2 * Generic waiting primitives.
4 * (C) 2004 William Irwin, Oracle
6 #include <linux/config.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/sched.h>
11 #include <linux/wait.h>
12 #include <linux/hash.h>
14 void fastcall
add_wait_queue(wait_queue_head_t
*q
, wait_queue_t
*wait
)
18 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
19 spin_lock_irqsave(&q
->lock
, flags
);
20 __add_wait_queue(q
, wait
);
21 spin_unlock_irqrestore(&q
->lock
, flags
);
23 EXPORT_SYMBOL(add_wait_queue
);
25 void fastcall
add_wait_queue_exclusive(wait_queue_head_t
*q
, wait_queue_t
*wait
)
29 wait
->flags
|= WQ_FLAG_EXCLUSIVE
;
30 spin_lock_irqsave(&q
->lock
, flags
);
31 __add_wait_queue_tail(q
, wait
);
32 spin_unlock_irqrestore(&q
->lock
, flags
);
34 EXPORT_SYMBOL(add_wait_queue_exclusive
);
36 void fastcall
remove_wait_queue(wait_queue_head_t
*q
, wait_queue_t
*wait
)
40 spin_lock_irqsave(&q
->lock
, flags
);
41 __remove_wait_queue(q
, wait
);
42 spin_unlock_irqrestore(&q
->lock
, flags
);
44 EXPORT_SYMBOL(remove_wait_queue
);
48 * Note: we use "set_current_state()" _after_ the wait-queue add,
49 * because we need a memory barrier there on SMP, so that any
50 * wake-function that tests for the wait-queue being active
51 * will be guaranteed to see waitqueue addition _or_ subsequent
52 * tests in this thread will see the wakeup having taken place.
54 * The spin_unlock() itself is semi-permeable and only protects
55 * one way (it only protects stuff inside the critical region and
56 * stops them from bleeding out - it would still allow subsequent
57 * loads to move into the the critical region).
60 prepare_to_wait(wait_queue_head_t
*q
, wait_queue_t
*wait
, int state
)
64 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
65 spin_lock_irqsave(&q
->lock
, flags
);
66 if (list_empty(&wait
->task_list
))
67 __add_wait_queue(q
, wait
);
69 * don't alter the task state if this is just going to
70 * queue an async wait queue callback
72 if (is_sync_wait(wait
))
73 set_current_state(state
);
74 spin_unlock_irqrestore(&q
->lock
, flags
);
76 EXPORT_SYMBOL(prepare_to_wait
);
79 prepare_to_wait_exclusive(wait_queue_head_t
*q
, wait_queue_t
*wait
, int state
)
83 wait
->flags
|= WQ_FLAG_EXCLUSIVE
;
84 spin_lock_irqsave(&q
->lock
, flags
);
85 if (list_empty(&wait
->task_list
))
86 __add_wait_queue_tail(q
, wait
);
88 * don't alter the task state if this is just going to
89 * queue an async wait queue callback
91 if (is_sync_wait(wait
))
92 set_current_state(state
);
93 spin_unlock_irqrestore(&q
->lock
, flags
);
95 EXPORT_SYMBOL(prepare_to_wait_exclusive
);
97 void fastcall
finish_wait(wait_queue_head_t
*q
, wait_queue_t
*wait
)
101 __set_current_state(TASK_RUNNING
);
103 * We can check for list emptiness outside the lock
105 * - we use the "careful" check that verifies both
106 * the next and prev pointers, so that there cannot
107 * be any half-pending updates in progress on other
108 * CPU's that we haven't seen yet (and that might
109 * still change the stack area.
111 * - all other users take the lock (ie we can only
112 * have _one_ other CPU that looks at or modifies
115 if (!list_empty_careful(&wait
->task_list
)) {
116 spin_lock_irqsave(&q
->lock
, flags
);
117 list_del_init(&wait
->task_list
);
118 spin_unlock_irqrestore(&q
->lock
, flags
);
121 EXPORT_SYMBOL(finish_wait
);
123 int autoremove_wake_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
125 int ret
= default_wake_function(wait
, mode
, sync
, key
);
128 list_del_init(&wait
->task_list
);
131 EXPORT_SYMBOL(autoremove_wake_function
);
133 int wake_bit_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *arg
)
135 struct wait_bit_key
*key
= arg
;
136 struct wait_bit_queue
*wait_bit
137 = container_of(wait
, struct wait_bit_queue
, wait
);
139 if (wait_bit
->key
.flags
!= key
->flags
||
140 wait_bit
->key
.bit_nr
!= key
->bit_nr
||
141 test_bit(key
->bit_nr
, key
->flags
))
144 return autoremove_wake_function(wait
, mode
, sync
, key
);
146 EXPORT_SYMBOL(wake_bit_function
);
149 * To allow interruptible waiting and asynchronous (i.e. nonblocking)
150 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
151 * permitted return codes. Nonzero return codes halt waiting and return.
154 __wait_on_bit(wait_queue_head_t
*wq
, struct wait_bit_queue
*q
,
155 int (*action
)(void *), unsigned mode
)
160 prepare_to_wait(wq
, &q
->wait
, mode
);
161 if (test_bit(q
->key
.bit_nr
, q
->key
.flags
))
162 ret
= (*action
)(q
->key
.flags
);
163 } while (test_bit(q
->key
.bit_nr
, q
->key
.flags
) && !ret
);
164 finish_wait(wq
, &q
->wait
);
167 EXPORT_SYMBOL(__wait_on_bit
);
169 int __sched fastcall
out_of_line_wait_on_bit(void *word
, int bit
,
170 int (*action
)(void *), unsigned mode
)
172 wait_queue_head_t
*wq
= bit_waitqueue(word
, bit
);
173 DEFINE_WAIT_BIT(wait
, word
, bit
);
175 return __wait_on_bit(wq
, &wait
, action
, mode
);
177 EXPORT_SYMBOL(out_of_line_wait_on_bit
);
180 __wait_on_bit_lock(wait_queue_head_t
*wq
, struct wait_bit_queue
*q
,
181 int (*action
)(void *), unsigned mode
)
186 prepare_to_wait_exclusive(wq
, &q
->wait
, mode
);
187 if (test_bit(q
->key
.bit_nr
, q
->key
.flags
)) {
188 if ((ret
= (*action
)(q
->key
.flags
)))
191 } while (test_and_set_bit(q
->key
.bit_nr
, q
->key
.flags
));
192 finish_wait(wq
, &q
->wait
);
195 EXPORT_SYMBOL(__wait_on_bit_lock
);
197 int __sched fastcall
out_of_line_wait_on_bit_lock(void *word
, int bit
,
198 int (*action
)(void *), unsigned mode
)
200 wait_queue_head_t
*wq
= bit_waitqueue(word
, bit
);
201 DEFINE_WAIT_BIT(wait
, word
, bit
);
203 return __wait_on_bit_lock(wq
, &wait
, action
, mode
);
205 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock
);
207 void fastcall
__wake_up_bit(wait_queue_head_t
*wq
, void *word
, int bit
)
209 struct wait_bit_key key
= __WAIT_BIT_KEY_INITIALIZER(word
, bit
);
210 if (waitqueue_active(wq
))
211 __wake_up(wq
, TASK_INTERRUPTIBLE
|TASK_UNINTERRUPTIBLE
, 1, &key
);
213 EXPORT_SYMBOL(__wake_up_bit
);
216 * wake_up_bit - wake up a waiter on a bit
217 * @word: the word being waited on, a kernel virtual address
218 * @bit: the bit of the word being waited on
220 * There is a standard hashed waitqueue table for generic use. This
221 * is the part of the hashtable's accessor API that wakes up waiters
222 * on a bit. For instance, if one were to have waiters on a bitflag,
223 * one would call wake_up_bit() after clearing the bit.
225 * In order for this to function properly, as it uses waitqueue_active()
226 * internally, some kind of memory barrier must be done prior to calling
227 * this. Typically, this will be smp_mb__after_clear_bit(), but in some
228 * cases where bitflags are manipulated non-atomically under a lock, one
229 * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
230 * because spin_unlock() does not guarantee a memory barrier.
232 void fastcall
wake_up_bit(void *word
, int bit
)
234 __wake_up_bit(bit_waitqueue(word
, bit
), word
, bit
);
236 EXPORT_SYMBOL(wake_up_bit
);
238 fastcall wait_queue_head_t
*bit_waitqueue(void *word
, int bit
)
240 const int shift
= BITS_PER_LONG
== 32 ? 5 : 6;
241 const struct zone
*zone
= page_zone(virt_to_page(word
));
242 unsigned long val
= (unsigned long)word
<< shift
| bit
;
244 return &zone
->wait_table
[hash_long(val
, zone
->wait_table_bits
)];
246 EXPORT_SYMBOL(bit_waitqueue
);