[PATCH] USB: Export IEEE-1284 device id in sysfs for usblp devices
[linux-2.6/zen-sources.git] / drivers / net / wireless / strip.c
blobd25264ba0c0e12000780a223c426002dd49d0ea6
1 /*
2 * Copyright 1996 The Board of Trustees of The Leland Stanford
3 * Junior University. All Rights Reserved.
5 * Permission to use, copy, modify, and distribute this
6 * software and its documentation for any purpose and without
7 * fee is hereby granted, provided that the above copyright
8 * notice appear in all copies. Stanford University
9 * makes no representations about the suitability of this
10 * software for any purpose. It is provided "as is" without
11 * express or implied warranty.
13 * strip.c This module implements Starmode Radio IP (STRIP)
14 * for kernel-based devices like TTY. It interfaces between a
15 * raw TTY, and the kernel's INET protocol layers (via DDI).
17 * Version: @(#)strip.c 1.3 July 1997
19 * Author: Stuart Cheshire <cheshire@cs.stanford.edu>
21 * Fixes: v0.9 12th Feb 1996 (SC)
22 * New byte stuffing (2+6 run-length encoding)
23 * New watchdog timer task
24 * New Protocol key (SIP0)
26 * v0.9.1 3rd March 1996 (SC)
27 * Changed to dynamic device allocation -- no more compile
28 * time (or boot time) limit on the number of STRIP devices.
30 * v0.9.2 13th March 1996 (SC)
31 * Uses arp cache lookups (but doesn't send arp packets yet)
33 * v0.9.3 17th April 1996 (SC)
34 * Fixed bug where STR_ERROR flag was getting set unneccessarily
35 * (causing otherwise good packets to be unneccessarily dropped)
37 * v0.9.4 27th April 1996 (SC)
38 * First attempt at using "&COMMAND" Starmode AT commands
40 * v0.9.5 29th May 1996 (SC)
41 * First attempt at sending (unicast) ARP packets
43 * v0.9.6 5th June 1996 (Elliot)
44 * Put "message level" tags in every "printk" statement
46 * v0.9.7 13th June 1996 (laik)
47 * Added support for the /proc fs
49 * v0.9.8 July 1996 (Mema)
50 * Added packet logging
52 * v1.0 November 1996 (SC)
53 * Fixed (severe) memory leaks in the /proc fs code
54 * Fixed race conditions in the logging code
56 * v1.1 January 1997 (SC)
57 * Deleted packet logging (use tcpdump instead)
58 * Added support for Metricom Firmware v204 features
59 * (like message checksums)
61 * v1.2 January 1997 (SC)
62 * Put portables list back in
64 * v1.3 July 1997 (SC)
65 * Made STRIP driver set the radio's baud rate automatically.
66 * It is no longer necessarily to manually set the radio's
67 * rate permanently to 115200 -- the driver handles setting
68 * the rate automatically.
71 #ifdef MODULE
72 static const char StripVersion[] = "1.3A-STUART.CHESHIRE-MODULAR";
73 #else
74 static const char StripVersion[] = "1.3A-STUART.CHESHIRE";
75 #endif
77 #define TICKLE_TIMERS 0
78 #define EXT_COUNTERS 1
81 /************************************************************************/
82 /* Header files */
84 #include <linux/config.h>
85 #include <linux/kernel.h>
86 #include <linux/module.h>
87 #include <linux/init.h>
88 #include <linux/bitops.h>
89 #include <asm/system.h>
90 #include <asm/uaccess.h>
92 # include <linux/ctype.h>
93 #include <linux/string.h>
94 #include <linux/mm.h>
95 #include <linux/interrupt.h>
96 #include <linux/in.h>
97 #include <linux/tty.h>
98 #include <linux/errno.h>
99 #include <linux/netdevice.h>
100 #include <linux/inetdevice.h>
101 #include <linux/etherdevice.h>
102 #include <linux/skbuff.h>
103 #include <linux/if_arp.h>
104 #include <linux/if_strip.h>
105 #include <linux/proc_fs.h>
106 #include <linux/seq_file.h>
107 #include <linux/serial.h>
108 #include <linux/serialP.h>
109 #include <linux/rcupdate.h>
110 #include <net/arp.h>
112 #include <linux/ip.h>
113 #include <linux/tcp.h>
114 #include <linux/time.h>
117 /************************************************************************/
118 /* Useful structures and definitions */
121 * A MetricomKey identifies the protocol being carried inside a Metricom
122 * Starmode packet.
125 typedef union {
126 __u8 c[4];
127 __u32 l;
128 } MetricomKey;
131 * An IP address can be viewed as four bytes in memory (which is what it is) or as
132 * a single 32-bit long (which is convenient for assignment, equality testing etc.)
135 typedef union {
136 __u8 b[4];
137 __u32 l;
138 } IPaddr;
141 * A MetricomAddressString is used to hold a printable representation of
142 * a Metricom address.
145 typedef struct {
146 __u8 c[24];
147 } MetricomAddressString;
149 /* Encapsulation can expand packet of size x to 65/64x + 1
150 * Sent packet looks like "<CR>*<address>*<key><encaps payload><CR>"
151 * 1 1 1-18 1 4 ? 1
152 * eg. <CR>*0000-1234*SIP0<encaps payload><CR>
153 * We allow 31 bytes for the stars, the key, the address and the <CR>s
155 #define STRIP_ENCAP_SIZE(X) (32 + (X)*65L/64L)
158 * A STRIP_Header is never really sent over the radio, but making a dummy
159 * header for internal use within the kernel that looks like an Ethernet
160 * header makes certain other software happier. For example, tcpdump
161 * already understands Ethernet headers.
164 typedef struct {
165 MetricomAddress dst_addr; /* Destination address, e.g. "0000-1234" */
166 MetricomAddress src_addr; /* Source address, e.g. "0000-5678" */
167 unsigned short protocol; /* The protocol type, using Ethernet codes */
168 } STRIP_Header;
170 typedef struct {
171 char c[60];
172 } MetricomNode;
174 #define NODE_TABLE_SIZE 32
175 typedef struct {
176 struct timeval timestamp;
177 int num_nodes;
178 MetricomNode node[NODE_TABLE_SIZE];
179 } MetricomNodeTable;
181 enum { FALSE = 0, TRUE = 1 };
184 * Holds the radio's firmware version.
186 typedef struct {
187 char c[50];
188 } FirmwareVersion;
191 * Holds the radio's serial number.
193 typedef struct {
194 char c[18];
195 } SerialNumber;
198 * Holds the radio's battery voltage.
200 typedef struct {
201 char c[11];
202 } BatteryVoltage;
204 typedef struct {
205 char c[8];
206 } char8;
208 enum {
209 NoStructure = 0, /* Really old firmware */
210 StructuredMessages = 1, /* Parsable AT response msgs */
211 ChecksummedMessages = 2 /* Parsable AT response msgs with checksums */
214 struct strip {
215 int magic;
217 * These are pointers to the malloc()ed frame buffers.
220 unsigned char *rx_buff; /* buffer for received IP packet */
221 unsigned char *sx_buff; /* buffer for received serial data */
222 int sx_count; /* received serial data counter */
223 int sx_size; /* Serial buffer size */
224 unsigned char *tx_buff; /* transmitter buffer */
225 unsigned char *tx_head; /* pointer to next byte to XMIT */
226 int tx_left; /* bytes left in XMIT queue */
227 int tx_size; /* Serial buffer size */
230 * STRIP interface statistics.
233 unsigned long rx_packets; /* inbound frames counter */
234 unsigned long tx_packets; /* outbound frames counter */
235 unsigned long rx_errors; /* Parity, etc. errors */
236 unsigned long tx_errors; /* Planned stuff */
237 unsigned long rx_dropped; /* No memory for skb */
238 unsigned long tx_dropped; /* When MTU change */
239 unsigned long rx_over_errors; /* Frame bigger then STRIP buf. */
241 unsigned long pps_timer; /* Timer to determine pps */
242 unsigned long rx_pps_count; /* Counter to determine pps */
243 unsigned long tx_pps_count; /* Counter to determine pps */
244 unsigned long sx_pps_count; /* Counter to determine pps */
245 unsigned long rx_average_pps; /* rx packets per second * 8 */
246 unsigned long tx_average_pps; /* tx packets per second * 8 */
247 unsigned long sx_average_pps; /* sent packets per second * 8 */
249 #ifdef EXT_COUNTERS
250 unsigned long rx_bytes; /* total received bytes */
251 unsigned long tx_bytes; /* total received bytes */
252 unsigned long rx_rbytes; /* bytes thru radio i/f */
253 unsigned long tx_rbytes; /* bytes thru radio i/f */
254 unsigned long rx_sbytes; /* tot bytes thru serial i/f */
255 unsigned long tx_sbytes; /* tot bytes thru serial i/f */
256 unsigned long rx_ebytes; /* tot stat/err bytes */
257 unsigned long tx_ebytes; /* tot stat/err bytes */
258 #endif
261 * Internal variables.
264 struct list_head list; /* Linked list of devices */
266 int discard; /* Set if serial error */
267 int working; /* Is radio working correctly? */
268 int firmware_level; /* Message structuring level */
269 int next_command; /* Next periodic command */
270 unsigned int user_baud; /* The user-selected baud rate */
271 int mtu; /* Our mtu (to spot changes!) */
272 long watchdog_doprobe; /* Next time to test the radio */
273 long watchdog_doreset; /* Time to do next reset */
274 long gratuitous_arp; /* Time to send next ARP refresh */
275 long arp_interval; /* Next ARP interval */
276 struct timer_list idle_timer; /* For periodic wakeup calls */
277 MetricomAddress true_dev_addr; /* True address of radio */
278 int manual_dev_addr; /* Hack: See note below */
280 FirmwareVersion firmware_version; /* The radio's firmware version */
281 SerialNumber serial_number; /* The radio's serial number */
282 BatteryVoltage battery_voltage; /* The radio's battery voltage */
285 * Other useful structures.
288 struct tty_struct *tty; /* ptr to TTY structure */
289 struct net_device *dev; /* Our device structure */
292 * Neighbour radio records
295 MetricomNodeTable portables;
296 MetricomNodeTable poletops;
300 * Note: manual_dev_addr hack
302 * It is not possible to change the hardware address of a Metricom radio,
303 * or to send packets with a user-specified hardware source address, thus
304 * trying to manually set a hardware source address is a questionable
305 * thing to do. However, if the user *does* manually set the hardware
306 * source address of a STRIP interface, then the kernel will believe it,
307 * and use it in certain places. For example, the hardware address listed
308 * by ifconfig will be the manual address, not the true one.
309 * (Both addresses are listed in /proc/net/strip.)
310 * Also, ARP packets will be sent out giving the user-specified address as
311 * the source address, not the real address. This is dangerous, because
312 * it means you won't receive any replies -- the ARP replies will go to
313 * the specified address, which will be some other radio. The case where
314 * this is useful is when that other radio is also connected to the same
315 * machine. This allows you to connect a pair of radios to one machine,
316 * and to use one exclusively for inbound traffic, and the other
317 * exclusively for outbound traffic. Pretty neat, huh?
319 * Here's the full procedure to set this up:
321 * 1. "slattach" two interfaces, e.g. st0 for outgoing packets,
322 * and st1 for incoming packets
324 * 2. "ifconfig" st0 (outbound radio) to have the hardware address
325 * which is the real hardware address of st1 (inbound radio).
326 * Now when it sends out packets, it will masquerade as st1, and
327 * replies will be sent to that radio, which is exactly what we want.
329 * 3. Set the route table entry ("route add default ..." or
330 * "route add -net ...", as appropriate) to send packets via the st0
331 * interface (outbound radio). Do not add any route which sends packets
332 * out via the st1 interface -- that radio is for inbound traffic only.
334 * 4. "ifconfig" st1 (inbound radio) to have hardware address zero.
335 * This tells the STRIP driver to "shut down" that interface and not
336 * send any packets through it. In particular, it stops sending the
337 * periodic gratuitous ARP packets that a STRIP interface normally sends.
338 * Also, when packets arrive on that interface, it will search the
339 * interface list to see if there is another interface who's manual
340 * hardware address matches its own real address (i.e. st0 in this
341 * example) and if so it will transfer ownership of the skbuff to
342 * that interface, so that it looks to the kernel as if the packet
343 * arrived on that interface. This is necessary because when the
344 * kernel sends an ARP packet on st0, it expects to get a reply on
345 * st0, and if it sees the reply come from st1 then it will ignore
346 * it (to be accurate, it puts the entry in the ARP table, but
347 * labelled in such a way that st0 can't use it).
349 * Thanks to Petros Maniatis for coming up with the idea of splitting
350 * inbound and outbound traffic between two interfaces, which turned
351 * out to be really easy to implement, even if it is a bit of a hack.
353 * Having set a manual address on an interface, you can restore it
354 * to automatic operation (where the address is automatically kept
355 * consistent with the real address of the radio) by setting a manual
356 * address of all ones, e.g. "ifconfig st0 hw strip FFFFFFFFFFFF"
357 * This 'turns off' manual override mode for the device address.
359 * Note: The IEEE 802 headers reported in tcpdump will show the *real*
360 * radio addresses the packets were sent and received from, so that you
361 * can see what is really going on with packets, and which interfaces
362 * they are really going through.
366 /************************************************************************/
367 /* Constants */
370 * CommandString1 works on all radios
371 * Other CommandStrings are only used with firmware that provides structured responses.
373 * ats319=1 Enables Info message for node additions and deletions
374 * ats319=2 Enables Info message for a new best node
375 * ats319=4 Enables checksums
376 * ats319=8 Enables ACK messages
379 static const int MaxCommandStringLength = 32;
380 static const int CompatibilityCommand = 1;
382 static const char CommandString0[] = "*&COMMAND*ATS319=7"; /* Turn on checksums & info messages */
383 static const char CommandString1[] = "*&COMMAND*ATS305?"; /* Query radio name */
384 static const char CommandString2[] = "*&COMMAND*ATS325?"; /* Query battery voltage */
385 static const char CommandString3[] = "*&COMMAND*ATS300?"; /* Query version information */
386 static const char CommandString4[] = "*&COMMAND*ATS311?"; /* Query poletop list */
387 static const char CommandString5[] = "*&COMMAND*AT~LA"; /* Query portables list */
388 typedef struct {
389 const char *string;
390 long length;
391 } StringDescriptor;
393 static const StringDescriptor CommandString[] = {
394 {CommandString0, sizeof(CommandString0) - 1},
395 {CommandString1, sizeof(CommandString1) - 1},
396 {CommandString2, sizeof(CommandString2) - 1},
397 {CommandString3, sizeof(CommandString3) - 1},
398 {CommandString4, sizeof(CommandString4) - 1},
399 {CommandString5, sizeof(CommandString5) - 1}
402 #define GOT_ALL_RADIO_INFO(S) \
403 ((S)->firmware_version.c[0] && \
404 (S)->battery_voltage.c[0] && \
405 memcmp(&(S)->true_dev_addr, zero_address.c, sizeof(zero_address)))
407 static const char hextable[16] = "0123456789ABCDEF";
409 static const MetricomAddress zero_address;
410 static const MetricomAddress broadcast_address =
411 { {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF} };
413 static const MetricomKey SIP0Key = { "SIP0" };
414 static const MetricomKey ARP0Key = { "ARP0" };
415 static const MetricomKey ATR_Key = { "ATR " };
416 static const MetricomKey ACK_Key = { "ACK_" };
417 static const MetricomKey INF_Key = { "INF_" };
418 static const MetricomKey ERR_Key = { "ERR_" };
420 static const long MaxARPInterval = 60 * HZ; /* One minute */
423 * Maximum Starmode packet length is 1183 bytes. Allowing 4 bytes for
424 * protocol key, 4 bytes for checksum, one byte for CR, and 65/64 expansion
425 * for STRIP encoding, that translates to a maximum payload MTU of 1155.
426 * Note: A standard NFS 1K data packet is a total of 0x480 (1152) bytes
427 * long, including IP header, UDP header, and NFS header. Setting the STRIP
428 * MTU to 1152 allows us to send default sized NFS packets without fragmentation.
430 static const unsigned short MAX_SEND_MTU = 1152;
431 static const unsigned short MAX_RECV_MTU = 1500; /* Hoping for Ethernet sized packets in the future! */
432 static const unsigned short DEFAULT_STRIP_MTU = 1152;
433 static const int STRIP_MAGIC = 0x5303;
434 static const long LongTime = 0x7FFFFFFF;
436 /************************************************************************/
437 /* Global variables */
439 static LIST_HEAD(strip_list);
440 static DEFINE_SPINLOCK(strip_lock);
442 /************************************************************************/
443 /* Macros */
445 /* Returns TRUE if text T begins with prefix P */
446 #define has_prefix(T,L,P) (((L) >= sizeof(P)-1) && !strncmp((T), (P), sizeof(P)-1))
448 /* Returns TRUE if text T of length L is equal to string S */
449 #define text_equal(T,L,S) (((L) == sizeof(S)-1) && !strncmp((T), (S), sizeof(S)-1))
451 #define READHEX(X) ((X)>='0' && (X)<='9' ? (X)-'0' : \
452 (X)>='a' && (X)<='f' ? (X)-'a'+10 : \
453 (X)>='A' && (X)<='F' ? (X)-'A'+10 : 0 )
455 #define READHEX16(X) ((__u16)(READHEX(X)))
457 #define READDEC(X) ((X)>='0' && (X)<='9' ? (X)-'0' : 0)
459 #define ARRAY_END(X) (&((X)[ARRAY_SIZE(X)]))
461 #define JIFFIE_TO_SEC(X) ((X) / HZ)
464 /************************************************************************/
465 /* Utility routines */
467 static int arp_query(unsigned char *haddr, u32 paddr,
468 struct net_device *dev)
470 struct neighbour *neighbor_entry;
472 neighbor_entry = neigh_lookup(&arp_tbl, &paddr, dev);
474 if (neighbor_entry != NULL) {
475 neighbor_entry->used = jiffies;
476 if (neighbor_entry->nud_state & NUD_VALID) {
477 memcpy(haddr, neighbor_entry->ha, dev->addr_len);
478 return 1;
481 return 0;
484 static void DumpData(char *msg, struct strip *strip_info, __u8 * ptr,
485 __u8 * end)
487 static const int MAX_DumpData = 80;
488 __u8 pkt_text[MAX_DumpData], *p = pkt_text;
490 *p++ = '\"';
492 while (ptr < end && p < &pkt_text[MAX_DumpData - 4]) {
493 if (*ptr == '\\') {
494 *p++ = '\\';
495 *p++ = '\\';
496 } else {
497 if (*ptr >= 32 && *ptr <= 126) {
498 *p++ = *ptr;
499 } else {
500 sprintf(p, "\\%02X", *ptr);
501 p += 3;
504 ptr++;
507 if (ptr == end)
508 *p++ = '\"';
509 *p++ = 0;
511 printk(KERN_INFO "%s: %-13s%s\n", strip_info->dev->name, msg, pkt_text);
515 /************************************************************************/
516 /* Byte stuffing/unstuffing routines */
518 /* Stuffing scheme:
519 * 00 Unused (reserved character)
520 * 01-3F Run of 2-64 different characters
521 * 40-7F Run of 1-64 different characters plus a single zero at the end
522 * 80-BF Run of 1-64 of the same character
523 * C0-FF Run of 1-64 zeroes (ASCII 0)
526 typedef enum {
527 Stuff_Diff = 0x00,
528 Stuff_DiffZero = 0x40,
529 Stuff_Same = 0x80,
530 Stuff_Zero = 0xC0,
531 Stuff_NoCode = 0xFF, /* Special code, meaning no code selected */
533 Stuff_CodeMask = 0xC0,
534 Stuff_CountMask = 0x3F,
535 Stuff_MaxCount = 0x3F,
536 Stuff_Magic = 0x0D /* The value we are eliminating */
537 } StuffingCode;
539 /* StuffData encodes the data starting at "src" for "length" bytes.
540 * It writes it to the buffer pointed to by "dst" (which must be at least
541 * as long as 1 + 65/64 of the input length). The output may be up to 1.6%
542 * larger than the input for pathological input, but will usually be smaller.
543 * StuffData returns the new value of the dst pointer as its result.
544 * "code_ptr_ptr" points to a "__u8 *" which is used to hold encoding state
545 * between calls, allowing an encoded packet to be incrementally built up
546 * from small parts. On the first call, the "__u8 *" pointed to should be
547 * initialized to NULL; between subsequent calls the calling routine should
548 * leave the value alone and simply pass it back unchanged so that the
549 * encoder can recover its current state.
552 #define StuffData_FinishBlock(X) \
553 (*code_ptr = (X) ^ Stuff_Magic, code = Stuff_NoCode)
555 static __u8 *StuffData(__u8 * src, __u32 length, __u8 * dst,
556 __u8 ** code_ptr_ptr)
558 __u8 *end = src + length;
559 __u8 *code_ptr = *code_ptr_ptr;
560 __u8 code = Stuff_NoCode, count = 0;
562 if (!length)
563 return (dst);
565 if (code_ptr) {
567 * Recover state from last call, if applicable
569 code = (*code_ptr ^ Stuff_Magic) & Stuff_CodeMask;
570 count = (*code_ptr ^ Stuff_Magic) & Stuff_CountMask;
573 while (src < end) {
574 switch (code) {
575 /* Stuff_NoCode: If no current code, select one */
576 case Stuff_NoCode:
577 /* Record where we're going to put this code */
578 code_ptr = dst++;
579 count = 0; /* Reset the count (zero means one instance) */
580 /* Tentatively start a new block */
581 if (*src == 0) {
582 code = Stuff_Zero;
583 src++;
584 } else {
585 code = Stuff_Same;
586 *dst++ = *src++ ^ Stuff_Magic;
588 /* Note: We optimistically assume run of same -- */
589 /* which will be fixed later in Stuff_Same */
590 /* if it turns out not to be true. */
591 break;
593 /* Stuff_Zero: We already have at least one zero encoded */
594 case Stuff_Zero:
595 /* If another zero, count it, else finish this code block */
596 if (*src == 0) {
597 count++;
598 src++;
599 } else {
600 StuffData_FinishBlock(Stuff_Zero + count);
602 break;
604 /* Stuff_Same: We already have at least one byte encoded */
605 case Stuff_Same:
606 /* If another one the same, count it */
607 if ((*src ^ Stuff_Magic) == code_ptr[1]) {
608 count++;
609 src++;
610 break;
612 /* else, this byte does not match this block. */
613 /* If we already have two or more bytes encoded, finish this code block */
614 if (count) {
615 StuffData_FinishBlock(Stuff_Same + count);
616 break;
618 /* else, we only have one so far, so switch to Stuff_Diff code */
619 code = Stuff_Diff;
620 /* and fall through to Stuff_Diff case below
621 * Note cunning cleverness here: case Stuff_Diff compares
622 * the current character with the previous two to see if it
623 * has a run of three the same. Won't this be an error if
624 * there aren't two previous characters stored to compare with?
625 * No. Because we know the current character is *not* the same
626 * as the previous one, the first test below will necessarily
627 * fail and the send half of the "if" won't be executed.
630 /* Stuff_Diff: We have at least two *different* bytes encoded */
631 case Stuff_Diff:
632 /* If this is a zero, must encode a Stuff_DiffZero, and begin a new block */
633 if (*src == 0) {
634 StuffData_FinishBlock(Stuff_DiffZero +
635 count);
637 /* else, if we have three in a row, it is worth starting a Stuff_Same block */
638 else if ((*src ^ Stuff_Magic) == dst[-1]
639 && dst[-1] == dst[-2]) {
640 /* Back off the last two characters we encoded */
641 code += count - 2;
642 /* Note: "Stuff_Diff + 0" is an illegal code */
643 if (code == Stuff_Diff + 0) {
644 code = Stuff_Same + 0;
646 StuffData_FinishBlock(code);
647 code_ptr = dst - 2;
648 /* dst[-1] already holds the correct value */
649 count = 2; /* 2 means three bytes encoded */
650 code = Stuff_Same;
652 /* else, another different byte, so add it to the block */
653 else {
654 *dst++ = *src ^ Stuff_Magic;
655 count++;
657 src++; /* Consume the byte */
658 break;
660 if (count == Stuff_MaxCount) {
661 StuffData_FinishBlock(code + count);
664 if (code == Stuff_NoCode) {
665 *code_ptr_ptr = NULL;
666 } else {
667 *code_ptr_ptr = code_ptr;
668 StuffData_FinishBlock(code + count);
670 return (dst);
674 * UnStuffData decodes the data at "src", up to (but not including) "end".
675 * It writes the decoded data into the buffer pointed to by "dst", up to a
676 * maximum of "dst_length", and returns the new value of "src" so that a
677 * follow-on call can read more data, continuing from where the first left off.
679 * There are three types of results:
680 * 1. The source data runs out before extracting "dst_length" bytes:
681 * UnStuffData returns NULL to indicate failure.
682 * 2. The source data produces exactly "dst_length" bytes:
683 * UnStuffData returns new_src = end to indicate that all bytes were consumed.
684 * 3. "dst_length" bytes are extracted, with more remaining.
685 * UnStuffData returns new_src < end to indicate that there are more bytes
686 * to be read.
688 * Note: The decoding may be destructive, in that it may alter the source
689 * data in the process of decoding it (this is necessary to allow a follow-on
690 * call to resume correctly).
693 static __u8 *UnStuffData(__u8 * src, __u8 * end, __u8 * dst,
694 __u32 dst_length)
696 __u8 *dst_end = dst + dst_length;
697 /* Sanity check */
698 if (!src || !end || !dst || !dst_length)
699 return (NULL);
700 while (src < end && dst < dst_end) {
701 int count = (*src ^ Stuff_Magic) & Stuff_CountMask;
702 switch ((*src ^ Stuff_Magic) & Stuff_CodeMask) {
703 case Stuff_Diff:
704 if (src + 1 + count >= end)
705 return (NULL);
706 do {
707 *dst++ = *++src ^ Stuff_Magic;
709 while (--count >= 0 && dst < dst_end);
710 if (count < 0)
711 src += 1;
712 else {
713 if (count == 0)
714 *src = Stuff_Same ^ Stuff_Magic;
715 else
716 *src =
717 (Stuff_Diff +
718 count) ^ Stuff_Magic;
720 break;
721 case Stuff_DiffZero:
722 if (src + 1 + count >= end)
723 return (NULL);
724 do {
725 *dst++ = *++src ^ Stuff_Magic;
727 while (--count >= 0 && dst < dst_end);
728 if (count < 0)
729 *src = Stuff_Zero ^ Stuff_Magic;
730 else
731 *src =
732 (Stuff_DiffZero + count) ^ Stuff_Magic;
733 break;
734 case Stuff_Same:
735 if (src + 1 >= end)
736 return (NULL);
737 do {
738 *dst++ = src[1] ^ Stuff_Magic;
740 while (--count >= 0 && dst < dst_end);
741 if (count < 0)
742 src += 2;
743 else
744 *src = (Stuff_Same + count) ^ Stuff_Magic;
745 break;
746 case Stuff_Zero:
747 do {
748 *dst++ = 0;
750 while (--count >= 0 && dst < dst_end);
751 if (count < 0)
752 src += 1;
753 else
754 *src = (Stuff_Zero + count) ^ Stuff_Magic;
755 break;
758 if (dst < dst_end)
759 return (NULL);
760 else
761 return (src);
765 /************************************************************************/
766 /* General routines for STRIP */
769 * get_baud returns the current baud rate, as one of the constants defined in
770 * termbits.h
771 * If the user has issued a baud rate override using the 'setserial' command
772 * and the logical current rate is set to 38.4, then the true baud rate
773 * currently in effect (57.6 or 115.2) is returned.
775 static unsigned int get_baud(struct tty_struct *tty)
777 if (!tty || !tty->termios)
778 return (0);
779 if ((tty->termios->c_cflag & CBAUD) == B38400 && tty->driver_data) {
780 struct async_struct *info =
781 (struct async_struct *) tty->driver_data;
782 if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
783 return (B57600);
784 if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
785 return (B115200);
787 return (tty->termios->c_cflag & CBAUD);
791 * set_baud sets the baud rate to the rate defined by baudcode
792 * Note: The rate B38400 should be avoided, because the user may have
793 * issued a 'setserial' speed override to map that to a different speed.
794 * We could achieve a true rate of 38400 if we needed to by cancelling
795 * any user speed override that is in place, but that might annoy the
796 * user, so it is simplest to just avoid using 38400.
798 static void set_baud(struct tty_struct *tty, unsigned int baudcode)
800 struct termios old_termios = *(tty->termios);
801 tty->termios->c_cflag &= ~CBAUD; /* Clear the old baud setting */
802 tty->termios->c_cflag |= baudcode; /* Set the new baud setting */
803 tty->driver->set_termios(tty, &old_termios);
807 * Convert a string to a Metricom Address.
810 #define IS_RADIO_ADDRESS(p) ( \
811 isdigit((p)[0]) && isdigit((p)[1]) && isdigit((p)[2]) && isdigit((p)[3]) && \
812 (p)[4] == '-' && \
813 isdigit((p)[5]) && isdigit((p)[6]) && isdigit((p)[7]) && isdigit((p)[8]) )
815 static int string_to_radio_address(MetricomAddress * addr, __u8 * p)
817 if (!IS_RADIO_ADDRESS(p))
818 return (1);
819 addr->c[0] = 0;
820 addr->c[1] = 0;
821 addr->c[2] = READHEX(p[0]) << 4 | READHEX(p[1]);
822 addr->c[3] = READHEX(p[2]) << 4 | READHEX(p[3]);
823 addr->c[4] = READHEX(p[5]) << 4 | READHEX(p[6]);
824 addr->c[5] = READHEX(p[7]) << 4 | READHEX(p[8]);
825 return (0);
829 * Convert a Metricom Address to a string.
832 static __u8 *radio_address_to_string(const MetricomAddress * addr,
833 MetricomAddressString * p)
835 sprintf(p->c, "%02X%02X-%02X%02X", addr->c[2], addr->c[3],
836 addr->c[4], addr->c[5]);
837 return (p->c);
841 * Note: Must make sure sx_size is big enough to receive a stuffed
842 * MAX_RECV_MTU packet. Additionally, we also want to ensure that it's
843 * big enough to receive a large radio neighbour list (currently 4K).
846 static int allocate_buffers(struct strip *strip_info, int mtu)
848 struct net_device *dev = strip_info->dev;
849 int sx_size = max_t(int, STRIP_ENCAP_SIZE(MAX_RECV_MTU), 4096);
850 int tx_size = STRIP_ENCAP_SIZE(mtu) + MaxCommandStringLength;
851 __u8 *r = kmalloc(MAX_RECV_MTU, GFP_ATOMIC);
852 __u8 *s = kmalloc(sx_size, GFP_ATOMIC);
853 __u8 *t = kmalloc(tx_size, GFP_ATOMIC);
854 if (r && s && t) {
855 strip_info->rx_buff = r;
856 strip_info->sx_buff = s;
857 strip_info->tx_buff = t;
858 strip_info->sx_size = sx_size;
859 strip_info->tx_size = tx_size;
860 strip_info->mtu = dev->mtu = mtu;
861 return (1);
863 kfree(r);
864 kfree(s);
865 kfree(t);
866 return (0);
870 * MTU has been changed by the IP layer.
871 * We could be in
872 * an upcall from the tty driver, or in an ip packet queue.
874 static int strip_change_mtu(struct net_device *dev, int new_mtu)
876 struct strip *strip_info = netdev_priv(dev);
877 int old_mtu = strip_info->mtu;
878 unsigned char *orbuff = strip_info->rx_buff;
879 unsigned char *osbuff = strip_info->sx_buff;
880 unsigned char *otbuff = strip_info->tx_buff;
882 if (new_mtu > MAX_SEND_MTU) {
883 printk(KERN_ERR
884 "%s: MTU exceeds maximum allowable (%d), MTU change cancelled.\n",
885 strip_info->dev->name, MAX_SEND_MTU);
886 return -EINVAL;
889 spin_lock_bh(&strip_lock);
890 if (!allocate_buffers(strip_info, new_mtu)) {
891 printk(KERN_ERR "%s: unable to grow strip buffers, MTU change cancelled.\n",
892 strip_info->dev->name);
893 spin_unlock_bh(&strip_lock);
894 return -ENOMEM;
897 if (strip_info->sx_count) {
898 if (strip_info->sx_count <= strip_info->sx_size)
899 memcpy(strip_info->sx_buff, osbuff,
900 strip_info->sx_count);
901 else {
902 strip_info->discard = strip_info->sx_count;
903 strip_info->rx_over_errors++;
907 if (strip_info->tx_left) {
908 if (strip_info->tx_left <= strip_info->tx_size)
909 memcpy(strip_info->tx_buff, strip_info->tx_head,
910 strip_info->tx_left);
911 else {
912 strip_info->tx_left = 0;
913 strip_info->tx_dropped++;
916 strip_info->tx_head = strip_info->tx_buff;
917 spin_unlock_bh(&strip_lock);
919 printk(KERN_NOTICE "%s: strip MTU changed fom %d to %d.\n",
920 strip_info->dev->name, old_mtu, strip_info->mtu);
922 kfree(orbuff);
923 kfree(osbuff);
924 kfree(otbuff);
925 return 0;
928 static void strip_unlock(struct strip *strip_info)
931 * Set the timer to go off in one second.
933 strip_info->idle_timer.expires = jiffies + 1 * HZ;
934 add_timer(&strip_info->idle_timer);
935 netif_wake_queue(strip_info->dev);
941 * If the time is in the near future, time_delta prints the number of
942 * seconds to go into the buffer and returns the address of the buffer.
943 * If the time is not in the near future, it returns the address of the
944 * string "Not scheduled" The buffer must be long enough to contain the
945 * ascii representation of the number plus 9 charactes for the " seconds"
946 * and the null character.
948 #ifdef CONFIG_PROC_FS
949 static char *time_delta(char buffer[], long time)
951 time -= jiffies;
952 if (time > LongTime / 2)
953 return ("Not scheduled");
954 if (time < 0)
955 time = 0; /* Don't print negative times */
956 sprintf(buffer, "%ld seconds", time / HZ);
957 return (buffer);
960 /* get Nth element of the linked list */
961 static struct strip *strip_get_idx(loff_t pos)
963 struct list_head *l;
964 int i = 0;
966 list_for_each_rcu(l, &strip_list) {
967 if (pos == i)
968 return list_entry(l, struct strip, list);
969 ++i;
971 return NULL;
974 static void *strip_seq_start(struct seq_file *seq, loff_t *pos)
976 rcu_read_lock();
977 return *pos ? strip_get_idx(*pos - 1) : SEQ_START_TOKEN;
980 static void *strip_seq_next(struct seq_file *seq, void *v, loff_t *pos)
982 struct list_head *l;
983 struct strip *s;
985 ++*pos;
986 if (v == SEQ_START_TOKEN)
987 return strip_get_idx(1);
989 s = v;
990 l = &s->list;
991 list_for_each_continue_rcu(l, &strip_list) {
992 return list_entry(l, struct strip, list);
994 return NULL;
997 static void strip_seq_stop(struct seq_file *seq, void *v)
999 rcu_read_unlock();
1002 static void strip_seq_neighbours(struct seq_file *seq,
1003 const MetricomNodeTable * table,
1004 const char *title)
1006 /* We wrap this in a do/while loop, so if the table changes */
1007 /* while we're reading it, we just go around and try again. */
1008 struct timeval t;
1010 do {
1011 int i;
1012 t = table->timestamp;
1013 if (table->num_nodes)
1014 seq_printf(seq, "\n %s\n", title);
1015 for (i = 0; i < table->num_nodes; i++) {
1016 MetricomNode node;
1018 spin_lock_bh(&strip_lock);
1019 node = table->node[i];
1020 spin_unlock_bh(&strip_lock);
1021 seq_printf(seq, " %s\n", node.c);
1023 } while (table->timestamp.tv_sec != t.tv_sec
1024 || table->timestamp.tv_usec != t.tv_usec);
1028 * This function prints radio status information via the seq_file
1029 * interface. The interface takes care of buffer size and over
1030 * run issues.
1032 * The buffer in seq_file is PAGESIZE (4K)
1033 * so this routine should never print more or it will get truncated.
1034 * With the maximum of 32 portables and 32 poletops
1035 * reported, the routine outputs 3107 bytes into the buffer.
1037 static void strip_seq_status_info(struct seq_file *seq,
1038 const struct strip *strip_info)
1040 char temp[32];
1041 MetricomAddressString addr_string;
1043 /* First, we must copy all of our data to a safe place, */
1044 /* in case a serial interrupt comes in and changes it. */
1045 int tx_left = strip_info->tx_left;
1046 unsigned long rx_average_pps = strip_info->rx_average_pps;
1047 unsigned long tx_average_pps = strip_info->tx_average_pps;
1048 unsigned long sx_average_pps = strip_info->sx_average_pps;
1049 int working = strip_info->working;
1050 int firmware_level = strip_info->firmware_level;
1051 long watchdog_doprobe = strip_info->watchdog_doprobe;
1052 long watchdog_doreset = strip_info->watchdog_doreset;
1053 long gratuitous_arp = strip_info->gratuitous_arp;
1054 long arp_interval = strip_info->arp_interval;
1055 FirmwareVersion firmware_version = strip_info->firmware_version;
1056 SerialNumber serial_number = strip_info->serial_number;
1057 BatteryVoltage battery_voltage = strip_info->battery_voltage;
1058 char *if_name = strip_info->dev->name;
1059 MetricomAddress true_dev_addr = strip_info->true_dev_addr;
1060 MetricomAddress dev_dev_addr =
1061 *(MetricomAddress *) strip_info->dev->dev_addr;
1062 int manual_dev_addr = strip_info->manual_dev_addr;
1063 #ifdef EXT_COUNTERS
1064 unsigned long rx_bytes = strip_info->rx_bytes;
1065 unsigned long tx_bytes = strip_info->tx_bytes;
1066 unsigned long rx_rbytes = strip_info->rx_rbytes;
1067 unsigned long tx_rbytes = strip_info->tx_rbytes;
1068 unsigned long rx_sbytes = strip_info->rx_sbytes;
1069 unsigned long tx_sbytes = strip_info->tx_sbytes;
1070 unsigned long rx_ebytes = strip_info->rx_ebytes;
1071 unsigned long tx_ebytes = strip_info->tx_ebytes;
1072 #endif
1074 seq_printf(seq, "\nInterface name\t\t%s\n", if_name);
1075 seq_printf(seq, " Radio working:\t\t%s\n", working ? "Yes" : "No");
1076 radio_address_to_string(&true_dev_addr, &addr_string);
1077 seq_printf(seq, " Radio address:\t\t%s\n", addr_string.c);
1078 if (manual_dev_addr) {
1079 radio_address_to_string(&dev_dev_addr, &addr_string);
1080 seq_printf(seq, " Device address:\t%s\n", addr_string.c);
1082 seq_printf(seq, " Firmware version:\t%s", !working ? "Unknown" :
1083 !firmware_level ? "Should be upgraded" :
1084 firmware_version.c);
1085 if (firmware_level >= ChecksummedMessages)
1086 seq_printf(seq, " (Checksums Enabled)");
1087 seq_printf(seq, "\n");
1088 seq_printf(seq, " Serial number:\t\t%s\n", serial_number.c);
1089 seq_printf(seq, " Battery voltage:\t%s\n", battery_voltage.c);
1090 seq_printf(seq, " Transmit queue (bytes):%d\n", tx_left);
1091 seq_printf(seq, " Receive packet rate: %ld packets per second\n",
1092 rx_average_pps / 8);
1093 seq_printf(seq, " Transmit packet rate: %ld packets per second\n",
1094 tx_average_pps / 8);
1095 seq_printf(seq, " Sent packet rate: %ld packets per second\n",
1096 sx_average_pps / 8);
1097 seq_printf(seq, " Next watchdog probe:\t%s\n",
1098 time_delta(temp, watchdog_doprobe));
1099 seq_printf(seq, " Next watchdog reset:\t%s\n",
1100 time_delta(temp, watchdog_doreset));
1101 seq_printf(seq, " Next gratuitous ARP:\t");
1103 if (!memcmp
1104 (strip_info->dev->dev_addr, zero_address.c,
1105 sizeof(zero_address)))
1106 seq_printf(seq, "Disabled\n");
1107 else {
1108 seq_printf(seq, "%s\n", time_delta(temp, gratuitous_arp));
1109 seq_printf(seq, " Next ARP interval:\t%ld seconds\n",
1110 JIFFIE_TO_SEC(arp_interval));
1113 if (working) {
1114 #ifdef EXT_COUNTERS
1115 seq_printf(seq, "\n");
1116 seq_printf(seq,
1117 " Total bytes: \trx:\t%lu\ttx:\t%lu\n",
1118 rx_bytes, tx_bytes);
1119 seq_printf(seq,
1120 " thru radio: \trx:\t%lu\ttx:\t%lu\n",
1121 rx_rbytes, tx_rbytes);
1122 seq_printf(seq,
1123 " thru serial port: \trx:\t%lu\ttx:\t%lu\n",
1124 rx_sbytes, tx_sbytes);
1125 seq_printf(seq,
1126 " Total stat/err bytes:\trx:\t%lu\ttx:\t%lu\n",
1127 rx_ebytes, tx_ebytes);
1128 #endif
1129 strip_seq_neighbours(seq, &strip_info->poletops,
1130 "Poletops:");
1131 strip_seq_neighbours(seq, &strip_info->portables,
1132 "Portables:");
1137 * This function is exports status information from the STRIP driver through
1138 * the /proc file system.
1140 static int strip_seq_show(struct seq_file *seq, void *v)
1142 if (v == SEQ_START_TOKEN)
1143 seq_printf(seq, "strip_version: %s\n", StripVersion);
1144 else
1145 strip_seq_status_info(seq, (const struct strip *)v);
1146 return 0;
1150 static struct seq_operations strip_seq_ops = {
1151 .start = strip_seq_start,
1152 .next = strip_seq_next,
1153 .stop = strip_seq_stop,
1154 .show = strip_seq_show,
1157 static int strip_seq_open(struct inode *inode, struct file *file)
1159 return seq_open(file, &strip_seq_ops);
1162 static struct file_operations strip_seq_fops = {
1163 .owner = THIS_MODULE,
1164 .open = strip_seq_open,
1165 .read = seq_read,
1166 .llseek = seq_lseek,
1167 .release = seq_release,
1169 #endif
1173 /************************************************************************/
1174 /* Sending routines */
1176 static void ResetRadio(struct strip *strip_info)
1178 struct tty_struct *tty = strip_info->tty;
1179 static const char init[] = "ate0q1dt**starmode\r**";
1180 StringDescriptor s = { init, sizeof(init) - 1 };
1183 * If the radio isn't working anymore,
1184 * we should clear the old status information.
1186 if (strip_info->working) {
1187 printk(KERN_INFO "%s: No response: Resetting radio.\n",
1188 strip_info->dev->name);
1189 strip_info->firmware_version.c[0] = '\0';
1190 strip_info->serial_number.c[0] = '\0';
1191 strip_info->battery_voltage.c[0] = '\0';
1192 strip_info->portables.num_nodes = 0;
1193 do_gettimeofday(&strip_info->portables.timestamp);
1194 strip_info->poletops.num_nodes = 0;
1195 do_gettimeofday(&strip_info->poletops.timestamp);
1198 strip_info->pps_timer = jiffies;
1199 strip_info->rx_pps_count = 0;
1200 strip_info->tx_pps_count = 0;
1201 strip_info->sx_pps_count = 0;
1202 strip_info->rx_average_pps = 0;
1203 strip_info->tx_average_pps = 0;
1204 strip_info->sx_average_pps = 0;
1206 /* Mark radio address as unknown */
1207 *(MetricomAddress *) & strip_info->true_dev_addr = zero_address;
1208 if (!strip_info->manual_dev_addr)
1209 *(MetricomAddress *) strip_info->dev->dev_addr =
1210 zero_address;
1211 strip_info->working = FALSE;
1212 strip_info->firmware_level = NoStructure;
1213 strip_info->next_command = CompatibilityCommand;
1214 strip_info->watchdog_doprobe = jiffies + 10 * HZ;
1215 strip_info->watchdog_doreset = jiffies + 1 * HZ;
1217 /* If the user has selected a baud rate above 38.4 see what magic we have to do */
1218 if (strip_info->user_baud > B38400) {
1220 * Subtle stuff: Pay attention :-)
1221 * If the serial port is currently at the user's selected (>38.4) rate,
1222 * then we temporarily switch to 19.2 and issue the ATS304 command
1223 * to tell the radio to switch to the user's selected rate.
1224 * If the serial port is not currently at that rate, that means we just
1225 * issued the ATS304 command last time through, so this time we restore
1226 * the user's selected rate and issue the normal starmode reset string.
1228 if (strip_info->user_baud == get_baud(tty)) {
1229 static const char b0[] = "ate0q1s304=57600\r";
1230 static const char b1[] = "ate0q1s304=115200\r";
1231 static const StringDescriptor baudstring[2] =
1232 { {b0, sizeof(b0) - 1}
1233 , {b1, sizeof(b1) - 1}
1235 set_baud(tty, B19200);
1236 if (strip_info->user_baud == B57600)
1237 s = baudstring[0];
1238 else if (strip_info->user_baud == B115200)
1239 s = baudstring[1];
1240 else
1241 s = baudstring[1]; /* For now */
1242 } else
1243 set_baud(tty, strip_info->user_baud);
1246 tty->driver->write(tty, s.string, s.length);
1247 #ifdef EXT_COUNTERS
1248 strip_info->tx_ebytes += s.length;
1249 #endif
1253 * Called by the driver when there's room for more data. If we have
1254 * more packets to send, we send them here.
1257 static void strip_write_some_more(struct tty_struct *tty)
1259 struct strip *strip_info = (struct strip *) tty->disc_data;
1261 /* First make sure we're connected. */
1262 if (!strip_info || strip_info->magic != STRIP_MAGIC ||
1263 !netif_running(strip_info->dev))
1264 return;
1266 if (strip_info->tx_left > 0) {
1267 int num_written =
1268 tty->driver->write(tty, strip_info->tx_head,
1269 strip_info->tx_left);
1270 strip_info->tx_left -= num_written;
1271 strip_info->tx_head += num_written;
1272 #ifdef EXT_COUNTERS
1273 strip_info->tx_sbytes += num_written;
1274 #endif
1275 } else { /* Else start transmission of another packet */
1277 tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP);
1278 strip_unlock(strip_info);
1282 static __u8 *add_checksum(__u8 * buffer, __u8 * end)
1284 __u16 sum = 0;
1285 __u8 *p = buffer;
1286 while (p < end)
1287 sum += *p++;
1288 end[3] = hextable[sum & 0xF];
1289 sum >>= 4;
1290 end[2] = hextable[sum & 0xF];
1291 sum >>= 4;
1292 end[1] = hextable[sum & 0xF];
1293 sum >>= 4;
1294 end[0] = hextable[sum & 0xF];
1295 return (end + 4);
1298 static unsigned char *strip_make_packet(unsigned char *buffer,
1299 struct strip *strip_info,
1300 struct sk_buff *skb)
1302 __u8 *ptr = buffer;
1303 __u8 *stuffstate = NULL;
1304 STRIP_Header *header = (STRIP_Header *) skb->data;
1305 MetricomAddress haddr = header->dst_addr;
1306 int len = skb->len - sizeof(STRIP_Header);
1307 MetricomKey key;
1309 /*HexDump("strip_make_packet", strip_info, skb->data, skb->data + skb->len); */
1311 if (header->protocol == htons(ETH_P_IP))
1312 key = SIP0Key;
1313 else if (header->protocol == htons(ETH_P_ARP))
1314 key = ARP0Key;
1315 else {
1316 printk(KERN_ERR
1317 "%s: strip_make_packet: Unknown packet type 0x%04X\n",
1318 strip_info->dev->name, ntohs(header->protocol));
1319 return (NULL);
1322 if (len > strip_info->mtu) {
1323 printk(KERN_ERR
1324 "%s: Dropping oversized transmit packet: %d bytes\n",
1325 strip_info->dev->name, len);
1326 return (NULL);
1330 * If we're sending to ourselves, discard the packet.
1331 * (Metricom radios choke if they try to send a packet to their own address.)
1333 if (!memcmp(haddr.c, strip_info->true_dev_addr.c, sizeof(haddr))) {
1334 printk(KERN_ERR "%s: Dropping packet addressed to self\n",
1335 strip_info->dev->name);
1336 return (NULL);
1340 * If this is a broadcast packet, send it to our designated Metricom
1341 * 'broadcast hub' radio (First byte of address being 0xFF means broadcast)
1343 if (haddr.c[0] == 0xFF) {
1344 u32 brd = 0;
1345 struct in_device *in_dev;
1347 rcu_read_lock();
1348 in_dev = __in_dev_get_rcu(strip_info->dev);
1349 if (in_dev == NULL) {
1350 rcu_read_unlock();
1351 return NULL;
1353 if (in_dev->ifa_list)
1354 brd = in_dev->ifa_list->ifa_broadcast;
1355 rcu_read_unlock();
1357 /* arp_query returns 1 if it succeeds in looking up the address, 0 if it fails */
1358 if (!arp_query(haddr.c, brd, strip_info->dev)) {
1359 printk(KERN_ERR
1360 "%s: Unable to send packet (no broadcast hub configured)\n",
1361 strip_info->dev->name);
1362 return (NULL);
1365 * If we are the broadcast hub, don't bother sending to ourselves.
1366 * (Metricom radios choke if they try to send a packet to their own address.)
1368 if (!memcmp
1369 (haddr.c, strip_info->true_dev_addr.c, sizeof(haddr)))
1370 return (NULL);
1373 *ptr++ = 0x0D;
1374 *ptr++ = '*';
1375 *ptr++ = hextable[haddr.c[2] >> 4];
1376 *ptr++ = hextable[haddr.c[2] & 0xF];
1377 *ptr++ = hextable[haddr.c[3] >> 4];
1378 *ptr++ = hextable[haddr.c[3] & 0xF];
1379 *ptr++ = '-';
1380 *ptr++ = hextable[haddr.c[4] >> 4];
1381 *ptr++ = hextable[haddr.c[4] & 0xF];
1382 *ptr++ = hextable[haddr.c[5] >> 4];
1383 *ptr++ = hextable[haddr.c[5] & 0xF];
1384 *ptr++ = '*';
1385 *ptr++ = key.c[0];
1386 *ptr++ = key.c[1];
1387 *ptr++ = key.c[2];
1388 *ptr++ = key.c[3];
1390 ptr =
1391 StuffData(skb->data + sizeof(STRIP_Header), len, ptr,
1392 &stuffstate);
1394 if (strip_info->firmware_level >= ChecksummedMessages)
1395 ptr = add_checksum(buffer + 1, ptr);
1397 *ptr++ = 0x0D;
1398 return (ptr);
1401 static void strip_send(struct strip *strip_info, struct sk_buff *skb)
1403 MetricomAddress haddr;
1404 unsigned char *ptr = strip_info->tx_buff;
1405 int doreset = (long) jiffies - strip_info->watchdog_doreset >= 0;
1406 int doprobe = (long) jiffies - strip_info->watchdog_doprobe >= 0
1407 && !doreset;
1408 u32 addr, brd;
1411 * 1. If we have a packet, encapsulate it and put it in the buffer
1413 if (skb) {
1414 char *newptr = strip_make_packet(ptr, strip_info, skb);
1415 strip_info->tx_pps_count++;
1416 if (!newptr)
1417 strip_info->tx_dropped++;
1418 else {
1419 ptr = newptr;
1420 strip_info->sx_pps_count++;
1421 strip_info->tx_packets++; /* Count another successful packet */
1422 #ifdef EXT_COUNTERS
1423 strip_info->tx_bytes += skb->len;
1424 strip_info->tx_rbytes += ptr - strip_info->tx_buff;
1425 #endif
1426 /*DumpData("Sending:", strip_info, strip_info->tx_buff, ptr); */
1427 /*HexDump("Sending", strip_info, strip_info->tx_buff, ptr); */
1432 * 2. If it is time for another tickle, tack it on, after the packet
1434 if (doprobe) {
1435 StringDescriptor ts = CommandString[strip_info->next_command];
1436 #if TICKLE_TIMERS
1438 struct timeval tv;
1439 do_gettimeofday(&tv);
1440 printk(KERN_INFO "**** Sending tickle string %d at %02d.%06d\n",
1441 strip_info->next_command, tv.tv_sec % 100,
1442 tv.tv_usec);
1444 #endif
1445 if (ptr == strip_info->tx_buff)
1446 *ptr++ = 0x0D;
1448 *ptr++ = '*'; /* First send "**" to provoke an error message */
1449 *ptr++ = '*';
1451 /* Then add the command */
1452 memcpy(ptr, ts.string, ts.length);
1454 /* Add a checksum ? */
1455 if (strip_info->firmware_level < ChecksummedMessages)
1456 ptr += ts.length;
1457 else
1458 ptr = add_checksum(ptr, ptr + ts.length);
1460 *ptr++ = 0x0D; /* Terminate the command with a <CR> */
1462 /* Cycle to next periodic command? */
1463 if (strip_info->firmware_level >= StructuredMessages)
1464 if (++strip_info->next_command >=
1465 ARRAY_SIZE(CommandString))
1466 strip_info->next_command = 0;
1467 #ifdef EXT_COUNTERS
1468 strip_info->tx_ebytes += ts.length;
1469 #endif
1470 strip_info->watchdog_doprobe = jiffies + 10 * HZ;
1471 strip_info->watchdog_doreset = jiffies + 1 * HZ;
1472 /*printk(KERN_INFO "%s: Routine radio test.\n", strip_info->dev->name); */
1476 * 3. Set up the strip_info ready to send the data (if any).
1478 strip_info->tx_head = strip_info->tx_buff;
1479 strip_info->tx_left = ptr - strip_info->tx_buff;
1480 strip_info->tty->flags |= (1 << TTY_DO_WRITE_WAKEUP);
1483 * 4. Debugging check to make sure we're not overflowing the buffer.
1485 if (strip_info->tx_size - strip_info->tx_left < 20)
1486 printk(KERN_ERR "%s: Sending%5d bytes;%5d bytes free.\n",
1487 strip_info->dev->name, strip_info->tx_left,
1488 strip_info->tx_size - strip_info->tx_left);
1491 * 5. If watchdog has expired, reset the radio. Note: if there's data waiting in
1492 * the buffer, strip_write_some_more will send it after the reset has finished
1494 if (doreset) {
1495 ResetRadio(strip_info);
1496 return;
1499 if (1) {
1500 struct in_device *in_dev;
1502 brd = addr = 0;
1503 rcu_read_lock();
1504 in_dev = __in_dev_get_rcu(strip_info->dev);
1505 if (in_dev) {
1506 if (in_dev->ifa_list) {
1507 brd = in_dev->ifa_list->ifa_broadcast;
1508 addr = in_dev->ifa_list->ifa_local;
1511 rcu_read_unlock();
1516 * 6. If it is time for a periodic ARP, queue one up to be sent.
1517 * We only do this if:
1518 * 1. The radio is working
1519 * 2. It's time to send another periodic ARP
1520 * 3. We really know what our address is (and it is not manually set to zero)
1521 * 4. We have a designated broadcast address configured
1522 * If we queue up an ARP packet when we don't have a designated broadcast
1523 * address configured, then the packet will just have to be discarded in
1524 * strip_make_packet. This is not fatal, but it causes misleading information
1525 * to be displayed in tcpdump. tcpdump will report that periodic APRs are
1526 * being sent, when in fact they are not, because they are all being dropped
1527 * in the strip_make_packet routine.
1529 if (strip_info->working
1530 && (long) jiffies - strip_info->gratuitous_arp >= 0
1531 && memcmp(strip_info->dev->dev_addr, zero_address.c,
1532 sizeof(zero_address))
1533 && arp_query(haddr.c, brd, strip_info->dev)) {
1534 /*printk(KERN_INFO "%s: Sending gratuitous ARP with interval %ld\n",
1535 strip_info->dev->name, strip_info->arp_interval / HZ); */
1536 strip_info->gratuitous_arp =
1537 jiffies + strip_info->arp_interval;
1538 strip_info->arp_interval *= 2;
1539 if (strip_info->arp_interval > MaxARPInterval)
1540 strip_info->arp_interval = MaxARPInterval;
1541 if (addr)
1542 arp_send(ARPOP_REPLY, ETH_P_ARP, addr, /* Target address of ARP packet is our address */
1543 strip_info->dev, /* Device to send packet on */
1544 addr, /* Source IP address this ARP packet comes from */
1545 NULL, /* Destination HW address is NULL (broadcast it) */
1546 strip_info->dev->dev_addr, /* Source HW address is our HW address */
1547 strip_info->dev->dev_addr); /* Target HW address is our HW address (redundant) */
1551 * 7. All ready. Start the transmission
1553 strip_write_some_more(strip_info->tty);
1556 /* Encapsulate a datagram and kick it into a TTY queue. */
1557 static int strip_xmit(struct sk_buff *skb, struct net_device *dev)
1559 struct strip *strip_info = netdev_priv(dev);
1561 if (!netif_running(dev)) {
1562 printk(KERN_ERR "%s: xmit call when iface is down\n",
1563 dev->name);
1564 return (1);
1567 netif_stop_queue(dev);
1569 del_timer(&strip_info->idle_timer);
1572 if (jiffies - strip_info->pps_timer > HZ) {
1573 unsigned long t = jiffies - strip_info->pps_timer;
1574 unsigned long rx_pps_count = (strip_info->rx_pps_count * HZ * 8 + t / 2) / t;
1575 unsigned long tx_pps_count = (strip_info->tx_pps_count * HZ * 8 + t / 2) / t;
1576 unsigned long sx_pps_count = (strip_info->sx_pps_count * HZ * 8 + t / 2) / t;
1578 strip_info->pps_timer = jiffies;
1579 strip_info->rx_pps_count = 0;
1580 strip_info->tx_pps_count = 0;
1581 strip_info->sx_pps_count = 0;
1583 strip_info->rx_average_pps = (strip_info->rx_average_pps + rx_pps_count + 1) / 2;
1584 strip_info->tx_average_pps = (strip_info->tx_average_pps + tx_pps_count + 1) / 2;
1585 strip_info->sx_average_pps = (strip_info->sx_average_pps + sx_pps_count + 1) / 2;
1587 if (rx_pps_count / 8 >= 10)
1588 printk(KERN_INFO "%s: WARNING: Receiving %ld packets per second.\n",
1589 strip_info->dev->name, rx_pps_count / 8);
1590 if (tx_pps_count / 8 >= 10)
1591 printk(KERN_INFO "%s: WARNING: Tx %ld packets per second.\n",
1592 strip_info->dev->name, tx_pps_count / 8);
1593 if (sx_pps_count / 8 >= 10)
1594 printk(KERN_INFO "%s: WARNING: Sending %ld packets per second.\n",
1595 strip_info->dev->name, sx_pps_count / 8);
1598 spin_lock_bh(&strip_lock);
1600 strip_send(strip_info, skb);
1602 spin_unlock_bh(&strip_lock);
1604 if (skb)
1605 dev_kfree_skb(skb);
1606 return 0;
1610 * IdleTask periodically calls strip_xmit, so even when we have no IP packets
1611 * to send for an extended period of time, the watchdog processing still gets
1612 * done to ensure that the radio stays in Starmode
1615 static void strip_IdleTask(unsigned long parameter)
1617 strip_xmit(NULL, (struct net_device *) parameter);
1621 * Create the MAC header for an arbitrary protocol layer
1623 * saddr!=NULL means use this specific address (n/a for Metricom)
1624 * saddr==NULL means use default device source address
1625 * daddr!=NULL means use this destination address
1626 * daddr==NULL means leave destination address alone
1627 * (e.g. unresolved arp -- kernel will call
1628 * rebuild_header later to fill in the address)
1631 static int strip_header(struct sk_buff *skb, struct net_device *dev,
1632 unsigned short type, void *daddr, void *saddr,
1633 unsigned len)
1635 struct strip *strip_info = netdev_priv(dev);
1636 STRIP_Header *header = (STRIP_Header *) skb_push(skb, sizeof(STRIP_Header));
1638 /*printk(KERN_INFO "%s: strip_header 0x%04X %s\n", dev->name, type,
1639 type == ETH_P_IP ? "IP" : type == ETH_P_ARP ? "ARP" : ""); */
1641 header->src_addr = strip_info->true_dev_addr;
1642 header->protocol = htons(type);
1644 /*HexDump("strip_header", netdev_priv(dev), skb->data, skb->data + skb->len); */
1646 if (!daddr)
1647 return (-dev->hard_header_len);
1649 header->dst_addr = *(MetricomAddress *) daddr;
1650 return (dev->hard_header_len);
1654 * Rebuild the MAC header. This is called after an ARP
1655 * (or in future other address resolution) has completed on this
1656 * sk_buff. We now let ARP fill in the other fields.
1657 * I think this should return zero if packet is ready to send,
1658 * or non-zero if it needs more time to do an address lookup
1661 static int strip_rebuild_header(struct sk_buff *skb)
1663 #ifdef CONFIG_INET
1664 STRIP_Header *header = (STRIP_Header *) skb->data;
1666 /* Arp find returns zero if if knows the address, */
1667 /* or if it doesn't know the address it sends an ARP packet and returns non-zero */
1668 return arp_find(header->dst_addr.c, skb) ? 1 : 0;
1669 #else
1670 return 0;
1671 #endif
1675 /************************************************************************/
1676 /* Receiving routines */
1678 static int strip_receive_room(struct tty_struct *tty)
1680 return 0x10000; /* We can handle an infinite amount of data. :-) */
1684 * This function parses the response to the ATS300? command,
1685 * extracting the radio version and serial number.
1687 static void get_radio_version(struct strip *strip_info, __u8 * ptr, __u8 * end)
1689 __u8 *p, *value_begin, *value_end;
1690 int len;
1692 /* Determine the beginning of the second line of the payload */
1693 p = ptr;
1694 while (p < end && *p != 10)
1695 p++;
1696 if (p >= end)
1697 return;
1698 p++;
1699 value_begin = p;
1701 /* Determine the end of line */
1702 while (p < end && *p != 10)
1703 p++;
1704 if (p >= end)
1705 return;
1706 value_end = p;
1707 p++;
1709 len = value_end - value_begin;
1710 len = min_t(int, len, sizeof(FirmwareVersion) - 1);
1711 if (strip_info->firmware_version.c[0] == 0)
1712 printk(KERN_INFO "%s: Radio Firmware: %.*s\n",
1713 strip_info->dev->name, len, value_begin);
1714 sprintf(strip_info->firmware_version.c, "%.*s", len, value_begin);
1716 /* Look for the first colon */
1717 while (p < end && *p != ':')
1718 p++;
1719 if (p >= end)
1720 return;
1721 /* Skip over the space */
1722 p += 2;
1723 len = sizeof(SerialNumber) - 1;
1724 if (p + len <= end) {
1725 sprintf(strip_info->serial_number.c, "%.*s", len, p);
1726 } else {
1727 printk(KERN_DEBUG
1728 "STRIP: radio serial number shorter (%zd) than expected (%d)\n",
1729 end - p, len);
1734 * This function parses the response to the ATS325? command,
1735 * extracting the radio battery voltage.
1737 static void get_radio_voltage(struct strip *strip_info, __u8 * ptr, __u8 * end)
1739 int len;
1741 len = sizeof(BatteryVoltage) - 1;
1742 if (ptr + len <= end) {
1743 sprintf(strip_info->battery_voltage.c, "%.*s", len, ptr);
1744 } else {
1745 printk(KERN_DEBUG
1746 "STRIP: radio voltage string shorter (%zd) than expected (%d)\n",
1747 end - ptr, len);
1752 * This function parses the responses to the AT~LA and ATS311 commands,
1753 * which list the radio's neighbours.
1755 static void get_radio_neighbours(MetricomNodeTable * table, __u8 * ptr, __u8 * end)
1757 table->num_nodes = 0;
1758 while (ptr < end && table->num_nodes < NODE_TABLE_SIZE) {
1759 MetricomNode *node = &table->node[table->num_nodes++];
1760 char *dst = node->c, *limit = dst + sizeof(*node) - 1;
1761 while (ptr < end && *ptr <= 32)
1762 ptr++;
1763 while (ptr < end && dst < limit && *ptr != 10)
1764 *dst++ = *ptr++;
1765 *dst++ = 0;
1766 while (ptr < end && ptr[-1] != 10)
1767 ptr++;
1769 do_gettimeofday(&table->timestamp);
1772 static int get_radio_address(struct strip *strip_info, __u8 * p)
1774 MetricomAddress addr;
1776 if (string_to_radio_address(&addr, p))
1777 return (1);
1779 /* See if our radio address has changed */
1780 if (memcmp(strip_info->true_dev_addr.c, addr.c, sizeof(addr))) {
1781 MetricomAddressString addr_string;
1782 radio_address_to_string(&addr, &addr_string);
1783 printk(KERN_INFO "%s: Radio address = %s\n",
1784 strip_info->dev->name, addr_string.c);
1785 strip_info->true_dev_addr = addr;
1786 if (!strip_info->manual_dev_addr)
1787 *(MetricomAddress *) strip_info->dev->dev_addr =
1788 addr;
1789 /* Give the radio a few seconds to get its head straight, then send an arp */
1790 strip_info->gratuitous_arp = jiffies + 15 * HZ;
1791 strip_info->arp_interval = 1 * HZ;
1793 return (0);
1796 static int verify_checksum(struct strip *strip_info)
1798 __u8 *p = strip_info->sx_buff;
1799 __u8 *end = strip_info->sx_buff + strip_info->sx_count - 4;
1800 u_short sum =
1801 (READHEX16(end[0]) << 12) | (READHEX16(end[1]) << 8) |
1802 (READHEX16(end[2]) << 4) | (READHEX16(end[3]));
1803 while (p < end)
1804 sum -= *p++;
1805 if (sum == 0 && strip_info->firmware_level == StructuredMessages) {
1806 strip_info->firmware_level = ChecksummedMessages;
1807 printk(KERN_INFO "%s: Radio provides message checksums\n",
1808 strip_info->dev->name);
1810 return (sum == 0);
1813 static void RecvErr(char *msg, struct strip *strip_info)
1815 __u8 *ptr = strip_info->sx_buff;
1816 __u8 *end = strip_info->sx_buff + strip_info->sx_count;
1817 DumpData(msg, strip_info, ptr, end);
1818 strip_info->rx_errors++;
1821 static void RecvErr_Message(struct strip *strip_info, __u8 * sendername,
1822 const __u8 * msg, u_long len)
1824 if (has_prefix(msg, len, "001")) { /* Not in StarMode! */
1825 RecvErr("Error Msg:", strip_info);
1826 printk(KERN_INFO "%s: Radio %s is not in StarMode\n",
1827 strip_info->dev->name, sendername);
1830 else if (has_prefix(msg, len, "002")) { /* Remap handle */
1831 /* We ignore "Remap handle" messages for now */
1834 else if (has_prefix(msg, len, "003")) { /* Can't resolve name */
1835 RecvErr("Error Msg:", strip_info);
1836 printk(KERN_INFO "%s: Destination radio name is unknown\n",
1837 strip_info->dev->name);
1840 else if (has_prefix(msg, len, "004")) { /* Name too small or missing */
1841 strip_info->watchdog_doreset = jiffies + LongTime;
1842 #if TICKLE_TIMERS
1844 struct timeval tv;
1845 do_gettimeofday(&tv);
1846 printk(KERN_INFO
1847 "**** Got ERR_004 response at %02d.%06d\n",
1848 tv.tv_sec % 100, tv.tv_usec);
1850 #endif
1851 if (!strip_info->working) {
1852 strip_info->working = TRUE;
1853 printk(KERN_INFO "%s: Radio now in starmode\n",
1854 strip_info->dev->name);
1856 * If the radio has just entered a working state, we should do our first
1857 * probe ASAP, so that we find out our radio address etc. without delay.
1859 strip_info->watchdog_doprobe = jiffies;
1861 if (strip_info->firmware_level == NoStructure && sendername) {
1862 strip_info->firmware_level = StructuredMessages;
1863 strip_info->next_command = 0; /* Try to enable checksums ASAP */
1864 printk(KERN_INFO
1865 "%s: Radio provides structured messages\n",
1866 strip_info->dev->name);
1868 if (strip_info->firmware_level >= StructuredMessages) {
1870 * If this message has a valid checksum on the end, then the call to verify_checksum
1871 * will elevate the firmware_level to ChecksummedMessages for us. (The actual return
1872 * code from verify_checksum is ignored here.)
1874 verify_checksum(strip_info);
1876 * If the radio has structured messages but we don't yet have all our information about it,
1877 * we should do probes without delay, until we have gathered all the information
1879 if (!GOT_ALL_RADIO_INFO(strip_info))
1880 strip_info->watchdog_doprobe = jiffies;
1884 else if (has_prefix(msg, len, "005")) /* Bad count specification */
1885 RecvErr("Error Msg:", strip_info);
1887 else if (has_prefix(msg, len, "006")) /* Header too big */
1888 RecvErr("Error Msg:", strip_info);
1890 else if (has_prefix(msg, len, "007")) { /* Body too big */
1891 RecvErr("Error Msg:", strip_info);
1892 printk(KERN_ERR
1893 "%s: Error! Packet size too big for radio.\n",
1894 strip_info->dev->name);
1897 else if (has_prefix(msg, len, "008")) { /* Bad character in name */
1898 RecvErr("Error Msg:", strip_info);
1899 printk(KERN_ERR
1900 "%s: Radio name contains illegal character\n",
1901 strip_info->dev->name);
1904 else if (has_prefix(msg, len, "009")) /* No count or line terminator */
1905 RecvErr("Error Msg:", strip_info);
1907 else if (has_prefix(msg, len, "010")) /* Invalid checksum */
1908 RecvErr("Error Msg:", strip_info);
1910 else if (has_prefix(msg, len, "011")) /* Checksum didn't match */
1911 RecvErr("Error Msg:", strip_info);
1913 else if (has_prefix(msg, len, "012")) /* Failed to transmit packet */
1914 RecvErr("Error Msg:", strip_info);
1916 else
1917 RecvErr("Error Msg:", strip_info);
1920 static void process_AT_response(struct strip *strip_info, __u8 * ptr,
1921 __u8 * end)
1923 u_long len;
1924 __u8 *p = ptr;
1925 while (p < end && p[-1] != 10)
1926 p++; /* Skip past first newline character */
1927 /* Now ptr points to the AT command, and p points to the text of the response. */
1928 len = p - ptr;
1930 #if TICKLE_TIMERS
1932 struct timeval tv;
1933 do_gettimeofday(&tv);
1934 printk(KERN_INFO "**** Got AT response %.7s at %02d.%06d\n",
1935 ptr, tv.tv_sec % 100, tv.tv_usec);
1937 #endif
1939 if (has_prefix(ptr, len, "ATS300?"))
1940 get_radio_version(strip_info, p, end);
1941 else if (has_prefix(ptr, len, "ATS305?"))
1942 get_radio_address(strip_info, p);
1943 else if (has_prefix(ptr, len, "ATS311?"))
1944 get_radio_neighbours(&strip_info->poletops, p, end);
1945 else if (has_prefix(ptr, len, "ATS319=7"))
1946 verify_checksum(strip_info);
1947 else if (has_prefix(ptr, len, "ATS325?"))
1948 get_radio_voltage(strip_info, p, end);
1949 else if (has_prefix(ptr, len, "AT~LA"))
1950 get_radio_neighbours(&strip_info->portables, p, end);
1951 else
1952 RecvErr("Unknown AT Response:", strip_info);
1955 static void process_ACK(struct strip *strip_info, __u8 * ptr, __u8 * end)
1957 /* Currently we don't do anything with ACKs from the radio */
1960 static void process_Info(struct strip *strip_info, __u8 * ptr, __u8 * end)
1962 if (ptr + 16 > end)
1963 RecvErr("Bad Info Msg:", strip_info);
1966 static struct net_device *get_strip_dev(struct strip *strip_info)
1968 /* If our hardware address is *manually set* to zero, and we know our */
1969 /* real radio hardware address, try to find another strip device that has been */
1970 /* manually set to that address that we can 'transfer ownership' of this packet to */
1971 if (strip_info->manual_dev_addr &&
1972 !memcmp(strip_info->dev->dev_addr, zero_address.c,
1973 sizeof(zero_address))
1974 && memcmp(&strip_info->true_dev_addr, zero_address.c,
1975 sizeof(zero_address))) {
1976 struct net_device *dev;
1977 read_lock_bh(&dev_base_lock);
1978 dev = dev_base;
1979 while (dev) {
1980 if (dev->type == strip_info->dev->type &&
1981 !memcmp(dev->dev_addr,
1982 &strip_info->true_dev_addr,
1983 sizeof(MetricomAddress))) {
1984 printk(KERN_INFO
1985 "%s: Transferred packet ownership to %s.\n",
1986 strip_info->dev->name, dev->name);
1987 read_unlock_bh(&dev_base_lock);
1988 return (dev);
1990 dev = dev->next;
1992 read_unlock_bh(&dev_base_lock);
1994 return (strip_info->dev);
1998 * Send one completely decapsulated datagram to the next layer.
2001 static void deliver_packet(struct strip *strip_info, STRIP_Header * header,
2002 __u16 packetlen)
2004 struct sk_buff *skb = dev_alloc_skb(sizeof(STRIP_Header) + packetlen);
2005 if (!skb) {
2006 printk(KERN_ERR "%s: memory squeeze, dropping packet.\n",
2007 strip_info->dev->name);
2008 strip_info->rx_dropped++;
2009 } else {
2010 memcpy(skb_put(skb, sizeof(STRIP_Header)), header,
2011 sizeof(STRIP_Header));
2012 memcpy(skb_put(skb, packetlen), strip_info->rx_buff,
2013 packetlen);
2014 skb->dev = get_strip_dev(strip_info);
2015 skb->protocol = header->protocol;
2016 skb->mac.raw = skb->data;
2018 /* Having put a fake header on the front of the sk_buff for the */
2019 /* benefit of tools like tcpdump, skb_pull now 'consumes' that */
2020 /* fake header before we hand the packet up to the next layer. */
2021 skb_pull(skb, sizeof(STRIP_Header));
2023 /* Finally, hand the packet up to the next layer (e.g. IP or ARP, etc.) */
2024 strip_info->rx_packets++;
2025 strip_info->rx_pps_count++;
2026 #ifdef EXT_COUNTERS
2027 strip_info->rx_bytes += packetlen;
2028 #endif
2029 skb->dev->last_rx = jiffies;
2030 netif_rx(skb);
2034 static void process_IP_packet(struct strip *strip_info,
2035 STRIP_Header * header, __u8 * ptr,
2036 __u8 * end)
2038 __u16 packetlen;
2040 /* Decode start of the IP packet header */
2041 ptr = UnStuffData(ptr, end, strip_info->rx_buff, 4);
2042 if (!ptr) {
2043 RecvErr("IP Packet too short", strip_info);
2044 return;
2047 packetlen = ((__u16) strip_info->rx_buff[2] << 8) | strip_info->rx_buff[3];
2049 if (packetlen > MAX_RECV_MTU) {
2050 printk(KERN_INFO "%s: Dropping oversized received IP packet: %d bytes\n",
2051 strip_info->dev->name, packetlen);
2052 strip_info->rx_dropped++;
2053 return;
2056 /*printk(KERN_INFO "%s: Got %d byte IP packet\n", strip_info->dev->name, packetlen); */
2058 /* Decode remainder of the IP packet */
2059 ptr =
2060 UnStuffData(ptr, end, strip_info->rx_buff + 4, packetlen - 4);
2061 if (!ptr) {
2062 RecvErr("IP Packet too short", strip_info);
2063 return;
2066 if (ptr < end) {
2067 RecvErr("IP Packet too long", strip_info);
2068 return;
2071 header->protocol = htons(ETH_P_IP);
2073 deliver_packet(strip_info, header, packetlen);
2076 static void process_ARP_packet(struct strip *strip_info,
2077 STRIP_Header * header, __u8 * ptr,
2078 __u8 * end)
2080 __u16 packetlen;
2081 struct arphdr *arphdr = (struct arphdr *) strip_info->rx_buff;
2083 /* Decode start of the ARP packet */
2084 ptr = UnStuffData(ptr, end, strip_info->rx_buff, 8);
2085 if (!ptr) {
2086 RecvErr("ARP Packet too short", strip_info);
2087 return;
2090 packetlen = 8 + (arphdr->ar_hln + arphdr->ar_pln) * 2;
2092 if (packetlen > MAX_RECV_MTU) {
2093 printk(KERN_INFO
2094 "%s: Dropping oversized received ARP packet: %d bytes\n",
2095 strip_info->dev->name, packetlen);
2096 strip_info->rx_dropped++;
2097 return;
2100 /*printk(KERN_INFO "%s: Got %d byte ARP %s\n",
2101 strip_info->dev->name, packetlen,
2102 ntohs(arphdr->ar_op) == ARPOP_REQUEST ? "request" : "reply"); */
2104 /* Decode remainder of the ARP packet */
2105 ptr =
2106 UnStuffData(ptr, end, strip_info->rx_buff + 8, packetlen - 8);
2107 if (!ptr) {
2108 RecvErr("ARP Packet too short", strip_info);
2109 return;
2112 if (ptr < end) {
2113 RecvErr("ARP Packet too long", strip_info);
2114 return;
2117 header->protocol = htons(ETH_P_ARP);
2119 deliver_packet(strip_info, header, packetlen);
2123 * process_text_message processes a <CR>-terminated block of data received
2124 * from the radio that doesn't begin with a '*' character. All normal
2125 * Starmode communication messages with the radio begin with a '*',
2126 * so any text that does not indicates a serial port error, a radio that
2127 * is in Hayes command mode instead of Starmode, or a radio with really
2128 * old firmware that doesn't frame its Starmode responses properly.
2130 static void process_text_message(struct strip *strip_info)
2132 __u8 *msg = strip_info->sx_buff;
2133 int len = strip_info->sx_count;
2135 /* Check for anything that looks like it might be our radio name */
2136 /* (This is here for backwards compatibility with old firmware) */
2137 if (len == 9 && get_radio_address(strip_info, msg) == 0)
2138 return;
2140 if (text_equal(msg, len, "OK"))
2141 return; /* Ignore 'OK' responses from prior commands */
2142 if (text_equal(msg, len, "ERROR"))
2143 return; /* Ignore 'ERROR' messages */
2144 if (has_prefix(msg, len, "ate0q1"))
2145 return; /* Ignore character echo back from the radio */
2147 /* Catch other error messages */
2148 /* (This is here for backwards compatibility with old firmware) */
2149 if (has_prefix(msg, len, "ERR_")) {
2150 RecvErr_Message(strip_info, NULL, &msg[4], len - 4);
2151 return;
2154 RecvErr("No initial *", strip_info);
2158 * process_message processes a <CR>-terminated block of data received
2159 * from the radio. If the radio is not in Starmode or has old firmware,
2160 * it may be a line of text in response to an AT command. Ideally, with
2161 * a current radio that's properly in Starmode, all data received should
2162 * be properly framed and checksummed radio message blocks, containing
2163 * either a starmode packet, or a other communication from the radio
2164 * firmware, like "INF_" Info messages and &COMMAND responses.
2166 static void process_message(struct strip *strip_info)
2168 STRIP_Header header = { zero_address, zero_address, 0 };
2169 __u8 *ptr = strip_info->sx_buff;
2170 __u8 *end = strip_info->sx_buff + strip_info->sx_count;
2171 __u8 sendername[32], *sptr = sendername;
2172 MetricomKey key;
2174 /*HexDump("Receiving", strip_info, ptr, end); */
2176 /* Check for start of address marker, and then skip over it */
2177 if (*ptr == '*')
2178 ptr++;
2179 else {
2180 process_text_message(strip_info);
2181 return;
2184 /* Copy out the return address */
2185 while (ptr < end && *ptr != '*'
2186 && sptr < ARRAY_END(sendername) - 1)
2187 *sptr++ = *ptr++;
2188 *sptr = 0; /* Null terminate the sender name */
2190 /* Check for end of address marker, and skip over it */
2191 if (ptr >= end || *ptr != '*') {
2192 RecvErr("No second *", strip_info);
2193 return;
2195 ptr++; /* Skip the second '*' */
2197 /* If the sender name is "&COMMAND", ignore this 'packet' */
2198 /* (This is here for backwards compatibility with old firmware) */
2199 if (!strcmp(sendername, "&COMMAND")) {
2200 strip_info->firmware_level = NoStructure;
2201 strip_info->next_command = CompatibilityCommand;
2202 return;
2205 if (ptr + 4 > end) {
2206 RecvErr("No proto key", strip_info);
2207 return;
2210 /* Get the protocol key out of the buffer */
2211 key.c[0] = *ptr++;
2212 key.c[1] = *ptr++;
2213 key.c[2] = *ptr++;
2214 key.c[3] = *ptr++;
2216 /* If we're using checksums, verify the checksum at the end of the packet */
2217 if (strip_info->firmware_level >= ChecksummedMessages) {
2218 end -= 4; /* Chop the last four bytes off the packet (they're the checksum) */
2219 if (ptr > end) {
2220 RecvErr("Missing Checksum", strip_info);
2221 return;
2223 if (!verify_checksum(strip_info)) {
2224 RecvErr("Bad Checksum", strip_info);
2225 return;
2229 /*printk(KERN_INFO "%s: Got packet from \"%s\".\n", strip_info->dev->name, sendername); */
2232 * Fill in (pseudo) source and destination addresses in the packet.
2233 * We assume that the destination address was our address (the radio does not
2234 * tell us this). If the radio supplies a source address, then we use it.
2236 header.dst_addr = strip_info->true_dev_addr;
2237 string_to_radio_address(&header.src_addr, sendername);
2239 #ifdef EXT_COUNTERS
2240 if (key.l == SIP0Key.l) {
2241 strip_info->rx_rbytes += (end - ptr);
2242 process_IP_packet(strip_info, &header, ptr, end);
2243 } else if (key.l == ARP0Key.l) {
2244 strip_info->rx_rbytes += (end - ptr);
2245 process_ARP_packet(strip_info, &header, ptr, end);
2246 } else if (key.l == ATR_Key.l) {
2247 strip_info->rx_ebytes += (end - ptr);
2248 process_AT_response(strip_info, ptr, end);
2249 } else if (key.l == ACK_Key.l) {
2250 strip_info->rx_ebytes += (end - ptr);
2251 process_ACK(strip_info, ptr, end);
2252 } else if (key.l == INF_Key.l) {
2253 strip_info->rx_ebytes += (end - ptr);
2254 process_Info(strip_info, ptr, end);
2255 } else if (key.l == ERR_Key.l) {
2256 strip_info->rx_ebytes += (end - ptr);
2257 RecvErr_Message(strip_info, sendername, ptr, end - ptr);
2258 } else
2259 RecvErr("Unrecognized protocol key", strip_info);
2260 #else
2261 if (key.l == SIP0Key.l)
2262 process_IP_packet(strip_info, &header, ptr, end);
2263 else if (key.l == ARP0Key.l)
2264 process_ARP_packet(strip_info, &header, ptr, end);
2265 else if (key.l == ATR_Key.l)
2266 process_AT_response(strip_info, ptr, end);
2267 else if (key.l == ACK_Key.l)
2268 process_ACK(strip_info, ptr, end);
2269 else if (key.l == INF_Key.l)
2270 process_Info(strip_info, ptr, end);
2271 else if (key.l == ERR_Key.l)
2272 RecvErr_Message(strip_info, sendername, ptr, end - ptr);
2273 else
2274 RecvErr("Unrecognized protocol key", strip_info);
2275 #endif
2278 #define TTYERROR(X) ((X) == TTY_BREAK ? "Break" : \
2279 (X) == TTY_FRAME ? "Framing Error" : \
2280 (X) == TTY_PARITY ? "Parity Error" : \
2281 (X) == TTY_OVERRUN ? "Hardware Overrun" : "Unknown Error")
2284 * Handle the 'receiver data ready' interrupt.
2285 * This function is called by the 'tty_io' module in the kernel when
2286 * a block of STRIP data has been received, which can now be decapsulated
2287 * and sent on to some IP layer for further processing.
2290 static void strip_receive_buf(struct tty_struct *tty, const unsigned char *cp,
2291 char *fp, int count)
2293 struct strip *strip_info = (struct strip *) tty->disc_data;
2294 const unsigned char *end = cp + count;
2296 if (!strip_info || strip_info->magic != STRIP_MAGIC
2297 || !netif_running(strip_info->dev))
2298 return;
2300 spin_lock_bh(&strip_lock);
2301 #if 0
2303 struct timeval tv;
2304 do_gettimeofday(&tv);
2305 printk(KERN_INFO
2306 "**** strip_receive_buf: %3d bytes at %02d.%06d\n",
2307 count, tv.tv_sec % 100, tv.tv_usec);
2309 #endif
2311 #ifdef EXT_COUNTERS
2312 strip_info->rx_sbytes += count;
2313 #endif
2315 /* Read the characters out of the buffer */
2316 while (cp < end) {
2317 if (fp && *fp)
2318 printk(KERN_INFO "%s: %s on serial port\n",
2319 strip_info->dev->name, TTYERROR(*fp));
2320 if (fp && *fp++ && !strip_info->discard) { /* If there's a serial error, record it */
2321 /* If we have some characters in the buffer, discard them */
2322 strip_info->discard = strip_info->sx_count;
2323 strip_info->rx_errors++;
2326 /* Leading control characters (CR, NL, Tab, etc.) are ignored */
2327 if (strip_info->sx_count > 0 || *cp >= ' ') {
2328 if (*cp == 0x0D) { /* If end of packet, decide what to do with it */
2329 if (strip_info->sx_count > 3000)
2330 printk(KERN_INFO
2331 "%s: Cut a %d byte packet (%zd bytes remaining)%s\n",
2332 strip_info->dev->name,
2333 strip_info->sx_count,
2334 end - cp - 1,
2335 strip_info->
2336 discard ? " (discarded)" :
2337 "");
2338 if (strip_info->sx_count >
2339 strip_info->sx_size) {
2340 strip_info->rx_over_errors++;
2341 printk(KERN_INFO
2342 "%s: sx_buff overflow (%d bytes total)\n",
2343 strip_info->dev->name,
2344 strip_info->sx_count);
2345 } else if (strip_info->discard)
2346 printk(KERN_INFO
2347 "%s: Discarding bad packet (%d/%d)\n",
2348 strip_info->dev->name,
2349 strip_info->discard,
2350 strip_info->sx_count);
2351 else
2352 process_message(strip_info);
2353 strip_info->discard = 0;
2354 strip_info->sx_count = 0;
2355 } else {
2356 /* Make sure we have space in the buffer */
2357 if (strip_info->sx_count <
2358 strip_info->sx_size)
2359 strip_info->sx_buff[strip_info->
2360 sx_count] =
2361 *cp;
2362 strip_info->sx_count++;
2365 cp++;
2367 spin_unlock_bh(&strip_lock);
2371 /************************************************************************/
2372 /* General control routines */
2374 static int set_mac_address(struct strip *strip_info,
2375 MetricomAddress * addr)
2378 * We're using a manually specified address if the address is set
2379 * to anything other than all ones. Setting the address to all ones
2380 * disables manual mode and goes back to automatic address determination
2381 * (tracking the true address that the radio has).
2383 strip_info->manual_dev_addr =
2384 memcmp(addr->c, broadcast_address.c,
2385 sizeof(broadcast_address));
2386 if (strip_info->manual_dev_addr)
2387 *(MetricomAddress *) strip_info->dev->dev_addr = *addr;
2388 else
2389 *(MetricomAddress *) strip_info->dev->dev_addr =
2390 strip_info->true_dev_addr;
2391 return 0;
2394 static int strip_set_mac_address(struct net_device *dev, void *addr)
2396 struct strip *strip_info = netdev_priv(dev);
2397 struct sockaddr *sa = addr;
2398 printk(KERN_INFO "%s: strip_set_dev_mac_address called\n", dev->name);
2399 set_mac_address(strip_info, (MetricomAddress *) sa->sa_data);
2400 return 0;
2403 static struct net_device_stats *strip_get_stats(struct net_device *dev)
2405 struct strip *strip_info = netdev_priv(dev);
2406 static struct net_device_stats stats;
2408 memset(&stats, 0, sizeof(struct net_device_stats));
2410 stats.rx_packets = strip_info->rx_packets;
2411 stats.tx_packets = strip_info->tx_packets;
2412 stats.rx_dropped = strip_info->rx_dropped;
2413 stats.tx_dropped = strip_info->tx_dropped;
2414 stats.tx_errors = strip_info->tx_errors;
2415 stats.rx_errors = strip_info->rx_errors;
2416 stats.rx_over_errors = strip_info->rx_over_errors;
2417 return (&stats);
2421 /************************************************************************/
2422 /* Opening and closing */
2425 * Here's the order things happen:
2426 * When the user runs "slattach -p strip ..."
2427 * 1. The TTY module calls strip_open
2428 * 2. strip_open calls strip_alloc
2429 * 3. strip_alloc calls register_netdev
2430 * 4. register_netdev calls strip_dev_init
2431 * 5. then strip_open finishes setting up the strip_info
2433 * When the user runs "ifconfig st<x> up address netmask ..."
2434 * 6. strip_open_low gets called
2436 * When the user runs "ifconfig st<x> down"
2437 * 7. strip_close_low gets called
2439 * When the user kills the slattach process
2440 * 8. strip_close gets called
2441 * 9. strip_close calls dev_close
2442 * 10. if the device is still up, then dev_close calls strip_close_low
2443 * 11. strip_close calls strip_free
2446 /* Open the low-level part of the STRIP channel. Easy! */
2448 static int strip_open_low(struct net_device *dev)
2450 struct strip *strip_info = netdev_priv(dev);
2452 if (strip_info->tty == NULL)
2453 return (-ENODEV);
2455 if (!allocate_buffers(strip_info, dev->mtu))
2456 return (-ENOMEM);
2458 strip_info->sx_count = 0;
2459 strip_info->tx_left = 0;
2461 strip_info->discard = 0;
2462 strip_info->working = FALSE;
2463 strip_info->firmware_level = NoStructure;
2464 strip_info->next_command = CompatibilityCommand;
2465 strip_info->user_baud = get_baud(strip_info->tty);
2467 printk(KERN_INFO "%s: Initializing Radio.\n",
2468 strip_info->dev->name);
2469 ResetRadio(strip_info);
2470 strip_info->idle_timer.expires = jiffies + 1 * HZ;
2471 add_timer(&strip_info->idle_timer);
2472 netif_wake_queue(dev);
2473 return (0);
2478 * Close the low-level part of the STRIP channel. Easy!
2481 static int strip_close_low(struct net_device *dev)
2483 struct strip *strip_info = netdev_priv(dev);
2485 if (strip_info->tty == NULL)
2486 return -EBUSY;
2487 strip_info->tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP);
2489 netif_stop_queue(dev);
2492 * Free all STRIP frame buffers.
2494 kfree(strip_info->rx_buff);
2495 strip_info->rx_buff = NULL;
2496 kfree(strip_info->sx_buff);
2497 strip_info->sx_buff = NULL;
2498 kfree(strip_info->tx_buff);
2499 strip_info->tx_buff = NULL;
2501 del_timer(&strip_info->idle_timer);
2502 return 0;
2506 * This routine is called by DDI when the
2507 * (dynamically assigned) device is registered
2510 static void strip_dev_setup(struct net_device *dev)
2513 * Finish setting up the DEVICE info.
2516 SET_MODULE_OWNER(dev);
2518 dev->trans_start = 0;
2519 dev->last_rx = 0;
2520 dev->tx_queue_len = 30; /* Drop after 30 frames queued */
2522 dev->flags = 0;
2523 dev->mtu = DEFAULT_STRIP_MTU;
2524 dev->type = ARPHRD_METRICOM; /* dtang */
2525 dev->hard_header_len = sizeof(STRIP_Header);
2527 * dev->priv Already holds a pointer to our struct strip
2530 *(MetricomAddress *) & dev->broadcast = broadcast_address;
2531 dev->dev_addr[0] = 0;
2532 dev->addr_len = sizeof(MetricomAddress);
2535 * Pointers to interface service routines.
2538 dev->open = strip_open_low;
2539 dev->stop = strip_close_low;
2540 dev->hard_start_xmit = strip_xmit;
2541 dev->hard_header = strip_header;
2542 dev->rebuild_header = strip_rebuild_header;
2543 dev->set_mac_address = strip_set_mac_address;
2544 dev->get_stats = strip_get_stats;
2545 dev->change_mtu = strip_change_mtu;
2549 * Free a STRIP channel.
2552 static void strip_free(struct strip *strip_info)
2554 spin_lock_bh(&strip_lock);
2555 list_del_rcu(&strip_info->list);
2556 spin_unlock_bh(&strip_lock);
2558 strip_info->magic = 0;
2560 free_netdev(strip_info->dev);
2565 * Allocate a new free STRIP channel
2567 static struct strip *strip_alloc(void)
2569 struct list_head *n;
2570 struct net_device *dev;
2571 struct strip *strip_info;
2573 dev = alloc_netdev(sizeof(struct strip), "st%d",
2574 strip_dev_setup);
2576 if (!dev)
2577 return NULL; /* If no more memory, return */
2580 strip_info = dev->priv;
2581 strip_info->dev = dev;
2583 strip_info->magic = STRIP_MAGIC;
2584 strip_info->tty = NULL;
2586 strip_info->gratuitous_arp = jiffies + LongTime;
2587 strip_info->arp_interval = 0;
2588 init_timer(&strip_info->idle_timer);
2589 strip_info->idle_timer.data = (long) dev;
2590 strip_info->idle_timer.function = strip_IdleTask;
2593 spin_lock_bh(&strip_lock);
2594 rescan:
2596 * Search the list to find where to put our new entry
2597 * (and in the process decide what channel number it is
2598 * going to be)
2600 list_for_each(n, &strip_list) {
2601 struct strip *s = hlist_entry(n, struct strip, list);
2603 if (s->dev->base_addr == dev->base_addr) {
2604 ++dev->base_addr;
2605 goto rescan;
2609 sprintf(dev->name, "st%ld", dev->base_addr);
2611 list_add_tail_rcu(&strip_info->list, &strip_list);
2612 spin_unlock_bh(&strip_lock);
2614 return strip_info;
2618 * Open the high-level part of the STRIP channel.
2619 * This function is called by the TTY module when the
2620 * STRIP line discipline is called for. Because we are
2621 * sure the tty line exists, we only have to link it to
2622 * a free STRIP channel...
2625 static int strip_open(struct tty_struct *tty)
2627 struct strip *strip_info = (struct strip *) tty->disc_data;
2630 * First make sure we're not already connected.
2633 if (strip_info && strip_info->magic == STRIP_MAGIC)
2634 return -EEXIST;
2637 * OK. Find a free STRIP channel to use.
2639 if ((strip_info = strip_alloc()) == NULL)
2640 return -ENFILE;
2643 * Register our newly created device so it can be ifconfig'd
2644 * strip_dev_init() will be called as a side-effect
2647 if (register_netdev(strip_info->dev) != 0) {
2648 printk(KERN_ERR "strip: register_netdev() failed.\n");
2649 strip_free(strip_info);
2650 return -ENFILE;
2653 strip_info->tty = tty;
2654 tty->disc_data = strip_info;
2655 if (tty->driver->flush_buffer)
2656 tty->driver->flush_buffer(tty);
2659 * Restore default settings
2662 strip_info->dev->type = ARPHRD_METRICOM; /* dtang */
2665 * Set tty options
2668 tty->termios->c_iflag |= IGNBRK | IGNPAR; /* Ignore breaks and parity errors. */
2669 tty->termios->c_cflag |= CLOCAL; /* Ignore modem control signals. */
2670 tty->termios->c_cflag &= ~HUPCL; /* Don't close on hup */
2672 printk(KERN_INFO "STRIP: device \"%s\" activated\n",
2673 strip_info->dev->name);
2676 * Done. We have linked the TTY line to a channel.
2678 return (strip_info->dev->base_addr);
2682 * Close down a STRIP channel.
2683 * This means flushing out any pending queues, and then restoring the
2684 * TTY line discipline to what it was before it got hooked to STRIP
2685 * (which usually is TTY again).
2688 static void strip_close(struct tty_struct *tty)
2690 struct strip *strip_info = (struct strip *) tty->disc_data;
2693 * First make sure we're connected.
2696 if (!strip_info || strip_info->magic != STRIP_MAGIC)
2697 return;
2699 unregister_netdev(strip_info->dev);
2701 tty->disc_data = NULL;
2702 strip_info->tty = NULL;
2703 printk(KERN_INFO "STRIP: device \"%s\" closed down\n",
2704 strip_info->dev->name);
2705 strip_free(strip_info);
2706 tty->disc_data = NULL;
2710 /************************************************************************/
2711 /* Perform I/O control calls on an active STRIP channel. */
2713 static int strip_ioctl(struct tty_struct *tty, struct file *file,
2714 unsigned int cmd, unsigned long arg)
2716 struct strip *strip_info = (struct strip *) tty->disc_data;
2719 * First make sure we're connected.
2722 if (!strip_info || strip_info->magic != STRIP_MAGIC)
2723 return -EINVAL;
2725 switch (cmd) {
2726 case SIOCGIFNAME:
2727 if(copy_to_user((void __user *) arg, strip_info->dev->name, strlen(strip_info->dev->name) + 1))
2728 return -EFAULT;
2729 break;
2730 case SIOCSIFHWADDR:
2732 MetricomAddress addr;
2733 //printk(KERN_INFO "%s: SIOCSIFHWADDR\n", strip_info->dev->name);
2734 if(copy_from_user(&addr, (void __user *) arg, sizeof(MetricomAddress)))
2735 return -EFAULT;
2736 return set_mac_address(strip_info, &addr);
2739 * Allow stty to read, but not set, the serial port
2742 case TCGETS:
2743 case TCGETA:
2744 return n_tty_ioctl(tty, file, cmd, arg);
2745 break;
2746 default:
2747 return -ENOIOCTLCMD;
2748 break;
2750 return 0;
2754 /************************************************************************/
2755 /* Initialization */
2757 static struct tty_ldisc strip_ldisc = {
2758 .magic = TTY_LDISC_MAGIC,
2759 .name = "strip",
2760 .owner = THIS_MODULE,
2761 .open = strip_open,
2762 .close = strip_close,
2763 .ioctl = strip_ioctl,
2764 .receive_buf = strip_receive_buf,
2765 .receive_room = strip_receive_room,
2766 .write_wakeup = strip_write_some_more,
2770 * Initialize the STRIP driver.
2771 * This routine is called at boot time, to bootstrap the multi-channel
2772 * STRIP driver
2775 static char signon[] __initdata =
2776 KERN_INFO "STRIP: Version %s (unlimited channels)\n";
2778 static int __init strip_init_driver(void)
2780 int status;
2782 printk(signon, StripVersion);
2786 * Fill in our line protocol discipline, and register it
2788 if ((status = tty_register_ldisc(N_STRIP, &strip_ldisc)))
2789 printk(KERN_ERR "STRIP: can't register line discipline (err = %d)\n",
2790 status);
2793 * Register the status file with /proc
2795 proc_net_fops_create("strip", S_IFREG | S_IRUGO, &strip_seq_fops);
2797 return status;
2800 module_init(strip_init_driver);
2802 static const char signoff[] __exitdata =
2803 KERN_INFO "STRIP: Module Unloaded\n";
2805 static void __exit strip_exit_driver(void)
2807 int i;
2808 struct list_head *p,*n;
2810 /* module ref count rules assure that all entries are unregistered */
2811 list_for_each_safe(p, n, &strip_list) {
2812 struct strip *s = list_entry(p, struct strip, list);
2813 strip_free(s);
2816 /* Unregister with the /proc/net file here. */
2817 proc_net_remove("strip");
2819 if ((i = tty_unregister_ldisc(N_STRIP)))
2820 printk(KERN_ERR "STRIP: can't unregister line discipline (err = %d)\n", i);
2822 printk(signoff);
2825 module_exit(strip_exit_driver);
2827 MODULE_AUTHOR("Stuart Cheshire <cheshire@cs.stanford.edu>");
2828 MODULE_DESCRIPTION("Starmode Radio IP (STRIP) Device Driver");
2829 MODULE_LICENSE("Dual BSD/GPL");
2831 MODULE_SUPPORTED_DEVICE("Starmode Radio IP (STRIP) modem");