2 * linux/kernel/workqueue.c
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
7 * Started by Ingo Molnar, Copyright (C) 2002
9 * Derived from the taskqueue/keventd code by:
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
32 * The per-CPU workqueue (if single thread, we always use cpu 0's).
34 * The sequence counters are for flush_scheduled_work(). It wants to wait
35 * until until all currently-scheduled works are completed, but it doesn't
36 * want to be livelocked by new, incoming ones. So it waits until
37 * remove_sequence is >= the insert_sequence which pertained when
38 * flush_scheduled_work() was called.
40 struct cpu_workqueue_struct
{
44 long remove_sequence
; /* Least-recently added (next to run) */
45 long insert_sequence
; /* Next to add */
47 struct list_head worklist
;
48 wait_queue_head_t more_work
;
49 wait_queue_head_t work_done
;
51 struct workqueue_struct
*wq
;
54 int run_depth
; /* Detect run_workqueue() recursion depth */
55 } ____cacheline_aligned
;
58 * The externally visible workqueue abstraction is an array of
61 struct workqueue_struct
{
62 struct cpu_workqueue_struct
*cpu_wq
;
64 struct list_head list
; /* Empty if single thread */
67 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
68 threads to each one as cpus come/go. */
69 static DEFINE_SPINLOCK(workqueue_lock
);
70 static LIST_HEAD(workqueues
);
72 /* If it's single threaded, it isn't in the list of workqueues. */
73 static inline int is_single_threaded(struct workqueue_struct
*wq
)
75 return list_empty(&wq
->list
);
78 /* Preempt must be disabled. */
79 static void __queue_work(struct cpu_workqueue_struct
*cwq
,
80 struct work_struct
*work
)
84 spin_lock_irqsave(&cwq
->lock
, flags
);
86 list_add_tail(&work
->entry
, &cwq
->worklist
);
87 cwq
->insert_sequence
++;
88 wake_up(&cwq
->more_work
);
89 spin_unlock_irqrestore(&cwq
->lock
, flags
);
93 * Queue work on a workqueue. Return non-zero if it was successfully
96 * We queue the work to the CPU it was submitted, but there is no
97 * guarantee that it will be processed by that CPU.
99 int fastcall
queue_work(struct workqueue_struct
*wq
, struct work_struct
*work
)
101 int ret
= 0, cpu
= get_cpu();
103 if (!test_and_set_bit(0, &work
->pending
)) {
104 if (unlikely(is_single_threaded(wq
)))
105 cpu
= any_online_cpu(cpu_online_map
);
106 BUG_ON(!list_empty(&work
->entry
));
107 __queue_work(per_cpu_ptr(wq
->cpu_wq
, cpu
), work
);
114 static void delayed_work_timer_fn(unsigned long __data
)
116 struct work_struct
*work
= (struct work_struct
*)__data
;
117 struct workqueue_struct
*wq
= work
->wq_data
;
118 int cpu
= smp_processor_id();
120 if (unlikely(is_single_threaded(wq
)))
121 cpu
= any_online_cpu(cpu_online_map
);
123 __queue_work(per_cpu_ptr(wq
->cpu_wq
, cpu
), work
);
126 int fastcall
queue_delayed_work(struct workqueue_struct
*wq
,
127 struct work_struct
*work
, unsigned long delay
)
130 struct timer_list
*timer
= &work
->timer
;
132 if (!test_and_set_bit(0, &work
->pending
)) {
133 BUG_ON(timer_pending(timer
));
134 BUG_ON(!list_empty(&work
->entry
));
136 /* This stores wq for the moment, for the timer_fn */
138 timer
->expires
= jiffies
+ delay
;
139 timer
->data
= (unsigned long)work
;
140 timer
->function
= delayed_work_timer_fn
;
147 static inline void run_workqueue(struct cpu_workqueue_struct
*cwq
)
152 * Keep taking off work from the queue until
155 spin_lock_irqsave(&cwq
->lock
, flags
);
157 if (cwq
->run_depth
> 3) {
158 /* morton gets to eat his hat */
159 printk("%s: recursion depth exceeded: %d\n",
160 __FUNCTION__
, cwq
->run_depth
);
163 while (!list_empty(&cwq
->worklist
)) {
164 struct work_struct
*work
= list_entry(cwq
->worklist
.next
,
165 struct work_struct
, entry
);
166 void (*f
) (void *) = work
->func
;
167 void *data
= work
->data
;
169 list_del_init(cwq
->worklist
.next
);
170 spin_unlock_irqrestore(&cwq
->lock
, flags
);
172 BUG_ON(work
->wq_data
!= cwq
);
173 clear_bit(0, &work
->pending
);
176 spin_lock_irqsave(&cwq
->lock
, flags
);
177 cwq
->remove_sequence
++;
178 wake_up(&cwq
->work_done
);
181 spin_unlock_irqrestore(&cwq
->lock
, flags
);
184 static int worker_thread(void *__cwq
)
186 struct cpu_workqueue_struct
*cwq
= __cwq
;
187 DECLARE_WAITQUEUE(wait
, current
);
188 struct k_sigaction sa
;
191 current
->flags
|= PF_NOFREEZE
;
193 set_user_nice(current
, -5);
195 /* Block and flush all signals */
196 sigfillset(&blocked
);
197 sigprocmask(SIG_BLOCK
, &blocked
, NULL
);
198 flush_signals(current
);
200 /* SIG_IGN makes children autoreap: see do_notify_parent(). */
201 sa
.sa
.sa_handler
= SIG_IGN
;
203 siginitset(&sa
.sa
.sa_mask
, sigmask(SIGCHLD
));
204 do_sigaction(SIGCHLD
, &sa
, (struct k_sigaction
*)0);
206 set_current_state(TASK_INTERRUPTIBLE
);
207 while (!kthread_should_stop()) {
208 add_wait_queue(&cwq
->more_work
, &wait
);
209 if (list_empty(&cwq
->worklist
))
212 __set_current_state(TASK_RUNNING
);
213 remove_wait_queue(&cwq
->more_work
, &wait
);
215 if (!list_empty(&cwq
->worklist
))
217 set_current_state(TASK_INTERRUPTIBLE
);
219 __set_current_state(TASK_RUNNING
);
223 static void flush_cpu_workqueue(struct cpu_workqueue_struct
*cwq
)
225 if (cwq
->thread
== current
) {
227 * Probably keventd trying to flush its own queue. So simply run
228 * it by hand rather than deadlocking.
233 long sequence_needed
;
235 spin_lock_irq(&cwq
->lock
);
236 sequence_needed
= cwq
->insert_sequence
;
238 while (sequence_needed
- cwq
->remove_sequence
> 0) {
239 prepare_to_wait(&cwq
->work_done
, &wait
,
240 TASK_UNINTERRUPTIBLE
);
241 spin_unlock_irq(&cwq
->lock
);
243 spin_lock_irq(&cwq
->lock
);
245 finish_wait(&cwq
->work_done
, &wait
);
246 spin_unlock_irq(&cwq
->lock
);
251 * flush_workqueue - ensure that any scheduled work has run to completion.
253 * Forces execution of the workqueue and blocks until its completion.
254 * This is typically used in driver shutdown handlers.
256 * This function will sample each workqueue's current insert_sequence number and
257 * will sleep until the head sequence is greater than or equal to that. This
258 * means that we sleep until all works which were queued on entry have been
259 * handled, but we are not livelocked by new incoming ones.
261 * This function used to run the workqueues itself. Now we just wait for the
262 * helper threads to do it.
264 void fastcall
flush_workqueue(struct workqueue_struct
*wq
)
268 if (is_single_threaded(wq
)) {
269 /* Always use first cpu's area. */
270 flush_cpu_workqueue(per_cpu_ptr(wq
->cpu_wq
, any_online_cpu(cpu_online_map
)));
275 for_each_online_cpu(cpu
)
276 flush_cpu_workqueue(per_cpu_ptr(wq
->cpu_wq
, cpu
));
277 unlock_cpu_hotplug();
281 static struct task_struct
*create_workqueue_thread(struct workqueue_struct
*wq
,
284 struct cpu_workqueue_struct
*cwq
= per_cpu_ptr(wq
->cpu_wq
, cpu
);
285 struct task_struct
*p
;
287 spin_lock_init(&cwq
->lock
);
290 cwq
->insert_sequence
= 0;
291 cwq
->remove_sequence
= 0;
292 INIT_LIST_HEAD(&cwq
->worklist
);
293 init_waitqueue_head(&cwq
->more_work
);
294 init_waitqueue_head(&cwq
->work_done
);
296 if (is_single_threaded(wq
))
297 p
= kthread_create(worker_thread
, cwq
, "%s", wq
->name
);
299 p
= kthread_create(worker_thread
, cwq
, "%s/%d", wq
->name
, cpu
);
306 struct workqueue_struct
*__create_workqueue(const char *name
,
309 int cpu
, destroy
= 0;
310 struct workqueue_struct
*wq
;
311 struct task_struct
*p
;
313 wq
= kzalloc(sizeof(*wq
), GFP_KERNEL
);
317 wq
->cpu_wq
= alloc_percpu(struct cpu_workqueue_struct
);
319 /* We don't need the distraction of CPUs appearing and vanishing. */
322 INIT_LIST_HEAD(&wq
->list
);
323 p
= create_workqueue_thread(wq
, any_online_cpu(cpu_online_map
));
329 spin_lock(&workqueue_lock
);
330 list_add(&wq
->list
, &workqueues
);
331 spin_unlock(&workqueue_lock
);
332 for_each_online_cpu(cpu
) {
333 p
= create_workqueue_thread(wq
, cpu
);
335 kthread_bind(p
, cpu
);
341 unlock_cpu_hotplug();
344 * Was there any error during startup? If yes then clean up:
347 destroy_workqueue(wq
);
353 static void cleanup_workqueue_thread(struct workqueue_struct
*wq
, int cpu
)
355 struct cpu_workqueue_struct
*cwq
;
357 struct task_struct
*p
;
359 cwq
= per_cpu_ptr(wq
->cpu_wq
, cpu
);
360 spin_lock_irqsave(&cwq
->lock
, flags
);
363 spin_unlock_irqrestore(&cwq
->lock
, flags
);
368 void destroy_workqueue(struct workqueue_struct
*wq
)
374 /* We don't need the distraction of CPUs appearing and vanishing. */
376 if (is_single_threaded(wq
))
377 cleanup_workqueue_thread(wq
, any_online_cpu(cpu_online_map
));
379 for_each_online_cpu(cpu
)
380 cleanup_workqueue_thread(wq
, cpu
);
381 spin_lock(&workqueue_lock
);
383 spin_unlock(&workqueue_lock
);
385 unlock_cpu_hotplug();
386 free_percpu(wq
->cpu_wq
);
390 static struct workqueue_struct
*keventd_wq
;
392 int fastcall
schedule_work(struct work_struct
*work
)
394 return queue_work(keventd_wq
, work
);
397 int fastcall
schedule_delayed_work(struct work_struct
*work
, unsigned long delay
)
399 return queue_delayed_work(keventd_wq
, work
, delay
);
402 int schedule_delayed_work_on(int cpu
,
403 struct work_struct
*work
, unsigned long delay
)
406 struct timer_list
*timer
= &work
->timer
;
408 if (!test_and_set_bit(0, &work
->pending
)) {
409 BUG_ON(timer_pending(timer
));
410 BUG_ON(!list_empty(&work
->entry
));
411 /* This stores keventd_wq for the moment, for the timer_fn */
412 work
->wq_data
= keventd_wq
;
413 timer
->expires
= jiffies
+ delay
;
414 timer
->data
= (unsigned long)work
;
415 timer
->function
= delayed_work_timer_fn
;
416 add_timer_on(timer
, cpu
);
422 void flush_scheduled_work(void)
424 flush_workqueue(keventd_wq
);
428 * cancel_rearming_delayed_workqueue - reliably kill off a delayed
429 * work whose handler rearms the delayed work.
430 * @wq: the controlling workqueue structure
431 * @work: the delayed work struct
433 void cancel_rearming_delayed_workqueue(struct workqueue_struct
*wq
,
434 struct work_struct
*work
)
436 while (!cancel_delayed_work(work
))
439 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue
);
442 * cancel_rearming_delayed_work - reliably kill off a delayed keventd
443 * work whose handler rearms the delayed work.
444 * @work: the delayed work struct
446 void cancel_rearming_delayed_work(struct work_struct
*work
)
448 cancel_rearming_delayed_workqueue(keventd_wq
, work
);
450 EXPORT_SYMBOL(cancel_rearming_delayed_work
);
454 return keventd_wq
!= NULL
;
457 int current_is_keventd(void)
459 struct cpu_workqueue_struct
*cwq
;
460 int cpu
= smp_processor_id(); /* preempt-safe: keventd is per-cpu */
465 cwq
= per_cpu_ptr(keventd_wq
->cpu_wq
, cpu
);
466 if (current
== cwq
->thread
)
473 #ifdef CONFIG_HOTPLUG_CPU
474 /* Take the work from this (downed) CPU. */
475 static void take_over_work(struct workqueue_struct
*wq
, unsigned int cpu
)
477 struct cpu_workqueue_struct
*cwq
= per_cpu_ptr(wq
->cpu_wq
, cpu
);
479 struct work_struct
*work
;
481 spin_lock_irq(&cwq
->lock
);
482 list_splice_init(&cwq
->worklist
, &list
);
484 while (!list_empty(&list
)) {
485 printk("Taking work for %s\n", wq
->name
);
486 work
= list_entry(list
.next
,struct work_struct
,entry
);
487 list_del(&work
->entry
);
488 __queue_work(per_cpu_ptr(wq
->cpu_wq
, smp_processor_id()), work
);
490 spin_unlock_irq(&cwq
->lock
);
493 /* We're holding the cpucontrol mutex here */
494 static int __devinit
workqueue_cpu_callback(struct notifier_block
*nfb
,
495 unsigned long action
,
498 unsigned int hotcpu
= (unsigned long)hcpu
;
499 struct workqueue_struct
*wq
;
503 /* Create a new workqueue thread for it. */
504 list_for_each_entry(wq
, &workqueues
, list
) {
505 if (!create_workqueue_thread(wq
, hotcpu
)) {
506 printk("workqueue for %i failed\n", hotcpu
);
513 /* Kick off worker threads. */
514 list_for_each_entry(wq
, &workqueues
, list
) {
515 struct cpu_workqueue_struct
*cwq
;
517 cwq
= per_cpu_ptr(wq
->cpu_wq
, hotcpu
);
518 kthread_bind(cwq
->thread
, hotcpu
);
519 wake_up_process(cwq
->thread
);
523 case CPU_UP_CANCELED
:
524 list_for_each_entry(wq
, &workqueues
, list
) {
525 /* Unbind so it can run. */
526 kthread_bind(per_cpu_ptr(wq
->cpu_wq
, hotcpu
)->thread
,
527 any_online_cpu(cpu_online_map
));
528 cleanup_workqueue_thread(wq
, hotcpu
);
533 list_for_each_entry(wq
, &workqueues
, list
)
534 cleanup_workqueue_thread(wq
, hotcpu
);
535 list_for_each_entry(wq
, &workqueues
, list
)
536 take_over_work(wq
, hotcpu
);
544 void init_workqueues(void)
546 hotcpu_notifier(workqueue_cpu_callback
, 0);
547 keventd_wq
= create_workqueue("events");
551 EXPORT_SYMBOL_GPL(__create_workqueue
);
552 EXPORT_SYMBOL_GPL(queue_work
);
553 EXPORT_SYMBOL_GPL(queue_delayed_work
);
554 EXPORT_SYMBOL_GPL(flush_workqueue
);
555 EXPORT_SYMBOL_GPL(destroy_workqueue
);
557 EXPORT_SYMBOL(schedule_work
);
558 EXPORT_SYMBOL(schedule_delayed_work
);
559 EXPORT_SYMBOL(schedule_delayed_work_on
);
560 EXPORT_SYMBOL(flush_scheduled_work
);