x86: 64-bit, make sparsemem vmemmap the only memory model
[linux-2.6/zen-sources.git] / arch / x86 / mm / numa_64.c
blob46b4b5e1a02a88afa29046014eb239e18307257e
1 /*
2 * Generic VM initialization for x86-64 NUMA setups.
3 * Copyright 2002,2003 Andi Kleen, SuSE Labs.
4 */
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/string.h>
8 #include <linux/init.h>
9 #include <linux/bootmem.h>
10 #include <linux/mmzone.h>
11 #include <linux/ctype.h>
12 #include <linux/module.h>
13 #include <linux/nodemask.h>
15 #include <asm/e820.h>
16 #include <asm/proto.h>
17 #include <asm/dma.h>
18 #include <asm/numa.h>
19 #include <asm/acpi.h>
20 #include <asm/k8.h>
22 #ifndef Dprintk
23 #define Dprintk(x...)
24 #endif
26 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
27 EXPORT_SYMBOL(node_data);
29 bootmem_data_t plat_node_bdata[MAX_NUMNODES];
31 struct memnode memnode;
33 int cpu_to_node_map[NR_CPUS] __read_mostly = {
34 [0 ... NR_CPUS-1] = NUMA_NO_NODE
36 EXPORT_SYMBOL(cpu_to_node_map);
38 unsigned char apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
39 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
42 cpumask_t node_to_cpumask_map[MAX_NUMNODES] __read_mostly;
43 EXPORT_SYMBOL(node_to_cpumask_map);
45 int numa_off __initdata;
46 unsigned long __initdata nodemap_addr;
47 unsigned long __initdata nodemap_size;
50 * Given a shift value, try to populate memnodemap[]
51 * Returns :
52 * 1 if OK
53 * 0 if memnodmap[] too small (of shift too small)
54 * -1 if node overlap or lost ram (shift too big)
56 static int __init populate_memnodemap(const struct bootnode *nodes,
57 int numnodes, int shift)
59 unsigned long addr, end;
60 int i, res = -1;
62 memset(memnodemap, 0xff, memnodemapsize);
63 for (i = 0; i < numnodes; i++) {
64 addr = nodes[i].start;
65 end = nodes[i].end;
66 if (addr >= end)
67 continue;
68 if ((end >> shift) >= memnodemapsize)
69 return 0;
70 do {
71 if (memnodemap[addr >> shift] != 0xff)
72 return -1;
73 memnodemap[addr >> shift] = i;
74 addr += (1UL << shift);
75 } while (addr < end);
76 res = 1;
78 return res;
81 static int __init allocate_cachealigned_memnodemap(void)
83 unsigned long pad, pad_addr;
85 memnodemap = memnode.embedded_map;
86 if (memnodemapsize <= 48)
87 return 0;
89 pad = L1_CACHE_BYTES - 1;
90 pad_addr = 0x8000;
91 nodemap_size = pad + memnodemapsize;
92 nodemap_addr = find_e820_area(pad_addr, end_pfn<<PAGE_SHIFT,
93 nodemap_size);
94 if (nodemap_addr == -1UL) {
95 printk(KERN_ERR
96 "NUMA: Unable to allocate Memory to Node hash map\n");
97 nodemap_addr = nodemap_size = 0;
98 return -1;
100 pad_addr = (nodemap_addr + pad) & ~pad;
101 memnodemap = phys_to_virt(pad_addr);
103 printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
104 nodemap_addr, nodemap_addr + nodemap_size);
105 return 0;
109 * The LSB of all start and end addresses in the node map is the value of the
110 * maximum possible shift.
112 static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
113 int numnodes)
115 int i, nodes_used = 0;
116 unsigned long start, end;
117 unsigned long bitfield = 0, memtop = 0;
119 for (i = 0; i < numnodes; i++) {
120 start = nodes[i].start;
121 end = nodes[i].end;
122 if (start >= end)
123 continue;
124 bitfield |= start;
125 nodes_used++;
126 if (end > memtop)
127 memtop = end;
129 if (nodes_used <= 1)
130 i = 63;
131 else
132 i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
133 memnodemapsize = (memtop >> i)+1;
134 return i;
137 int __init compute_hash_shift(struct bootnode *nodes, int numnodes)
139 int shift;
141 shift = extract_lsb_from_nodes(nodes, numnodes);
142 if (allocate_cachealigned_memnodemap())
143 return -1;
144 printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
145 shift);
147 if (populate_memnodemap(nodes, numnodes, shift) != 1) {
148 printk(KERN_INFO "Your memory is not aligned you need to "
149 "rebuild your kernel with a bigger NODEMAPSIZE "
150 "shift=%d\n", shift);
151 return -1;
153 return shift;
156 int early_pfn_to_nid(unsigned long pfn)
158 return phys_to_nid(pfn << PAGE_SHIFT);
161 static void * __init early_node_mem(int nodeid, unsigned long start,
162 unsigned long end, unsigned long size)
164 unsigned long mem = find_e820_area(start, end, size);
165 void *ptr;
167 if (mem != -1L)
168 return __va(mem);
169 ptr = __alloc_bootmem_nopanic(size,
170 SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS));
171 if (ptr == NULL) {
172 printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
173 size, nodeid);
174 return NULL;
176 return ptr;
179 /* Initialize bootmem allocator for a node */
180 void __init setup_node_bootmem(int nodeid, unsigned long start,
181 unsigned long end)
183 unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size;
184 unsigned long bootmap_start, nodedata_phys;
185 void *bootmap;
186 const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE);
188 start = round_up(start, ZONE_ALIGN);
190 printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid,
191 start, end);
193 start_pfn = start >> PAGE_SHIFT;
194 end_pfn = end >> PAGE_SHIFT;
196 node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size);
197 if (node_data[nodeid] == NULL)
198 return;
199 nodedata_phys = __pa(node_data[nodeid]);
201 memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
202 NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid];
203 NODE_DATA(nodeid)->node_start_pfn = start_pfn;
204 NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn;
206 /* Find a place for the bootmem map */
207 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
208 bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE);
209 bootmap = early_node_mem(nodeid, bootmap_start, end,
210 bootmap_pages<<PAGE_SHIFT);
211 if (bootmap == NULL) {
212 if (nodedata_phys < start || nodedata_phys >= end)
213 free_bootmem((unsigned long)node_data[nodeid],
214 pgdat_size);
215 node_data[nodeid] = NULL;
216 return;
218 bootmap_start = __pa(bootmap);
219 Dprintk("bootmap start %lu pages %lu\n", bootmap_start, bootmap_pages);
221 bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
222 bootmap_start >> PAGE_SHIFT,
223 start_pfn, end_pfn);
225 free_bootmem_with_active_regions(nodeid, end);
227 reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size);
228 reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start,
229 bootmap_pages<<PAGE_SHIFT);
230 #ifdef CONFIG_ACPI_NUMA
231 srat_reserve_add_area(nodeid);
232 #endif
233 node_set_online(nodeid);
236 /* Initialize final allocator for a zone */
237 void __init setup_node_zones(int nodeid)
239 unsigned long start_pfn, end_pfn, memmapsize, limit;
241 start_pfn = node_start_pfn(nodeid);
242 end_pfn = node_end_pfn(nodeid);
244 Dprintk(KERN_INFO "Setting up memmap for node %d %lx-%lx\n",
245 nodeid, start_pfn, end_pfn);
248 * Try to allocate mem_map at end to not fill up precious <4GB
249 * memory.
251 memmapsize = sizeof(struct page) * (end_pfn-start_pfn);
252 limit = end_pfn << PAGE_SHIFT;
253 #ifdef CONFIG_FLAT_NODE_MEM_MAP
254 NODE_DATA(nodeid)->node_mem_map =
255 __alloc_bootmem_core(NODE_DATA(nodeid)->bdata,
256 memmapsize, SMP_CACHE_BYTES,
257 round_down(limit - memmapsize, PAGE_SIZE),
258 limit);
259 #endif
263 * There are unfortunately some poorly designed mainboards around that
264 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
265 * mapping. To avoid this fill in the mapping for all possible CPUs,
266 * as the number of CPUs is not known yet. We round robin the existing
267 * nodes.
269 void __init numa_init_array(void)
271 int rr, i;
273 rr = first_node(node_online_map);
274 for (i = 0; i < NR_CPUS; i++) {
275 if (cpu_to_node(i) != NUMA_NO_NODE)
276 continue;
277 numa_set_node(i, rr);
278 rr = next_node(rr, node_online_map);
279 if (rr == MAX_NUMNODES)
280 rr = first_node(node_online_map);
284 #ifdef CONFIG_NUMA_EMU
285 /* Numa emulation */
286 char *cmdline __initdata;
289 * Setups up nid to range from addr to addr + size. If the end
290 * boundary is greater than max_addr, then max_addr is used instead.
291 * The return value is 0 if there is additional memory left for
292 * allocation past addr and -1 otherwise. addr is adjusted to be at
293 * the end of the node.
295 static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
296 u64 size, u64 max_addr)
298 int ret = 0;
300 nodes[nid].start = *addr;
301 *addr += size;
302 if (*addr >= max_addr) {
303 *addr = max_addr;
304 ret = -1;
306 nodes[nid].end = *addr;
307 node_set(nid, node_possible_map);
308 printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
309 nodes[nid].start, nodes[nid].end,
310 (nodes[nid].end - nodes[nid].start) >> 20);
311 return ret;
315 * Splits num_nodes nodes up equally starting at node_start. The return value
316 * is the number of nodes split up and addr is adjusted to be at the end of the
317 * last node allocated.
319 static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
320 u64 max_addr, int node_start,
321 int num_nodes)
323 unsigned int big;
324 u64 size;
325 int i;
327 if (num_nodes <= 0)
328 return -1;
329 if (num_nodes > MAX_NUMNODES)
330 num_nodes = MAX_NUMNODES;
331 size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
332 num_nodes;
334 * Calculate the number of big nodes that can be allocated as a result
335 * of consolidating the leftovers.
337 big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
338 FAKE_NODE_MIN_SIZE;
340 /* Round down to nearest FAKE_NODE_MIN_SIZE. */
341 size &= FAKE_NODE_MIN_HASH_MASK;
342 if (!size) {
343 printk(KERN_ERR "Not enough memory for each node. "
344 "NUMA emulation disabled.\n");
345 return -1;
348 for (i = node_start; i < num_nodes + node_start; i++) {
349 u64 end = *addr + size;
351 if (i < big)
352 end += FAKE_NODE_MIN_SIZE;
354 * The final node can have the remaining system RAM. Other
355 * nodes receive roughly the same amount of available pages.
357 if (i == num_nodes + node_start - 1)
358 end = max_addr;
359 else
360 while (end - *addr - e820_hole_size(*addr, end) <
361 size) {
362 end += FAKE_NODE_MIN_SIZE;
363 if (end > max_addr) {
364 end = max_addr;
365 break;
368 if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
369 break;
371 return i - node_start + 1;
375 * Splits the remaining system RAM into chunks of size. The remaining memory is
376 * always assigned to a final node and can be asymmetric. Returns the number of
377 * nodes split.
379 static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
380 u64 max_addr, int node_start, u64 size)
382 int i = node_start;
383 size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
384 while (!setup_node_range(i++, nodes, addr, size, max_addr))
386 return i - node_start;
390 * Sets up the system RAM area from start_pfn to end_pfn according to the
391 * numa=fake command-line option.
393 static int __init numa_emulation(unsigned long start_pfn, unsigned long end_pfn)
395 struct bootnode nodes[MAX_NUMNODES];
396 u64 size, addr = start_pfn << PAGE_SHIFT;
397 u64 max_addr = end_pfn << PAGE_SHIFT;
398 int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i;
400 memset(&nodes, 0, sizeof(nodes));
402 * If the numa=fake command-line is just a single number N, split the
403 * system RAM into N fake nodes.
405 if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
406 long n = simple_strtol(cmdline, NULL, 0);
408 num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0, n);
409 if (num_nodes < 0)
410 return num_nodes;
411 goto out;
414 /* Parse the command line. */
415 for (coeff_flag = 0; ; cmdline++) {
416 if (*cmdline && isdigit(*cmdline)) {
417 num = num * 10 + *cmdline - '0';
418 continue;
420 if (*cmdline == '*') {
421 if (num > 0)
422 coeff = num;
423 coeff_flag = 1;
425 if (!*cmdline || *cmdline == ',') {
426 if (!coeff_flag)
427 coeff = 1;
429 * Round down to the nearest FAKE_NODE_MIN_SIZE.
430 * Command-line coefficients are in megabytes.
432 size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
433 if (size)
434 for (i = 0; i < coeff; i++, num_nodes++)
435 if (setup_node_range(num_nodes, nodes,
436 &addr, size, max_addr) < 0)
437 goto done;
438 if (!*cmdline)
439 break;
440 coeff_flag = 0;
441 coeff = -1;
443 num = 0;
445 done:
446 if (!num_nodes)
447 return -1;
448 /* Fill remainder of system RAM, if appropriate. */
449 if (addr < max_addr) {
450 if (coeff_flag && coeff < 0) {
451 /* Split remaining nodes into num-sized chunks */
452 num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
453 num_nodes, num);
454 goto out;
456 switch (*(cmdline - 1)) {
457 case '*':
458 /* Split remaining nodes into coeff chunks */
459 if (coeff <= 0)
460 break;
461 num_nodes += split_nodes_equally(nodes, &addr, max_addr,
462 num_nodes, coeff);
463 break;
464 case ',':
465 /* Do not allocate remaining system RAM */
466 break;
467 default:
468 /* Give one final node */
469 setup_node_range(num_nodes, nodes, &addr,
470 max_addr - addr, max_addr);
471 num_nodes++;
474 out:
475 memnode_shift = compute_hash_shift(nodes, num_nodes);
476 if (memnode_shift < 0) {
477 memnode_shift = 0;
478 printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
479 "disabled.\n");
480 return -1;
484 * We need to vacate all active ranges that may have been registered by
485 * SRAT and set acpi_numa to -1 so that srat_disabled() always returns
486 * true. NUMA emulation has succeeded so we will not scan ACPI nodes.
488 remove_all_active_ranges();
489 #ifdef CONFIG_ACPI_NUMA
490 acpi_numa = -1;
491 #endif
492 for_each_node_mask(i, node_possible_map) {
493 e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
494 nodes[i].end >> PAGE_SHIFT);
495 setup_node_bootmem(i, nodes[i].start, nodes[i].end);
497 acpi_fake_nodes(nodes, num_nodes);
498 numa_init_array();
499 return 0;
501 #endif /* CONFIG_NUMA_EMU */
503 void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
505 int i;
507 nodes_clear(node_possible_map);
509 #ifdef CONFIG_NUMA_EMU
510 if (cmdline && !numa_emulation(start_pfn, end_pfn))
511 return;
512 nodes_clear(node_possible_map);
513 #endif
515 #ifdef CONFIG_ACPI_NUMA
516 if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
517 end_pfn << PAGE_SHIFT))
518 return;
519 nodes_clear(node_possible_map);
520 #endif
522 #ifdef CONFIG_K8_NUMA
523 if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT,
524 end_pfn<<PAGE_SHIFT))
525 return;
526 nodes_clear(node_possible_map);
527 #endif
528 printk(KERN_INFO "%s\n",
529 numa_off ? "NUMA turned off" : "No NUMA configuration found");
531 printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
532 start_pfn << PAGE_SHIFT,
533 end_pfn << PAGE_SHIFT);
534 /* setup dummy node covering all memory */
535 memnode_shift = 63;
536 memnodemap = memnode.embedded_map;
537 memnodemap[0] = 0;
538 nodes_clear(node_online_map);
539 node_set_online(0);
540 node_set(0, node_possible_map);
541 for (i = 0; i < NR_CPUS; i++)
542 numa_set_node(i, 0);
543 node_to_cpumask_map[0] = cpumask_of_cpu(0);
544 e820_register_active_regions(0, start_pfn, end_pfn);
545 setup_node_bootmem(0, start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
548 __cpuinit void numa_add_cpu(int cpu)
550 set_bit(cpu, &node_to_cpumask_map[cpu_to_node(cpu)]);
553 void __cpuinit numa_set_node(int cpu, int node)
555 cpu_pda(cpu)->nodenumber = node;
556 cpu_to_node_map[cpu] = node;
559 unsigned long __init numa_free_all_bootmem(void)
561 unsigned long pages = 0;
562 int i;
564 for_each_online_node(i)
565 pages += free_all_bootmem_node(NODE_DATA(i));
567 return pages;
570 void __init paging_init(void)
572 unsigned long max_zone_pfns[MAX_NR_ZONES];
573 int i;
575 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
576 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
577 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
578 max_zone_pfns[ZONE_NORMAL] = end_pfn;
580 sparse_memory_present_with_active_regions(MAX_NUMNODES);
581 sparse_init();
583 for_each_online_node(i)
584 setup_node_zones(i);
586 free_area_init_nodes(max_zone_pfns);
589 static __init int numa_setup(char *opt)
591 if (!opt)
592 return -EINVAL;
593 if (!strncmp(opt, "off", 3))
594 numa_off = 1;
595 #ifdef CONFIG_NUMA_EMU
596 if (!strncmp(opt, "fake=", 5))
597 cmdline = opt + 5;
598 #endif
599 #ifdef CONFIG_ACPI_NUMA
600 if (!strncmp(opt, "noacpi", 6))
601 acpi_numa = -1;
602 if (!strncmp(opt, "hotadd=", 7))
603 hotadd_percent = simple_strtoul(opt+7, NULL, 10);
604 #endif
605 return 0;
607 early_param("numa", numa_setup);
610 * Setup early cpu_to_node.
612 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
613 * and apicid_to_node[] tables have valid entries for a CPU.
614 * This means we skip cpu_to_node[] initialisation for NUMA
615 * emulation and faking node case (when running a kernel compiled
616 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
617 * is already initialized in a round robin manner at numa_init_array,
618 * prior to this call, and this initialization is good enough
619 * for the fake NUMA cases.
621 void __init init_cpu_to_node(void)
623 int i;
625 for (i = 0; i < NR_CPUS; i++) {
626 u8 apicid = x86_cpu_to_apicid_init[i];
628 if (apicid == BAD_APICID)
629 continue;
630 if (apicid_to_node[apicid] == NUMA_NO_NODE)
631 continue;
632 numa_set_node(i, apicid_to_node[apicid]);