2 # Traffic control configuration.
6 bool "QoS and/or fair queueing"
9 When the kernel has several packets to send out over a network
10 device, it has to decide which ones to send first, which ones to
11 delay, and which ones to drop. This is the job of the queueing
12 disciplines, several different algorithms for how to do this
13 "fairly" have been proposed.
15 If you say N here, you will get the standard packet scheduler, which
16 is a FIFO (first come, first served). If you say Y here, you will be
17 able to choose from among several alternative algorithms which can
18 then be attached to different network devices. This is useful for
19 example if some of your network devices are real time devices that
20 need a certain minimum data flow rate, or if you need to limit the
21 maximum data flow rate for traffic which matches specified criteria.
22 This code is considered to be experimental.
24 To administer these schedulers, you'll need the user-level utilities
25 from the package iproute2+tc at <ftp://ftp.tux.org/pub/net/ip-routing/>.
26 That package also contains some documentation; for more, check out
27 <http://linux-net.osdl.org/index.php/Iproute2>.
29 This Quality of Service (QoS) support will enable you to use
30 Differentiated Services (diffserv) and Resource Reservation Protocol
31 (RSVP) on your Linux router if you also say Y to the corresponding
32 classifiers below. Documentation and software is at
33 <http://diffserv.sourceforge.net/>.
35 If you say Y here and to "/proc file system" below, you will be able
36 to read status information about packet schedulers from the file
39 The available schedulers are listed in the following questions; you
40 can say Y to as many as you like. If unsure, say N now.
44 comment "Queueing/Scheduling"
47 tristate "Class Based Queueing (CBQ)"
49 Say Y here if you want to use the Class-Based Queueing (CBQ) packet
50 scheduling algorithm. This algorithm classifies the waiting packets
51 into a tree-like hierarchy of classes; the leaves of this tree are
52 in turn scheduled by separate algorithms.
54 See the top of <file:net/sched/sch_cbq.c> for more details.
56 CBQ is a commonly used scheduler, so if you're unsure, you should
57 say Y here. Then say Y to all the queueing algorithms below that you
58 want to use as leaf disciplines.
60 To compile this code as a module, choose M here: the
61 module will be called sch_cbq.
64 tristate "Hierarchical Token Bucket (HTB)"
66 Say Y here if you want to use the Hierarchical Token Buckets (HTB)
67 packet scheduling algorithm. See
68 <http://luxik.cdi.cz/~devik/qos/htb/> for complete manual and
71 HTB is very similar to CBQ regarding its goals however is has
72 different properties and different algorithm.
74 To compile this code as a module, choose M here: the
75 module will be called sch_htb.
78 tristate "Hierarchical Fair Service Curve (HFSC)"
80 Say Y here if you want to use the Hierarchical Fair Service Curve
81 (HFSC) packet scheduling algorithm.
83 To compile this code as a module, choose M here: the
84 module will be called sch_hfsc.
87 tristate "ATM Virtual Circuits (ATM)"
90 Say Y here if you want to use the ATM pseudo-scheduler. This
91 provides a framework for invoking classifiers, which in turn
92 select classes of this queuing discipline. Each class maps
93 the flow(s) it is handling to a given virtual circuit.
95 See the top of <file:net/sched/sch_atm.c> for more details.
97 To compile this code as a module, choose M here: the
98 module will be called sch_atm.
101 tristate "Multi Band Priority Queueing (PRIO)"
103 Say Y here if you want to use an n-band priority queue packet
106 To compile this code as a module, choose M here: the
107 module will be called sch_prio.
110 tristate "Multi Band Round Robin Queuing (RR)"
113 Say Y here if you want to use an n-band round robin packet
116 The module uses sch_prio for its framework and is aliased as
117 sch_rr, so it will load sch_prio, although it is referred
121 tristate "Random Early Detection (RED)"
123 Say Y here if you want to use the Random Early Detection (RED)
124 packet scheduling algorithm.
126 See the top of <file:net/sched/sch_red.c> for more details.
128 To compile this code as a module, choose M here: the
129 module will be called sch_red.
132 tristate "Stochastic Fairness Queueing (SFQ)"
134 Say Y here if you want to use the Stochastic Fairness Queueing (SFQ)
135 packet scheduling algorithm.
137 See the top of <file:net/sched/sch_sfq.c> for more details.
139 To compile this code as a module, choose M here: the
140 module will be called sch_sfq.
143 tristate "True Link Equalizer (TEQL)"
145 Say Y here if you want to use the True Link Equalizer (TLE) packet
146 scheduling algorithm. This queueing discipline allows the combination
147 of several physical devices into one virtual device.
149 See the top of <file:net/sched/sch_teql.c> for more details.
151 To compile this code as a module, choose M here: the
152 module will be called sch_teql.
155 tristate "Token Bucket Filter (TBF)"
157 Say Y here if you want to use the Token Bucket Filter (TBF) packet
158 scheduling algorithm.
160 See the top of <file:net/sched/sch_tbf.c> for more details.
162 To compile this code as a module, choose M here: the
163 module will be called sch_tbf.
166 tristate "Generic Random Early Detection (GRED)"
168 Say Y here if you want to use the Generic Random Early Detection
169 (GRED) packet scheduling algorithm for some of your network devices
170 (see the top of <file:net/sched/sch_red.c> for details and
171 references about the algorithm).
173 To compile this code as a module, choose M here: the
174 module will be called sch_gred.
176 config NET_SCH_DSMARK
177 tristate "Differentiated Services marker (DSMARK)"
179 Say Y if you want to schedule packets according to the
180 Differentiated Services architecture proposed in RFC 2475.
181 Technical information on this method, with pointers to associated
182 RFCs, is available at <http://www.gta.ufrj.br/diffserv/>.
184 To compile this code as a module, choose M here: the
185 module will be called sch_dsmark.
188 tristate "Network emulator (NETEM)"
190 Say Y if you want to emulate network delay, loss, and packet
191 re-ordering. This is often useful to simulate networks when
192 testing applications or protocols.
194 To compile this driver as a module, choose M here: the module
195 will be called sch_netem.
199 config NET_SCH_INGRESS
200 tristate "Ingress Qdisc"
202 Say Y here if you want to use classifiers for incoming packets.
205 To compile this code as a module, choose M here: the
206 module will be called sch_ingress.
208 comment "Classification"
214 tristate "Elementary classification (BASIC)"
217 Say Y here if you want to be able to classify packets using
218 only extended matches and actions.
220 To compile this code as a module, choose M here: the
221 module will be called cls_basic.
223 config NET_CLS_TCINDEX
224 tristate "Traffic-Control Index (TCINDEX)"
227 Say Y here if you want to be able to classify packets based on
228 traffic control indices. You will want this feature if you want
229 to implement Differentiated Services together with DSMARK.
231 To compile this code as a module, choose M here: the
232 module will be called cls_tcindex.
234 config NET_CLS_ROUTE4
235 tristate "Routing decision (ROUTE)"
239 If you say Y here, you will be able to classify packets
240 according to the route table entry they matched.
242 To compile this code as a module, choose M here: the
243 module will be called cls_route.
249 tristate "Netfilter mark (FW)"
252 If you say Y here, you will be able to classify packets
253 according to netfilter/firewall marks.
255 To compile this code as a module, choose M here: the
256 module will be called cls_fw.
259 tristate "Universal 32bit comparisons w/ hashing (U32)"
262 Say Y here to be able to classify packets using a universal
263 32bit pieces based comparison scheme.
265 To compile this code as a module, choose M here: the
266 module will be called cls_u32.
269 bool "Performance counters support"
270 depends on NET_CLS_U32
272 Say Y here to make u32 gather additional statistics useful for
273 fine tuning u32 classifiers.
276 bool "Netfilter marks support"
277 depends on NET_CLS_U32
279 Say Y here to be able to use netfilter marks as u32 key.
282 tristate "IPv4 Resource Reservation Protocol (RSVP)"
285 The Resource Reservation Protocol (RSVP) permits end systems to
286 request a minimum and maximum data flow rate for a connection; this
287 is important for real time data such as streaming sound or video.
289 Say Y here if you want to be able to classify outgoing packets based
290 on their RSVP requests.
292 To compile this code as a module, choose M here: the
293 module will be called cls_rsvp.
296 tristate "IPv6 Resource Reservation Protocol (RSVP6)"
299 The Resource Reservation Protocol (RSVP) permits end systems to
300 request a minimum and maximum data flow rate for a connection; this
301 is important for real time data such as streaming sound or video.
303 Say Y here if you want to be able to classify outgoing packets based
304 on their RSVP requests and you are using the IPv6 protocol.
306 To compile this code as a module, choose M here: the
307 module will be called cls_rsvp6.
310 bool "Extended Matches"
313 Say Y here if you want to use extended matches on top of classifiers
314 and select the extended matches below.
316 Extended matches are small classification helpers not worth writing
317 a separate classifier for.
319 A recent version of the iproute2 package is required to use
322 config NET_EMATCH_STACK
324 depends on NET_EMATCH
327 Size of the local stack variable used while evaluating the tree of
328 ematches. Limits the depth of the tree, i.e. the number of
329 encapsulated precedences. Every level requires 4 bytes of additional
332 config NET_EMATCH_CMP
333 tristate "Simple packet data comparison"
334 depends on NET_EMATCH
336 Say Y here if you want to be able to classify packets based on
337 simple packet data comparisons for 8, 16, and 32bit values.
339 To compile this code as a module, choose M here: the
340 module will be called em_cmp.
342 config NET_EMATCH_NBYTE
343 tristate "Multi byte comparison"
344 depends on NET_EMATCH
346 Say Y here if you want to be able to classify packets based on
347 multiple byte comparisons mainly useful for IPv6 address comparisons.
349 To compile this code as a module, choose M here: the
350 module will be called em_nbyte.
352 config NET_EMATCH_U32
354 depends on NET_EMATCH
356 Say Y here if you want to be able to classify packets using
357 the famous u32 key in combination with logic relations.
359 To compile this code as a module, choose M here: the
360 module will be called em_u32.
362 config NET_EMATCH_META
364 depends on NET_EMATCH
366 Say Y here if you want to be able to classify packets based on
367 metadata such as load average, netfilter attributes, socket
368 attributes and routing decisions.
370 To compile this code as a module, choose M here: the
371 module will be called em_meta.
373 config NET_EMATCH_TEXT
374 tristate "Textsearch"
375 depends on NET_EMATCH
377 select TEXTSEARCH_KMP
379 select TEXTSEARCH_FSM
381 Say Y here if you want to be able to classify packets based on
382 textsearch comparisons.
384 To compile this code as a module, choose M here: the
385 module will be called em_text.
390 Say Y here if you want to use traffic control actions. Actions
391 get attached to classifiers and are invoked after a successful
392 classification. They are used to overwrite the classification
393 result, instantly drop or redirect packets, etc.
395 A recent version of the iproute2 package is required to use
398 config NET_ACT_POLICE
399 tristate "Traffic Policing"
400 depends on NET_CLS_ACT
402 Say Y here if you want to do traffic policing, i.e. strict
403 bandwidth limiting. This action replaces the existing policing
406 To compile this code as a module, choose M here: the
407 module will be called police.
410 tristate "Generic actions"
411 depends on NET_CLS_ACT
413 Say Y here to take generic actions such as dropping and
416 To compile this code as a module, choose M here: the
417 module will be called gact.
420 bool "Probability support"
421 depends on NET_ACT_GACT
423 Say Y here to use the generic action randomly or deterministically.
425 config NET_ACT_MIRRED
426 tristate "Redirecting and Mirroring"
427 depends on NET_CLS_ACT
429 Say Y here to allow packets to be mirrored or redirected to
432 To compile this code as a module, choose M here: the
433 module will be called mirred.
436 tristate "IPtables targets"
437 depends on NET_CLS_ACT && NETFILTER && IP_NF_IPTABLES
439 Say Y here to be able to invoke iptables targets after successful
442 To compile this code as a module, choose M here: the
443 module will be called ipt.
446 tristate "Stateless NAT"
447 depends on NET_CLS_ACT
450 Say Y here to do stateless NAT on IPv4 packets. You should use
451 netfilter for NAT unless you know what you are doing.
453 To compile this code as a module, choose M here: the
454 module will be called nat.
457 tristate "Packet Editing"
458 depends on NET_CLS_ACT
460 Say Y here if you want to mangle the content of packets.
462 To compile this code as a module, choose M here: the
463 module will be called pedit.
466 tristate "Simple Example (Debug)"
467 depends on NET_CLS_ACT
469 Say Y here to add a simple action for demonstration purposes.
470 It is meant as an example and for debugging purposes. It will
471 print a configured policy string followed by the packet count
472 to the console for every packet that passes by.
476 To compile this code as a module, choose M here: the
477 module will be called simple.
479 config NET_CLS_POLICE
480 bool "Traffic Policing (obsolete)"
482 select NET_ACT_POLICE
484 Say Y here if you want to do traffic policing, i.e. strict
485 bandwidth limiting. This option is obsolete and just selects
486 the option replacing it. It will be removed in the future.
489 bool "Incoming device classification"
490 depends on NET_CLS_U32 || NET_CLS_FW
492 Say Y here to extend the u32 and fw classifier to support
493 classification based on the incoming device. This option is
494 likely to disappear in favour of the metadata ematch.