr_running(rq);
1739 * deactivate_task - remove a task from the runqueue.
1741 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1743 if (task_contributes_to_load(p))
1744 rq->nr_uninterruptible++;
1746 dequeue_task(rq, p, sleep);
1747 dec_nr_running(rq);
1751 * task_curr - is this task currently executing on a CPU?
1752 * @p: the task in question.
1754 inline int task_curr(const struct task_struct *p)
1756 return cpu_curr(task_cpu(p)) == p;
1759 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1761 set_task_rq(p, cpu);
1762 #ifdef CONFIG_SMP
1764 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1765 * successfuly executed on another CPU. We must ensure that updates of
1766 * per-task data have been completed by this moment.
1768 smp_wmb();
1769 task_thread_info(p)->cpu = cpu;
1770 #endif
1773 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1774 const struct sched_class *prev_class,
1775 int oldprio, int running)
1777 if (prev_class != p->sched_class) {
1778 if (prev_class->switched_from)
1779 prev_class->switched_from(rq, p, running);
1780 p->sched_class->switched_to(rq, p, running);
1781 } else
1782 p->sched_class->prio_changed(rq, p, oldprio, running);
1785 #ifdef CONFIG_SMP
1787 /* Used instead of source_load when we know the type == 0 */
1788 static unsigned long weighted_cpuload(const int cpu)
1790 return cpu_rq(cpu)->load.weight;
1794 * Is this task likely cache-hot:
1796 static int
1797 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1799 s64 delta;
1802 * Buddy candidates are cache hot:
1804 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1805 return 1;
1807 if (p->sched_class != &fair_sched_class)
1808 return 0;
1810 if (sysctl_sched_migration_cost == -1)
1811 return 1;
1812 if (sysctl_sched_migration_cost == 0)
1813 return 0;
1815 delta = now - p->se.exec_start;
1817 return delta < (s64)sysctl_sched_migration_cost;
1821 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1823 int old_cpu = task_cpu(p);
1824 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1825 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1826 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1827 u64 clock_offset;
1829 clock_offset = old_rq->clock - new_rq->clock;
1831 #ifdef CONFIG_SCHEDSTATS
1832 if (p->se.wait_start)
1833 p->se.wait_start -= clock_offset;
1834 if (p->se.sleep_start)
1835 p->se.sleep_start -= clock_offset;
1836 if (p->se.block_start)
1837 p->se.block_start -= clock_offset;
1838 if (old_cpu != new_cpu) {
1839 schedstat_inc(p, se.nr_migrations);
1840 if (task_hot(p, old_rq->clock, NULL))
1841 schedstat_inc(p, se.nr_forced2_migrations);
1843 #endif
1844 p->se.vruntime -= old_cfsrq->min_vruntime -
1845 new_cfsrq->min_vruntime;
1847 __set_task_cpu(p, new_cpu);
1850 struct migration_req {
1851 struct list_head list;
1853 struct task_struct *task;
1854 int dest_cpu;
1856 struct completion done;
1860 * The task's runqueue lock must be held.
1861 * Returns true if you have to wait for migration thread.
1863 static int
1864 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1866 struct rq *rq = task_rq(p);
1869 * If the task is not on a runqueue (and not running), then
1870 * it is sufficient to simply update the task's cpu field.
1872 if (!p->se.on_rq && !task_running(rq, p)) {
1873 set_task_cpu(p, dest_cpu);
1874 return 0;
1877 init_completion(&req->done);
1878 req->task = p;
1879 req->dest_cpu = dest_cpu;
1880 list_add(&req->list, &rq->migration_queue);
1882 return 1;
1886 * wait_task_inactive - wait for a thread to unschedule.
1888 * The caller must ensure that the task *will* unschedule sometime soon,
1889 * else this function might spin for a *long* time. This function can't
1890 * be called with interrupts off, or it may introduce deadlock with
1891 * smp_call_function() if an IPI is sent by the same process we are
1892 * waiting to become inactive.
1894 void wait_task_inactive(struct task_struct *p)
1896 unsigned long flags;
1897 int running, on_rq;
1898 struct rq *rq;
1900 for (;;) {
1902 * We do the initial early heuristics without holding
1903 * any task-queue locks at all. We'll only try to get
1904 * the runqueue lock when things look like they will
1905 * work out!
1907 rq = task_rq(p);
1910 * If the task is actively running on another CPU
1911 * still, just relax and busy-wait without holding
1912 * any locks.
1914 * NOTE! Since we don't hold any locks, it's not
1915 * even sure that "rq" stays as the right runqueue!
1916 * But we don't care, since "task_running()" will
1917 * return false if the runqueue has changed and p
1918 * is actually now running somewhere else!
1920 while (task_running(rq, p))
1921 cpu_relax();
1924 * Ok, time to look more closely! We need the rq
1925 * lock now, to be *sure*. If we're wrong, we'll
1926 * just go back and repeat.
1928 rq = task_rq_lock(p, &flags);
1929 running = task_running(rq, p);
1930 on_rq = p->se.on_rq;
1931 task_rq_unlock(rq, &flags);
1934 * Was it really running after all now that we
1935 * checked with the proper locks actually held?
1937 * Oops. Go back and try again..
1939 if (unlikely(running)) {
1940 cpu_relax();
1941 continue;
1945 * It's not enough that it's not actively running,
1946 * it must be off the runqueue _entirely_, and not
1947 * preempted!
1949 * So if it wa still runnable (but just not actively
1950 * running right now), it's preempted, and we should
1951 * yield - it could be a while.
1953 if (unlikely(on_rq)) {
1954 schedule_timeout_uninterruptible(1);
1955 continue;
1959 * Ahh, all good. It wasn't running, and it wasn't
1960 * runnable, which means that it will never become
1961 * running in the future either. We're all done!
1963 break;
1967 /***
1968 * kick_process - kick a running thread to enter/exit the kernel
1969 * @p: the to-be-kicked thread
1971 * Cause a process which is running on another CPU to enter
1972 * kernel-mode, without any delay. (to get signals handled.)
1974 * NOTE: this function doesnt have to take the runqueue lock,
1975 * because all it wants to ensure is that the remote task enters
1976 * the kernel. If the IPI races and the task has been migrated
1977 * to another CPU then no harm is done and the purpose has been
1978 * achieved as well.
1980 void kick_process(struct task_struct *p)
1982 int cpu;
1984 preempt_disable();
1985 cpu = task_cpu(p);
1986 if ((cpu != smp_processor_id()) && task_curr(p))
1987 smp_send_reschedule(cpu);
1988 preempt_enable();
1992 * Return a low guess at the load of a migration-source cpu weighted
1993 * according to the scheduling class and "nice" value.
1995 * We want to under-estimate the load of migration sources, to
1996 * balance conservatively.
1998 static unsigned long source_load(int cpu, int type)
2000 struct rq *rq = cpu_rq(cpu);
2001 unsigned long total = weighted_cpuload(cpu);
2003 if (type == 0)
2004 return total;
2006 return min(rq->cpu_load[type-1], total);
2010 * Return a high guess at the load of a migration-target cpu weighted
2011 * according to the scheduling class and "nice" value.
2013 static unsigned long target_load(int cpu, int type)
2015 struct rq *rq = cpu_rq(cpu);
2016 unsigned long total = weighted_cpuload(cpu);
2018 if (type == 0)
2019 return total;
2021 return max(rq->cpu_load[type-1], total);
2025 * find_idlest_group finds and returns the least busy CPU group within the
2026 * domain.
2028 static struct sched_group *
2029 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2031 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2032 unsigned long min_load = ULONG_MAX, this_load = 0;
2033 int load_idx = sd->forkexec_idx;
2034 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2036 do {
2037 unsigned long load, avg_load;
2038 int local_group;
2039 int i;
2041 /* Skip over this group if it has no CPUs allowed */
2042 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2043 continue;
2045 local_group = cpu_isset(this_cpu, group->cpumask);
2047 /* Tally up the load of all CPUs in the group */
2048 avg_load = 0;
2050 for_each_cpu_mask(i, group->cpumask) {
2051 /* Bias balancing toward cpus of our domain */
2052 if (local_group)
2053 load = source_load(i, load_idx);
2054 else
2055 load = target_load(i, load_idx);
2057 avg_load += load;
2060 /* Adjust by relative CPU power of the group */
2061 avg_load = sg_div_cpu_power(group,
2062 avg_load * SCHED_LOAD_SCALE);
2064 if (local_group) {
2065 this_load = avg_load;
2066 this = group;
2067 } else if (avg_load < min_load) {
2068 min_load = avg_load;
2069 idlest = group;
2071 } while (group = group->next, group != sd->groups);
2073 if (!idlest || 100*this_load < imbalance*min_load)
2074 return NULL;
2075 return idlest;
2079 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2081 static int
2082 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2083 cpumask_t *tmp)
2085 unsigned long load, min_load = ULONG_MAX;
2086 int idlest = -1;
2087 int i;
2089 /* Traverse only the allowed CPUs */
2090 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2092 for_each_cpu_mask(i, *tmp) {
2093 load = weighted_cpuload(i);
2095 if (load < min_load || (load == min_load && i == this_cpu)) {
2096 min_load = load;
2097 idlest = i;
2101 return idlest;
2105 * sched_balance_self: balance the current task (running on cpu) in domains
2106 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2107 * SD_BALANCE_EXEC.
2109 * Balance, ie. select the least loaded group.
2111 * Returns the target CPU number, or the same CPU if no balancing is needed.
2113 * preempt must be disabled.
2115 static int sched_balance_self(int cpu, int flag)
2117 struct task_struct *t = current;
2118 struct sched_domain *tmp, *sd = NULL;
2120 for_each_domain(cpu, tmp) {
2122 * If power savings logic is enabled for a domain, stop there.
2124 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2125 break;
2126 if (tmp->flags & flag)
2127 sd = tmp;
2130 if (sd)
2131 update_shares(sd);
2133 while (sd) {
2134 cpumask_t span, tmpmask;
2135 struct sched_group *group;
2136 int new_cpu, weight;
2138 if (!(sd->flags & flag)) {
2139 sd = sd->child;
2140 continue;
2143 span = sd->span;
2144 group = find_idlest_group(sd, t, cpu);
2145 if (!group) {
2146 sd = sd->child;
2147 continue;
2150 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2151 if (new_cpu == -1 || new_cpu == cpu) {
2152 /* Now try balancing at a lower domain level of cpu */
2153 sd = sd->child;
2154 continue;
2157 /* Now try balancing at a lower domain level of new_cpu */
2158 cpu = new_cpu;
2159 sd = NULL;
2160 weight = cpus_weight(span);
2161 for_each_domain(cpu, tmp) {
2162 if (weight <= cpus_weight(tmp->span))
2163 break;
2164 if (tmp->flags & flag)
2165 sd = tmp;
2167 /* while loop will break here if sd == NULL */
2170 return cpu;
2173 #endif /* CONFIG_SMP */
2175 /***
2176 * try_to_wake_up - wake up a thread
2177 * @p: the to-be-woken-up thread
2178 * @state: the mask of task states that can be woken
2179 * @sync: do a synchronous wakeup?
2181 * Put it on the run-queue if it's not already there. The "current"
2182 * thread is always on the run-queue (except when the actual
2183 * re-schedule is in progress), and as such you're allowed to do
2184 * the simpler "current->state = TASK_RUNNING" to mark yourself
2185 * runnable without the overhead of this.
2187 * returns failure only if the task is already active.
2189 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2191 int cpu, orig_cpu, this_cpu, success = 0;
2192 unsigned long flags;
2193 long old_state;
2194 struct rq *rq;
2196 if (!sched_feat(SYNC_WAKEUPS))
2197 sync = 0;
2199 smp_wmb();
2200 rq = task_rq_lock(p, &flags);
2201 old_state = p->state;
2202 if (!(old_state & state))
2203 goto out;
2205 if (p->se.on_rq)
2206 goto out_running;
2208 cpu = task_cpu(p);
2209 orig_cpu = cpu;
2210 this_cpu = smp_processor_id();
2212 #ifdef CONFIG_SMP
2213 if (unlikely(task_running(rq, p)))
2214 goto out_activate;
2216 cpu = p->sched_class->select_task_rq(p, sync);
2217 if (cpu != orig_cpu) {
2218 set_task_cpu(p, cpu);
2219 task_rq_unlock(rq, &flags);
2220 /* might preempt at this point */
2221 rq = task_rq_lock(p, &flags);
2222 old_state = p->state;
2223 if (!(old_state & state))
2224 goto out;
2225 if (p->se.on_rq)
2226 goto out_running;
2228 this_cpu = smp_processor_id();
2229 cpu = task_cpu(p);
2232 #ifdef CONFIG_SCHEDSTATS
2233 schedstat_inc(rq, ttwu_count);
2234 if (cpu == this_cpu)
2235 schedstat_inc(rq, ttwu_local);
2236 else {
2237 struct sched_domain *sd;
2238 for_each_domain(this_cpu, sd) {
2239 if (cpu_isset(cpu, sd->span)) {
2240 schedstat_inc(sd, ttwu_wake_remote);
2241 break;
2245 #endif /* CONFIG_SCHEDSTATS */
2247 out_activate:
2248 #endif /* CONFIG_SMP */
2249 schedstat_inc(p, se.nr_wakeups);
2250 if (sync)
2251 schedstat_inc(p, se.nr_wakeups_sync);
2252 if (orig_cpu != cpu)
2253 schedstat_inc(p, se.nr_wakeups_migrate);
2254 if (cpu == this_cpu)
2255 schedstat_inc(p, se.nr_wakeups_local);
2256 else
2257 schedstat_inc(p, se.nr_wakeups_remote);
2258 update_rq_clock(rq);
2259 activate_task(rq, p, 1);
2260 success = 1;
2262 out_running:
2263 check_preempt_curr(rq, p);
2265 p->state = TASK_RUNNING;
2266 #ifdef CONFIG_SMP
2267 if (p->sched_class->task_wake_up)
2268 p->sched_class->task_wake_up(rq, p);
2269 #endif
2270 out:
2271 task_rq_unlock(rq, &flags);
2273 return success;
2276 int wake_up_process(struct task_struct *p)
2278 return try_to_wake_up(p, TASK_ALL, 0);
2280 EXPORT_SYMBOL(wake_up_process);
2282 int wake_up_state(struct task_struct *p, unsigned int state)
2284 return try_to_wake_up(p, state, 0);
2288 * Perform scheduler related setup for a newly forked process p.
2289 * p is forked by current.
2291 * __sched_fork() is basic setup used by init_idle() too:
2293 static void __sched_fork(struct task_struct *p)
2295 p->se.exec_start = 0;
2296 p->se.sum_exec_runtime = 0;
2297 p->se.prev_sum_exec_runtime = 0;
2298 p->se.last_wakeup = 0;
2299 p->se.avg_overlap = 0;
2301 #ifdef CONFIG_SCHEDSTATS
2302 p->se.wait_start = 0;
2303 p->se.sum_sleep_runtime = 0;
2304 p->se.sleep_start = 0;
2305 p->se.block_start = 0;
2306 p->se.sleep_max = 0;
2307 p->se.block_max = 0;
2308 p->se.exec_max = 0;
2309 p->se.slice_max = 0;
2310 p->se.wait_max = 0;
2311 #endif
2313 INIT_LIST_HEAD(&p->rt.run_list);
2314 p->se.on_rq = 0;
2315 INIT_LIST_HEAD(&p->se.group_node);
2317 #ifdef CONFIG_PREEMPT_NOTIFIERS
2318 INIT_HLIST_HEAD(&p->preempt_notifiers);
2319 #endif
2322 * We mark the process as running here, but have not actually
2323 * inserted it onto the runqueue yet. This guarantees that
2324 * nobody will actually run it, and a signal or other external
2325 * event cannot wake it up and insert it on the runqueue either.
2327 p->state = TASK_RUNNING;
2331 * fork()/clone()-time setup:
2333 void sched_fork(struct task_struct *p, int clone_flags)
2335 int cpu = get_cpu();
2337 __sched_fork(p);
2339 #ifdef CONFIG_SMP
2340 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2341 #endif
2342 set_task_cpu(p, cpu);
2345 * Make sure we do not leak PI boosting priority to the child:
2347 p->prio = current->normal_prio;
2348 if (!rt_prio(p->prio))
2349 p->sched_class = &fair_sched_class;
2351 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2352 if (likely(sched_info_on()))
2353 memset(&p->sched_info, 0, sizeof(p->sched_info));
2354 #endif
2355 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2356 p->oncpu = 0;
2357 #endif
2358 #ifdef CONFIG_PREEMPT
2359 /* Want to start with kernel preemption disabled. */
2360 task_thread_info(p)->preempt_count = 1;
2361 #endif
2362 put_cpu();
2366 * wake_up_new_task - wake up a newly created task for the first time.
2368 * This function will do some initial scheduler statistics housekeeping
2369 * that must be done for every newly created context, then puts the task
2370 * on the runqueue and wakes it.
2372 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2374 unsigned long flags;
2375 struct rq *rq;
2377 rq = task_rq_lock(p, &flags);
2378 BUG_ON(p->state != TASK_RUNNING);
2379 update_rq_clock(rq);
2381 p->prio = effective_prio(p);
2383 if (!p->sched_class->task_new || !current->se.on_rq) {
2384 activate_task(rq, p, 0);
2385 } else {
2387 * Let the scheduling class do new task startup
2388 * management (if any):
2390 p->sched_class->task_new(rq, p);
2391 inc_nr_running(rq);
2393 check_preempt_curr(rq, p);
2394 #ifdef CONFIG_SMP
2395 if (p->sched_class->task_wake_up)
2396 p->sched_class->task_wake_up(rq, p);
2397 #endif
2398 task_rq_unlock(rq, &flags);
2401 #ifdef CONFIG_PREEMPT_NOTIFIERS
2404 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2405 * @notifier: notifier struct to register
2407 void preempt_notifier_register(struct preempt_notifier *notifier)
2409 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2411 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2414 * preempt_notifier_unregister - no longer interested in preemption notifications
2415 * @notifier: notifier struct to unregister
2417 * This is safe to call from within a preemption notifier.
2419 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2421 hlist_del(&notifier->link);
2423 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2425 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2427 struct preempt_notifier *notifier;
2428 struct hlist_node *node;
2430 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2431 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2434 static void
2435 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2436 struct task_struct *next)
2438 struct preempt_notifier *notifier;
2439 struct hlist_node *node;
2441 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2442 notifier->ops->sched_out(notifier, next);
2445 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2447 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2451 static void
2452 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2453 struct task_struct *next)
2457 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2460 * prepare_task_switch - prepare to switch tasks
2461 * @rq: the runqueue preparing to switch
2462 * @prev: the current task that is being switched out
2463 * @next: the task we are going to switch to.
2465 * This is called with the rq lock held and interrupts off. It must
2466 * be paired with a subsequent finish_task_switch after the context
2467 * switch.
2469 * prepare_task_switch sets up locking and calls architecture specific
2470 * hooks.
2472 static inline void
2473 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2474 struct task_struct *next)
2476 fire_sched_out_preempt_notifiers(prev, next);
2477 prepare_lock_switch(rq, next);
2478 prepare_arch_switch(next);
2482 * finish_task_switch - clean up after a task-switch
2483 * @rq: runqueue associated with task-switch
2484 * @prev: the thread we just switched away from.
2486 * finish_task_switch must be called after the context switch, paired
2487 * with a prepare_task_switch call before the context switch.
2488 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2489 * and do any other architecture-specific cleanup actions.
2491 * Note that we may have delayed dropping an mm in context_switch(). If
2492 * so, we finish that here outside of the runqueue lock. (Doing it
2493 * with the lock held can cause deadlocks; see schedule() for
2494 * details.)
2496 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2497 __releases(rq->lock)
2499 struct mm_struct *mm = rq->prev_mm;
2500 long prev_state;
2502 rq->prev_mm = NULL;
2505 * A task struct has one reference for the use as "current".
2506 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2507 * schedule one last time. The schedule call will never return, and
2508 * the scheduled task must drop that reference.
2509 * The test for TASK_DEAD must occur while the runqueue locks are
2510 * still held, otherwise prev could be scheduled on another cpu, die
2511 * there before we look at prev->state, and then the reference would
2512 * be dropped twice.
2513 * Manfred Spraul <manfred@colorfullife.com>
2515 prev_state = prev->state;
2516 finish_arch_switch(prev);
2517 finish_lock_switch(rq, prev);
2518 #ifdef CONFIG_SMP
2519 if (current->sched_class->post_schedule)
2520 current->sched_class->post_schedule(rq);
2521 #endif
2523 fire_sched_in_preempt_notifiers(current);
2524 if (mm)
2525 mmdrop(mm);
2526 if (unlikely(prev_state == TASK_DEAD)) {
2528 * Remove function-return probe instances associated with this
2529 * task and put them back on the free list.
2531 kprobe_flush_task(prev);
2532 put_task_struct(prev);
2537 * schedule_tail - first thing a freshly forked thread must call.
2538 * @prev: the thread we just switched away from.
2540 asmlinkage void schedule_tail(struct task_struct *prev)
2541 __releases(rq->lock)
2543 struct rq *rq = this_rq();
2545 finish_task_switch(rq, prev);
2546 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2547 /* In this case, finish_task_switch does not reenable preemption */
2548 preempt_enable();
2549 #endif
2550 if (current->set_child_tid)
2551 put_user(task_pid_vnr(current), current->set_child_tid);
2555 * context_switch - switch to the new MM and the new
2556 * thread's register state.
2558 static inline void
2559 context_switch(struct rq *rq, struct task_struct *prev,
2560 struct task_struct *next)
2562 struct mm_struct *mm, *oldmm;
2564 prepare_task_switch(rq, prev, next);
2565 mm = next->mm;
2566 oldmm = prev->active_mm;
2568 * For paravirt, this is coupled with an exit in switch_to to
2569 * combine the page table reload and the switch backend into
2570 * one hypercall.
2572 arch_enter_lazy_cpu_mode();
2574 if (unlikely(!mm)) {
2575 next->active_mm = oldmm;
2576 atomic_inc(&oldmm->mm_count);
2577 enter_lazy_tlb(oldmm, next);
2578 } else
2579 switch_mm(oldmm, mm, next);
2581 if (unlikely(!prev->mm)) {
2582 prev->active_mm = NULL;
2583 rq->prev_mm = oldmm;
2586 * Since the runqueue lock will be released by the next
2587 * task (which is an invalid locking op but in the case
2588 * of the scheduler it's an obvious special-case), so we
2589 * do an early lockdep release here:
2591 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2592 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2593 #endif
2595 /* Here we just switch the register state and the stack. */
2596 switch_to(prev, next, prev);
2598 barrier();
2600 * this_rq must be evaluated again because prev may have moved
2601 * CPUs since it called schedule(), thus the 'rq' on its stack
2602 * frame will be invalid.
2604 finish_task_switch(this_rq(), prev);
2608 * nr_running, nr_uninterruptible and nr_context_switches:
2610 * externally visible scheduler statistics: current number of runnable
2611 * threads, current number of uninterruptible-sleeping threads, total
2612 * number of context switches performed since bootup.
2614 unsigned long nr_running(void)
2616 unsigned long i, sum = 0;
2618 for_each_online_cpu(i)
2619 sum += cpu_rq(i)->nr_running;
2621 return sum;
2624 unsigned long nr_uninterruptible(void)
2626 unsigned long i, sum = 0;
2628 for_each_possible_cpu(i)
2629 sum += cpu_rq(i)->nr_uninterruptible;
2632 * Since we read the counters lockless, it might be slightly
2633 * inaccurate. Do not allow it to go below zero though:
2635 if (unlikely((long)sum < 0))
2636 sum = 0;
2638 return sum;
2641 unsigned long long nr_context_switches(void)
2643 int i;
2644 unsigned long long sum = 0;
2646 for_each_possible_cpu(i)
2647 sum += cpu_rq(i)->nr_switches;
2649 return sum;
2652 unsigned long nr_iowait(void)
2654 unsigned long i, sum = 0;
2656 for_each_possible_cpu(i)
2657 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2659 return sum;
2662 unsigned long nr_active(void)
2664 unsigned long i, running = 0, uninterruptible = 0;
2666 for_each_online_cpu(i) {
2667 running += cpu_rq(i)->nr_running;
2668 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2671 if (unlikely((long)uninterruptible < 0))
2672 uninterruptible = 0;
2674 return running + uninterruptible;
2678 * Update rq->cpu_load[] statistics. This function is usually called every
2679 * scheduler tick (TICK_NSEC).
2681 static void update_cpu_load(struct rq *this_rq)
2683 unsigned long this_load = this_rq->load.weight;
2684 int i, scale;
2686 this_rq->nr_load_updates++;
2688 /* Update our load: */
2689 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2690 unsigned long old_load, new_load;
2692 /* scale is effectively 1 << i now, and >> i divides by scale */
2694 old_load = this_rq->cpu_load[i];
2695 new_load = this_load;
2697 * Round up the averaging division if load is increasing. This
2698 * prevents us from getting stuck on 9 if the load is 10, for
2699 * example.
2701 if (new_load > old_load)
2702 new_load += scale-1;
2703 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2707 #ifdef CONFIG_SMP
2710 * double_rq_lock - safely lock two runqueues
2712 * Note this does not disable interrupts like task_rq_lock,
2713 * you need to do so manually before calling.
2715 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2716 __acquires(rq1->lock)
2717 __acquires(rq2->lock)
2719 BUG_ON(!irqs_disabled());
2720 if (rq1 == rq2) {
2721 spin_lock(&rq1->lock);
2722 __acquire(rq2->lock); /* Fake it out ;) */
2723 } else {
2724 if (rq1 < rq2) {
2725 spin_lock(&rq1->lock);
2726 spin_lock(&rq2->lock);
2727 } else {
2728 spin_lock(&rq2->lock);
2729 spin_lock(&rq1->lock);
2732 update_rq_clock(rq1);
2733 update_rq_clock(rq2);
2737 * double_rq_unlock - safely unlock two runqueues
2739 * Note this does not restore interrupts like task_rq_unlock,
2740 * you need to do so manually after calling.
2742 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2743 __releases(rq1->lock)
2744 __releases(rq2->lock)
2746 spin_unlock(&rq1->lock);
2747 if (rq1 != rq2)
2748 spin_unlock(&rq2->lock);
2749 else
2750 __release(rq2->lock);
2754 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2756 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2757 __releases(this_rq->lock)
2758 __acquires(busiest->lock)
2759 __acquires(this_rq->lock)
2761 int ret = 0;
2763 if (unlikely(!irqs_disabled())) {
2764 /* printk() doesn't work good under rq->lock */
2765 spin_unlock(&this_rq->lock);
2766 BUG_ON(1);
2768 if (unlikely(!spin_trylock(&busiest->lock))) {
2769 if (busiest < this_rq) {
2770 spin_unlock(&this_rq->lock);
2771 spin_lock(&busiest->lock);
2772 spin_lock(&this_rq->lock);
2773 ret = 1;
2774 } else
2775 spin_lock(&busiest->lock);
2777 return ret;
2781 * If dest_cpu is allowed for this process, migrate the task to it.
2782 * This is accomplished by forcing the cpu_allowed mask to only
2783 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2784 * the cpu_allowed mask is restored.
2786 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2788 struct migration_req req;
2789 unsigned long flags;
2790 struct rq *rq;
2792 rq = task_rq_lock(p, &flags);
2793 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2794 || unlikely(cpu_is_offline(dest_cpu)))
2795 goto out;
2797 /* force the process onto the specified CPU */
2798 if (migrate_task(p, dest_cpu, &req)) {
2799 /* Need to wait for migration thread (might exit: take ref). */
2800 struct task_struct *mt = rq->migration_thread;
2802 get_task_struct(mt);
2803 task_rq_unlock(rq, &flags);
2804 wake_up_process(mt);
2805 put_task_struct(mt);
2806 wait_for_completion(&req.done);
2808 return;
2810 out:
2811 task_rq_unlock(rq, &flags);
2815 * sched_exec - execve() is a valuable balancing opportunity, because at
2816 * this point the task has the smallest effective memory and cache footprint.
2818 void sched_exec(void)
2820 int new_cpu, this_cpu = get_cpu();
2821 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2822 put_cpu();
2823 if (new_cpu != this_cpu)
2824 sched_migrate_task(current, new_cpu);
2828 * pull_task - move a task from a remote runqueue to the local runqueue.
2829 * Both runqueues must be locked.
2831 static void pull_task(struct rq *src_rq, struct task_struct *p,
2832 struct rq *this_rq, int this_cpu)
2834 deactivate_task(src_rq, p, 0);
2835 set_task_cpu(p, this_cpu);
2836 activate_task(this_rq, p, 0);
2838 * Note that idle threads have a prio of MAX_PRIO, for this test
2839 * to be always true for them.
2841 check_preempt_curr(this_rq, p);
2845 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2847 static
2848 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2849 struct sched_domain *sd, enum cpu_idle_type idle,
2850 int *all_pinned)
2853 * We do not migrate tasks that are:
2854 * 1) running (obviously), or
2855 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2856 * 3) are cache-hot on their current CPU.
2858 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2859 schedstat_inc(p, se.nr_failed_migrations_affine);
2860 return 0;
2862 *all_pinned = 0;
2864 if (task_running(rq, p)) {
2865 schedstat_inc(p, se.nr_failed_migrations_running);
2866 return 0;
2870 * Aggressive migration if:
2871 * 1) task is cache cold, or
2872 * 2) too many balance attempts have failed.
2875 if (!task_hot(p, rq->clock, sd) ||
2876 sd->nr_balance_failed > sd->cache_nice_tries) {
2877 #ifdef CONFIG_SCHEDSTATS
2878 if (task_hot(p, rq->clock, sd)) {
2879 schedstat_inc(sd, lb_hot_gained[idle]);
2880 schedstat_inc(p, se.nr_forced_migrations);
2882 #endif
2883 return 1;
2886 if (task_hot(p, rq->clock, sd)) {
2887 schedstat_inc(p, se.nr_failed_migrations_hot);
2888 return 0;
2890 return 1;
2893 static unsigned long
2894 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2895 unsigned long max_load_move, struct sched_domain *sd,
2896 enum cpu_idle_type idle, int *all_pinned,
2897 int *this_best_prio, struct rq_iterator *iterator)
2899 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2900 struct task_struct *p;
2901 long rem_load_move = max_load_move;
2903 if (max_load_move == 0)
2904 goto out;
2906 pinned = 1;
2909 * Start the load-balancing iterator:
2911 p = iterator->start(iterator->arg);
2912 next:
2913 if (!p || loops++ > sysctl_sched_nr_migrate)
2914 goto out;
2916 * To help distribute high priority tasks across CPUs we don't
2917 * skip a task if it will be the highest priority task (i.e. smallest
2918 * prio value) on its new queue regardless of its load weight
2920 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2921 SCHED_LOAD_SCALE_FUZZ;
2922 if ((skip_for_load && p->prio >= *this_best_prio) ||
2923 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2924 p = iterator->next(iterator->arg);
2925 goto next;
2928 pull_task(busiest, p, this_rq, this_cpu);
2929 pulled++;
2930 rem_load_move -= p->se.load.weight;
2933 * We only want to steal up to the prescribed amount of weighted load.
2935 if (rem_load_move > 0) {
2936 if (p->prio < *this_best_prio)
2937 *this_best_prio = p->prio;
2938 p = iterator->next(iterator->arg);
2939 goto next;
2941 out:
2943 * Right now, this is one of only two places pull_task() is called,
2944 * so we can safely collect pull_task() stats here rather than
2945 * inside pull_task().
2947 schedstat_add(sd, lb_gained[idle], pulled);
2949 if (all_pinned)
2950 *all_pinned = pinned;
2952 return max_load_move - rem_load_move;
2956 * move_tasks tries to move up to max_load_move weighted load from busiest to
2957 * this_rq, as part of a balancing operation within domain "sd".
2958 * Returns 1 if successful and 0 otherwise.
2960 * Called with both runqueues locked.
2962 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2963 unsigned long max_load_move,
2964 struct sched_domain *sd, enum cpu_idle_type idle,
2965 int *all_pinned)
2967 const struct sched_class *class = sched_class_highest;
2968 unsigned long total_load_moved = 0;
2969 int this_best_prio = this_rq->curr->prio;
2971 do {
2972 total_load_moved +=
2973 class->load_balance(this_rq, this_cpu, busiest,
2974 max_load_move - total_load_moved,
2975 sd, idle, all_pinned, &this_best_prio);
2976 class = class->next;
2977 } while (class && max_load_move > total_load_moved);
2979 return total_load_moved > 0;
2982 static int
2983 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2984 struct sched_domain *sd, enum cpu_idle_type idle,
2985 struct rq_iterator *iterator)
2987 struct task_struct *p = iterator->start(iterator->arg);
2988 int pinned = 0;
2990 while (p) {
2991 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2992 pull_task(busiest, p, this_rq, this_cpu);
2994 * Right now, this is only the second place pull_task()
2995 * is called, so we can safely collect pull_task()
2996 * stats here rather than inside pull_task().
2998 schedstat_inc(sd, lb_gained[idle]);
3000 return 1;
3002 p = iterator->next(iterator->arg);
3005 return 0;
3009 * move_one_task tries to move exactly one task from busiest to this_rq, as
3010 * part of active balancing operations within "domain".
3011 * Returns 1 if successful and 0 otherwise.
3013 * Called with both runqueues locked.
3015 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3016 struct sched_domain *sd, enum cpu_idle_type idle)
3018 const struct sched_class *class;
3020 for (class = sched_class_highest; class; class = class->next)
3021 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3022 return 1;
3024 return 0;
3028 * find_busiest_group finds and returns the busiest CPU group within the
3029 * domain. It calculates and returns the amount of weighted load which
3030 * should be moved to restore balance via the imbalance parameter.
3032 static struct sched_group *
3033 find_busiest_group(struct sched_domain *sd, int this_cpu,
3034 unsigned long *imbalance, enum cpu_idle_type idle,
3035 int *sd_idle, const cpumask_t *cpus, int *balance)
3037 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3038 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3039 unsigned long max_pull;
3040 unsigned long busiest_load_per_task, busiest_nr_running;
3041 unsigned long this_load_per_task, this_nr_running;
3042 int load_idx, group_imb = 0;
3043 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3044 int power_savings_balance = 1;
3045 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3046 unsigned long min_nr_running = ULONG_MAX;
3047 struct sched_group *group_min = NULL, *group_leader = NULL;
3048 #endif
3050 max_load = this_load = total_load = total_pwr = 0;
3051 busiest_load_per_task = busiest_nr_running = 0;
3052 this_load_per_task = this_nr_running = 0;
3053 if (idle == CPU_NOT_IDLE)
3054 load_idx = sd->busy_idx;
3055 else if (idle == CPU_NEWLY_IDLE)
3056 load_idx = sd->newidle_idx;
3057 else
3058 load_idx = sd->idle_idx;
3060 do {
3061 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3062 int local_group;
3063 int i;
3064 int __group_imb = 0;
3065 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3066 unsigned long sum_nr_running, sum_weighted_load;
3068 local_group = cpu_isset(this_cpu, group->cpumask);
3070 if (local_group)
3071 balance_cpu = first_cpu(group->cpumask);
3073 /* Tally up the load of all CPUs in the group */
3074 sum_weighted_load = sum_nr_running = avg_load = 0;
3075 max_cpu_load = 0;
3076 min_cpu_load = ~0UL;
3078 for_each_cpu_mask(i, group->cpumask) {
3079 struct rq *rq;
3081 if (!cpu_isset(i, *cpus))
3082 continue;
3084 rq = cpu_rq(i);
3086 if (*sd_idle && rq->nr_running)
3087 *sd_idle = 0;
3089 /* Bias balancing toward cpus of our domain */
3090 if (local_group) {
3091 if (idle_cpu(i) && !first_idle_cpu) {
3092 first_idle_cpu = 1;
3093 balance_cpu = i;
3096 load = target_load(i, load_idx);
3097 } else {
3098 load = source_load(i, load_idx);
3099 if (load > max_cpu_load)
3100 max_cpu_load = load;
3101 if (min_cpu_load > load)
3102 min_cpu_load = load;
3105 avg_load += load;
3106 sum_nr_running += rq->nr_running;
3107 sum_weighted_load += weighted_cpuload(i);
3111 * First idle cpu or the first cpu(busiest) in this sched group
3112 * is eligible for doing load balancing at this and above
3113 * domains. In the newly idle case, we will allow all the cpu's
3114 * to do the newly idle load balance.
3116 if (idle != CPU_NEWLY_IDLE && local_group &&
3117 balance_cpu != this_cpu && balance) {
3118 *balance = 0;
3119 goto ret;
3122 total_load += avg_load;
3123 total_pwr += group->__cpu_power;
3125 /* Adjust by relative CPU power of the group */
3126 avg_load = sg_div_cpu_power(group,
3127 avg_load * SCHED_LOAD_SCALE);
3129 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3130 __group_imb = 1;
3132 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3134 if (local_group) {
3135 this_load = avg_load;
3136 this = group;
3137 this_nr_running = sum_nr_running;
3138 this_load_per_task = sum_weighted_load;
3139 } else if (avg_load > max_load &&
3140 (sum_nr_running > group_capacity || __group_imb)) {
3141 max_load = avg_load;
3142 busiest = group;
3143 busiest_nr_running = sum_nr_running;
3144 busiest_load_per_task = sum_weighted_load;
3145 group_imb = __group_imb;
3148 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3150 * Busy processors will not participate in power savings
3151 * balance.
3153 if (idle == CPU_NOT_IDLE ||
3154 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3155 goto group_next;
3158 * If the local group is idle or completely loaded
3159 * no need to do power savings balance at this domain
3161 if (local_group && (this_nr_running >= group_capacity ||
3162 !this_nr_running))
3163 power_savings_balance = 0;
3166 * If a group is already running at full capacity or idle,
3167 * don't include that group in power savings calculations
3169 if (!power_savings_balance || sum_nr_running >= group_capacity
3170 || !sum_nr_running)
3171 goto group_next;
3174 * Calculate the group which has the least non-idle load.
3175 * This is the group from where we need to pick up the load
3176 * for saving power
3178 if ((sum_nr_running < min_nr_running) ||
3179 (sum_nr_running == min_nr_running &&
3180 first_cpu(group->cpumask) <
3181 first_cpu(group_min->cpumask))) {
3182 group_min = group;
3183 min_nr_running = sum_nr_running;
3184 min_load_per_task = sum_weighted_load /
3185 sum_nr_running;
3189 * Calculate the group which is almost near its
3190 * capacity but still has some space to pick up some load
3191 * from other group and save more power
3193 if (sum_nr_running <= group_capacity - 1) {
3194 if (sum_nr_running > leader_nr_running ||
3195 (sum_nr_running == leader_nr_running &&
3196 first_cpu(group->cpumask) >
3197 first_cpu(group_leader->cpumask))) {
3198 group_leader = group;
3199 leader_nr_running = sum_nr_running;
3202 group_next:
3203 #endif
3204 group = group->next;
3205 } while (group != sd->groups);
3207 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3208 goto out_balanced;
3210 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3212 if (this_load >= avg_load ||
3213 100*max_load <= sd->imbalance_pct*this_load)
3214 goto out_balanced;
3216 busiest_load_per_task /= busiest_nr_running;
3217 if (group_imb)
3218 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3221 * We're trying to get all the cpus to the average_load, so we don't
3222 * want to push ourselves above the average load, nor do we wish to
3223 * reduce the max loaded cpu below the average load, as either of these
3224 * actions would just result in more rebalancing later, and ping-pong
3225 * tasks around. Thus we look for the minimum possible imbalance.
3226 * Negative imbalances (*we* are more loaded than anyone else) will
3227 * be counted as no imbalance for these purposes -- we can't fix that
3228 * by pulling tasks to us. Be careful of negative numbers as they'll
3229 * appear as very large values with unsigned longs.
3231 if (max_load <= busiest_load_per_task)
3232 goto out_balanced;
3235 * In the presence of smp nice balancing, certain scenarios can have
3236 * max load less than avg load(as we skip the groups at or below
3237 * its cpu_power, while calculating max_load..)
3239 if (max_load < avg_load) {
3240 *imbalance = 0;
3241 goto small_imbalance;
3244 /* Don't want to pull so many tasks that a group would go idle */
3245 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3247 /* How much load to actually move to equalise the imbalance */
3248 *imbalance = min(max_pull * busiest->__cpu_power,
3249 (avg_load - this_load) * this->__cpu_power)
3250 / SCHED_LOAD_SCALE;
3253 * if *imbalance is less than the average load per runnable task
3254 * there is no gaurantee that any tasks will be moved so we'll have
3255 * a think about bumping its value to force at least one task to be
3256 * moved
3258 if (*imbalance < busiest_load_per_task) {
3259 unsigned long tmp, pwr_now, pwr_move;
3260 unsigned int imbn;
3262 small_imbalance:
3263 pwr_move = pwr_now = 0;
3264 imbn = 2;
3265 if (this_nr_running) {
3266 this_load_per_task /= this_nr_running;
3267 if (busiest_load_per_task > this_load_per_task)
3268 imbn = 1;
3269 } else
3270 this_load_per_task = SCHED_LOAD_SCALE;
3272 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3273 busiest_load_per_task * imbn) {
3274 *imbalance = busiest_load_per_task;
3275 return busiest;
3279 * OK, we don't have enough imbalance to justify moving tasks,
3280 * however we may be able to increase total CPU power used by
3281 * moving them.
3284 pwr_now += busiest->__cpu_power *
3285 min(busiest_load_per_task, max_load);
3286 pwr_now += this->__cpu_power *
3287 min(this_load_per_task, this_load);
3288 pwr_now /= SCHED_LOAD_SCALE;
3290 /* Amount of load we'd subtract */
3291 tmp = sg_div_cpu_power(busiest,
3292 busiest_load_per_task * SCHED_LOAD_SCALE);
3293 if (max_load > tmp)
3294 pwr_move += busiest->__cpu_power *
3295 min(busiest_load_per_task, max_load - tmp);
3297 /* Amount of load we'd add */
3298 if (max_load * busiest->__cpu_power <
3299 busiest_load_per_task * SCHED_LOAD_SCALE)
3300 tmp = sg_div_cpu_power(this,
3301 max_load * busiest->__cpu_power);
3302 else
3303 tmp = sg_div_cpu_power(this,
3304 busiest_load_per_task * SCHED_LOAD_SCALE);
3305 pwr_move += this->__cpu_power *
3306 min(this_load_per_task, this_load + tmp);
3307 pwr_move /= SCHED_LOAD_SCALE;
3309 /* Move if we gain throughput */
3310 if (pwr_move > pwr_now)
3311 *imbalance = busiest_load_per_task;
3314 return busiest;
3316 out_balanced:
3317 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3318 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3319 goto ret;
3321 if (this == group_leader && group_leader != group_min) {
3322 *imbalance = min_load_per_task;
3323 return group_min;
3325 #endif
3326 ret:
3327 *imbalance = 0;
3328 return NULL;
3332 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3334 static struct rq *
3335 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3336 unsigned long imbalance, const cpumask_t *cpus)
3338 struct rq *busiest = NULL, *rq;
3339 unsigned long max_load = 0;
3340 int i;
3342 for_each_cpu_mask(i, group->cpumask) {
3343 unsigned long wl;
3345 if (!cpu_isset(i, *cpus))
3346 continue;
3348 rq = cpu_rq(i);
3349 wl = weighted_cpuload(i);
3351 if (rq->nr_running == 1 && wl > imbalance)
3352 continue;
3354 if (wl > max_load) {
3355 max_load = wl;
3356 busiest = rq;
3360 return busiest;
3364 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3365 * so long as it is large enough.
3367 #define MAX_PINNED_INTERVAL 512
3370 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3371 * tasks if there is an imbalance.
3373 static int load_balance(int this_cpu, struct rq *this_rq,
3374 struct sched_domain *sd, enum cpu_idle_type idle,
3375 int *balance, cpumask_t *cpus)
3377 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3378 struct sched_group *group;
3379 unsigned long imbalance;
3380 struct rq *busiest;
3381 unsigned long flags;
3383 cpus_setall(*cpus);
3386 * When power savings policy is enabled for the parent domain, idle
3387 * sibling can pick up load irrespective of busy siblings. In this case,
3388 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3389 * portraying it as CPU_NOT_IDLE.
3391 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3392 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3393 sd_idle = 1;
3395 schedstat_inc(sd, lb_count[idle]);
3397 redo:
3398 update_shares(sd);
3399 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3400 cpus, balance);
3402 if (*balance == 0)
3403 goto out_balanced;
3405 if (!group) {
3406 schedstat_inc(sd, lb_nobusyg[idle]);
3407 goto out_balanced;
3410 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3411 if (!busiest) {
3412 schedstat_inc(sd, lb_nobusyq[idle]);
3413 goto out_balanced;
3416 BUG_ON(busiest == this_rq);
3418 schedstat_add(sd, lb_imbalance[idle], imbalance);
3420 ld_moved = 0;
3421 if (busiest->nr_running > 1) {
3423 * Attempt to move tasks. If find_busiest_group has found
3424 * an imbalance but busiest->nr_running <= 1, the group is
3425 * still unbalanced. ld_moved simply stays zero, so it is
3426 * correctly treated as an imbalance.
3428 local_irq_save(flags);
3429 double_rq_lock(this_rq, busiest);
3430 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3431 imbalance, sd, idle, &all_pinned);
3432 double_rq_unlock(this_rq, busiest);
3433 local_irq_restore(flags);
3436 * some other cpu did the load balance for us.
3438 if (ld_moved && this_cpu != smp_processor_id())
3439 resched_cpu(this_cpu);
3441 /* All tasks on this runqueue were pinned by CPU affinity */
3442 if (unlikely(all_pinned)) {
3443 cpu_clear(cpu_of(busiest), *cpus);
3444 if (!cpus_empty(*cpus))
3445 goto redo;
3446 goto out_balanced;
3450 if (!ld_moved) {
3451 schedstat_inc(sd, lb_failed[idle]);
3452 sd->nr_balance_failed++;
3454 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3456 spin_lock_irqsave(&busiest->lock, flags);
3458 /* don't kick the migration_thread, if the curr
3459 * task on busiest cpu can't be moved to this_cpu
3461 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3462 spin_unlock_irqrestore(&busiest->lock, flags);
3463 all_pinned = 1;
3464 goto out_one_pinned;
3467 if (!busiest->active_balance) {
3468 busiest->active_balance = 1;
3469 busiest->push_cpu = this_cpu;
3470 active_balance = 1;
3472 spin_unlock_irqrestore(&busiest->lock, flags);
3473 if (active_balance)
3474 wake_up_process(busiest->migration_thread);
3477 * We've kicked active balancing, reset the failure
3478 * counter.
3480 sd->nr_balance_failed = sd->cache_nice_tries+1;
3482 } else
3483 sd->nr_balance_failed = 0;
3485 if (likely(!active_balance)) {
3486 /* We were unbalanced, so reset the balancing interval */
3487 sd->balance_interval = sd->min_interval;
3488 } else {
3490 * If we've begun active balancing, start to back off. This
3491 * case may not be covered by the all_pinned logic if there
3492 * is only 1 task on the busy runqueue (because we don't call
3493 * move_tasks).
3495 if (sd->balance_interval < sd->max_interval)
3496 sd->balance_interval *= 2;
3499 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3500 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3501 ld_moved = -1;
3503 goto out;
3505 out_balanced:
3506 schedstat_inc(sd, lb_balanced[idle]);
3508 sd->nr_balance_failed = 0;
3510 out_one_pinned:
3511 /* tune up the balancing interval */
3512 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3513 (sd->balance_interval < sd->max_interval))
3514 sd->balance_interval *= 2;
3516 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3517 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3518 ld_moved = -1;
3519 else
3520 ld_moved = 0;
3521 out:
3522 if (ld_moved)
3523 update_shares(sd);
3524 return ld_moved;
3528 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3529 * tasks if there is an imbalance.
3531 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3532 * this_rq is locked.
3534 static int
3535 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3536 cpumask_t *cpus)
3538 struct sched_group *group;
3539 struct rq *busiest = NULL;
3540 unsigned long imbalance;
3541 int ld_moved = 0;
3542 int sd_idle = 0;
3543 int all_pinned = 0;
3545 cpus_setall(*cpus);
3548 * When power savings policy is enabled for the parent domain, idle
3549 * sibling can pick up load irrespective of busy siblings. In this case,
3550 * let the state of idle sibling percolate up as IDLE, instead of
3551 * portraying it as CPU_NOT_IDLE.
3553 if (sd->flags & SD_SHARE_CPUPOWER &&
3554 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3555 sd_idle = 1;
3557 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3558 redo:
3559 update_shares_locked(this_rq, sd);
3560 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3561 &sd_idle, cpus, NULL);
3562 if (!group) {
3563 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3564 goto out_balanced;
3567 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3568 if (!busiest) {
3569 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3570 goto out_balanced;
3573 BUG_ON(busiest == this_rq);
3575 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3577 ld_moved = 0;
3578 if (busiest->nr_running > 1) {
3579 /* Attempt to move tasks */
3580 double_lock_balance(this_rq, busiest);
3581 /* this_rq->clock is already updated */
3582 update_rq_clock(busiest);
3583 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3584 imbalance, sd, CPU_NEWLY_IDLE,
3585 &all_pinned);
3586 spin_unlock(&busiest->lock);
3588 if (unlikely(all_pinned)) {
3589 cpu_clear(cpu_of(busiest), *cpus);
3590 if (!cpus_empty(*cpus))
3591 goto redo;
3595 if (!ld_moved) {
3596 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3597 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3598 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3599 return -1;
3600 } else
3601 sd->nr_balance_failed = 0;
3603 update_shares_locked(this_rq, sd);
3604 return ld_moved;
3606 out_balanced:
3607 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3608 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3609 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3610 return -1;
3611 sd->nr_balance_failed = 0;
3613 return 0;
3617 * idle_balance is called by schedule() if this_cpu is about to become
3618 * idle. Attempts to pull tasks from other CPUs.
3620 static void idle_balance(int this_cpu, struct rq *this_rq)
3622 struct sched_domain *sd;
3623 int pulled_task = -1;
3624 unsigned long next_balance = jiffies + HZ;
3625 cpumask_t tmpmask;
3627 for_each_domain(this_cpu, sd) {
3628 unsigned long interval;
3630 if (!(sd->flags & SD_LOAD_BALANCE))
3631 continue;
3633 if (sd->flags & SD_BALANCE_NEWIDLE)
3634 /* If we've pulled tasks over stop searching: */
3635 pulled_task = load_balance_newidle(this_cpu, this_rq,
3636 sd, &tmpmask);
3638 interval = msecs_to_jiffies(sd->balance_interval);
3639 if (time_after(next_balance, sd->last_balance + interval))
3640 next_balance = sd->last_balance + interval;
3641 if (pulled_task)
3642 break;
3644 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3646 * We are going idle. next_balance may be set based on
3647 * a busy processor. So reset next_balance.
3649 this_rq->next_balance = next_balance;
3654 * active_load_balance is run by migration threads. It pushes running tasks
3655 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3656 * running on each physical CPU where possible, and avoids physical /
3657 * logical imbalances.
3659 * Called with busiest_rq locked.
3661 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3663 int target_cpu = busiest_rq->push_cpu;
3664 struct sched_domain *sd;
3665 struct rq *target_rq;
3667 /* Is there any task to move? */
3668 if (busiest_rq->nr_running <= 1)
3669 return;
3671 target_rq = cpu_rq(target_cpu);
3674 * This condition is "impossible", if it occurs
3675 * we need to fix it. Originally reported by
3676 * Bjorn Helgaas on a 128-cpu setup.
3678 BUG_ON(busiest_rq == target_rq);
3680 /* move a task from busiest_rq to target_rq */
3681 double_lock_balance(busiest_rq, target_rq);
3682 update_rq_clock(busiest_rq);
3683 update_rq_clock(target_rq);
3685 /* Search for an sd spanning us and the target CPU. */
3686 for_each_domain(target_cpu, sd) {
3687 if ((sd->flags & SD_LOAD_BALANCE) &&
3688 cpu_isset(busiest_cpu, sd->span))
3689 break;
3692 if (likely(sd)) {
3693 schedstat_inc(sd, alb_count);
3695 if (move_one_task(target_rq, target_cpu, busiest_rq,
3696 sd, CPU_IDLE))
3697 schedstat_inc(sd, alb_pushed);
3698 else
3699 schedstat_inc(sd, alb_failed);
3701 spin_unlock(&target_rq->lock);
3704 #ifdef CONFIG_NO_HZ
3705 static struct {
3706 atomic_t load_balancer;
3707 cpumask_t cpu_mask;
3708 } nohz ____cacheline_aligned = {
3709 .load_balancer = ATOMIC_INIT(-1),
3710 .cpu_mask = CPU_MASK_NONE,
3714 * This routine will try to nominate the ilb (idle load balancing)
3715 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3716 * load balancing on behalf of all those cpus. If all the cpus in the system
3717 * go into this tickless mode, then there will be no ilb owner (as there is
3718 * no need for one) and all the cpus will sleep till the next wakeup event
3719 * arrives...
3721 * For the ilb owner, tick is not stopped. And this tick will be used
3722 * for idle load balancing. ilb owner will still be part of
3723 * nohz.cpu_mask..
3725 * While stopping the tick, this cpu will become the ilb owner if there
3726 * is no other owner. And will be the owner till that cpu becomes busy
3727 * or if all cpus in the system stop their ticks at which point
3728 * there is no need for ilb owner.
3730 * When the ilb owner becomes busy, it nominates another owner, during the
3731 * next busy scheduler_tick()
3733 int select_nohz_load_balancer(int stop_tick)
3735 int cpu = smp_processor_id();
3737 if (stop_tick) {
3738 cpu_set(cpu, nohz.cpu_mask);
3739 cpu_rq(cpu)->in_nohz_recently = 1;
3742 * If we are going offline and still the leader, give up!
3744 if (cpu_is_offline(cpu) &&
3745 atomic_read(&nohz.load_balancer) == cpu) {
3746 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3747 BUG();
3748 return 0;
3751 /* time for ilb owner also to sleep */
3752 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3753 if (atomic_read(&nohz.load_balancer) == cpu)
3754 atomic_set(&nohz.load_balancer, -1);
3755 return 0;
3758 if (atomic_read(&nohz.load_balancer) == -1) {
3759 /* make me the ilb owner */
3760 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3761 return 1;
3762 } else if (atomic_read(&nohz.load_balancer) == cpu)
3763 return 1;
3764 } else {
3765 if (!cpu_isset(cpu, nohz.cpu_mask))
3766 return 0;
3768 cpu_clear(cpu, nohz.cpu_mask);
3770 if (atomic_read(&nohz.load_balancer) == cpu)
3771 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3772 BUG();
3774 return 0;
3776 #endif
3778 static DEFINE_SPINLOCK(balancing);
3781 * It checks each scheduling domain to see if it is due to be balanced,
3782 * and initiates a balancing operation if so.
3784 * Balancing parameters are set up in arch_init_sched_domains.
3786 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3788 int balance = 1;
3789 struct rq *rq = cpu_rq(cpu);
3790 unsigned long interval;
3791 struct sched_domain *sd;
3792 /* Earliest time when we have to do rebalance again */
3793 unsigned long next_balance = jiffies + 60*HZ;
3794 int update_next_balance = 0;
3795 int need_serialize;
3796 cpumask_t tmp;
3798 for_each_domain(cpu, sd) {
3799 if (!(sd->flags & SD_LOAD_BALANCE))
3800 continue;
3802 interval = sd->balance_interval;
3803 if (idle != CPU_IDLE)
3804 interval *= sd->busy_factor;
3806 /* scale ms to jiffies */
3807 interval = msecs_to_jiffies(interval);
3808 if (unlikely(!interval))
3809 interval = 1;
3810 if (interval > HZ*NR_CPUS/10)
3811 interval = HZ*NR_CPUS/10;
3813 need_serialize = sd->flags & SD_SERIALIZE;
3815 if (need_serialize) {
3816 if (!spin_trylock(&balancing))
3817 goto out;
3820 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3821 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3823 * We've pulled tasks over so either we're no
3824 * longer idle, or one of our SMT siblings is
3825 * not idle.
3827 idle = CPU_NOT_IDLE;
3829 sd->last_balance = jiffies;
3831 if (need_serialize)
3832 spin_unlock(&balancing);
3833 out:
3834 if (time_after(next_balance, sd->last_balance + interval)) {
3835 next_balance = sd->last_balance + interval;
3836 update_next_balance = 1;
3840 * Stop the load balance at this level. There is another
3841 * CPU in our sched group which is doing load balancing more
3842 * actively.
3844 if (!balance)
3845 break;
3849 * next_balance will be updated only when there is a need.
3850 * When the cpu is attached to null domain for ex, it will not be
3851 * updated.
3853 if (likely(update_next_balance))
3854 rq->next_balance = next_balance;
3858 * run_rebalance_domains is triggered when needed from the scheduler tick.
3859 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3860 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3862 static void run_rebalance_domains(struct softirq_action *h)
3864 int this_cpu = smp_processor_id();
3865 struct rq *this_rq = cpu_rq(this_cpu);
3866 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3867 CPU_IDLE : CPU_NOT_IDLE;
3869 rebalance_domains(this_cpu, idle);
3871 #ifdef CONFIG_NO_HZ
3873 * If this cpu is the owner for idle load balancing, then do the
3874 * balancing on behalf of the other idle cpus whose ticks are
3875 * stopped.
3877 if (this_rq->idle_at_tick &&
3878 atomic_read(&nohz.load_balancer) == this_cpu) {
3879 cpumask_t cpus = nohz.cpu_mask;
3880 struct rq *rq;
3881 int balance_cpu;
3883 cpu_clear(this_cpu, cpus);
3884 for_each_cpu_mask(balance_cpu, cpus) {
3886 * If this cpu gets work to do, stop the load balancing
3887 * work being done for other cpus. Next load
3888 * balancing owner will pick it up.
3890 if (need_resched())
3891 break;
3893 rebalance_domains(balance_cpu, CPU_IDLE);
3895 rq = cpu_rq(balance_cpu);
3896 if (time_after(this_rq->next_balance, rq->next_balance))
3897 this_rq->next_balance = rq->next_balance;
3900 #endif
3904 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3906 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3907 * idle load balancing owner or decide to stop the periodic load balancing,
3908 * if the whole system is idle.
3910 static inline void trigger_load_balance(struct rq *rq, int cpu)
3912 #ifdef CONFIG_NO_HZ
3914 * If we were in the nohz mode recently and busy at the current
3915 * scheduler tick, then check if we need to nominate new idle
3916 * load balancer.
3918 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3919 rq->in_nohz_recently = 0;
3921 if (atomic_read(&nohz.load_balancer) == cpu) {
3922 cpu_clear(cpu, nohz.cpu_mask);
3923 atomic_set(&nohz.load_balancer, -1);
3926 if (atomic_read(&nohz.load_balancer) == -1) {
3928 * simple selection for now: Nominate the
3929 * first cpu in the nohz list to be the next
3930 * ilb owner.
3932 * TBD: Traverse the sched domains and nominate
3933 * the nearest cpu in the nohz.cpu_mask.
3935 int ilb = first_cpu(nohz.cpu_mask);
3937 if (ilb < nr_cpu_ids)
3938 resched_cpu(ilb);
3943 * If this cpu is idle and doing idle load balancing for all the
3944 * cpus with ticks stopped, is it time for that to stop?
3946 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3947 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3948 resched_cpu(cpu);
3949 return;
3953 * If this cpu is idle and the idle load balancing is done by
3954 * someone else, then no need raise the SCHED_SOFTIRQ
3956 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3957 cpu_isset(cpu, nohz.cpu_mask))
3958 return;
3959 #endif
3960 if (time_after_eq(jiffies, rq->next_balance))
3961 raise_softirq(SCHED_SOFTIRQ);
3964 #else /* CONFIG_SMP */
3967 * on UP we do not need to balance between CPUs:
3969 static inline void idle_balance(int cpu, struct rq *rq)
3973 #endif
3975 DEFINE_PER_CPU(struct kernel_stat, kstat);
3977 EXPORT_PER_CPU_SYMBOL(kstat);
3980 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3981 * that have not yet been banked in case the task is currently running.
3983 unsigned long long task_sched_runtime(struct task_struct *p)
3985 unsigned long flags;
3986 u64 ns, delta_exec;
3987 struct rq *rq;
3989 rq = task_rq_lock(p, &flags);
3990 ns = p->se.sum_exec_runtime;
3991 if (task_current(rq, p)) {
3992 update_rq_clock(rq);
3993 delta_exec = rq->clock - p->se.exec_start;
3994 if ((s64)delta_exec > 0)
3995 ns += delta_exec;
3997 task_rq_unlock(rq, &flags);
3999 return ns;
4003 * Account user cpu time to a process.
4004 * @p: the process that the cpu time gets accounted to
4005 * @cputime: the cpu time spent in user space since the last update
4007 void account_user_time(struct task_struct *p, cputime_t cputime)
4009 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4010 cputime64_t tmp;
4012 p->utime = cputime_add(p->utime, cputime);
4014 /* Add user time to cpustat. */
4015 tmp = cputime_to_cputime64(cputime);
4016 if (TASK_NICE(p) > 0)
4017 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4018 else
4019 cpustat->user = cputime64_add(cpustat->user, tmp);
4023 * Account guest cpu time to a process.
4024 * @p: the process that the cpu time gets accounted to
4025 * @cputime: the cpu time spent in virtual machine since the last update
4027 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4029 cputime64_t tmp;
4030 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4032 tmp = cputime_to_cputime64(cputime);
4034 p->utime = cputime_add(p->utime, cputime);
4035 p->gtime = cputime_add(p->gtime, cputime);
4037 cpustat->user = cputime64_add(cpustat->user, tmp);
4038 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4042 * Account scaled user cpu time to a process.
4043 * @p: the process that the cpu time gets accounted to
4044 * @cputime: the cpu time spent in user space since the last update
4046 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4048 p->utimescaled = cputime_add(p->utimescaled, cputime);
4052 * Account system cpu time to a process.
4053 * @p: the process that the cpu time gets accounted to
4054 * @hardirq_offset: the offset to subtract from hardirq_count()
4055 * @cputime: the cpu time spent in kernel space since the last update
4057 void account_system_time(struct task_struct *p, int hardirq_offset,
4058 cputime_t cputime)
4060 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4061 struct rq *rq = this_rq();
4062 cputime64_t tmp;
4064 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4065 account_guest_time(p, cputime);
4066 return;
4069 p->stime = cputime_add(p->stime, cputime);
4071 /* Add system time to cpustat. */
4072 tmp = cputime_to_cputime64(cputime);
4073 if (hardirq_count() - hardirq_offset)
4074 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4075 else if (softirq_count())
4076 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4077 else if (p != rq->idle)
4078 cpustat->system = cputime64_add(cpustat->system, tmp);
4079 else if (atomic_read(&rq->nr_iowait) > 0)
4080 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4081 else
4082 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4083 /* Account for system time used */
4084 acct_update_integrals(p);
4088 * Account scaled system cpu time to a process.
4089 * @p: the process that the cpu time gets accounted to
4090 * @hardirq_offset: the offset to subtract from hardirq_count()
4091 * @cputime: the cpu time spent in kernel space since the last update
4093 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4095 p->stimescaled = cputime_add(p->stimescaled, cputime);
4099 * Account for involuntary wait time.
4100 * @p: the process from which the cpu time has been stolen
4101 * @steal: the cpu time spent in involuntary wait
4103 void account_steal_time(struct task_struct *p, cputime_t steal)
4105 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4106 cputime64_t tmp = cputime_to_cputime64(steal);
4107 struct rq *rq = this_rq();
4109 if (p == rq->idle) {
4110 p->stime = cputime_add(p->stime, steal);
4111 if (atomic_read(&rq->nr_iowait) > 0)
4112 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4113 else
4114 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4115 } else
4116 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4120 * This function gets called by the timer code, with HZ frequency.
4121 * We call it with interrupts disabled.
4123 * It also gets called by the fork code, when changing the parent's
4124 * timeslices.
4126 void scheduler_tick(void)
4128 int cpu = smp_processor_id();
4129 struct rq *rq = cpu_rq(cpu);
4130 struct task_struct *curr = rq->curr;
4132 sched_clock_tick();
4134 spin_lock(&rq->lock);
4135 update_rq_clock(rq);
4136 update_cpu_load(rq);
4137 curr->sched_class->task_tick(rq, curr, 0);
4138 spin_unlock(&rq->lock);
4140 #ifdef CONFIG_SMP
4141 rq->idle_at_tick = idle_cpu(cpu);
4142 trigger_load_balance(rq, cpu);
4143 #endif
4146 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4148 void __kprobes add_preempt_count(int val)
4151 * Underflow?
4153 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4154 return;
4155 preempt_count() += val;
4157 * Spinlock count overflowing soon?
4159 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4160 PREEMPT_MASK - 10);
4162 EXPORT_SYMBOL(add_preempt_count);
4164 void __kprobes sub_preempt_count(int val)
4167 * Underflow?
4169 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4170 return;
4172 * Is the spinlock portion underflowing?
4174 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4175 !(preempt_count() & PREEMPT_MASK)))
4176 return;
4178 preempt_count() -= val;
4180 EXPORT_SYMBOL(sub_preempt_count);
4182 #endif
4185 * Print scheduling while atomic bug:
4187 static noinline void __schedule_bug(struct task_struct *prev)
4189 struct pt_regs *regs = get_irq_regs();
4191 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4192 prev->comm, prev->pid, preempt_count());
4194 debug_show_held_locks(prev);
4195 print_modules();
4196 if (irqs_disabled())
4197 print_irqtrace_events(prev);
4199 if (regs)
4200 show_regs(regs);
4201 else
4202 dump_stack();
4206 * Various schedule()-time debugging checks and statistics:
4208 static inline void schedule_debug(struct task_struct *prev)
4211 * Test if we are atomic. Since do_exit() needs to call into
4212 * schedule() atomically, we ignore that path for now.
4213 * Otherwise, whine if we are scheduling when we should not be.
4215 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4216 __schedule_bug(prev);
4218 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4220 schedstat_inc(this_rq(), sched_count);
4221 #ifdef CONFIG_SCHEDSTATS
4222 if (unlikely(prev->lock_depth >= 0)) {
4223 schedstat_inc(this_rq(), bkl_count);
4224 schedstat_inc(prev, sched_info.bkl_count);
4226 #endif
4230 * Pick up the highest-prio task:
4232 static inline struct task_struct *
4233 pick_next_task(struct rq *rq, struct task_struct *prev)
4235 const struct sched_class *class;
4236 struct task_struct *p;
4239 * Optimization: we know that if all tasks are in
4240 * the fair class we can call that function directly:
4242 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4243 p = fair_sched_class.pick_next_task(rq);
4244 if (likely(p))
4245 return p;
4248 class = sched_class_highest;
4249 for ( ; ; ) {
4250 p = class->pick_next_task(rq);
4251 if (p)
4252 return p;
4254 * Will never be NULL as the idle class always
4255 * returns a non-NULL p:
4257 class = class->next;
4262 * schedule() is the main scheduler function.
4264 asmlinkage void __sched schedule(void)
4266 struct task_struct *prev, *next;
4267 unsigned long *switch_count;
4268 struct rq *rq;
4269 int cpu, hrtick = sched_feat(HRTICK);
4271 need_resched:
4272 preempt_disable();
4273 cpu = smp_processor_id();
4274 rq = cpu_rq(cpu);
4275 rcu_qsctr_inc(cpu);
4276 prev = rq->curr;
4277 switch_count = &prev->nivcsw;
4279 release_kernel_lock(prev);
4280 need_resched_nonpreemptible:
4282 schedule_debug(prev);
4284 if (hrtick)
4285 hrtick_clear(rq);
4288 * Do the rq-clock update outside the rq lock:
4290 local_irq_disable();
4291 update_rq_clock(rq);
4292 spin_lock(&rq->lock);
4293 clear_tsk_need_resched(prev);
4295 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4296 if (unlikely(signal_pending_state(prev->state, prev)))
4297 prev->state = TASK_RUNNING;
4298 else
4299 deactivate_task(rq, prev, 1);
4300 switch_count = &prev->nvcsw;
4303 #ifdef CONFIG_SMP
4304 if (prev->sched_class->pre_schedule)
4305 prev->sched_class->pre_schedule(rq, prev);
4306 #endif
4308 if (unlikely(!rq->nr_running))
4309 idle_balance(cpu, rq);
4311 prev->sched_class->put_prev_task(rq, prev);
4312 next = pick_next_task(rq, prev);
4314 if (likely(prev != next)) {
4315 sched_info_switch(prev, next);
4317 rq->nr_switches++;
4318 rq->curr = next;
4319 ++*switch_count;
4321 context_switch(rq, prev, next); /* unlocks the rq */
4323 * the context switch might have flipped the stack from under
4324 * us, hence refresh the local variables.
4326 cpu = smp_processor_id();
4327 rq = cpu_rq(cpu);
4328 } else
4329 spin_unlock_irq(&rq->lock);
4331 if (hrtick)
4332 hrtick_set(rq);
4334 if (unlikely(reacquire_kernel_lock(current) < 0))
4335 goto need_resched_nonpreemptible;
4337 preempt_enable_no_resched();
4338 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4339 goto need_resched;
4341 EXPORT_SYMBOL(schedule);
4343 #ifdef CONFIG_PREEMPT
4345 * this is the entry point to schedule() from in-kernel preemption
4346 * off of preempt_enable. Kernel preemptions off return from interrupt
4347 * occur there and call schedule directly.
4349 asmlinkage void __sched preempt_schedule(void)
4351 struct thread_info *ti = current_thread_info();
4354 * If there is a non-zero preempt_count or interrupts are disabled,
4355 * we do not want to preempt the current task. Just return..
4357 if (likely(ti->preempt_count || irqs_disabled()))
4358 return;
4360 do {
4361 add_preempt_count(PREEMPT_ACTIVE);
4362 schedule();
4363 sub_preempt_count(PREEMPT_ACTIVE);
4366 * Check again in case we missed a preemption opportunity
4367 * between schedule and now.
4369 barrier();
4370 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4372 EXPORT_SYMBOL(preempt_schedule);
4375 * this is the entry point to schedule() from kernel preemption
4376 * off of irq context.
4377 * Note, that this is called and return with irqs disabled. This will
4378 * protect us against recursive calling from irq.
4380 asmlinkage void __sched preempt_schedule_irq(void)
4382 struct thread_info *ti = current_thread_info();
4384 /* Catch callers which need to be fixed */
4385 BUG_ON(ti->preempt_count || !irqs_disabled());
4387 do {
4388 add_preempt_count(PREEMPT_ACTIVE);
4389 local_irq_enable();
4390 schedule();
4391 local_irq_disable();
4392 sub_preempt_count(PREEMPT_ACTIVE);
4395 * Check again in case we missed a preemption opportunity
4396 * between schedule and now.
4398 barrier();
4399 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4402 #endif /* CONFIG_PREEMPT */
4404 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4405 void *key)
4407 return try_to_wake_up(curr->private, mode, sync);
4409 EXPORT_SYMBOL(default_wake_function);
4412 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4413 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4414 * number) then we wake all the non-exclusive tasks and one exclusive task.
4416 * There are circumstances in which we can try to wake a task which has already
4417 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4418 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4420 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4421 int nr_exclusive, int sync, void *key)
4423 wait_queue_t *curr, *next;
4425 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4426 unsigned flags = curr->flags;
4428 if (curr->func(curr, mode, sync, key) &&
4429 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4430 break;
4435 * __wake_up - wake up threads blocked on a waitqueue.
4436 * @q: the waitqueue
4437 * @mode: which threads
4438 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4439 * @key: is directly passed to the wakeup function
4441 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4442 int nr_exclusive, void *key)
4444 unsigned long flags;
4446 spin_lock_irqsave(&q->lock, flags);
4447 __wake_up_common(q, mode, nr_exclusive, 0, key);
4448 spin_unlock_irqrestore(&q->lock, flags);
4450 EXPORT_SYMBOL(__wake_up);
4453 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4455 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4457 __wake_up_common(q, mode, 1, 0, NULL);
4461 * __wake_up_sync - wake up threads blocked on a waitqueue.
4462 * @q: the waitqueue
4463 * @mode: which threads
4464 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4466 * The sync wakeup differs that the waker knows that it will schedule
4467 * away soon, so while the target thread will be woken up, it will not
4468 * be migrated to another CPU - ie. the two threads are 'synchronized'
4469 * with each other. This can prevent needless bouncing between CPUs.
4471 * On UP it can prevent extra preemption.
4473 void
4474 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4476 unsigned long flags;
4477 int sync = 1;
4479 if (unlikely(!q))
4480 return;
4482 if (unlikely(!nr_exclusive))
4483 sync = 0;
4485 spin_lock_irqsave(&q->lock, flags);
4486 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4487 spin_unlock_irqrestore(&q->lock, flags);
4489 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4491 void complete(struct completion *x)
4493 unsigned long flags;
4495 spin_lock_irqsave(&x->wait.lock, flags);
4496 x->done++;
4497 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4498 spin_unlock_irqrestore(&x->wait.lock, flags);
4500 EXPORT_SYMBOL(complete);
4502 void complete_all(struct completion *x)
4504 unsigned long flags;
4506 spin_lock_irqsave(&x->wait.lock, flags);
4507 x->done += UINT_MAX/2;
4508 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4509 spin_unlock_irqrestore(&x->wait.lock, flags);
4511 EXPORT_SYMBOL(complete_all);
4513 static inline long __sched
4514 do_wait_for_common(struct completion *x, long timeout, int state)
4516 if (!x->done) {
4517 DECLARE_WAITQUEUE(wait, current);
4519 wait.flags |= WQ_FLAG_EXCLUSIVE;
4520 __add_wait_queue_tail(&x->wait, &wait);
4521 do {
4522 if ((state == TASK_INTERRUPTIBLE &&
4523 signal_pending(current)) ||
4524 (state == TASK_KILLABLE &&
4525 fatal_signal_pending(current))) {
4526 timeout = -ERESTARTSYS;
4527 break;
4529 __set_current_state(state);
4530 spin_unlock_irq(&x->wait.lock);
4531 timeout = schedule_timeout(timeout);
4532 spin_lock_irq(&x->wait.lock);
4533 } while (!x->done && timeout);
4534 __remove_wait_queue(&x->wait, &wait);
4535 if (!x->done)
4536 return timeout;
4538 x->done--;
4539 return timeout ?: 1;
4542 static long __sched
4543 wait_for_common(struct completion *x, long timeout, int state)
4545 might_sleep();
4547 spin_lock_irq(&x->wait.lock);
4548 timeout = do_wait_for_common(x, timeout, state);
4549 spin_unlock_irq(&x->wait.lock);
4550 return timeout;
4553 void __sched wait_for_completion(struct completion *x)
4555 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4557 EXPORT_SYMBOL(wait_for_completion);
4559 unsigned long __sched
4560 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4562 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4564 EXPORT_SYMBOL(wait_for_completion_timeout);
4566 int __sched wait_for_completion_interruptible(struct completion *x)
4568 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4569 if (t == -ERESTARTSYS)
4570 return t;
4571 return 0;
4573 EXPORT_SYMBOL(wait_for_completion_interruptible);
4575 unsigned long __sched
4576 wait_for_completion_interruptible_timeout(struct completion *x,
4577 unsigned long timeout)
4579 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4581 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4583 int __sched wait_for_completion_killable(struct completion *x)
4585 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4586 if (t == -ERESTARTSYS)
4587 return t;
4588 return 0;
4590 EXPORT_SYMBOL(wait_for_completion_killable);
4592 static long __sched
4593 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4595 unsigned long flags;
4596 wait_queue_t wait;
4598 init_waitqueue_entry(&wait, current);
4600 __set_current_state(state);
4602 spin_lock_irqsave(&q->lock, flags);
4603 __add_wait_queue(q, &wait);
4604 spin_unlock(&q->lock);
4605 timeout = schedule_timeout(timeout);
4606 spin_lock_irq(&q->lock);
4607 __remove_wait_queue(q, &wait);
4608 spin_unlock_irqrestore(&q->lock, flags);
4610 return timeout;
4613 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4615 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4617 EXPORT_SYMBOL(interruptible_sleep_on);
4619 long __sched
4620 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4622 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4624 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4626 void __sched sleep_on(wait_queue_head_t *q)
4628 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4630 EXPORT_SYMBOL(sleep_on);
4632 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4634 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4636 EXPORT_SYMBOL(sleep_on_timeout);
4638 #ifdef CONFIG_RT_MUTEXES
4641 * rt_mutex_setprio - set the current priority of a task
4642 * @p: task
4643 * @prio: prio value (kernel-internal form)
4645 * This function changes the 'effective' priority of a task. It does
4646 * not touch ->normal_prio like __setscheduler().
4648 * Used by the rt_mutex code to implement priority inheritance logic.
4650 void rt_mutex_setprio(struct task_struct *p, int prio)
4652 unsigned long flags;
4653 int oldprio, on_rq, running;
4654 struct rq *rq;
4655 const struct sched_class *prev_class = p->sched_class;
4657 BUG_ON(prio < 0 || prio > MAX_PRIO);
4659 rq = task_rq_lock(p, &flags);
4660 update_rq_clock(rq);
4662 oldprio = p->prio;
4663 on_rq = p->se.on_rq;
4664 running = task_current(rq, p);
4665 if (on_rq)
4666 dequeue_task(rq, p, 0);
4667 if (running)
4668 p->sched_class->put_prev_task(rq, p);
4670 if (rt_prio(prio))
4671 p->sched_class = &rt_sched_class;
4672 else
4673 p->sched_class = &fair_sched_class;
4675 p->prio = prio;
4677 if (running)
4678 p->sched_class->set_curr_task(rq);
4679 if (on_rq) {
4680 enqueue_task(rq, p, 0);
4682 check_class_changed(rq, p, prev_class, oldprio, running);
4684 task_rq_unlock(rq, &flags);
4687 #endif
4689 void set_user_nice(struct task_struct *p, long nice)
4691 int old_prio, delta, on_rq;
4692 unsigned long flags;
4693 struct rq *rq;
4695 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4696 return;
4698 * We have to be careful, if called from sys_setpriority(),
4699 * the task might be in the middle of scheduling on another CPU.
4701 rq = task_rq_lock(p, &flags);
4702 update_rq_clock(rq);
4704 * The RT priorities are set via sched_setscheduler(), but we still
4705 * allow the 'normal' nice value to be set - but as expected
4706 * it wont have any effect on scheduling until the task is
4707 * SCHED_FIFO/SCHED_RR:
4709 if (task_has_rt_policy(p)) {
4710 p->static_prio = NICE_TO_PRIO(nice);
4711 goto out_unlock;
4713 on_rq = p->se.on_rq;
4714 if (on_rq)
4715 dequeue_task(rq, p, 0);
4717 p->static_prio = NICE_TO_PRIO(nice);
4718 set_load_weight(p);
4719 old_prio = p->prio;
4720 p->prio = effective_prio(p);
4721 delta = p->prio - old_prio;
4723 if (on_rq) {
4724 enqueue_task(rq, p, 0);
4726 * If the task increased its priority or is running and
4727 * lowered its priority, then reschedule its CPU:
4729 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4730 resched_task(rq->curr);
4732 out_unlock:
4733 task_rq_unlock(rq, &flags);
4735 EXPORT_SYMBOL(set_user_nice);
4738 * can_nice - check if a task can reduce its nice value
4739 * @p: task
4740 * @nice: nice value
4742 int can_nice(const struct task_struct *p, const int nice)
4744 /* convert nice value [19,-20] to rlimit style value [1,40] */
4745 int nice_rlim = 20 - nice;
4747 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4748 capable(CAP_SYS_NICE));
4751 #ifdef __ARCH_WANT_SYS_NICE
4754 * sys_nice - change the priority of the current process.
4755 * @increment: priority increment
4757 * sys_setpriority is a more generic, but much slower function that
4758 * does similar things.
4760 asmlinkage long sys_nice(int increment)
4762 long nice, retval;
4765 * Setpriority might change our priority at the same moment.
4766 * We don't have to worry. Conceptually one call occurs first
4767 * and we have a single winner.
4769 if (increment < -40)
4770 increment = -40;
4771 if (increment > 40)
4772 increment = 40;
4774 nice = PRIO_TO_NICE(current->static_prio) + increment;
4775 if (nice < -20)
4776 nice = -20;
4777 if (nice > 19)
4778 nice = 19;
4780 if (increment < 0 && !can_nice(current, nice))
4781 return -EPERM;
4783 retval = security_task_setnice(current, nice);
4784 if (retval)
4785 return retval;
4787 set_user_nice(current, nice);
4788 return 0;
4791 #endif
4794 * task_prio - return the priority value of a given task.
4795 * @p: the task in question.
4797 * This is the priority value as seen by users in /proc.
4798 * RT tasks are offset by -200. Normal tasks are centered
4799 * around 0, value goes from -16 to +15.
4801 int task_prio(const struct task_struct *p)
4803 return p->prio - MAX_RT_PRIO;
4807 * task_nice - return the nice value of a given task.
4808 * @p: the task in question.
4810 int task_nice(const struct task_struct *p)
4812 return TASK_NICE(p);
4814 EXPORT_SYMBOL(task_nice);
4817 * idle_cpu - is a given cpu idle currently?
4818 * @cpu: the processor in question.
4820 int idle_cpu(int cpu)
4822 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4826 * idle_task - return the idle task for a given cpu.
4827 * @cpu: the processor in question.
4829 struct task_struct *idle_task(int cpu)
4831 return cpu_rq(cpu)->idle;
4835 * find_process_by_pid - find a process with a matching PID value.
4836 * @pid: the pid in question.
4838 static struct task_struct *find_process_by_pid(pid_t pid)
4840 return pid ? find_task_by_vpid(pid) : current;
4843 /* Actually do priority change: must hold rq lock. */
4844 static void
4845 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4847 BUG_ON(p->se.on_rq);
4849 p->policy = policy;
4850 switch (p->policy) {
4851 case SCHED_NORMAL:
4852 case SCHED_BATCH:
4853 case SCHED_IDLE:
4854 p->sched_class = &fair_sched_class;
4855 break;
4856 case SCHED_FIFO:
4857 case SCHED_RR:
4858 p->sched_class = &rt_sched_class;
4859 break;
4862 p->rt_priority = prio;
4863 p->normal_prio = normal_prio(p);
4864 /* we are holding p->pi_lock already */
4865 p->prio = rt_mutex_getprio(p);
4866 set_load_weight(p);
4870 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4871 * @p: the task in question.
4872 * @policy: new policy.
4873 * @param: structure containing the new RT priority.
4875 * NOTE that the task may be already dead.
4877 int sched_setscheduler(struct task_struct *p, int policy,
4878 struct sched_param *param)
4880 int retval, oldprio, oldpolicy = -1, on_rq, running;
4881 unsigned long flags;
4882 const struct sched_class *prev_class = p->sched_class;
4883 struct rq *rq;
4885 /* may grab non-irq protected spin_locks */
4886 BUG_ON(in_interrupt());
4887 recheck:
4888 /* double check policy once rq lock held */
4889 if (policy < 0)
4890 policy = oldpolicy = p->policy;
4891 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4892 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4893 policy != SCHED_IDLE)
4894 return -EINVAL;
4896 * Valid priorities for SCHED_FIFO and SCHED_RR are
4897 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4898 * SCHED_BATCH and SCHED_IDLE is 0.
4900 if (param->sched_priority < 0 ||
4901 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4902 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4903 return -EINVAL;
4904 if (rt_policy(policy) != (param->sched_priority != 0))
4905 return -EINVAL;
4908 * Allow unprivileged RT tasks to decrease priority:
4910 if (!capable(CAP_SYS_NICE)) {
4911 if (rt_policy(policy)) {
4912 unsigned long rlim_rtprio;
4914 if (!lock_task_sighand(p, &flags))
4915 return -ESRCH;
4916 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4917 unlock_task_sighand(p, &flags);
4919 /* can't set/change the rt policy */
4920 if (policy != p->policy && !rlim_rtprio)
4921 return -EPERM;
4923 /* can't increase priority */
4924 if (param->sched_priority > p->rt_priority &&
4925 param->sched_priority > rlim_rtprio)
4926 return -EPERM;
4929 * Like positive nice levels, dont allow tasks to
4930 * move out of SCHED_IDLE either:
4932 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4933 return -EPERM;
4935 /* can't change other user's priorities */
4936 if ((current->euid != p->euid) &&
4937 (current->euid != p->uid))
4938 return -EPERM;
4941 #ifdef CONFIG_RT_GROUP_SCHED
4943 * Do not allow realtime tasks into groups that have no runtime
4944 * assigned.
4946 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4947 return -EPERM;
4948 #endif
4950 retval = security_task_setscheduler(p, policy, param);
4951 if (retval)
4952 return retval;
4954 * make sure no PI-waiters arrive (or leave) while we are
4955 * changing the priority of the task:
4957 spin_lock_irqsave(&p->pi_lock, flags);
4959 * To be able to change p->policy safely, the apropriate
4960 * runqueue lock must be held.
4962 rq = __task_rq_lock(p);
4963 /* recheck policy now with rq lock held */
4964 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4965 policy = oldpolicy = -1;
4966 __task_rq_unlock(rq);
4967 spin_unlock_irqrestore(&p->pi_lock, flags);
4968 goto recheck;
4970 update_rq_clock(rq);
4971 on_rq = p->se.on_rq;
4972 running = task_current(rq, p);
4973 if (on_rq)
4974 deactivate_task(rq, p, 0);
4975 if (running)
4976 p->sched_class->put_prev_task(rq, p);
4978 oldprio = p->prio;
4979 __setscheduler(rq, p, policy, param->sched_priority);
4981 if (running)
4982 p->sched_class->set_curr_task(rq);
4983 if (on_rq) {
4984 activate_task(rq, p, 0);
4986 check_class_changed(rq, p, prev_class, oldprio, running);
4988 __task_rq_unlock(rq);
4989 spin_unlock_irqrestore(&p->pi_lock, flags);
4991 rt_mutex_adjust_pi(p);
4993 return 0;
4995 EXPORT_SYMBOL_GPL(sched_setscheduler);
4997 static int
4998 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5000 struct sched_param lparam;
5001 struct task_struct *p;
5002 int retval;
5004 if (!param || pid < 0)
5005 return -EINVAL;
5006 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5007 return -EFAULT;
5009 rcu_read_lock();
5010 retval = -ESRCH;
5011 p = find_process_by_pid(pid);
5012 if (p != NULL)
5013 retval = sched_setscheduler(p, policy, &lparam);
5014 rcu_read_unlock();
5016 return retval;
5020 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5021 * @pid: the pid in question.
5022 * @policy: new policy.
5023 * @param: structure containing the new RT priority.
5025 asmlinkage long
5026 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5028 /* negative values for policy are not valid */
5029 if (policy < 0)
5030 return -EINVAL;
5032 return do_sched_setscheduler(pid, policy, param);
5036 * sys_sched_setparam - set/change the RT priority of a thread
5037 * @pid: the pid in question.
5038 * @param: structure containing the new RT priority.
5040 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5042 return do_sched_setscheduler(pid, -1, param);
5046 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5047 * @pid: the pid in question.
5049 asmlinkage long sys_sched_getscheduler(pid_t pid)
5051 struct task_struct *p;
5052 int retval;
5054 if (pid < 0)
5055 return -EINVAL;
5057 retval = -ESRCH;
5058 read_lock(&tasklist_lock);
5059 p = find_process_by_pid(pid);
5060 if (p) {
5061 retval = security_task_getscheduler(p);
5062 if (!retval)
5063 retval = p->policy;
5065 read_unlock(&tasklist_lock);
5066 return retval;
5070 * sys_sched_getscheduler - get the RT priority of a thread
5071 * @pid: the pid in question.
5072 * @param: structure containing the RT priority.
5074 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5076 struct sched_param lp;
5077 struct task_struct *p;
5078 int retval;
5080 if (!param || pid < 0)
5081 return -EINVAL;
5083 read_lock(&tasklist_lock);
5084 p = find_process_by_pid(pid);
5085 retval = -ESRCH;
5086 if (!p)
5087 goto out_unlock;
5089 retval = security_task_getscheduler(p);
5090 if (retval)
5091 goto out_unlock;
5093 lp.sched_priority = p->rt_priority;
5094 read_unlock(&tasklist_lock);
5097 * This one might sleep, we cannot do it with a spinlock held ...
5099 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5101 return retval;
5103 out_unlock:
5104 read_unlock(&tasklist_lock);
5105 return retval;
5108 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5110 cpumask_t cpus_allowed;
5111 cpumask_t new_mask = *in_mask;
5112 struct task_struct *p;
5113 int retval;
5115 get_online_cpus();
5116 read_lock(&tasklist_lock);
5118 p = find_process_by_pid(pid);
5119 if (!p) {
5120 read_unlock(&tasklist_lock);
5121 put_online_cpus();
5122 return -ESRCH;
5126 * It is not safe to call set_cpus_allowed with the
5127 * tasklist_lock held. We will bump the task_struct's
5128 * usage count and then drop tasklist_lock.
5130 get_task_struct(p);
5131 read_unlock(&tasklist_lock);
5133 retval = -EPERM;
5134 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5135 !capable(CAP_SYS_NICE))
5136 goto out_unlock;
5138 retval = security_task_setscheduler(p, 0, NULL);
5139 if (retval)
5140 goto out_unlock;
5142 cpuset_cpus_allowed(p, &cpus_allowed);
5143 cpus_and(new_mask, new_mask, cpus_allowed);
5144 again:
5145 retval = set_cpus_allowed_ptr(p, &new_mask);
5147 if (!retval) {
5148 cpuset_cpus_allowed(p, &cpus_allowed);
5149 if (!cpus_subset(new_mask, cpus_allowed)) {
5151 * We must have raced with a concurrent cpuset
5152 * update. Just reset the cpus_allowed to the
5153 * cpuset's cpus_allowed
5155 new_mask = cpus_allowed;
5156 goto again;
5159 out_unlock:
5160 put_task_struct(p);
5161 put_online_cpus();
5162 return retval;
5165 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5166 cpumask_t *new_mask)
5168 if (len < sizeof(cpumask_t)) {
5169 memset(new_mask, 0, sizeof(cpumask_t));
5170 } else if (len > sizeof(cpumask_t)) {
5171 len = sizeof(cpumask_t);
5173 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5177 * sys_sched_setaffinity - set the cpu affinity of a process
5178 * @pid: pid of the process
5179 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5180 * @user_mask_ptr: user-space pointer to the new cpu mask
5182 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5183 unsigned long __user *user_mask_ptr)
5185 cpumask_t new_mask;
5186 int retval;
5188 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5189 if (retval)
5190 return retval;
5192 return sched_setaffinity(pid, &new_mask);
5195 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5197 struct task_struct *p;
5198 int retval;
5200 get_online_cpus();
5201 read_lock(&tasklist_lock);
5203 retval = -ESRCH;
5204 p = find_process_by_pid(pid);
5205 if (!p)
5206 goto out_unlock;
5208 retval = security_task_getscheduler(p);
5209 if (retval)
5210 goto out_unlock;
5212 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5214 out_unlock:
5215 read_unlock(&tasklist_lock);
5216 put_online_cpus();
5218 return retval;
5222 * sys_sched_getaffinity - get the cpu affinity of a process
5223 * @pid: pid of the process
5224 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5225 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5227 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5228 unsigned long __user *user_mask_ptr)
5230 int ret;
5231 cpumask_t mask;
5233 if (len < sizeof(cpumask_t))
5234 return -EINVAL;
5236 ret = sched_getaffinity(pid, &mask);
5237 if (ret < 0)
5238 return ret;
5240 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5241 return -EFAULT;
5243 return sizeof(cpumask_t);
5247 * sys_sched_yield - yield the current processor to other threads.
5249 * This function yields the current CPU to other tasks. If there are no
5250 * other threads running on this CPU then this function will return.
5252 asmlinkage long sys_sched_yield(void)
5254 struct rq *rq = this_rq_lock();
5256 schedstat_inc(rq, yld_count);
5257 current->sched_class->yield_task(rq);
5260 * Since we are going to call schedule() anyway, there's
5261 * no need to preempt or enable interrupts:
5263 __release(rq->lock);
5264 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5265 _raw_spin_unlock(&rq->lock);
5266 preempt_enable_no_resched();
5268 schedule();
5270 return 0;
5273 static void __cond_resched(void)
5275 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5276 __might_sleep(__FILE__, __LINE__);
5277 #endif
5279 * The BKS might be reacquired before we have dropped
5280 * PREEMPT_ACTIVE, which could trigger a second
5281 * cond_resched() call.
5283 do {
5284 add_preempt_count(PREEMPT_ACTIVE);
5285 schedule();
5286 sub_preempt_count(PREEMPT_ACTIVE);
5287 } while (need_resched());
5290 int __sched _cond_resched(void)
5292 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5293 system_state == SYSTEM_RUNNING) {
5294 __cond_resched();
5295 return 1;
5297 return 0;
5299 EXPORT_SYMBOL(_cond_resched);
5302 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5303 * call schedule, and on return reacquire the lock.
5305 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5306 * operations here to prevent schedule() from being called twice (once via
5307 * spin_unlock(), once by hand).
5309 int cond_resched_lock(spinlock_t *lock)
5311 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5312 int ret = 0;
5314 if (spin_needbreak(lock) || resched) {
5315 spin_unlock(lock);
5316 if (resched && need_resched())
5317 __cond_resched();
5318 else
5319 cpu_relax();
5320 ret = 1;
5321 spin_lock(lock);
5323 return ret;
5325 EXPORT_SYMBOL(cond_resched_lock);
5327 int __sched cond_resched_softirq(void)
5329 BUG_ON(!in_softirq());
5331 if (need_resched() && system_state == SYSTEM_RUNNING) {
5332 local_bh_enable();
5333 __cond_resched();
5334 local_bh_disable();
5335 return 1;
5337 return 0;
5339 EXPORT_SYMBOL(cond_resched_softirq);
5342 * yield - yield the current processor to other threads.
5344 * This is a shortcut for kernel-space yielding - it marks the
5345 * thread runnable and calls sys_sched_yield().
5347 void __sched yield(void)
5349 set_current_state(TASK_RUNNING);
5350 sys_sched_yield();
5352 EXPORT_SYMBOL(yield);
5355 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5356 * that process accounting knows that this is a task in IO wait state.
5358 * But don't do that if it is a deliberate, throttling IO wait (this task
5359 * has set its backing_dev_info: the queue against which it should throttle)
5361 void __sched io_schedule(void)
5363 struct rq *rq = &__raw_get_cpu_var(runqueues);
5365 delayacct_blkio_start();
5366 atomic_inc(&rq->nr_iowait);
5367 schedule();
5368 atomic_dec(&rq->nr_iowait);
5369 delayacct_blkio_end();
5371 EXPORT_SYMBOL(io_schedule);
5373 long __sched io_schedule_timeout(long timeout)
5375 struct rq *rq = &__raw_get_cpu_var(runqueues);
5376 long ret;
5378 delayacct_blkio_start();
5379 atomic_inc(&rq->nr_iowait);
5380 ret = schedule_timeout(timeout);
5381 atomic_dec(&rq->nr_iowait);
5382 delayacct_blkio_end();
5383 return ret;
5387 * sys_sched_get_priority_max - return maximum RT priority.
5388 * @policy: scheduling class.
5390 * this syscall returns the maximum rt_priority that can be used
5391 * by a given scheduling class.
5393 asmlinkage long sys_sched_get_priority_max(int policy)
5395 int ret = -EINVAL;
5397 switch (policy) {
5398 case SCHED_FIFO:
5399 case SCHED_RR:
5400 ret = MAX_USER_RT_PRIO-1;
5401 break;
5402 case SCHED_NORMAL:
5403 case SCHED_BATCH:
5404 case SCHED_IDLE:
5405 ret = 0;
5406 break;
5408 return ret;
5412 * sys_sched_get_priority_min - return minimum RT priority.
5413 * @policy: scheduling class.
5415 * this syscall returns the minimum rt_priority that can be used
5416 * by a given scheduling class.
5418 asmlinkage long sys_sched_get_priority_min(int policy)
5420 int ret = -EINVAL;
5422 switch (policy) {
5423 case SCHED_FIFO:
5424 case SCHED_RR:
5425 ret = 1;
5426 break;
5427 case SCHED_NORMAL:
5428 case SCHED_BATCH:
5429 case SCHED_IDLE:
5430 ret = 0;
5432 return ret;
5436 * sys_sched_rr_get_interval - return the default timeslice of a process.
5437 * @pid: pid of the process.
5438 * @interval: userspace pointer to the timeslice value.
5440 * this syscall writes the default timeslice value of a given process
5441 * into the user-space timespec buffer. A value of '0' means infinity.
5443 asmlinkage
5444 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5446 struct task_struct *p;
5447 unsigned int time_slice;
5448 int retval;
5449 struct timespec t;
5451 if (pid < 0)
5452 return -EINVAL;
5454 retval = -ESRCH;
5455 read_lock(&tasklist_lock);
5456 p = find_process_by_pid(pid);
5457 if (!p)
5458 goto out_unlock;
5460 retval = security_task_getscheduler(p);
5461 if (retval)
5462 goto out_unlock;
5465 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5466 * tasks that are on an otherwise idle runqueue:
5468 time_slice = 0;
5469 if (p->policy == SCHED_RR) {
5470 time_slice = DEF_TIMESLICE;
5471 } else if (p->policy != SCHED_FIFO) {
5472 struct sched_entity *se = &p->se;
5473 unsigned long flags;
5474 struct rq *rq;
5476 rq = task_rq_lock(p, &flags);
5477 if (rq->cfs.load.weight)
5478 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5479 task_rq_unlock(rq, &flags);
5481 read_unlock(&tasklist_lock);
5482 jiffies_to_timespec(time_slice, &t);
5483 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5484 return retval;
5486 out_unlock:
5487 read_unlock(&tasklist_lock);
5488 return retval;
5491 static const char stat_nam[] = "RSDTtZX";
5493 void sched_show_task(struct task_struct *p)
5495 unsigned long free = 0;
5496 unsigned state;
5498 state = p->state ? __ffs(p->state) + 1 : 0;
5499 printk(KERN_INFO "%-13.13s %c", p->comm,
5500 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5501 #if BITS_PER_LONG == 32
5502 if (state == TASK_RUNNING)
5503 printk(KERN_CONT " running ");
5504 else
5505 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5506 #else
5507 if (state == TASK_RUNNING)
5508 printk(KERN_CONT " running task ");
5509 else
5510 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5511 #endif
5512 #ifdef CONFIG_DEBUG_STACK_USAGE
5514 unsigned long *n = end_of_stack(p);
5515 while (!*n)
5516 n++;
5517 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5519 #endif
5520 printk(KERN_CONT "%5lu %5d %6d\n", free,
5521 task_pid_nr(p), task_pid_nr(p->real_parent));
5523 show_stack(p, NULL);
5526 void show_state_filter(unsigned long state_filter)
5528 struct task_struct *g, *p;
5530 #if BITS_PER_LONG == 32
5531 printk(KERN_INFO
5532 " task PC stack pid father\n");
5533 #else
5534 printk(KERN_INFO
5535 " task PC stack pid father\n");
5536 #endif
5537 read_lock(&tasklist_lock);
5538 do_each_thread(g, p) {
5540 * reset the NMI-timeout, listing all files on a slow
5541 * console might take alot of time:
5543 touch_nmi_watchdog();
5544 if (!state_filter || (p->state & state_filter))
5545 sched_show_task(p);
5546 } while_each_thread(g, p);
5548 touch_all_softlockup_watchdogs();
5550 #ifdef CONFIG_SCHED_DEBUG
5551 sysrq_sched_debug_show();
5552 #endif
5553 read_unlock(&tasklist_lock);
5555 * Only show locks if all tasks are dumped:
5557 if (state_filter == -1)
5558 debug_show_all_locks();
5561 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5563 idle->sched_class = &idle_sched_class;
5567 * init_idle - set up an idle thread for a given CPU
5568 * @idle: task in question
5569 * @cpu: cpu the idle task belongs to
5571 * NOTE: this function does not set the idle thread's NEED_RESCHED
5572 * flag, to make booting more robust.
5574 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5576 struct rq *rq = cpu_rq(cpu);
5577 unsigned long flags;
5579 __sched_fork(idle);
5580 idle->se.exec_start = sched_clock();
5582 idle->prio = idle->normal_prio = MAX_PRIO;
5583 idle->cpus_allowed = cpumask_of_cpu(cpu);
5584 __set_task_cpu(idle, cpu);
5586 spin_lock_irqsave(&rq->lock, flags);
5587 rq->curr = rq->idle = idle;
5588 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5589 idle->oncpu = 1;
5590 #endif
5591 spin_unlock_irqrestore(&rq->lock, flags);
5593 /* Set the preempt count _outside_ the spinlocks! */
5594 #if defined(CONFIG_PREEMPT)
5595 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5596 #else
5597 task_thread_info(idle)->preempt_count = 0;
5598 #endif
5600 * The idle tasks have their own, simple scheduling class:
5602 idle->sched_class = &idle_sched_class;
5606 * In a system that switches off the HZ timer nohz_cpu_mask
5607 * indicates which cpus entered this state. This is used
5608 * in the rcu update to wait only for active cpus. For system
5609 * which do not switch off the HZ timer nohz_cpu_mask should
5610 * always be CPU_MASK_NONE.
5612 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5615 * Increase the granularity value when there are more CPUs,
5616 * because with more CPUs the 'effective latency' as visible
5617 * to users decreases. But the relationship is not linear,
5618 * so pick a second-best guess by going with the log2 of the
5619 * number of CPUs.
5621 * This idea comes from the SD scheduler of Con Kolivas:
5623 static inline void sched_init_granularity(void)
5625 unsigned int factor = 1 + ilog2(num_online_cpus());
5626 const unsigned long limit = 200000000;
5628 sysctl_sched_min_granularity *= factor;
5629 if (sysctl_sched_min_granularity > limit)
5630 sysctl_sched_min_granularity = limit;
5632 sysctl_sched_latency *= factor;
5633 if (sysctl_sched_latency > limit)
5634 sysctl_sched_latency = limit;
5636 sysctl_sched_wakeup_granularity *= factor;
5639 #ifdef CONFIG_SMP
5641 * This is how migration works:
5643 * 1) we queue a struct migration_req structure in the source CPU's
5644 * runqueue and wake up that CPU's migration thread.
5645 * 2) we down() the locked semaphore => thread blocks.
5646 * 3) migration thread wakes up (implicitly it forces the migrated
5647 * thread off the CPU)
5648 * 4) it gets the migration request and checks whether the migrated
5649 * task is still in the wrong runqueue.
5650 * 5) if it's in the wrong runqueue then the migration thread removes
5651 * it and puts it into the right queue.
5652 * 6) migration thread up()s the semaphore.
5653 * 7) we wake up and the migration is done.
5657 * Change a given task's CPU affinity. Migrate the thread to a
5658 * proper CPU and schedule it away if the CPU it's executing on
5659 * is removed from the allowed bitmask.
5661 * NOTE: the caller must have a valid reference to the task, the
5662 * task must not exit() & deallocate itself prematurely. The
5663 * call is not atomic; no spinlocks may be held.
5665 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5667 struct migration_req req;
5668 unsigned long flags;
5669 struct rq *rq;
5670 int ret = 0;
5672 rq = task_rq_lock(p, &flags);
5673 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5674 ret = -EINVAL;
5675 goto out;
5678 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5679 !cpus_equal(p->cpus_allowed, *new_mask))) {
5680 ret = -EINVAL;
5681 goto out;
5684 if (p->sched_class->set_cpus_allowed)
5685 p->sched_class->set_cpus_allowed(p, new_mask);
5686 else {
5687 p->cpus_allowed = *new_mask;
5688 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5691 /* Can the task run on the task's current CPU? If so, we're done */
5692 if (cpu_isset(task_cpu(p), *new_mask))
5693 goto out;
5695 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5696 /* Need help from migration thread: drop lock and wait. */
5697 task_rq_unlock(rq, &flags);
5698 wake_up_process(rq->migration_thread);
5699 wait_for_completion(&req.done);
5700 tlb_migrate_finish(p->mm);
5701 return 0;
5703 out:
5704 task_rq_unlock(rq, &flags);
5706 return ret;
5708 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5711 * Move (not current) task off this cpu, onto dest cpu. We're doing
5712 * this because either it can't run here any more (set_cpus_allowed()
5713 * away from this CPU, or CPU going down), or because we're
5714 * attempting to rebalance this task on exec (sched_exec).
5716 * So we race with normal scheduler movements, but that's OK, as long
5717 * as the task is no longer on this CPU.
5719 * Returns non-zero if task was successfully migrated.
5721 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5723 struct rq *rq_dest, *rq_src;
5724 int ret = 0, on_rq;
5726 if (unlikely(cpu_is_offline(dest_cpu)))
5727 return ret;
5729 rq_src = cpu_rq(src_cpu);
5730 rq_dest = cpu_rq(dest_cpu);
5732 double_rq_lock(rq_src, rq_dest);
5733 /* Already moved. */
5734 if (task_cpu(p) != src_cpu)
5735 goto out;
5736 /* Affinity changed (again). */
5737 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5738 goto out;
5740 on_rq = p->se.on_rq;
5741 if (on_rq)
5742 deactivate_task(rq_src, p, 0);
5744 set_task_cpu(p, dest_cpu);
5745 if (on_rq) {
5746 activate_task(rq_dest, p, 0);
5747 check_preempt_curr(rq_dest, p);
5749 ret = 1;
5750 out:
5751 double_rq_unlock(rq_src, rq_dest);
5752 return ret;
5756 * migration_thread - this is a highprio system thread that performs
5757 * thread migration by bumping thread off CPU then 'pushing' onto
5758 * another runqueue.
5760 static int migration_thread(void *data)
5762 int cpu = (long)data;
5763 struct rq *rq;
5765 rq = cpu_rq(cpu);
5766 BUG_ON(rq->migration_thread != current);
5768 set_current_state(TASK_INTERRUPTIBLE);
5769 while (!kthread_should_stop()) {
5770 struct migration_req *req;
5771 struct list_head *head;
5773 spin_lock_irq(&rq->lock);
5775 if (cpu_is_offline(cpu)) {
5776 spin_unlock_irq(&rq->lock);
5777 goto wait_to_die;
5780 if (rq->active_balance) {
5781 active_load_balance(rq, cpu);
5782 rq->active_balance = 0;
5785 head = &rq->migration_queue;
5787 if (list_empty(head)) {
5788 spin_unlock_irq(&rq->lock);
5789 schedule();
5790 set_current_state(TASK_INTERRUPTIBLE);
5791 continue;
5793 req = list_entry(head->next, struct migration_req, list);
5794 list_del_init(head->next);
5796 spin_unlock(&rq->lock);
5797 __migrate_task(req->task, cpu, req->dest_cpu);
5798 local_irq_enable();
5800 complete(&req->done);
5802 __set_current_state(TASK_RUNNING);
5803 return 0;
5805 wait_to_die:
5806 /* Wait for kthread_stop */
5807 set_current_state(TASK_INTERRUPTIBLE);
5808 while (!kthread_should_stop()) {
5809 schedule();
5810 set_current_state(TASK_INTERRUPTIBLE);
5812 __set_current_state(TASK_RUNNING);
5813 return 0;
5816 #ifdef CONFIG_HOTPLUG_CPU
5818 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5820 int ret;
5822 local_irq_disable();
5823 ret = __migrate_task(p, src_cpu, dest_cpu);
5824 local_irq_enable();
5825 return ret;
5829 * Figure out where task on dead CPU should go, use force if necessary.
5830 * NOTE: interrupts should be disabled by the caller
5832 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5834 unsigned long flags;
5835 cpumask_t mask;
5836 struct rq *rq;
5837 int dest_cpu;
5839 do {
5840 /* On same node? */
5841 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5842 cpus_and(mask, mask, p->cpus_allowed);
5843 dest_cpu = any_online_cpu(mask);
5845 /* On any allowed CPU? */
5846 if (dest_cpu >= nr_cpu_ids)
5847 dest_cpu = any_online_cpu(p->cpus_allowed);
5849 /* No more Mr. Nice Guy. */
5850 if (dest_cpu >= nr_cpu_ids) {
5851 cpumask_t cpus_allowed;
5853 cpuset_cpus_allowed_locked(p, &cpus_allowed);
5855 * Try to stay on the same cpuset, where the
5856 * current cpuset may be a subset of all cpus.
5857 * The cpuset_cpus_allowed_locked() variant of
5858 * cpuset_cpus_allowed() will not block. It must be
5859 * called within calls to cpuset_lock/cpuset_unlock.
5861 rq = task_rq_lock(p, &flags);
5862 p->cpus_allowed = cpus_allowed;
5863 dest_cpu = any_online_cpu(p->cpus_allowed);
5864 task_rq_unlock(rq, &flags);
5867 * Don't tell them about moving exiting tasks or
5868 * kernel threads (both mm NULL), since they never
5869 * leave kernel.
5871 if (p->mm && printk_ratelimit()) {
5872 printk(KERN_INFO "process %d (%s) no "
5873 "longer affine to cpu%d\n",
5874 task_pid_nr(p), p->comm, dead_cpu);
5877 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5881 * While a dead CPU has no uninterruptible tasks queued at this point,
5882 * it might still have a nonzero ->nr_uninterruptible counter, because
5883 * for performance reasons the counter is not stricly tracking tasks to
5884 * their home CPUs. So we just add the counter to another CPU's counter,
5885 * to keep the global sum constant after CPU-down:
5887 static void migrate_nr_uninterruptible(struct rq *rq_src)
5889 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
5890 unsigned long flags;
5892 local_irq_save(flags);
5893 double_rq_lock(rq_src, rq_dest);
5894 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5895 rq_src->nr_uninterruptible = 0;
5896 double_rq_unlock(rq_src, rq_dest);
5897 local_irq_restore(flags);
5900 /* Run through task list and migrate tasks from the dead cpu. */
5901 static void migrate_live_tasks(int src_cpu)
5903 struct task_struct *p, *t;
5905 read_lock(&tasklist_lock);
5907 do_each_thread(t, p) {
5908 if (p == current)
5909 continue;
5911 if (task_cpu(p) == src_cpu)
5912 move_task_off_dead_cpu(src_cpu, p);
5913 } while_each_thread(t, p);
5915 read_unlock(&tasklist_lock);
5919 * Schedules idle task to be the next runnable task on current CPU.
5920 * It does so by boosting its priority to highest possible.
5921 * Used by CPU offline code.
5923 void sched_idle_next(void)
5925 int this_cpu = smp_processor_id();
5926 struct rq *rq = cpu_rq(this_cpu);
5927 struct task_struct *p = rq->idle;
5928 unsigned long flags;
5930 /* cpu has to be offline */
5931 BUG_ON(cpu_online(this_cpu));
5934 * Strictly not necessary since rest of the CPUs are stopped by now
5935 * and interrupts disabled on the current cpu.
5937 spin_lock_irqsave(&rq->lock, flags);
5939 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5941 update_rq_clock(rq);
5942 activate_task(rq, p, 0);
5944 spin_unlock_irqrestore(&rq->lock, flags);
5948 * Ensures that the idle task is using init_mm right before its cpu goes
5949 * offline.
5951 void idle_task_exit(void)
5953 struct mm_struct *mm = current->active_mm;
5955 BUG_ON(cpu_online(smp_processor_id()));
5957 if (mm != &init_mm)
5958 switch_mm(mm, &init_mm, current);
5959 mmdrop(mm);
5962 /* called under rq->lock with disabled interrupts */
5963 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5965 struct rq *rq = cpu_rq(dead_cpu);
5967 /* Must be exiting, otherwise would be on tasklist. */
5968 BUG_ON(!p->exit_state);
5970 /* Cannot have done final schedule yet: would have vanished. */
5971 BUG_ON(p->state == TASK_DEAD);
5973 get_task_struct(p);
5976 * Drop lock around migration; if someone else moves it,
5977 * that's OK. No task can be added to this CPU, so iteration is
5978 * fine.
5980 spin_unlock_irq(&rq->lock);
5981 move_task_off_dead_cpu(dead_cpu, p);
5982 spin_lock_irq(&rq->lock);
5984 put_task_struct(p);
5987 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5988 static void migrate_dead_tasks(unsigned int dead_cpu)
5990 struct rq *rq = cpu_rq(dead_cpu);
5991 struct task_struct *next;
5993 for ( ; ; ) {
5994 if (!rq->nr_running)
5995 break;
5996 update_rq_clock(rq);
5997 next = pick_next_task(rq, rq->curr);
5998 if (!next)
5999 break;
6000 migrate_dead(dead_cpu, next);
6004 #endif /* CONFIG_HOTPLUG_CPU */
6006 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6008 static struct ctl_table sd_ctl_dir[] = {
6010 .procname = "sched_domain",
6011 .mode = 0555,
6013 {0, },
6016 static struct ctl_table sd_ctl_root[] = {
6018 .ctl_name = CTL_KERN,
6019 .procname = "kernel",
6020 .mode = 0555,
6021 .child = sd_ctl_dir,
6023 {0, },
6026 static struct ctl_table *sd_alloc_ctl_entry(int n)
6028 struct ctl_table *entry =
6029 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6031 return entry;
6034 static void sd_free_ctl_entry(struct ctl_table **tablep)
6036 struct ctl_table *entry;
6039 * In the intermediate directories, both the child directory and
6040 * procname are dynamically allocated and could fail but the mode
6041 * will always be set. In the lowest directory the names are
6042 * static strings and all have proc handlers.
6044 for (entry = *tablep; entry->mode; entry++) {
6045 if (entry->child)
6046 sd_free_ctl_entry(&entry->child);
6047 if (entry->proc_handler == NULL)
6048 kfree(entry->procname);
6051 kfree(*tablep);
6052 *tablep = NULL;
6055 static void
6056 set_table_entry(struct ctl_table *entry,
6057 const char *procname, void *data, int maxlen,
6058 mode_t mode, proc_handler *proc_handler)
6060 entry->procname = procname;
6061 entry->data = data;
6062 entry->maxlen = maxlen;
6063 entry->mode = mode;
6064 entry->proc_handler = proc_handler;
6067 static struct ctl_table *
6068 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6070 struct ctl_table *table = sd_alloc_ctl_entry(12);
6072 if (table == NULL)
6073 return NULL;
6075 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6076 sizeof(long), 0644, proc_doulongvec_minmax);
6077 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6078 sizeof(long), 0644, proc_doulongvec_minmax);
6079 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6080 sizeof(int), 0644, proc_dointvec_minmax);
6081 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6082 sizeof(int), 0644, proc_dointvec_minmax);
6083 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6084 sizeof(int), 0644, proc_dointvec_minmax);
6085 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6086 sizeof(int), 0644, proc_dointvec_minmax);
6087 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6088 sizeof(int), 0644, proc_dointvec_minmax);
6089 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6090 sizeof(int), 0644, proc_dointvec_minmax);
6091 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6092 sizeof(int), 0644, proc_dointvec_minmax);
6093 set_table_entry(&table[9], "cache_nice_tries",
6094 &sd->cache_nice_tries,
6095 sizeof(int), 0644, proc_dointvec_minmax);
6096 set_table_entry(&table[10], "flags", &sd->flags,
6097 sizeof(int), 0644, proc_dointvec_minmax);
6098 /* &table[11] is terminator */
6100 return table;
6103 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6105 struct ctl_table *entry, *table;
6106 struct sched_domain *sd;
6107 int domain_num = 0, i;
6108 char buf[32];
6110 for_each_domain(cpu, sd)
6111 domain_num++;
6112 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6113 if (table == NULL)
6114 return NULL;
6116 i = 0;
6117 for_each_domain(cpu, sd) {
6118 snprintf(buf, 32, "domain%d", i);
6119 entry->procname = kstrdup(buf, GFP_KERNEL);
6120 entry->mode = 0555;
6121 entry->child = sd_alloc_ctl_domain_table(sd);
6122 entry++;
6123 i++;
6125 return table;
6128 static struct ctl_table_header *sd_sysctl_header;
6129 static void register_sched_domain_sysctl(void)
6131 int i, cpu_num = num_online_cpus();
6132 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6133 char buf[32];
6135 WARN_ON(sd_ctl_dir[0].child);
6136 sd_ctl_dir[0].child = entry;
6138 if (entry == NULL)
6139 return;
6141 for_each_online_cpu(i) {
6142 snprintf(buf, 32, "cpu%d", i);
6143 entry->procname = kstrdup(buf, GFP_KERNEL);
6144 entry->mode = 0555;
6145 entry->child = sd_alloc_ctl_cpu_table(i);
6146 entry++;
6149 WARN_ON(sd_sysctl_header);
6150 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6153 /* may be called multiple times per register */
6154 static void unregister_sched_domain_sysctl(void)
6156 if (sd_sysctl_header)
6157 unregister_sysctl_table(sd_sysctl_header);
6158 sd_sysctl_header = NULL;
6159 if (sd_ctl_dir[0].child)
6160 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6162 #else
6163 static void register_sched_domain_sysctl(void)
6166 static void unregister_sched_domain_sysctl(void)
6169 #endif
6171 static void set_rq_online(struct rq *rq)
6173 if (!rq->online) {
6174 const struct sched_class *class;
6176 cpu_set(rq->cpu, rq->rd->online);
6177 rq->online = 1;
6179 for_each_class(class) {
6180 if (class->rq_online)
6181 class->rq_online(rq);
6186 static void set_rq_offline(struct rq *rq)
6188 if (rq->online) {
6189 const struct sched_class *class;
6191 for_each_class(class) {
6192 if (class->rq_offline)
6193 class->rq_offline(rq);
6196 cpu_clear(rq->cpu, rq->rd->online);
6197 rq->online = 0;
6202 * migration_call - callback that gets triggered when a CPU is added.
6203 * Here we can start up the necessary migration thread for the new CPU.
6205 static int __cpuinit
6206 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6208 struct task_struct *p;
6209 int cpu = (long)hcpu;
6210 unsigned long flags;
6211 struct rq *rq;
6213 switch (action) {
6215 case CPU_UP_PREPARE:
6216 case CPU_UP_PREPARE_FROZEN:
6217 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6218 if (IS_ERR(p))
6219 return NOTIFY_BAD;
6220 kthread_bind(p, cpu);
6221 /* Must be high prio: stop_machine expects to yield to it. */
6222 rq = task_rq_lock(p, &flags);
6223 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6224 task_rq_unlock(rq, &flags);
6225 cpu_rq(cpu)->migration_thread = p;
6226 break;
6228 case CPU_ONLINE:
6229 case CPU_ONLINE_FROZEN:
6230 /* Strictly unnecessary, as first user will wake it. */
6231 wake_up_process(cpu_rq(cpu)->migration_thread);
6233 /* Update our root-domain */
6234 rq = cpu_rq(cpu);
6235 spin_lock_irqsave(&rq->lock, flags);
6236 if (rq->rd) {
6237 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6239 set_rq_online(rq);
6241 spin_unlock_irqrestore(&rq->lock, flags);
6242 break;
6244 #ifdef CONFIG_HOTPLUG_CPU
6245 case CPU_UP_CANCELED:
6246 case CPU_UP_CANCELED_FROZEN:
6247 if (!cpu_rq(cpu)->migration_thread)
6248 break;
6249 /* Unbind it from offline cpu so it can run. Fall thru. */
6250 kthread_bind(cpu_rq(cpu)->migration_thread,
6251 any_online_cpu(cpu_online_map));
6252 kthread_stop(cpu_rq(cpu)->migration_thread);
6253 cpu_rq(cpu)->migration_thread = NULL;
6254 break;
6256 case CPU_DEAD:
6257 case CPU_DEAD_FROZEN:
6258 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6259 migrate_live_tasks(cpu);
6260 rq = cpu_rq(cpu);
6261 kthread_stop(rq->migration_thread);
6262 rq->migration_thread = NULL;
6263 /* Idle task back to normal (off runqueue, low prio) */
6264 spin_lock_irq(&rq->lock);
6265 update_rq_clock(rq);
6266 deactivate_task(rq, rq->idle, 0);
6267 rq->idle->static_prio = MAX_PRIO;
6268 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6269 rq->idle->sched_class = &idle_sched_class;
6270 migrate_dead_tasks(cpu);
6271 spin_unlock_irq(&rq->lock);
6272 cpuset_unlock();
6273 migrate_nr_uninterruptible(rq);
6274 BUG_ON(rq->nr_running != 0);
6277 * No need to migrate the tasks: it was best-effort if
6278 * they didn't take sched_hotcpu_mutex. Just wake up
6279 * the requestors.
6281 spin_lock_irq(&rq->lock);
6282 while (!list_empty(&rq->migration_queue)) {
6283 struct migration_req *req;
6285 req = list_entry(rq->migration_queue.next,
6286 struct migration_req, list);
6287 list_del_init(&req->list);
6288 complete(&req->done);
6290 spin_unlock_irq(&rq->lock);
6291 break;
6293 case CPU_DYING:
6294 case CPU_DYING_FROZEN:
6295 /* Update our root-domain */
6296 rq = cpu_rq(cpu);
6297 spin_lock_irqsave(&rq->lock, flags);
6298 if (rq->rd) {
6299 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6300 set_rq_offline(rq);
6302 spin_unlock_irqrestore(&rq->lock, flags);
6303 break;
6304 #endif
6306 return NOTIFY_OK;
6309 /* Register at highest priority so that task migration (migrate_all_tasks)
6310 * happens before everything else.
6312 static struct notifier_block __cpuinitdata migration_notifier = {
6313 .notifier_call = migration_call,
6314 .priority = 10
6317 void __init migration_init(void)
6319 void *cpu = (void *)(long)smp_processor_id();
6320 int err;
6322 /* Start one for the boot CPU: */
6323 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6324 BUG_ON(err == NOTIFY_BAD);
6325 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6326 register_cpu_notifier(&migration_notifier);
6328 #endif
6330 #ifdef CONFIG_SMP
6332 #ifdef CONFIG_SCHED_DEBUG
6334 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6336 switch (lvl) {
6337 case SD_LV_NONE:
6338 return "NONE";
6339 case SD_LV_SIBLING:
6340 return "SIBLING";
6341 case SD_LV_MC:
6342 return "MC";
6343 case SD_LV_CPU:
6344 return "CPU";
6345 case SD_LV_NODE:
6346 return "NODE";
6347 case SD_LV_ALLNODES:
6348 return "ALLNODES";
6349 case SD_LV_MAX:
6350 return "MAX";
6353 return "MAX";
6356 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6357 cpumask_t *groupmask)
6359 struct sched_group *group = sd->groups;
6360 char str[256];
6362 cpulist_scnprintf(str, sizeof(str), sd->span);
6363 cpus_clear(*groupmask);
6365 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6367 if (!(sd->flags & SD_LOAD_BALANCE)) {
6368 printk("does not load-balance\n");
6369 if (sd->parent)
6370 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6371 " has parent");
6372 return -1;
6375 printk(KERN_CONT "span %s level %s\n",
6376 str, sd_level_to_string(sd->level));
6378 if (!cpu_isset(cpu, sd->span)) {
6379 printk(KERN_ERR "ERROR: domain->span does not contain "
6380 "CPU%d\n", cpu);
6382 if (!cpu_isset(cpu, group->cpumask)) {
6383 printk(KERN_ERR "ERROR: domain->groups does not contain"
6384 " CPU%d\n", cpu);
6387 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6388 do {
6389 if (!group) {
6390 printk("\n");
6391 printk(KERN_ERR "ERROR: group is NULL\n");
6392 break;
6395 if (!group->__cpu_power) {
6396 printk(KERN_CONT "\n");
6397 printk(KERN_ERR "ERROR: domain->cpu_power not "
6398 "set\n");
6399 break;
6402 if (!cpus_weight(group->cpumask)) {
6403 printk(KERN_CONT "\n");
6404 printk(KERN_ERR "ERROR: empty group\n");
6405 break;
6408 if (cpus_intersects(*groupmask, group->cpumask)) {
6409 printk(KERN_CONT "\n");
6410 printk(KERN_ERR "ERROR: repeated CPUs\n");
6411 break;
6414 cpus_or(*groupmask, *groupmask, group->cpumask);
6416 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6417 printk(KERN_CONT " %s", str);
6419 group = group->next;
6420 } while (group != sd->groups);
6421 printk(KERN_CONT "\n");
6423 if (!cpus_equal(sd->span, *groupmask))
6424 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6426 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6427 printk(KERN_ERR "ERROR: parent span is not a superset "
6428 "of domain->span\n");
6429 return 0;
6432 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6434 cpumask_t *groupmask;
6435 int level = 0;
6437 if (!sd) {
6438 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6439 return;
6442 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6444 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6445 if (!groupmask) {
6446 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6447 return;
6450 for (;;) {
6451 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6452 break;
6453 level++;
6454 sd = sd->parent;
6455 if (!sd)
6456 break;
6458 kfree(groupmask);
6460 #else /* !CONFIG_SCHED_DEBUG */
6461 # define sched_domain_debug(sd, cpu) do { } while (0)
6462 #endif /* CONFIG_SCHED_DEBUG */
6464 static int sd_degenerate(struct sched_domain *sd)
6466 if (cpus_weight(sd->span) == 1)
6467 return 1;
6469 /* Following flags need at least 2 groups */
6470 if (sd->flags & (SD_LOAD_BALANCE |
6471 SD_BALANCE_NEWIDLE |
6472 SD_BALANCE_FORK |
6473 SD_BALANCE_EXEC |
6474 SD_SHARE_CPUPOWER |
6475 SD_SHARE_PKG_RESOURCES)) {
6476 if (sd->groups != sd->groups->next)
6477 return 0;
6480 /* Following flags don't use groups */
6481 if (sd->flags & (SD_WAKE_IDLE |
6482 SD_WAKE_AFFINE |
6483 SD_WAKE_BALANCE))
6484 return 0;
6486 return 1;
6489 static int
6490 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6492 unsigned long cflags = sd->flags, pflags = parent->flags;
6494 if (sd_degenerate(parent))
6495 return 1;
6497 if (!cpus_equal(sd->span, parent->span))
6498 return 0;
6500 /* Does parent contain flags not in child? */
6501 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6502 if (cflags & SD_WAKE_AFFINE)
6503 pflags &= ~SD_WAKE_BALANCE;
6504 /* Flags needing groups don't count if only 1 group in parent */
6505 if (parent->groups == parent->groups->next) {
6506 pflags &= ~(SD_LOAD_BALANCE |
6507 SD_BALANCE_NEWIDLE |
6508 SD_BALANCE_FORK |
6509 SD_BALANCE_EXEC |
6510 SD_SHARE_CPUPOWER |
6511 SD_SHARE_PKG_RESOURCES);
6513 if (~cflags & pflags)
6514 return 0;
6516 return 1;
6519 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6521 unsigned long flags;
6523 spin_lock_irqsave(&rq->lock, flags);
6525 if (rq->rd) {
6526 struct root_domain *old_rd = rq->rd;
6528 if (cpu_isset(rq->cpu, old_rd->online))
6529 set_rq_offline(rq);
6531 cpu_clear(rq->cpu, old_rd->span);
6533 if (atomic_dec_and_test(&old_rd->refcount))
6534 kfree(old_rd);
6537 atomic_inc(&rd->refcount);
6538 rq->rd = rd;
6540 cpu_set(rq->cpu, rd->span);
6541 if (cpu_isset(rq->cpu, cpu_online_map))
6542 set_rq_online(rq);
6544 spin_unlock_irqrestore(&rq->lock, flags);
6547 static void init_rootdomain(struct root_domain *rd)
6549 memset(rd, 0, sizeof(*rd));
6551 cpus_clear(rd->span);
6552 cpus_clear(rd->online);
6554 cpupri_init(&rd->cpupri);
6557 static void init_defrootdomain(void)
6559 init_rootdomain(&def_root_domain);
6560 atomic_set(&def_root_domain.refcount, 1);
6563 static struct root_domain *alloc_rootdomain(void)
6565 struct root_domain *rd;
6567 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6568 if (!rd)
6569 return NULL;
6571 init_rootdomain(rd);
6573 return rd;
6577 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6578 * hold the hotplug lock.
6580 static void
6581 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6583 struct rq *rq = cpu_rq(cpu);
6584 struct sched_domain *tmp;
6586 /* Remove the sched domains which do not contribute to scheduling. */
6587 for (tmp = sd; tmp; tmp = tmp->parent) {
6588 struct sched_domain *parent = tmp->parent;
6589 if (!parent)
6590 break;
6591 if (sd_parent_degenerate(tmp, parent)) {
6592 tmp->parent = parent->parent;
6593 if (parent->parent)
6594 parent->parent->child = tmp;
6598 if (sd && sd_degenerate(sd)) {
6599 sd = sd->parent;
6600 if (sd)
6601 sd->child = NULL;
6604 sched_domain_debug(sd, cpu);
6606 rq_attach_root(rq, rd);
6607 rcu_assign_pointer(rq->sd, sd);
6610 /* cpus with isolated domains */
6611 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6613 /* Setup the mask of cpus configured for isolated domains */
6614 static int __init isolated_cpu_setup(char *str)
6616 int ints[NR_CPUS], i;
6618 str = get_options(str, ARRAY_SIZE(ints), ints);
6619 cpus_clear(cpu_isolated_map);
6620 for (i = 1; i <= ints[0]; i++)
6621 if (ints[i] < NR_CPUS)
6622 cpu_set(ints[i], cpu_isolated_map);
6623 return 1;
6626 __setup("isolcpus=", isolated_cpu_setup);
6629 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6630 * to a function which identifies what group(along with sched group) a CPU
6631 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6632 * (due to the fact that we keep track of groups covered with a cpumask_t).
6634 * init_sched_build_groups will build a circular linked list of the groups
6635 * covered by the given span, and will set each group's ->cpumask correctly,
6636 * and ->cpu_power to 0.
6638 static void
6639 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6640 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6641 struct sched_group **sg,
6642 cpumask_t *tmpmask),
6643 cpumask_t *covered, cpumask_t *tmpmask)
6645 struct sched_group *first = NULL, *last = NULL;
6646 int i;
6648 cpus_clear(*covered);
6650 for_each_cpu_mask(i, *span) {
6651 struct sched_group *sg;
6652 int group = group_fn(i, cpu_map, &sg, tmpmask);
6653 int j;
6655 if (cpu_isset(i, *covered))
6656 continue;
6658 cpus_clear(sg->cpumask);
6659 sg->__cpu_power = 0;
6661 for_each_cpu_mask(j, *span) {
6662 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6663 continue;
6665 cpu_set(j, *covered);
6666 cpu_set(j, sg->cpumask);
6668 if (!first)
6669 first = sg;
6670 if (last)
6671 last->next = sg;
6672 last = sg;
6674 last->next = first;
6677 #define SD_NODES_PER_DOMAIN 16
6679 #ifdef CONFIG_NUMA
6682 * find_next_best_node - find the next node to include in a sched_domain
6683 * @node: node whose sched_domain we're building
6684 * @used_nodes: nodes already in the sched_domain
6686 * Find the next node to include in a given scheduling domain. Simply
6687 * finds the closest node not already in the @used_nodes map.
6689 * Should use nodemask_t.
6691 static int find_next_best_node(int node, nodemask_t *used_nodes)
6693 int i, n, val, min_val, best_node = 0;
6695 min_val = INT_MAX;
6697 for (i = 0; i < MAX_NUMNODES; i++) {
6698 /* Start at @node */
6699 n = (node + i) % MAX_NUMNODES;
6701 if (!nr_cpus_node(n))
6702 continue;
6704 /* Skip already used nodes */
6705 if (node_isset(n, *used_nodes))
6706 continue;
6708 /* Simple min distance search */
6709 val = node_distance(node, n);
6711 if (val < min_val) {
6712 min_val = val;
6713 best_node = n;
6717 node_set(best_node, *used_nodes);
6718 return best_node;
6722 * sched_domain_node_span - get a cpumask for a node's sched_domain
6723 * @node: node whose cpumask we're constructing
6724 * @span: resulting cpumask
6726 * Given a node, construct a good cpumask for its sched_domain to span. It
6727 * should be one that prevents unnecessary balancing, but also spreads tasks
6728 * out optimally.
6730 static void sched_domain_node_span(int node, cpumask_t *span)
6732 nodemask_t used_nodes;
6733 node_to_cpumask_ptr(nodemask, node);
6734 int i;
6736 cpus_clear(*span);
6737 nodes_clear(used_nodes);
6739 cpus_or(*span, *span, *nodemask);
6740 node_set(node, used_nodes);
6742 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6743 int next_node = find_next_best_node(node, &used_nodes);
6745 node_to_cpumask_ptr_next(nodemask, next_node);
6746 cpus_or(*span, *span, *nodemask);
6749 #endif /* CONFIG_NUMA */
6751 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6754 * SMT sched-domains:
6756 #ifdef CONFIG_SCHED_SMT
6757 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6758 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6760 static int
6761 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6762 cpumask_t *unused)
6764 if (sg)
6765 *sg = &per_cpu(sched_group_cpus, cpu);
6766 return cpu;
6768 #endif /* CONFIG_SCHED_SMT */
6771 * multi-core sched-domains:
6773 #ifdef CONFIG_SCHED_MC
6774 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6775 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6776 #endif /* CONFIG_SCHED_MC */
6778 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6779 static int
6780 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6781 cpumask_t *mask)
6783 int group;
6785 *mask = per_cpu(cpu_sibling_map, cpu);
6786 cpus_and(*mask, *mask, *cpu_map);
6787 group = first_cpu(*mask);
6788 if (sg)
6789 *sg = &per_cpu(sched_group_core, group);
6790 return group;
6792 #elif defined(CONFIG_SCHED_MC)
6793 static int
6794 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6795 cpumask_t *unused)
6797 if (sg)
6798 *sg = &per_cpu(sched_group_core, cpu);
6799 return cpu;
6801 #endif
6803 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6804 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6806 static int
6807 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6808 cpumask_t *mask)
6810 int group;
6811 #ifdef CONFIG_SCHED_MC
6812 *mask = cpu_coregroup_map(cpu);
6813 cpus_and(*mask, *mask, *cpu_map);
6814 group = first_cpu(*mask);
6815 #elif defined(CONFIG_SCHED_SMT)
6816 *mask = per_cpu(cpu_sibling_map, cpu);
6817 cpus_and(*mask, *mask, *cpu_map);
6818 group = first_cpu(*mask);
6819 #else
6820 group = cpu;
6821 #endif
6822 if (sg)
6823 *sg = &per_cpu(sched_group_phys, group);
6824 return group;
6827 #ifdef CONFIG_NUMA
6829 * The init_sched_build_groups can't handle what we want to do with node
6830 * groups, so roll our own. Now each node has its own list of groups which
6831 * gets dynamically allocated.
6833 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6834 static struct sched_group ***sched_group_nodes_bycpu;
6836 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6837 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6839 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6840 struct sched_group **sg, cpumask_t *nodemask)
6842 int group;
6844 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6845 cpus_and(*nodemask, *nodemask, *cpu_map);
6846 group = first_cpu(*nodemask);
6848 if (sg)
6849 *sg = &per_cpu(sched_group_allnodes, group);
6850 return group;
6853 static void init_numa_sched_groups_power(struct sched_group *group_head)
6855 struct sched_group *sg = group_head;
6856 int j;
6858 if (!sg)
6859 return;
6860 do {
6861 for_each_cpu_mask(j, sg->cpumask) {
6862 struct sched_domain *sd;
6864 sd = &per_cpu(phys_domains, j);
6865 if (j != first_cpu(sd->groups->cpumask)) {
6867 * Only add "power" once for each
6868 * physical package.
6870 continue;
6873 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6875 sg = sg->next;
6876 } while (sg != group_head);
6878 #endif /* CONFIG_NUMA */
6880 #ifdef CONFIG_NUMA
6881 /* Free memory allocated for various sched_group structures */
6882 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6884 int cpu, i;
6886 for_each_cpu_mask(cpu, *cpu_map) {
6887 struct sched_group **sched_group_nodes
6888 = sched_group_nodes_bycpu[cpu];
6890 if (!sched_group_nodes)
6891 continue;
6893 for (i = 0; i < MAX_NUMNODES; i++) {
6894 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6896 *nodemask = node_to_cpumask(i);
6897 cpus_and(*nodemask, *nodemask, *cpu_map);
6898 if (cpus_empty(*nodemask))
6899 continue;
6901 if (sg == NULL)
6902 continue;
6903 sg = sg->next;
6904 next_sg:
6905 oldsg = sg;
6906 sg = sg->next;
6907 kfree(oldsg);
6908 if (oldsg != sched_group_nodes[i])
6909 goto next_sg;
6911 kfree(sched_group_nodes);
6912 sched_group_nodes_bycpu[cpu] = NULL;
6915 #else /* !CONFIG_NUMA */
6916 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6919 #endif /* CONFIG_NUMA */
6922 * Initialize sched groups cpu_power.
6924 * cpu_power indicates the capacity of sched group, which is used while
6925 * distributing the load between different sched groups in a sched domain.
6926 * Typically cpu_power for all the groups in a sched domain will be same unless
6927 * there are asymmetries in the topology. If there are asymmetries, group
6928 * having more cpu_power will pickup more load compared to the group having
6929 * less cpu_power.
6931 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6932 * the maximum number of tasks a group can handle in the presence of other idle
6933 * or lightly loaded groups in the same sched domain.
6935 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6937 struct sched_domain *child;
6938 struct sched_group *group;
6940 WARN_ON(!sd || !sd->groups);
6942 if (cpu != first_cpu(sd->groups->cpumask))
6943 return;
6945 child = sd->child;
6947 sd->groups->__cpu_power = 0;
6950 * For perf policy, if the groups in child domain share resources
6951 * (for example cores sharing some portions of the cache hierarchy
6952 * or SMT), then set this domain groups cpu_power such that each group
6953 * can handle only one task, when there are other idle groups in the
6954 * same sched domain.
6956 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6957 (child->flags &
6958 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6959 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6960 return;
6964 * add cpu_power of each child group to this groups cpu_power
6966 group = child->groups;
6967 do {
6968 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6969 group = group->next;
6970 } while (group != child->groups);
6974 * Initializers for schedule domains
6975 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6978 #define SD_INIT(sd, type) sd_init_##type(sd)
6979 #define SD_INIT_FUNC(type) \
6980 static noinline void sd_init_##type(struct sched_domain *sd) \
6982 memset(sd, 0, sizeof(*sd)); \
6983 *sd = SD_##type##_INIT; \
6984 sd->level = SD_LV_##type; \
6987 SD_INIT_FUNC(CPU)
6988 #ifdef CONFIG_NUMA
6989 SD_INIT_FUNC(ALLNODES)
6990 SD_INIT_FUNC(NODE)
6991 #endif
6992 #ifdef CONFIG_SCHED_SMT
6993 SD_INIT_FUNC(SIBLING)
6994 #endif
6995 #ifdef CONFIG_SCHED_MC
6996 SD_INIT_FUNC(MC)
6997 #endif
7000 * To minimize stack usage kmalloc room for cpumasks and share the
7001 * space as the usage in build_sched_domains() dictates. Used only
7002 * if the amount of space is significant.
7004 struct allmasks {
7005 cpumask_t tmpmask; /* make this one first */
7006 union {
7007 cpumask_t nodemask;
7008 cpumask_t this_sibling_map;
7009 cpumask_t this_core_map;
7011 cpumask_t send_covered;
7013 #ifdef CONFIG_NUMA
7014 cpumask_t domainspan;
7015 cpumask_t covered;
7016 cpumask_t notcovered;
7017 #endif
7020 #if NR_CPUS > 128
7021 #define SCHED_CPUMASK_ALLOC 1
7022 #define SCHED_CPUMASK_FREE(v) kfree(v)
7023 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7024 #else
7025 #define SCHED_CPUMASK_ALLOC 0
7026 #define SCHED_CPUMASK_FREE(v)
7027 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7028 #endif
7030 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7031 ((unsigned long)(a) + offsetof(struct allmasks, v))
7033 static int default_relax_domain_level = -1;
7035 static int __init setup_relax_domain_level(char *str)
7037 unsigned long val;
7039 val = simple_strtoul(str, NULL, 0);
7040 if (val < SD_LV_MAX)
7041 default_relax_domain_level = val;
7043 return 1;
7045 __setup("relax_domain_level=", setup_relax_domain_level);
7047 static void set_domain_attribute(struct sched_domain *sd,
7048 struct sched_domain_attr *attr)
7050 int request;
7052 if (!attr || attr->relax_domain_level < 0) {
7053 if (default_relax_domain_level < 0)
7054 return;
7055 else
7056 request = default_relax_domain_level;
7057 } else
7058 request = attr->relax_domain_level;
7059 if (request < sd->level) {
7060 /* turn off idle balance on this domain */
7061 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7062 } else {
7063 /* turn on idle balance on this domain */
7064 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7069 * Build sched domains for a given set of cpus and attach the sched domains
7070 * to the individual cpus
7072 static int __build_sched_domains(const cpumask_t *cpu_map,
7073 struct sched_domain_attr *attr)
7075 int i;
7076 struct root_domain *rd;
7077 SCHED_CPUMASK_DECLARE(allmasks);
7078 cpumask_t *tmpmask;
7079 #ifdef CONFIG_NUMA
7080 struct sched_group **sched_group_nodes = NULL;
7081 int sd_allnodes = 0;
7084 * Allocate the per-node list of sched groups
7086 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
7087 GFP_KERNEL);
7088 if (!sched_group_nodes) {
7089 printk(KERN_WARNING "Can not alloc sched group node list\n");
7090 return -ENOMEM;
7092 #endif
7094 rd = alloc_rootdomain();
7095 if (!rd) {
7096 printk(KERN_WARNING "Cannot alloc root domain\n");
7097 #ifdef CONFIG_NUMA
7098 kfree(sched_group_nodes);
7099 #endif
7100 return -ENOMEM;
7103 #if SCHED_CPUMASK_ALLOC
7104 /* get space for all scratch cpumask variables */
7105 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7106 if (!allmasks) {
7107 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7108 kfree(rd);
7109 #ifdef CONFIG_NUMA
7110 kfree(sched_group_nodes);
7111 #endif
7112 return -ENOMEM;
7114 #endif
7115 tmpmask = (cpumask_t *)allmasks;
7118 #ifdef CONFIG_NUMA
7119 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7120 #endif
7123 * Set up domains for cpus specified by the cpu_map.
7125 for_each_cpu_mask(i, *cpu_map) {
7126 struct sched_domain *sd = NULL, *p;
7127 SCHED_CPUMASK_VAR(nodemask, allmasks);
7129 *nodemask = node_to_cpumask(cpu_to_node(i));
7130 cpus_and(*nodemask, *nodemask, *cpu_map);
7132 #ifdef CONFIG_NUMA
7133 if (cpus_weight(*cpu_map) >
7134 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7135 sd = &per_cpu(allnodes_domains, i);
7136 SD_INIT(sd, ALLNODES);
7137 set_domain_attribute(sd, attr);
7138 sd->span = *cpu_map;
7139 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7140 p = sd;
7141 sd_allnodes = 1;
7142 } else
7143 p = NULL;
7145 sd = &per_cpu(node_domains, i);
7146 SD_INIT(sd, NODE);
7147 set_domain_attribute(sd, attr);
7148 sched_domain_node_span(cpu_to_node(i), &sd->span);
7149 sd->parent = p;
7150 if (p)
7151 p->child = sd;
7152 cpus_and(sd->span, sd->span, *cpu_map);
7153 #endif
7155 p = sd;
7156 sd = &per_cpu(phys_domains, i);
7157 SD_INIT(sd, CPU);
7158 set_domain_attribute(sd, attr);
7159 sd->span = *nodemask;
7160 sd->parent = p;
7161 if (p)
7162 p->child = sd;
7163 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7165 #ifdef CONFIG_SCHED_MC
7166 p = sd;
7167 sd = &per_cpu(core_domains, i);
7168 SD_INIT(sd, MC);
7169 set_domain_attribute(sd, attr);
7170 sd->span = cpu_coregroup_map(i);
7171 cpus_and(sd->span, sd->span, *cpu_map);
7172 sd->parent = p;
7173 p->child = sd;
7174 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7175 #endif
7177 #ifdef CONFIG_SCHED_SMT
7178 p = sd;
7179 sd = &per_cpu(cpu_domains, i);
7180 SD_INIT(sd, SIBLING);
7181 set_domain_attribute(sd, attr);
7182 sd->span = per_cpu(cpu_sibling_map, i);
7183 cpus_and(sd->span, sd->span, *cpu_map);
7184 sd->parent = p;
7185 p->child = sd;
7186 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7187 #endif
7190 #ifdef CONFIG_SCHED_SMT
7191 /* Set up CPU (sibling) groups */
7192 for_each_cpu_mask(i, *cpu_map) {
7193 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7194 SCHED_CPUMASK_VAR(send_covered, allmasks);
7196 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7197 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7198 if (i != first_cpu(*this_sibling_map))
7199 continue;
7201 init_sched_build_groups(this_sibling_map, cpu_map,
7202 &cpu_to_cpu_group,
7203 send_covered, tmpmask);
7205 #endif
7207 #ifdef CONFIG_SCHED_MC
7208 /* Set up multi-core groups */
7209 for_each_cpu_mask(i, *cpu_map) {
7210 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7211 SCHED_CPUMASK_VAR(send_covered, allmasks);
7213 *this_core_map = cpu_coregroup_map(i);
7214 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7215 if (i != first_cpu(*this_core_map))
7216 continue;
7218 init_sched_build_groups(this_core_map, cpu_map,
7219 &cpu_to_core_group,
7220 send_covered, tmpmask);
7222 #endif
7224 /* Set up physical groups */
7225 for (i = 0; i < MAX_NUMNODES; i++) {
7226 SCHED_CPUMASK_VAR(nodemask, allmasks);
7227 SCHED_CPUMASK_VAR(send_covered, allmasks);
7229 *nodemask = node_to_cpumask(i);
7230 cpus_and(*nodemask, *nodemask, *cpu_map);
7231 if (cpus_empty(*nodemask))
7232 continue;
7234 init_sched_build_groups(nodemask, cpu_map,
7235 &cpu_to_phys_group,
7236 send_covered, tmpmask);
7239 #ifdef CONFIG_NUMA
7240 /* Set up node groups */
7241 if (sd_allnodes) {
7242 SCHED_CPUMASK_VAR(send_covered, allmasks);
7244 init_sched_build_groups(cpu_map, cpu_map,
7245 &cpu_to_allnodes_group,
7246 send_covered, tmpmask);
7249 for (i = 0; i < MAX_NUMNODES; i++) {
7250 /* Set up node groups */
7251 struct sched_group *sg, *prev;
7252 SCHED_CPUMASK_VAR(nodemask, allmasks);
7253 SCHED_CPUMASK_VAR(domainspan, allmasks);
7254 SCHED_CPUMASK_VAR(covered, allmasks);
7255 int j;
7257 *nodemask = node_to_cpumask(i);
7258 cpus_clear(*covered);
7260 cpus_and(*nodemask, *nodemask, *cpu_map);
7261 if (cpus_empty(*nodemask)) {
7262 sched_group_nodes[i] = NULL;
7263 continue;
7266 sched_domain_node_span(i, domainspan);
7267 cpus_and(*domainspan, *domainspan, *cpu_map);
7269 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7270 if (!sg) {
7271 printk(KERN_WARNING "Can not alloc domain group for "
7272 "node %d\n", i);
7273 goto error;
7275 sched_group_nodes[i] = sg;
7276 for_each_cpu_mask(j, *nodemask) {
7277 struct sched_domain *sd;
7279 sd = &per_cpu(node_domains, j);
7280 sd->groups = sg;
7282 sg->__cpu_power = 0;
7283 sg->cpumask = *nodemask;
7284 sg->next = sg;
7285 cpus_or(*covered, *covered, *nodemask);
7286 prev = sg;
7288 for (j = 0; j < MAX_NUMNODES; j++) {
7289 SCHED_CPUMASK_VAR(notcovered, allmasks);
7290 int n = (i + j) % MAX_NUMNODES;
7291 node_to_cpumask_ptr(pnodemask, n);
7293 cpus_complement(*notcovered, *covered);
7294 cpus_and(*tmpmask, *notcovered, *cpu_map);
7295 cpus_and(*tmpmask, *tmpmask, *domainspan);
7296 if (cpus_empty(*tmpmask))
7297 break;
7299 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7300 if (cpus_empty(*tmpmask))
7301 continue;
7303 sg = kmalloc_node(sizeof(struct sched_group),
7304 GFP_KERNEL, i);
7305 if (!sg) {
7306 printk(KERN_WARNING
7307 "Can not alloc domain group for node %d\n", j);
7308 goto error;
7310 sg->__cpu_power = 0;
7311 sg->cpumask = *tmpmask;
7312 sg->next = prev->next;
7313 cpus_or(*covered, *covered, *tmpmask);
7314 prev->next = sg;
7315 prev = sg;
7318 #endif
7320 /* Calculate CPU power for physical packages and nodes */
7321 #ifdef CONFIG_SCHED_SMT
7322 for_each_cpu_mask(i, *cpu_map) {
7323 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7325 init_sched_groups_power(i, sd);
7327 #endif
7328 #ifdef CONFIG_SCHED_MC
7329 for_each_cpu_mask(i, *cpu_map) {
7330 struct sched_domain *sd = &per_cpu(core_domains, i);
7332 init_sched_groups_power(i, sd);
7334 #endif
7336 for_each_cpu_mask(i, *cpu_map) {
7337 struct sched_domain *sd = &per_cpu(phys_domains, i);
7339 init_sched_groups_power(i, sd);
7342 #ifdef CONFIG_NUMA
7343 for (i = 0; i < MAX_NUMNODES; i++)
7344 init_numa_sched_groups_power(sched_group_nodes[i]);
7346 if (sd_allnodes) {
7347 struct sched_group *sg;
7349 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7350 tmpmask);
7351 init_numa_sched_groups_power(sg);
7353 #endif
7355 /* Attach the domains */
7356 for_each_cpu_mask(i, *cpu_map) {
7357 struct sched_domain *sd;
7358 #ifdef CONFIG_SCHED_SMT
7359 sd = &per_cpu(cpu_domains, i);
7360 #elif defined(CONFIG_SCHED_MC)
7361 sd = &per_cpu(core_domains, i);
7362 #else
7363 sd = &per_cpu(phys_domains, i);
7364 #endif
7365 cpu_attach_domain(sd, rd, i);
7368 SCHED_CPUMASK_FREE((void *)allmasks);
7369 return 0;
7371 #ifdef CONFIG_NUMA
7372 error:
7373 free_sched_groups(cpu_map, tmpmask);
7374 SCHED_CPUMASK_FREE((void *)allmasks);
7375 return -ENOMEM;
7376 #endif
7379 static int build_sched_domains(const cpumask_t *cpu_map)
7381 return __build_sched_domains(cpu_map, NULL);
7384 static cpumask_t *doms_cur; /* current sched domains */
7385 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7386 static struct sched_domain_attr *dattr_cur;
7387 /* attribues of custom domains in 'doms_cur' */
7390 * Special case: If a kmalloc of a doms_cur partition (array of
7391 * cpumask_t) fails, then fallback to a single sched domain,
7392 * as determined by the single cpumask_t fallback_doms.
7394 static cpumask_t fallback_doms;
7396 void __attribute__((weak)) arch_update_cpu_topology(void)
7401 * Free current domain masks.
7402 * Called after all cpus are attached to NULL domain.
7404 static void free_sched_domains(void)
7406 ndoms_cur = 0;
7407 if (doms_cur != &fallback_doms)
7408 kfree(doms_cur);
7409 doms_cur = &fallback_doms;
7413 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7414 * For now this just excludes isolated cpus, but could be used to
7415 * exclude other special cases in the future.
7417 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7419 int err;
7421 arch_update_cpu_topology();
7422 ndoms_cur = 1;
7423 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7424 if (!doms_cur)
7425 doms_cur = &fallback_doms;
7426 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7427 dattr_cur = NULL;
7428 err = build_sched_domains(doms_cur);
7429 register_sched_domain_sysctl();
7431 return err;
7434 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7435 cpumask_t *tmpmask)
7437 free_sched_groups(cpu_map, tmpmask);
7441 * Detach sched domains from a group of cpus specified in cpu_map
7442 * These cpus will now be attached to the NULL domain
7444 static void detach_destroy_domains(const cpumask_t *cpu_map)
7446 cpumask_t tmpmask;
7447 int i;
7449 unregister_sched_domain_sysctl();
7451 for_each_cpu_mask(i, *cpu_map)
7452 cpu_attach_domain(NULL, &def_root_domain, i);
7453 synchronize_sched();
7454 arch_destroy_sched_domains(cpu_map, &tmpmask);
7457 /* handle null as "default" */
7458 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7459 struct sched_domain_attr *new, int idx_new)
7461 struct sched_domain_attr tmp;
7463 /* fast path */
7464 if (!new && !cur)
7465 return 1;
7467 tmp = SD_ATTR_INIT;
7468 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7469 new ? (new + idx_new) : &tmp,
7470 sizeof(struct sched_domain_attr));
7474 * Partition sched domains as specified by the 'ndoms_new'
7475 * cpumasks in the array doms_new[] of cpumasks. This compares
7476 * doms_new[] to the current sched domain partitioning, doms_cur[].
7477 * It destroys each deleted domain and builds each new domain.
7479 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7480 * The masks don't intersect (don't overlap.) We should setup one
7481 * sched domain for each mask. CPUs not in any of the cpumasks will
7482 * not be load balanced. If the same cpumask appears both in the
7483 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7484 * it as it is.
7486 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7487 * ownership of it and will kfree it when done with it. If the caller
7488 * failed the kmalloc call, then it can pass in doms_new == NULL,
7489 * and partition_sched_domains() will fallback to the single partition
7490 * 'fallback_doms'.
7492 * Call with hotplug lock held
7494 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7495 struct sched_domain_attr *dattr_new)
7497 int i, j;
7499 mutex_lock(&sched_domains_mutex);
7501 /* always unregister in case we don't destroy any domains */
7502 unregister_sched_domain_sysctl();
7504 if (doms_new == NULL) {
7505 ndoms_new = 1;
7506 doms_new = &fallback_doms;
7507 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7508 dattr_new = NULL;
7511 /* Destroy deleted domains */
7512 for (i = 0; i < ndoms_cur; i++) {
7513 for (j = 0; j < ndoms_new; j++) {
7514 if (cpus_equal(doms_cur[i], doms_new[j])
7515 && dattrs_equal(dattr_cur, i, dattr_new, j))
7516 goto match1;
7518 /* no match - a current sched domain not in new doms_new[] */
7519 detach_destroy_domains(doms_cur + i);
7520 match1:
7524 /* Build new domains */
7525 for (i = 0; i < ndoms_new; i++) {
7526 for (j = 0; j < ndoms_cur; j++) {
7527 if (cpus_equal(doms_new[i], doms_cur[j])
7528 && dattrs_equal(dattr_new, i, dattr_cur, j))
7529 goto match2;
7531 /* no match - add a new doms_new */
7532 __build_sched_domains(doms_new + i,
7533 dattr_new ? dattr_new + i : NULL);
7534 match2:
7538 /* Remember the new sched domains */
7539 if (doms_cur != &fallback_doms)
7540 kfree(doms_cur);
7541 kfree(dattr_cur); /* kfree(NULL) is safe */
7542 doms_cur = doms_new;
7543 dattr_cur = dattr_new;
7544 ndoms_cur = ndoms_new;
7546 register_sched_domain_sysctl();
7548 mutex_unlock(&sched_domains_mutex);
7551 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7552 int arch_reinit_sched_domains(void)
7554 int err;
7556 get_online_cpus();
7557 mutex_lock(&sched_domains_mutex);
7558 detach_destroy_domains(&cpu_online_map);
7559 free_sched_domains();
7560 err = arch_init_sched_domains(&cpu_online_map);
7561 mutex_unlock(&sched_domains_mutex);
7562 put_online_cpus();
7564 return err;
7567 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7569 int ret;
7571 if (buf[0] != '0' && buf[0] != '1')
7572 return -EINVAL;
7574 if (smt)
7575 sched_smt_power_savings = (buf[0] == '1');
7576 else
7577 sched_mc_power_savings = (buf[0] == '1');
7579 ret = arch_reinit_sched_domains();
7581 return ret ? ret : count;
7584 #ifdef CONFIG_SCHED_MC
7585 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7587 return sprintf(page, "%u\n", sched_mc_power_savings);
7589 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7590 const char *buf, size_t count)
7592 return sched_power_savings_store(buf, count, 0);
7594 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7595 sched_mc_power_savings_store);
7596 #endif
7598 #ifdef CONFIG_SCHED_SMT
7599 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7601 return sprintf(page, "%u\n", sched_smt_power_savings);
7603 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7604 const char *buf, size_t count)
7606 return sched_power_savings_store(buf, count, 1);
7608 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7609 sched_smt_power_savings_store);
7610 #endif
7612 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7614 int err = 0;
7616 #ifdef CONFIG_SCHED_SMT
7617 if (smt_capable())
7618 err = sysfs_create_file(&cls->kset.kobj,
7619 &attr_sched_smt_power_savings.attr);
7620 #endif
7621 #ifdef CONFIG_SCHED_MC
7622 if (!err && mc_capable())
7623 err = sysfs_create_file(&cls->kset.kobj,
7624 &attr_sched_mc_power_savings.attr);
7625 #endif
7626 return err;
7628 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7631 * Force a reinitialization of the sched domains hierarchy. The domains
7632 * and groups cannot be updated in place without racing with the balancing
7633 * code, so we temporarily attach all running cpus to the NULL domain
7634 * which will prevent rebalancing while the sched domains are recalculated.
7636 static int update_sched_domains(struct notifier_block *nfb,
7637 unsigned long action, void *hcpu)
7639 int cpu = (int)(long)hcpu;
7641 switch (action) {
7642 case CPU_DOWN_PREPARE:
7643 case CPU_DOWN_PREPARE_FROZEN:
7644 disable_runtime(cpu_rq(cpu));
7645 /* fall-through */
7646 case CPU_UP_PREPARE:
7647 case CPU_UP_PREPARE_FROZEN:
7648 detach_destroy_domains(&cpu_online_map);
7649 free_sched_domains();
7650 return NOTIFY_OK;
7653 case CPU_DOWN_FAILED:
7654 case CPU_DOWN_FAILED_FROZEN:
7655 case CPU_ONLINE:
7656 case CPU_ONLINE_FROZEN:
7657 enable_runtime(cpu_rq(cpu));
7658 /* fall-through */
7659 case CPU_UP_CANCELED:
7660 case CPU_UP_CANCELED_FROZEN:
7661 case CPU_DEAD:
7662 case CPU_DEAD_FROZEN:
7664 * Fall through and re-initialise the domains.
7666 break;
7667 default:
7668 return NOTIFY_DONE;
7671 #ifndef CONFIG_CPUSETS
7673 * Create default domain partitioning if cpusets are disabled.
7674 * Otherwise we let cpusets rebuild the domains based on the
7675 * current setup.
7678 /* The hotplug lock is already held by cpu_up/cpu_down */
7679 arch_init_sched_domains(&cpu_online_map);
7680 #endif
7682 return NOTIFY_OK;
7685 void __init sched_init_smp(void)
7687 cpumask_t non_isolated_cpus;
7689 #if defined(CONFIG_NUMA)
7690 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7691 GFP_KERNEL);
7692 BUG_ON(sched_group_nodes_bycpu == NULL);
7693 #endif
7694 get_online_cpus();
7695 mutex_lock(&sched_domains_mutex);
7696 arch_init_sched_domains(&cpu_online_map);
7697 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7698 if (cpus_empty(non_isolated_cpus))
7699 cpu_set(smp_processor_id(), non_isolated_cpus);
7700 mutex_unlock(&sched_domains_mutex);
7701 put_online_cpus();
7702 /* XXX: Theoretical race here - CPU may be hotplugged now */
7703 hotcpu_notifier(update_sched_domains, 0);
7704 init_hrtick();
7706 /* Move init over to a non-isolated CPU */
7707 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7708 BUG();
7709 sched_init_granularity();
7711 #else
7712 void __init sched_init_smp(void)
7714 sched_init_granularity();
7716 #endif /* CONFIG_SMP */
7718 int in_sched_functions(unsigned long addr)
7720 return in_lock_functions(addr) ||
7721 (addr >= (unsigned long)__sched_text_start
7722 && addr < (unsigned long)__sched_text_end);
7725 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7727 cfs_rq->tasks_timeline = RB_ROOT;
7728 INIT_LIST_HEAD(&cfs_rq->tasks);
7729 #ifdef CONFIG_FAIR_GROUP_SCHED
7730 cfs_rq->rq = rq;
7731 #endif
7732 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7735 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7737 struct rt_prio_array *array;
7738 int i;
7740 array = &rt_rq->active;
7741 for (i = 0; i < MAX_RT_PRIO; i++) {
7742 INIT_LIST_HEAD(array->queue + i);
7743 __clear_bit(i, array->bitmap);
7745 /* delimiter for bitsearch: */
7746 __set_bit(MAX_RT_PRIO, array->bitmap);
7748 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7749 rt_rq->highest_prio = MAX_RT_PRIO;
7750 #endif
7751 #ifdef CONFIG_SMP
7752 rt_rq->rt_nr_migratory = 0;
7753 rt_rq->overloaded = 0;
7754 #endif
7756 rt_rq->rt_time = 0;
7757 rt_rq->rt_throttled = 0;
7758 rt_rq->rt_runtime = 0;
7759 spin_lock_init(&rt_rq->rt_runtime_lock);
7761 #ifdef CONFIG_RT_GROUP_SCHED
7762 rt_rq->rt_nr_boosted = 0;
7763 rt_rq->rq = rq;
7764 #endif
7767 #ifdef CONFIG_FAIR_GROUP_SCHED
7768 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7769 struct sched_entity *se, int cpu, int add,
7770 struct sched_entity *parent)
7772 struct rq *rq = cpu_rq(cpu);
7773 tg->cfs_rq[cpu] = cfs_rq;
7774 init_cfs_rq(cfs_rq, rq);
7775 cfs_rq->tg = tg;
7776 if (add)
7777 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7779 tg->se[cpu] = se;
7780 /* se could be NULL for init_task_group */
7781 if (!se)
7782 return;
7784 if (!parent)
7785 se->cfs_rq = &rq->cfs;
7786 else
7787 se->cfs_rq = parent->my_q;
7789 se->my_q = cfs_rq;
7790 se->load.weight = tg->shares;
7791 se->load.inv_weight = 0;
7792 se->parent = parent;
7794 #endif
7796 #ifdef CONFIG_RT_GROUP_SCHED
7797 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7798 struct sched_rt_entity *rt_se, int cpu, int add,
7799 struct sched_rt_entity *parent)
7801 struct rq *rq = cpu_rq(cpu);
7803 tg->rt_rq[cpu] = rt_rq;
7804 init_rt_rq(rt_rq, rq);
7805 rt_rq->tg = tg;
7806 rt_rq->rt_se = rt_se;
7807 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7808 if (add)
7809 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7811 tg->rt_se[cpu] = rt_se;
7812 if (!rt_se)
7813 return;
7815 if (!parent)
7816 rt_se->rt_rq = &rq->rt;
7817 else
7818 rt_se->rt_rq = parent->my_q;
7820 rt_se->my_q = rt_rq;
7821 rt_se->parent = parent;
7822 INIT_LIST_HEAD(&rt_se->run_list);
7824 #endif
7826 void __init sched_init(void)
7828 int i, j;
7829 unsigned long alloc_size = 0, ptr;
7831 #ifdef CONFIG_FAIR_GROUP_SCHED
7832 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7833 #endif
7834 #ifdef CONFIG_RT_GROUP_SCHED
7835 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7836 #endif
7837 #ifdef CONFIG_USER_SCHED
7838 alloc_size *= 2;
7839 #endif
7841 * As sched_init() is called before page_alloc is setup,
7842 * we use alloc_bootmem().
7844 if (alloc_size) {
7845 ptr = (unsigned long)alloc_bootmem(alloc_size);
7847 #ifdef CONFIG_FAIR_GROUP_SCHED
7848 init_task_group.se = (struct sched_entity **)ptr;
7849 ptr += nr_cpu_ids * sizeof(void **);
7851 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7852 ptr += nr_cpu_ids * sizeof(void **);
7854 #ifdef CONFIG_USER_SCHED
7855 root_task_group.se = (struct sched_entity **)ptr;
7856 ptr += nr_cpu_ids * sizeof(void **);
7858 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7859 ptr += nr_cpu_ids * sizeof(void **);
7860 #endif /* CONFIG_USER_SCHED */
7861 #endif /* CONFIG_FAIR_GROUP_SCHED */
7862 #ifdef CONFIG_RT_GROUP_SCHED
7863 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7864 ptr += nr_cpu_ids * sizeof(void **);
7866 init_task_group.rt_rq = (struct rt_rq **)ptr;
7867 ptr += nr_cpu_ids * sizeof(void **);
7869 #ifdef CONFIG_USER_SCHED
7870 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7871 ptr += nr_cpu_ids * sizeof(void **);
7873 root_task_group.rt_rq = (struct rt_rq **)ptr;
7874 ptr += nr_cpu_ids * sizeof(void **);
7875 #endif /* CONFIG_USER_SCHED */
7876 #endif /* CONFIG_RT_GROUP_SCHED */
7879 #ifdef CONFIG_SMP
7880 init_defrootdomain();
7881 #endif
7883 init_rt_bandwidth(&def_rt_bandwidth,
7884 global_rt_period(), global_rt_runtime());
7886 #ifdef CONFIG_RT_GROUP_SCHED
7887 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7888 global_rt_period(), global_rt_runtime());
7889 #ifdef CONFIG_USER_SCHED
7890 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7891 global_rt_period(), RUNTIME_INF);
7892 #endif /* CONFIG_USER_SCHED */
7893 #endif /* CONFIG_RT_GROUP_SCHED */
7895 #ifdef CONFIG_GROUP_SCHED
7896 list_add(&init_task_group.list, &task_groups);
7897 INIT_LIST_HEAD(&init_task_group.children);
7899 #ifdef CONFIG_USER_SCHED
7900 INIT_LIST_HEAD(&root_task_group.children);
7901 init_task_group.parent = &root_task_group;
7902 list_add(&init_task_group.siblings, &root_task_group.children);
7903 #endif /* CONFIG_USER_SCHED */
7904 #endif /* CONFIG_GROUP_SCHED */
7906 for_each_possible_cpu(i) {
7907 struct rq *rq;
7909 rq = cpu_rq(i);
7910 spin_lock_init(&rq->lock);
7911 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7912 rq->nr_running = 0;
7913 init_cfs_rq(&rq->cfs, rq);
7914 init_rt_rq(&rq->rt, rq);
7915 #ifdef CONFIG_FAIR_GROUP_SCHED
7916 init_task_group.shares = init_task_group_load;
7917 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7918 #ifdef CONFIG_CGROUP_SCHED
7920 * How much cpu bandwidth does init_task_group get?
7922 * In case of task-groups formed thr' the cgroup filesystem, it
7923 * gets 100% of the cpu resources in the system. This overall
7924 * system cpu resource is divided among the tasks of
7925 * init_task_group and its child task-groups in a fair manner,
7926 * based on each entity's (task or task-group's) weight
7927 * (se->load.weight).
7929 * In other words, if init_task_group has 10 tasks of weight
7930 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7931 * then A0's share of the cpu resource is:
7933 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7935 * We achieve this by letting init_task_group's tasks sit
7936 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7938 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7939 #elif defined CONFIG_USER_SCHED
7940 root_task_group.shares = NICE_0_LOAD;
7941 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
7943 * In case of task-groups formed thr' the user id of tasks,
7944 * init_task_group represents tasks belonging to root user.
7945 * Hence it forms a sibling of all subsequent groups formed.
7946 * In this case, init_task_group gets only a fraction of overall
7947 * system cpu resource, based on the weight assigned to root
7948 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7949 * by letting tasks of init_task_group sit in a separate cfs_rq
7950 * (init_cfs_rq) and having one entity represent this group of
7951 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7953 init_tg_cfs_entry(&init_task_group,
7954 &per_cpu(init_cfs_rq, i),
7955 &per_cpu(init_sched_entity, i), i, 1,
7956 root_task_group.se[i]);
7958 #endif
7959 #endif /* CONFIG_FAIR_GROUP_SCHED */
7961 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7962 #ifdef CONFIG_RT_GROUP_SCHED
7963 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7964 #ifdef CONFIG_CGROUP_SCHED
7965 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7966 #elif defined CONFIG_USER_SCHED
7967 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
7968 init_tg_rt_entry(&init_task_group,
7969 &per_cpu(init_rt_rq, i),
7970 &per_cpu(init_sched_rt_entity, i), i, 1,
7971 root_task_group.rt_se[i]);
7972 #endif
7973 #endif
7975 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7976 rq->cpu_load[j] = 0;
7977 #ifdef CONFIG_SMP
7978 rq->sd = NULL;
7979 rq->rd = NULL;
7980 rq->active_balance = 0;
7981 rq->next_balance = jiffies;
7982 rq->push_cpu = 0;
7983 rq->cpu = i;
7984 rq->online = 0;
7985 rq->migration_thread = NULL;
7986 INIT_LIST_HEAD(&rq->migration_queue);
7987 rq_attach_root(rq, &def_root_domain);
7988 #endif
7989 init_rq_hrtick(rq);
7990 atomic_set(&rq->nr_iowait, 0);
7993 set_load_weight(&init_task);
7995 #ifdef CONFIG_PREEMPT_NOTIFIERS
7996 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7997 #endif
7999 #ifdef CONFIG_SMP
8000 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
8001 #endif
8003 #ifdef CONFIG_RT_MUTEXES
8004 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8005 #endif
8008 * The boot idle thread does lazy MMU switching as well:
8010 atomic_inc(&init_mm.mm_count);
8011 enter_lazy_tlb(&init_mm, current);
8014 * Make us the idle thread. Technically, schedule() should not be
8015 * called from this thread, however somewhere below it might be,
8016 * but because we are the idle thread, we just pick up running again
8017 * when this runqueue becomes "idle".
8019 init_idle(current, smp_processor_id());
8021 * During early bootup we pretend to be a normal task:
8023 current->sched_class = &fair_sched_class;
8025 scheduler_running = 1;
8028 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8029 void __might_sleep(char *file, int line)
8031 #ifdef in_atomic
8032 static unsigned long prev_jiffy; /* ratelimiting */
8034 if ((in_atomic() || irqs_disabled()) &&
8035 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8036 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8037 return;
8038 prev_jiffy = jiffies;
8039 printk(KERN_ERR "BUG: sleeping function called from invalid"
8040 " context at %s:%d\n", file, line);
8041 printk("in_atomic():%d, irqs_disabled():%d\n",
8042 in_atomic(), irqs_disabled());
8043 debug_show_held_locks(current);
8044 if (irqs_disabled())
8045 print_irqtrace_events(current);
8046 dump_stack();
8048 #endif
8050 EXPORT_SYMBOL(__might_sleep);
8051 #endif
8053 #ifdef CONFIG_MAGIC_SYSRQ
8054 static void normalize_task(struct rq *rq, struct task_struct *p)
8056 int on_rq;
8058 update_rq_clock(rq);
8059 on_rq = p->se.on_rq;
8060 if (on_rq)
8061 deactivate_task(rq, p, 0);
8062 __setscheduler(rq, p, SCHED_NORMAL, 0);
8063 if (on_rq) {
8064 activate_task(rq, p, 0);
8065 resched_task(rq->curr);
8069 void normalize_rt_tasks(void)
8071 struct task_struct *g, *p;
8072 unsigned long flags;
8073 struct rq *rq;
8075 read_lock_irqsave(&tasklist_lock, flags);
8076 do_each_thread(g, p) {
8078 * Only normalize user tasks:
8080 if (!p->mm)
8081 continue;
8083 p->se.exec_start = 0;
8084 #ifdef CONFIG_SCHEDSTATS
8085 p->se.wait_start = 0;
8086 p->se.sleep_start = 0;
8087 p->se.block_start = 0;
8088 #endif
8090 if (!rt_task(p)) {
8092 * Renice negative nice level userspace
8093 * tasks back to 0:
8095 if (TASK_NICE(p) < 0 && p->mm)
8096 set_user_nice(p, 0);
8097 continue;
8100 spin_lock(&p->pi_lock);
8101 rq = __task_rq_lock(p);
8103 normalize_task(rq, p);
8105 __task_rq_unlock(rq);
8106 spin_unlock(&p->pi_lock);
8107 } while_each_thread(g, p);
8109 read_unlock_irqrestore(&tasklist_lock, flags);
8112 #endif /* CONFIG_MAGIC_SYSRQ */
8114 #ifdef CONFIG_IA64
8116 * These functions are only useful for the IA64 MCA handling.
8118 * They can only be called when the whole system has been
8119 * stopped - every CPU needs to be quiescent, and no scheduling
8120 * activity can take place. Using them for anything else would
8121 * be a serious bug, and as a result, they aren't even visible
8122 * under any other configuration.
8126 * curr_task - return the current task for a given cpu.
8127 * @cpu: the processor in question.
8129 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8131 struct task_struct *curr_task(int cpu)
8133 return cpu_curr(cpu);
8137 * set_curr_task - set the current task for a given cpu.
8138 * @cpu: the processor in question.
8139 * @p: the task pointer to set.
8141 * Description: This function must only be used when non-maskable interrupts
8142 * are serviced on a separate stack. It allows the architecture to switch the
8143 * notion of the current task on a cpu in a non-blocking manner. This function
8144 * must be called with all CPU's synchronized, and interrupts disabled, the
8145 * and caller must save the original value of the current task (see
8146 * curr_task() above) and restore that value before reenabling interrupts and
8147 * re-starting the system.
8149 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8151 void set_curr_task(int cpu, struct task_struct *p)
8153 cpu_curr(cpu) = p;
8156 #endif
8158 #ifdef CONFIG_FAIR_GROUP_SCHED
8159 static void free_fair_sched_group(struct task_group *tg)
8161 int i;
8163 for_each_possible_cpu(i) {
8164 if (tg->cfs_rq)
8165 kfree(tg->cfs_rq[i]);
8166 if (tg->se)
8167 kfree(tg->se[i]);
8170 kfree(tg->cfs_rq);
8171 kfree(tg->se);
8174 static
8175 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8177 struct cfs_rq *cfs_rq;
8178 struct sched_entity *se, *parent_se;
8179 struct rq *rq;
8180 int i;
8182 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8183 if (!tg->cfs_rq)
8184 goto err;
8185 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8186 if (!tg->se)
8187 goto err;
8189 tg->shares = NICE_0_LOAD;
8191 for_each_possible_cpu(i) {
8192 rq = cpu_rq(i);
8194 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8195 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8196 if (!cfs_rq)
8197 goto err;
8199 se = kmalloc_node(sizeof(struct sched_entity),
8200 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8201 if (!se)
8202 goto err;
8204 parent_se = parent ? parent->se[i] : NULL;
8205 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8208 return 1;
8210 err:
8211 return 0;
8214 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8216 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8217 &cpu_rq(cpu)->leaf_cfs_rq_list);
8220 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8222 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8224 #else /* !CONFG_FAIR_GROUP_SCHED */
8225 static inline void free_fair_sched_group(struct task_group *tg)
8229 static inline
8230 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8232 return 1;
8235 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8239 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8242 #endif /* CONFIG_FAIR_GROUP_SCHED */
8244 #ifdef CONFIG_RT_GROUP_SCHED
8245 static void free_rt_sched_group(struct task_group *tg)
8247 int i;
8249 destroy_rt_bandwidth(&tg->rt_bandwidth);
8251 for_each_possible_cpu(i) {
8252 if (tg->rt_rq)
8253 kfree(tg->rt_rq[i]);
8254 if (tg->rt_se)
8255 kfree(tg->rt_se[i]);
8258 kfree(tg->rt_rq);
8259 kfree(tg->rt_se);
8262 static
8263 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8265 struct rt_rq *rt_rq;
8266 struct sched_rt_entity *rt_se, *parent_se;
8267 struct rq *rq;
8268 int i;
8270 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8271 if (!tg->rt_rq)
8272 goto err;
8273 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8274 if (!tg->rt_se)
8275 goto err;
8277 init_rt_bandwidth(&tg->rt_bandwidth,
8278 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8280 for_each_possible_cpu(i) {
8281 rq = cpu_rq(i);
8283 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8284 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8285 if (!rt_rq)
8286 goto err;
8288 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8289 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8290 if (!rt_se)
8291 goto err;
8293 parent_se = parent ? parent->rt_se[i] : NULL;
8294 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8297 return 1;
8299 err:
8300 return 0;
8303 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8305 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8306 &cpu_rq(cpu)->leaf_rt_rq_list);
8309 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8311 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8313 #else /* !CONFIG_RT_GROUP_SCHED */
8314 static inline void free_rt_sched_group(struct task_group *tg)
8318 static inline
8319 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8321 return 1;
8324 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8328 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8331 #endif /* CONFIG_RT_GROUP_SCHED */
8333 #ifdef CONFIG_GROUP_SCHED
8334 static void free_sched_group(struct task_group *tg)
8336 free_fair_sched_group(tg);
8337 free_rt_sched_group(tg);
8338 kfree(tg);
8341 /* allocate runqueue etc for a new task group */
8342 struct task_group *sched_create_group(struct task_group *parent)
8344 struct task_group *tg;
8345 unsigned long flags;
8346 int i;
8348 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8349 if (!tg)
8350 return ERR_PTR(-ENOMEM);
8352 if (!alloc_fair_sched_group(tg, parent))
8353 goto err;
8355 if (!alloc_rt_sched_group(tg, parent))
8356 goto err;
8358 spin_lock_irqsave(&task_group_lock, flags);
8359 for_each_possible_cpu(i) {
8360 register_fair_sched_group(tg, i);
8361 register_rt_sched_group(tg, i);
8363 list_add_rcu(&tg->list, &task_groups);
8365 WARN_ON(!parent); /* root should already exist */
8367 tg->parent = parent;
8368 list_add_rcu(&tg->siblings, &parent->children);
8369 INIT_LIST_HEAD(&tg->children);
8370 spin_unlock_irqrestore(&task_group_lock, flags);
8372 return tg;
8374 err:
8375 free_sched_group(tg);
8376 return ERR_PTR(-ENOMEM);
8379 /* rcu callback to free various structures associated with a task group */
8380 static void free_sched_group_rcu(struct rcu_head *rhp)
8382 /* now it should be safe to free those cfs_rqs */
8383 free_sched_group(container_of(rhp, struct task_group, rcu));
8386 /* Destroy runqueue etc associated with a task group */
8387 void sched_destroy_group(struct task_group *tg)
8389 unsigned long flags;
8390 int i;
8392 spin_lock_irqsave(&task_group_lock, flags);
8393 for_each_possible_cpu(i) {
8394 unregister_fair_sched_group(tg, i);
8395 unregister_rt_sched_group(tg, i);
8397 list_del_rcu(&tg->list);
8398 list_del_rcu(&tg->siblings);
8399 spin_unlock_irqrestore(&task_group_lock, flags);
8401 /* wait for possible concurrent references to cfs_rqs complete */
8402 call_rcu(&tg->rcu, free_sched_group_rcu);
8405 /* change task's runqueue when it moves between groups.
8406 * The caller of this function should have put the task in its new group
8407 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8408 * reflect its new group.
8410 void sched_move_task(struct task_struct *tsk)
8412 int on_rq, running;
8413 unsigned long flags;
8414 struct rq *rq;
8416 rq = task_rq_lock(tsk, &flags);
8418 update_rq_clock(rq);
8420 running = task_current(rq, tsk);
8421 on_rq = tsk->se.on_rq;
8423 if (on_rq)
8424 dequeue_task(rq, tsk, 0);
8425 if (unlikely(running))
8426 tsk->sched_class->put_prev_task(rq, tsk);
8428 set_task_rq(tsk, task_cpu(tsk));
8430 #ifdef CONFIG_FAIR_GROUP_SCHED
8431 if (tsk->sched_class->moved_group)
8432 tsk->sched_class->moved_group(tsk);
8433 #endif
8435 if (unlikely(running))
8436 tsk->sched_class->set_curr_task(rq);
8437 if (on_rq)
8438 enqueue_task(rq, tsk, 0);
8440 task_rq_unlock(rq, &flags);
8442 #endif /* CONFIG_GROUP_SCHED */
8444 #ifdef CONFIG_FAIR_GROUP_SCHED
8445 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8447 struct cfs_rq *cfs_rq = se->cfs_rq;
8448 int on_rq;
8450 on_rq = se->on_rq;
8451 if (on_rq)
8452 dequeue_entity(cfs_rq, se, 0);
8454 se->load.weight = shares;
8455 se->load.inv_weight = 0;
8457 if (on_rq)
8458 enqueue_entity(cfs_rq, se, 0);
8461 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8463 struct cfs_rq *cfs_rq = se->cfs_rq;
8464 struct rq *rq = cfs_rq->rq;
8465 unsigned long flags;
8467 spin_lock_irqsave(&rq->lock, flags);
8468 __set_se_shares(se, shares);
8469 spin_unlock_irqrestore(&rq->lock, flags);
8472 static DEFINE_MUTEX(shares_mutex);
8474 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8476 int i;
8477 unsigned long flags;
8480 * We can't change the weight of the root cgroup.
8482 if (!tg->se[0])
8483 return -EINVAL;
8485 if (shares < MIN_SHARES)
8486 shares = MIN_SHARES;
8487 else if (shares > MAX_SHARES)
8488 shares = MAX_SHARES;
8490 mutex_lock(&shares_mutex);
8491 if (tg->shares == shares)
8492 goto done;
8494 spin_lock_irqsave(&task_group_lock, flags);
8495 for_each_possible_cpu(i)
8496 unregister_fair_sched_group(tg, i);
8497 list_del_rcu(&tg->siblings);
8498 spin_unlock_irqrestore(&task_group_lock, flags);
8500 /* wait for any ongoing reference to this group to finish */
8501 synchronize_sched();
8504 * Now we are free to modify the group's share on each cpu
8505 * w/o tripping rebalance_share or load_balance_fair.
8507 tg->shares = shares;
8508 for_each_possible_cpu(i) {
8510 * force a rebalance
8512 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8513 set_se_shares(tg->se[i], shares);
8517 * Enable load balance activity on this group, by inserting it back on
8518 * each cpu's rq->leaf_cfs_rq_list.
8520 spin_lock_irqsave(&task_group_lock, flags);
8521 for_each_possible_cpu(i)
8522 register_fair_sched_group(tg, i);
8523 list_add_rcu(&tg->siblings, &tg->parent->children);
8524 spin_unlock_irqrestore(&task_group_lock, flags);
8525 done:
8526 mutex_unlock(&shares_mutex);
8527 return 0;
8530 unsigned long sched_group_shares(struct task_group *tg)
8532 return tg->shares;
8534 #endif
8536 #ifdef CONFIG_RT_GROUP_SCHED
8538 * Ensure that the real time constraints are schedulable.
8540 static DEFINE_MUTEX(rt_constraints_mutex);
8542 static unsigned long to_ratio(u64 period, u64 runtime)
8544 if (runtime == RUNTIME_INF)
8545 return 1ULL << 16;
8547 return div64_u64(runtime << 16, period);
8550 #ifdef CONFIG_CGROUP_SCHED
8551 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8553 struct task_group *tgi, *parent = tg->parent;
8554 unsigned long total = 0;
8556 if (!parent) {
8557 if (global_rt_period() < period)
8558 return 0;
8560 return to_ratio(period, runtime) <
8561 to_ratio(global_rt_period(), global_rt_runtime());
8564 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8565 return 0;
8567 rcu_read_lock();
8568 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8569 if (tgi == tg)
8570 continue;
8572 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8573 tgi->rt_bandwidth.rt_runtime);
8575 rcu_read_unlock();
8577 return total + to_ratio(period, runtime) <=
8578 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8579 parent->rt_bandwidth.rt_runtime);
8581 #elif defined CONFIG_USER_SCHED
8582 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8584 struct task_group *tgi;
8585 unsigned long total = 0;
8586 unsigned long global_ratio =
8587 to_ratio(global_rt_period(), global_rt_runtime());
8589 rcu_read_lock();
8590 list_for_each_entry_rcu(tgi, &task_groups, list) {
8591 if (tgi == tg)
8592 continue;
8594 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8595 tgi->rt_bandwidth.rt_runtime);
8597 rcu_read_unlock();
8599 return total + to_ratio(period, runtime) < global_ratio;
8601 #endif
8603 /* Must be called with tasklist_lock held */
8604 static inline int tg_has_rt_tasks(struct task_group *tg)
8606 struct task_struct *g, *p;
8607 do_each_thread(g, p) {
8608 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8609 return 1;
8610 } while_each_thread(g, p);
8611 return 0;
8614 static int tg_set_bandwidth(struct task_group *tg,
8615 u64 rt_period, u64 rt_runtime)
8617 int i, err = 0;
8619 mutex_lock(&rt_constraints_mutex);
8620 read_lock(&tasklist_lock);
8621 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8622 err = -EBUSY;
8623 goto unlock;
8625 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8626 err = -EINVAL;
8627 goto unlock;
8630 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8631 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8632 tg->rt_bandwidth.rt_runtime = rt_runtime;
8634 for_each_possible_cpu(i) {
8635 struct rt_rq *rt_rq = tg->rt_rq[i];
8637 spin_lock(&rt_rq->rt_runtime_lock);
8638 rt_rq->rt_runtime = rt_runtime;
8639 spin_unlock(&rt_rq->rt_runtime_lock);
8641 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8642 unlock:
8643 read_unlock(&tasklist_lock);
8644 mutex_unlock(&rt_constraints_mutex);
8646 return err;
8649 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8651 u64 rt_runtime, rt_period;
8653 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8654 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8655 if (rt_runtime_us < 0)
8656 rt_runtime = RUNTIME_INF;
8658 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8661 long sched_group_rt_runtime(struct task_group *tg)
8663 u64 rt_runtime_us;
8665 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8666 return -1;
8668 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8669 do_div(rt_runtime_us, NSEC_PER_USEC);
8670 return rt_runtime_us;
8673 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8675 u64 rt_runtime, rt_period;
8677 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8678 rt_runtime = tg->rt_bandwidth.rt_runtime;
8680 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8683 long sched_group_rt_period(struct task_group *tg)
8685 u64 rt_period_us;
8687 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8688 do_div(rt_period_us, NSEC_PER_USEC);
8689 return rt_period_us;
8692 static int sched_rt_global_constraints(void)
8694 struct task_group *tg = &root_task_group;
8695 u64 rt_runtime, rt_period;
8696 int ret = 0;
8698 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8699 rt_runtime = tg->rt_bandwidth.rt_runtime;
8701 mutex_lock(&rt_constraints_mutex);
8702 if (!__rt_schedulable(tg, rt_period, rt_runtime))
8703 ret = -EINVAL;
8704 mutex_unlock(&rt_constraints_mutex);
8706 return ret;
8708 #else /* !CONFIG_RT_GROUP_SCHED */
8709 static int sched_rt_global_constraints(void)
8711 unsigned long flags;
8712 int i;
8714 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8715 for_each_possible_cpu(i) {
8716 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8718 spin_lock(&rt_rq->rt_runtime_lock);
8719 rt_rq->rt_runtime = global_rt_runtime();
8720 spin_unlock(&rt_rq->rt_runtime_lock);
8722 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8724 return 0;
8726 #endif /* CONFIG_RT_GROUP_SCHED */
8728 int sched_rt_handler(struct ctl_table *table, int write,
8729 struct file *filp, void __user *buffer, size_t *lenp,
8730 loff_t *ppos)
8732 int ret;
8733 int old_period, old_runtime;
8734 static DEFINE_MUTEX(mutex);
8736 mutex_lock(&mutex);
8737 old_period = sysctl_sched_rt_period;
8738 old_runtime = sysctl_sched_rt_runtime;
8740 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8742 if (!ret && write) {
8743 ret = sched_rt_global_constraints();
8744 if (ret) {
8745 sysctl_sched_rt_period = old_period;
8746 sysctl_sched_rt_runtime = old_runtime;
8747 } else {
8748 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8749 def_rt_bandwidth.rt_period =
8750 ns_to_ktime(global_rt_period());
8753 mutex_unlock(&mutex);
8755 return ret;
8758 #ifdef CONFIG_CGROUP_SCHED
8760 /* return corresponding task_group object of a cgroup */
8761 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8763 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8764 struct task_group, css);
8767 static struct cgroup_subsys_state *
8768 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8770 struct task_group *tg, *parent;
8772 if (!cgrp->parent) {
8773 /* This is early initialization for the top cgroup */
8774 init_task_group.css.cgroup = cgrp;
8775 return &init_task_group.css;
8778 parent = cgroup_tg(cgrp->parent);
8779 tg = sched_create_group(parent);
8780 if (IS_ERR(tg))
8781 return ERR_PTR(-ENOMEM);
8783 /* Bind the cgroup to task_group object we just created */
8784 tg->css.cgroup = cgrp;
8786 return &tg->css;
8789 static void
8790 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8792 struct task_group *tg = cgroup_tg(cgrp);
8794 sched_destroy_group(tg);
8797 static int
8798 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8799 struct task_struct *tsk)
8801 #ifdef CONFIG_RT_GROUP_SCHED
8802 /* Don't accept realtime tasks when there is no way for them to run */
8803 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8804 return -EINVAL;
8805 #else
8806 /* We don't support RT-tasks being in separate groups */
8807 if (tsk->sched_class != &fair_sched_class)
8808 return -EINVAL;
8809 #endif
8811 return 0;
8814 static void
8815 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8816 struct cgroup *old_cont, struct task_struct *tsk)
8818 sched_move_task(tsk);
8821 #ifdef CONFIG_FAIR_GROUP_SCHED
8822 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8823 u64 shareval)
8825 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8828 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8830 struct task_group *tg = cgroup_tg(cgrp);
8832 return (u64) tg->shares;
8834 #endif /* CONFIG_FAIR_GROUP_SCHED */
8836 #ifdef CONFIG_RT_GROUP_SCHED
8837 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8838 s64 val)
8840 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8843 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8845 return sched_group_rt_runtime(cgroup_tg(cgrp));
8848 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8849 u64 rt_period_us)
8851 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8854 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8856 return sched_group_rt_period(cgroup_tg(cgrp));
8858 #endif /* CONFIG_RT_GROUP_SCHED */
8860 static struct cftype cpu_files[] = {
8861 #ifdef CONFIG_FAIR_GROUP_SCHED
8863 .name = "shares",
8864 .read_u64 = cpu_shares_read_u64,
8865 .write_u64 = cpu_shares_write_u64,
8867 #endif
8868 #ifdef CONFIG_RT_GROUP_SCHED
8870 .name = "rt_runtime_us",
8871 .read_s64 = cpu_rt_runtime_read,
8872 .write_s64 = cpu_rt_runtime_write,
8875 .name = "rt_period_us",
8876 .read_u64 = cpu_rt_period_read_uint,
8877 .write_u64 = cpu_rt_period_write_uint,
8879 #endif
8882 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8884 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8887 struct cgroup_subsys cpu_cgroup_subsys = {
8888 .name = "cpu",
8889 .create = cpu_cgroup_create,
8890 .destroy = cpu_cgroup_destroy,
8891 .can_attach = cpu_cgroup_can_attach,
8892 .attach = cpu_cgroup_attach,
8893 .populate = cpu_cgroup_populate,
8894 .subsys_id = cpu_cgroup_subsys_id,
8895 .early_init = 1,
8898 #endif /* CONFIG_CGROUP_SCHED */
8900 #ifdef CONFIG_CGROUP_CPUACCT
8903 * CPU accounting code for task groups.
8905 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8906 * (balbir@in.ibm.com).
8909 /* track cpu usage of a group of tasks */
8910 struct cpuacct {
8911 struct cgroup_subsys_state css;
8912 /* cpuusage holds pointer to a u64-type object on every cpu */
8913 u64 *cpuusage;
8916 struct cgroup_subsys cpuacct_subsys;
8918 /* return cpu accounting group corresponding to this container */
8919 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8921 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8922 struct cpuacct, css);
8925 /* return cpu accounting group to which this task belongs */
8926 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8928 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8929 struct cpuacct, css);
8932 /* create a new cpu accounting group */
8933 static struct cgroup_subsys_state *cpuacct_create(
8934 struct cgroup_subsys *ss, struct cgroup *cgrp)
8936 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8938 if (!ca)
8939 return ERR_PTR(-ENOMEM);
8941 ca->cpuusage = alloc_percpu(u64);
8942 if (!ca->cpuusage) {
8943 kfree(ca);
8944 return ERR_PTR(-ENOMEM);
8947 return &ca->css;
8950 /* destroy an existing cpu accounting group */
8951 static void
8952 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8954 struct cpuacct *ca = cgroup_ca(cgrp);
8956 free_percpu(ca->cpuusage);
8957 kfree(ca);
8960 /* return total cpu usage (in nanoseconds) of a group */
8961 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8963 struct cpuacct *ca = cgroup_ca(cgrp);
8964 u64 totalcpuusage = 0;
8965 int i;
8967 for_each_possible_cpu(i) {
8968 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8971 * Take rq->lock to make 64-bit addition safe on 32-bit
8972 * platforms.
8974 spin_lock_irq(&cpu_rq(i)->lock);
8975 totalcpuusage += *cpuusage;
8976 spin_unlock_irq(&cpu_rq(i)->lock);
8979 return totalcpuusage;
8982 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8983 u64 reset)
8985 struct cpuacct *ca = cgroup_ca(cgrp);
8986 int err = 0;
8987 int i;
8989 if (reset) {
8990 err = -EINVAL;
8991 goto out;
8994 for_each_possible_cpu(i) {
8995 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8997 spin_lock_irq(&cpu_rq(i)->lock);
8998 *cpuusage = 0;
8999 spin_unlock_irq(&cpu_rq(i)->lock);
9001 out:
9002 return err;
9005 static struct cftype files[] = {
9007 .name = "usage",
9008 .read_u64 = cpuusage_read,
9009 .write_u64 = cpuusage_write,
9013 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9015 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9019 * charge this task's execution time to its accounting group.
9021 * called with rq->lock held.
9023 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9025 struct cpuacct *ca;
9027 if (!cpuacct_subsys.active)
9028 return;
9030 ca = task_ca(tsk);
9031 if (ca) {
9032 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9034 *cpuusage += cputime;
9038 struct cgroup_subsys cpuacct_subsys = {
9039 .name = "cpuacct",
9040 .create = cpuacct_create,
9041 .destroy = cpuacct_destroy,
9042 .populate = cpuacct_populate,
9043 .subsys_id = cpuacct_subsys_id,
9045 #endif /* CONFIG_CGROUP_CPUACCT */