md: fix integer as NULL pointer warnings in md.c
[linux-2.6/zen-sources.git] / drivers / md / md.c
blob87620b705bee01182e37cdb0a95bf825f75d77b2
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
46 #include <linux/freezer.h>
48 #include <linux/init.h>
50 #include <linux/file.h>
52 #ifdef CONFIG_KMOD
53 #include <linux/kmod.h>
54 #endif
56 #include <asm/unaligned.h>
58 #define MAJOR_NR MD_MAJOR
59 #define MD_DRIVER
61 /* 63 partitions with the alternate major number (mdp) */
62 #define MdpMinorShift 6
64 #define DEBUG 0
65 #define dprintk(x...) ((void)(DEBUG && printk(x)))
68 #ifndef MODULE
69 static void autostart_arrays (int part);
70 #endif
72 static LIST_HEAD(pers_list);
73 static DEFINE_SPINLOCK(pers_lock);
75 static void md_print_devices(void);
77 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
80 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
81 * is 1000 KB/sec, so the extra system load does not show up that much.
82 * Increase it if you want to have more _guaranteed_ speed. Note that
83 * the RAID driver will use the maximum available bandwidth if the IO
84 * subsystem is idle. There is also an 'absolute maximum' reconstruction
85 * speed limit - in case reconstruction slows down your system despite
86 * idle IO detection.
88 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
89 * or /sys/block/mdX/md/sync_speed_{min,max}
92 static int sysctl_speed_limit_min = 1000;
93 static int sysctl_speed_limit_max = 200000;
94 static inline int speed_min(mddev_t *mddev)
96 return mddev->sync_speed_min ?
97 mddev->sync_speed_min : sysctl_speed_limit_min;
100 static inline int speed_max(mddev_t *mddev)
102 return mddev->sync_speed_max ?
103 mddev->sync_speed_max : sysctl_speed_limit_max;
106 static struct ctl_table_header *raid_table_header;
108 static ctl_table raid_table[] = {
110 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
111 .procname = "speed_limit_min",
112 .data = &sysctl_speed_limit_min,
113 .maxlen = sizeof(int),
114 .mode = S_IRUGO|S_IWUSR,
115 .proc_handler = &proc_dointvec,
118 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
119 .procname = "speed_limit_max",
120 .data = &sysctl_speed_limit_max,
121 .maxlen = sizeof(int),
122 .mode = S_IRUGO|S_IWUSR,
123 .proc_handler = &proc_dointvec,
125 { .ctl_name = 0 }
128 static ctl_table raid_dir_table[] = {
130 .ctl_name = DEV_RAID,
131 .procname = "raid",
132 .maxlen = 0,
133 .mode = S_IRUGO|S_IXUGO,
134 .child = raid_table,
136 { .ctl_name = 0 }
139 static ctl_table raid_root_table[] = {
141 .ctl_name = CTL_DEV,
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
147 { .ctl_name = 0 }
150 static struct block_device_operations md_fops;
152 static int start_readonly;
155 * We have a system wide 'event count' that is incremented
156 * on any 'interesting' event, and readers of /proc/mdstat
157 * can use 'poll' or 'select' to find out when the event
158 * count increases.
160 * Events are:
161 * start array, stop array, error, add device, remove device,
162 * start build, activate spare
164 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
165 static atomic_t md_event_count;
166 void md_new_event(mddev_t *mddev)
168 atomic_inc(&md_event_count);
169 wake_up(&md_event_waiters);
170 sysfs_notify(&mddev->kobj, NULL, "sync_action");
172 EXPORT_SYMBOL_GPL(md_new_event);
174 /* Alternate version that can be called from interrupts
175 * when calling sysfs_notify isn't needed.
177 static void md_new_event_inintr(mddev_t *mddev)
179 atomic_inc(&md_event_count);
180 wake_up(&md_event_waiters);
184 * Enables to iterate over all existing md arrays
185 * all_mddevs_lock protects this list.
187 static LIST_HEAD(all_mddevs);
188 static DEFINE_SPINLOCK(all_mddevs_lock);
192 * iterates through all used mddevs in the system.
193 * We take care to grab the all_mddevs_lock whenever navigating
194 * the list, and to always hold a refcount when unlocked.
195 * Any code which breaks out of this loop while own
196 * a reference to the current mddev and must mddev_put it.
198 #define for_each_mddev(mddev,tmp) \
200 for (({ spin_lock(&all_mddevs_lock); \
201 tmp = all_mddevs.next; \
202 mddev = NULL;}); \
203 ({ if (tmp != &all_mddevs) \
204 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
205 spin_unlock(&all_mddevs_lock); \
206 if (mddev) mddev_put(mddev); \
207 mddev = list_entry(tmp, mddev_t, all_mddevs); \
208 tmp != &all_mddevs;}); \
209 ({ spin_lock(&all_mddevs_lock); \
210 tmp = tmp->next;}) \
214 static int md_fail_request (struct request_queue *q, struct bio *bio)
216 bio_io_error(bio);
217 return 0;
220 static inline mddev_t *mddev_get(mddev_t *mddev)
222 atomic_inc(&mddev->active);
223 return mddev;
226 static void mddev_put(mddev_t *mddev)
228 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
229 return;
230 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
231 list_del(&mddev->all_mddevs);
232 spin_unlock(&all_mddevs_lock);
233 blk_cleanup_queue(mddev->queue);
234 kobject_put(&mddev->kobj);
235 } else
236 spin_unlock(&all_mddevs_lock);
239 static mddev_t * mddev_find(dev_t unit)
241 mddev_t *mddev, *new = NULL;
243 retry:
244 spin_lock(&all_mddevs_lock);
245 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
246 if (mddev->unit == unit) {
247 mddev_get(mddev);
248 spin_unlock(&all_mddevs_lock);
249 kfree(new);
250 return mddev;
253 if (new) {
254 list_add(&new->all_mddevs, &all_mddevs);
255 spin_unlock(&all_mddevs_lock);
256 return new;
258 spin_unlock(&all_mddevs_lock);
260 new = kzalloc(sizeof(*new), GFP_KERNEL);
261 if (!new)
262 return NULL;
264 new->unit = unit;
265 if (MAJOR(unit) == MD_MAJOR)
266 new->md_minor = MINOR(unit);
267 else
268 new->md_minor = MINOR(unit) >> MdpMinorShift;
270 mutex_init(&new->reconfig_mutex);
271 INIT_LIST_HEAD(&new->disks);
272 INIT_LIST_HEAD(&new->all_mddevs);
273 init_timer(&new->safemode_timer);
274 atomic_set(&new->active, 1);
275 spin_lock_init(&new->write_lock);
276 init_waitqueue_head(&new->sb_wait);
277 new->reshape_position = MaxSector;
278 new->resync_max = MaxSector;
280 new->queue = blk_alloc_queue(GFP_KERNEL);
281 if (!new->queue) {
282 kfree(new);
283 return NULL;
285 set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
287 blk_queue_make_request(new->queue, md_fail_request);
289 goto retry;
292 static inline int mddev_lock(mddev_t * mddev)
294 return mutex_lock_interruptible(&mddev->reconfig_mutex);
297 static inline int mddev_trylock(mddev_t * mddev)
299 return mutex_trylock(&mddev->reconfig_mutex);
302 static inline void mddev_unlock(mddev_t * mddev)
304 mutex_unlock(&mddev->reconfig_mutex);
306 md_wakeup_thread(mddev->thread);
309 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
311 mdk_rdev_t * rdev;
312 struct list_head *tmp;
314 rdev_for_each(rdev, tmp, mddev) {
315 if (rdev->desc_nr == nr)
316 return rdev;
318 return NULL;
321 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
323 struct list_head *tmp;
324 mdk_rdev_t *rdev;
326 rdev_for_each(rdev, tmp, mddev) {
327 if (rdev->bdev->bd_dev == dev)
328 return rdev;
330 return NULL;
333 static struct mdk_personality *find_pers(int level, char *clevel)
335 struct mdk_personality *pers;
336 list_for_each_entry(pers, &pers_list, list) {
337 if (level != LEVEL_NONE && pers->level == level)
338 return pers;
339 if (strcmp(pers->name, clevel)==0)
340 return pers;
342 return NULL;
345 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
347 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
348 return MD_NEW_SIZE_BLOCKS(size);
351 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
353 sector_t size;
355 size = rdev->sb_offset;
357 if (chunk_size)
358 size &= ~((sector_t)chunk_size/1024 - 1);
359 return size;
362 static int alloc_disk_sb(mdk_rdev_t * rdev)
364 if (rdev->sb_page)
365 MD_BUG();
367 rdev->sb_page = alloc_page(GFP_KERNEL);
368 if (!rdev->sb_page) {
369 printk(KERN_ALERT "md: out of memory.\n");
370 return -EINVAL;
373 return 0;
376 static void free_disk_sb(mdk_rdev_t * rdev)
378 if (rdev->sb_page) {
379 put_page(rdev->sb_page);
380 rdev->sb_loaded = 0;
381 rdev->sb_page = NULL;
382 rdev->sb_offset = 0;
383 rdev->size = 0;
388 static void super_written(struct bio *bio, int error)
390 mdk_rdev_t *rdev = bio->bi_private;
391 mddev_t *mddev = rdev->mddev;
393 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
394 printk("md: super_written gets error=%d, uptodate=%d\n",
395 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
396 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
397 md_error(mddev, rdev);
400 if (atomic_dec_and_test(&mddev->pending_writes))
401 wake_up(&mddev->sb_wait);
402 bio_put(bio);
405 static void super_written_barrier(struct bio *bio, int error)
407 struct bio *bio2 = bio->bi_private;
408 mdk_rdev_t *rdev = bio2->bi_private;
409 mddev_t *mddev = rdev->mddev;
411 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
412 error == -EOPNOTSUPP) {
413 unsigned long flags;
414 /* barriers don't appear to be supported :-( */
415 set_bit(BarriersNotsupp, &rdev->flags);
416 mddev->barriers_work = 0;
417 spin_lock_irqsave(&mddev->write_lock, flags);
418 bio2->bi_next = mddev->biolist;
419 mddev->biolist = bio2;
420 spin_unlock_irqrestore(&mddev->write_lock, flags);
421 wake_up(&mddev->sb_wait);
422 bio_put(bio);
423 } else {
424 bio_put(bio2);
425 bio->bi_private = rdev;
426 super_written(bio, error);
430 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
431 sector_t sector, int size, struct page *page)
433 /* write first size bytes of page to sector of rdev
434 * Increment mddev->pending_writes before returning
435 * and decrement it on completion, waking up sb_wait
436 * if zero is reached.
437 * If an error occurred, call md_error
439 * As we might need to resubmit the request if BIO_RW_BARRIER
440 * causes ENOTSUPP, we allocate a spare bio...
442 struct bio *bio = bio_alloc(GFP_NOIO, 1);
443 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
445 bio->bi_bdev = rdev->bdev;
446 bio->bi_sector = sector;
447 bio_add_page(bio, page, size, 0);
448 bio->bi_private = rdev;
449 bio->bi_end_io = super_written;
450 bio->bi_rw = rw;
452 atomic_inc(&mddev->pending_writes);
453 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
454 struct bio *rbio;
455 rw |= (1<<BIO_RW_BARRIER);
456 rbio = bio_clone(bio, GFP_NOIO);
457 rbio->bi_private = bio;
458 rbio->bi_end_io = super_written_barrier;
459 submit_bio(rw, rbio);
460 } else
461 submit_bio(rw, bio);
464 void md_super_wait(mddev_t *mddev)
466 /* wait for all superblock writes that were scheduled to complete.
467 * if any had to be retried (due to BARRIER problems), retry them
469 DEFINE_WAIT(wq);
470 for(;;) {
471 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
472 if (atomic_read(&mddev->pending_writes)==0)
473 break;
474 while (mddev->biolist) {
475 struct bio *bio;
476 spin_lock_irq(&mddev->write_lock);
477 bio = mddev->biolist;
478 mddev->biolist = bio->bi_next ;
479 bio->bi_next = NULL;
480 spin_unlock_irq(&mddev->write_lock);
481 submit_bio(bio->bi_rw, bio);
483 schedule();
485 finish_wait(&mddev->sb_wait, &wq);
488 static void bi_complete(struct bio *bio, int error)
490 complete((struct completion*)bio->bi_private);
493 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
494 struct page *page, int rw)
496 struct bio *bio = bio_alloc(GFP_NOIO, 1);
497 struct completion event;
498 int ret;
500 rw |= (1 << BIO_RW_SYNC);
502 bio->bi_bdev = bdev;
503 bio->bi_sector = sector;
504 bio_add_page(bio, page, size, 0);
505 init_completion(&event);
506 bio->bi_private = &event;
507 bio->bi_end_io = bi_complete;
508 submit_bio(rw, bio);
509 wait_for_completion(&event);
511 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
512 bio_put(bio);
513 return ret;
515 EXPORT_SYMBOL_GPL(sync_page_io);
517 static int read_disk_sb(mdk_rdev_t * rdev, int size)
519 char b[BDEVNAME_SIZE];
520 if (!rdev->sb_page) {
521 MD_BUG();
522 return -EINVAL;
524 if (rdev->sb_loaded)
525 return 0;
528 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
529 goto fail;
530 rdev->sb_loaded = 1;
531 return 0;
533 fail:
534 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
535 bdevname(rdev->bdev,b));
536 return -EINVAL;
539 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
541 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
542 (sb1->set_uuid1 == sb2->set_uuid1) &&
543 (sb1->set_uuid2 == sb2->set_uuid2) &&
544 (sb1->set_uuid3 == sb2->set_uuid3))
546 return 1;
548 return 0;
552 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
554 int ret;
555 mdp_super_t *tmp1, *tmp2;
557 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
558 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
560 if (!tmp1 || !tmp2) {
561 ret = 0;
562 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
563 goto abort;
566 *tmp1 = *sb1;
567 *tmp2 = *sb2;
570 * nr_disks is not constant
572 tmp1->nr_disks = 0;
573 tmp2->nr_disks = 0;
575 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
576 ret = 0;
577 else
578 ret = 1;
580 abort:
581 kfree(tmp1);
582 kfree(tmp2);
583 return ret;
587 static u32 md_csum_fold(u32 csum)
589 csum = (csum & 0xffff) + (csum >> 16);
590 return (csum & 0xffff) + (csum >> 16);
593 static unsigned int calc_sb_csum(mdp_super_t * sb)
595 u64 newcsum = 0;
596 u32 *sb32 = (u32*)sb;
597 int i;
598 unsigned int disk_csum, csum;
600 disk_csum = sb->sb_csum;
601 sb->sb_csum = 0;
603 for (i = 0; i < MD_SB_BYTES/4 ; i++)
604 newcsum += sb32[i];
605 csum = (newcsum & 0xffffffff) + (newcsum>>32);
608 #ifdef CONFIG_ALPHA
609 /* This used to use csum_partial, which was wrong for several
610 * reasons including that different results are returned on
611 * different architectures. It isn't critical that we get exactly
612 * the same return value as before (we always csum_fold before
613 * testing, and that removes any differences). However as we
614 * know that csum_partial always returned a 16bit value on
615 * alphas, do a fold to maximise conformity to previous behaviour.
617 sb->sb_csum = md_csum_fold(disk_csum);
618 #else
619 sb->sb_csum = disk_csum;
620 #endif
621 return csum;
626 * Handle superblock details.
627 * We want to be able to handle multiple superblock formats
628 * so we have a common interface to them all, and an array of
629 * different handlers.
630 * We rely on user-space to write the initial superblock, and support
631 * reading and updating of superblocks.
632 * Interface methods are:
633 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
634 * loads and validates a superblock on dev.
635 * if refdev != NULL, compare superblocks on both devices
636 * Return:
637 * 0 - dev has a superblock that is compatible with refdev
638 * 1 - dev has a superblock that is compatible and newer than refdev
639 * so dev should be used as the refdev in future
640 * -EINVAL superblock incompatible or invalid
641 * -othererror e.g. -EIO
643 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
644 * Verify that dev is acceptable into mddev.
645 * The first time, mddev->raid_disks will be 0, and data from
646 * dev should be merged in. Subsequent calls check that dev
647 * is new enough. Return 0 or -EINVAL
649 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
650 * Update the superblock for rdev with data in mddev
651 * This does not write to disc.
655 struct super_type {
656 char *name;
657 struct module *owner;
658 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
659 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
660 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
664 * load_super for 0.90.0
666 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
668 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
669 mdp_super_t *sb;
670 int ret;
671 sector_t sb_offset;
674 * Calculate the position of the superblock,
675 * it's at the end of the disk.
677 * It also happens to be a multiple of 4Kb.
679 sb_offset = calc_dev_sboffset(rdev->bdev);
680 rdev->sb_offset = sb_offset;
682 ret = read_disk_sb(rdev, MD_SB_BYTES);
683 if (ret) return ret;
685 ret = -EINVAL;
687 bdevname(rdev->bdev, b);
688 sb = (mdp_super_t*)page_address(rdev->sb_page);
690 if (sb->md_magic != MD_SB_MAGIC) {
691 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
693 goto abort;
696 if (sb->major_version != 0 ||
697 sb->minor_version < 90 ||
698 sb->minor_version > 91) {
699 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
700 sb->major_version, sb->minor_version,
702 goto abort;
705 if (sb->raid_disks <= 0)
706 goto abort;
708 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
709 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
711 goto abort;
714 rdev->preferred_minor = sb->md_minor;
715 rdev->data_offset = 0;
716 rdev->sb_size = MD_SB_BYTES;
718 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
719 if (sb->level != 1 && sb->level != 4
720 && sb->level != 5 && sb->level != 6
721 && sb->level != 10) {
722 /* FIXME use a better test */
723 printk(KERN_WARNING
724 "md: bitmaps not supported for this level.\n");
725 goto abort;
729 if (sb->level == LEVEL_MULTIPATH)
730 rdev->desc_nr = -1;
731 else
732 rdev->desc_nr = sb->this_disk.number;
734 if (!refdev) {
735 ret = 1;
736 } else {
737 __u64 ev1, ev2;
738 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
739 if (!uuid_equal(refsb, sb)) {
740 printk(KERN_WARNING "md: %s has different UUID to %s\n",
741 b, bdevname(refdev->bdev,b2));
742 goto abort;
744 if (!sb_equal(refsb, sb)) {
745 printk(KERN_WARNING "md: %s has same UUID"
746 " but different superblock to %s\n",
747 b, bdevname(refdev->bdev, b2));
748 goto abort;
750 ev1 = md_event(sb);
751 ev2 = md_event(refsb);
752 if (ev1 > ev2)
753 ret = 1;
754 else
755 ret = 0;
757 rdev->size = calc_dev_size(rdev, sb->chunk_size);
759 if (rdev->size < sb->size && sb->level > 1)
760 /* "this cannot possibly happen" ... */
761 ret = -EINVAL;
763 abort:
764 return ret;
768 * validate_super for 0.90.0
770 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
772 mdp_disk_t *desc;
773 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
774 __u64 ev1 = md_event(sb);
776 rdev->raid_disk = -1;
777 clear_bit(Faulty, &rdev->flags);
778 clear_bit(In_sync, &rdev->flags);
779 clear_bit(WriteMostly, &rdev->flags);
780 clear_bit(BarriersNotsupp, &rdev->flags);
782 if (mddev->raid_disks == 0) {
783 mddev->major_version = 0;
784 mddev->minor_version = sb->minor_version;
785 mddev->patch_version = sb->patch_version;
786 mddev->external = 0;
787 mddev->chunk_size = sb->chunk_size;
788 mddev->ctime = sb->ctime;
789 mddev->utime = sb->utime;
790 mddev->level = sb->level;
791 mddev->clevel[0] = 0;
792 mddev->layout = sb->layout;
793 mddev->raid_disks = sb->raid_disks;
794 mddev->size = sb->size;
795 mddev->events = ev1;
796 mddev->bitmap_offset = 0;
797 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
799 if (mddev->minor_version >= 91) {
800 mddev->reshape_position = sb->reshape_position;
801 mddev->delta_disks = sb->delta_disks;
802 mddev->new_level = sb->new_level;
803 mddev->new_layout = sb->new_layout;
804 mddev->new_chunk = sb->new_chunk;
805 } else {
806 mddev->reshape_position = MaxSector;
807 mddev->delta_disks = 0;
808 mddev->new_level = mddev->level;
809 mddev->new_layout = mddev->layout;
810 mddev->new_chunk = mddev->chunk_size;
813 if (sb->state & (1<<MD_SB_CLEAN))
814 mddev->recovery_cp = MaxSector;
815 else {
816 if (sb->events_hi == sb->cp_events_hi &&
817 sb->events_lo == sb->cp_events_lo) {
818 mddev->recovery_cp = sb->recovery_cp;
819 } else
820 mddev->recovery_cp = 0;
823 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
824 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
825 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
826 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
828 mddev->max_disks = MD_SB_DISKS;
830 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
831 mddev->bitmap_file == NULL)
832 mddev->bitmap_offset = mddev->default_bitmap_offset;
834 } else if (mddev->pers == NULL) {
835 /* Insist on good event counter while assembling */
836 ++ev1;
837 if (ev1 < mddev->events)
838 return -EINVAL;
839 } else if (mddev->bitmap) {
840 /* if adding to array with a bitmap, then we can accept an
841 * older device ... but not too old.
843 if (ev1 < mddev->bitmap->events_cleared)
844 return 0;
845 } else {
846 if (ev1 < mddev->events)
847 /* just a hot-add of a new device, leave raid_disk at -1 */
848 return 0;
851 if (mddev->level != LEVEL_MULTIPATH) {
852 desc = sb->disks + rdev->desc_nr;
854 if (desc->state & (1<<MD_DISK_FAULTY))
855 set_bit(Faulty, &rdev->flags);
856 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
857 desc->raid_disk < mddev->raid_disks */) {
858 set_bit(In_sync, &rdev->flags);
859 rdev->raid_disk = desc->raid_disk;
861 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
862 set_bit(WriteMostly, &rdev->flags);
863 } else /* MULTIPATH are always insync */
864 set_bit(In_sync, &rdev->flags);
865 return 0;
869 * sync_super for 0.90.0
871 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
873 mdp_super_t *sb;
874 struct list_head *tmp;
875 mdk_rdev_t *rdev2;
876 int next_spare = mddev->raid_disks;
879 /* make rdev->sb match mddev data..
881 * 1/ zero out disks
882 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
883 * 3/ any empty disks < next_spare become removed
885 * disks[0] gets initialised to REMOVED because
886 * we cannot be sure from other fields if it has
887 * been initialised or not.
889 int i;
890 int active=0, working=0,failed=0,spare=0,nr_disks=0;
892 rdev->sb_size = MD_SB_BYTES;
894 sb = (mdp_super_t*)page_address(rdev->sb_page);
896 memset(sb, 0, sizeof(*sb));
898 sb->md_magic = MD_SB_MAGIC;
899 sb->major_version = mddev->major_version;
900 sb->patch_version = mddev->patch_version;
901 sb->gvalid_words = 0; /* ignored */
902 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
903 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
904 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
905 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
907 sb->ctime = mddev->ctime;
908 sb->level = mddev->level;
909 sb->size = mddev->size;
910 sb->raid_disks = mddev->raid_disks;
911 sb->md_minor = mddev->md_minor;
912 sb->not_persistent = 0;
913 sb->utime = mddev->utime;
914 sb->state = 0;
915 sb->events_hi = (mddev->events>>32);
916 sb->events_lo = (u32)mddev->events;
918 if (mddev->reshape_position == MaxSector)
919 sb->minor_version = 90;
920 else {
921 sb->minor_version = 91;
922 sb->reshape_position = mddev->reshape_position;
923 sb->new_level = mddev->new_level;
924 sb->delta_disks = mddev->delta_disks;
925 sb->new_layout = mddev->new_layout;
926 sb->new_chunk = mddev->new_chunk;
928 mddev->minor_version = sb->minor_version;
929 if (mddev->in_sync)
931 sb->recovery_cp = mddev->recovery_cp;
932 sb->cp_events_hi = (mddev->events>>32);
933 sb->cp_events_lo = (u32)mddev->events;
934 if (mddev->recovery_cp == MaxSector)
935 sb->state = (1<< MD_SB_CLEAN);
936 } else
937 sb->recovery_cp = 0;
939 sb->layout = mddev->layout;
940 sb->chunk_size = mddev->chunk_size;
942 if (mddev->bitmap && mddev->bitmap_file == NULL)
943 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
945 sb->disks[0].state = (1<<MD_DISK_REMOVED);
946 rdev_for_each(rdev2, tmp, mddev) {
947 mdp_disk_t *d;
948 int desc_nr;
949 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
950 && !test_bit(Faulty, &rdev2->flags))
951 desc_nr = rdev2->raid_disk;
952 else
953 desc_nr = next_spare++;
954 rdev2->desc_nr = desc_nr;
955 d = &sb->disks[rdev2->desc_nr];
956 nr_disks++;
957 d->number = rdev2->desc_nr;
958 d->major = MAJOR(rdev2->bdev->bd_dev);
959 d->minor = MINOR(rdev2->bdev->bd_dev);
960 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
961 && !test_bit(Faulty, &rdev2->flags))
962 d->raid_disk = rdev2->raid_disk;
963 else
964 d->raid_disk = rdev2->desc_nr; /* compatibility */
965 if (test_bit(Faulty, &rdev2->flags))
966 d->state = (1<<MD_DISK_FAULTY);
967 else if (test_bit(In_sync, &rdev2->flags)) {
968 d->state = (1<<MD_DISK_ACTIVE);
969 d->state |= (1<<MD_DISK_SYNC);
970 active++;
971 working++;
972 } else {
973 d->state = 0;
974 spare++;
975 working++;
977 if (test_bit(WriteMostly, &rdev2->flags))
978 d->state |= (1<<MD_DISK_WRITEMOSTLY);
980 /* now set the "removed" and "faulty" bits on any missing devices */
981 for (i=0 ; i < mddev->raid_disks ; i++) {
982 mdp_disk_t *d = &sb->disks[i];
983 if (d->state == 0 && d->number == 0) {
984 d->number = i;
985 d->raid_disk = i;
986 d->state = (1<<MD_DISK_REMOVED);
987 d->state |= (1<<MD_DISK_FAULTY);
988 failed++;
991 sb->nr_disks = nr_disks;
992 sb->active_disks = active;
993 sb->working_disks = working;
994 sb->failed_disks = failed;
995 sb->spare_disks = spare;
997 sb->this_disk = sb->disks[rdev->desc_nr];
998 sb->sb_csum = calc_sb_csum(sb);
1002 * version 1 superblock
1005 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1007 __le32 disk_csum;
1008 u32 csum;
1009 unsigned long long newcsum;
1010 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1011 __le32 *isuper = (__le32*)sb;
1012 int i;
1014 disk_csum = sb->sb_csum;
1015 sb->sb_csum = 0;
1016 newcsum = 0;
1017 for (i=0; size>=4; size -= 4 )
1018 newcsum += le32_to_cpu(*isuper++);
1020 if (size == 2)
1021 newcsum += le16_to_cpu(*(__le16*) isuper);
1023 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1024 sb->sb_csum = disk_csum;
1025 return cpu_to_le32(csum);
1028 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1030 struct mdp_superblock_1 *sb;
1031 int ret;
1032 sector_t sb_offset;
1033 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1034 int bmask;
1037 * Calculate the position of the superblock.
1038 * It is always aligned to a 4K boundary and
1039 * depeding on minor_version, it can be:
1040 * 0: At least 8K, but less than 12K, from end of device
1041 * 1: At start of device
1042 * 2: 4K from start of device.
1044 switch(minor_version) {
1045 case 0:
1046 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1047 sb_offset -= 8*2;
1048 sb_offset &= ~(sector_t)(4*2-1);
1049 /* convert from sectors to K */
1050 sb_offset /= 2;
1051 break;
1052 case 1:
1053 sb_offset = 0;
1054 break;
1055 case 2:
1056 sb_offset = 4;
1057 break;
1058 default:
1059 return -EINVAL;
1061 rdev->sb_offset = sb_offset;
1063 /* superblock is rarely larger than 1K, but it can be larger,
1064 * and it is safe to read 4k, so we do that
1066 ret = read_disk_sb(rdev, 4096);
1067 if (ret) return ret;
1070 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1072 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1073 sb->major_version != cpu_to_le32(1) ||
1074 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1075 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1076 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1077 return -EINVAL;
1079 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1080 printk("md: invalid superblock checksum on %s\n",
1081 bdevname(rdev->bdev,b));
1082 return -EINVAL;
1084 if (le64_to_cpu(sb->data_size) < 10) {
1085 printk("md: data_size too small on %s\n",
1086 bdevname(rdev->bdev,b));
1087 return -EINVAL;
1089 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1090 if (sb->level != cpu_to_le32(1) &&
1091 sb->level != cpu_to_le32(4) &&
1092 sb->level != cpu_to_le32(5) &&
1093 sb->level != cpu_to_le32(6) &&
1094 sb->level != cpu_to_le32(10)) {
1095 printk(KERN_WARNING
1096 "md: bitmaps not supported for this level.\n");
1097 return -EINVAL;
1101 rdev->preferred_minor = 0xffff;
1102 rdev->data_offset = le64_to_cpu(sb->data_offset);
1103 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1105 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1106 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1107 if (rdev->sb_size & bmask)
1108 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1110 if (minor_version
1111 && rdev->data_offset < sb_offset + (rdev->sb_size/512))
1112 return -EINVAL;
1114 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1115 rdev->desc_nr = -1;
1116 else
1117 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1119 if (!refdev) {
1120 ret = 1;
1121 } else {
1122 __u64 ev1, ev2;
1123 struct mdp_superblock_1 *refsb =
1124 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1126 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1127 sb->level != refsb->level ||
1128 sb->layout != refsb->layout ||
1129 sb->chunksize != refsb->chunksize) {
1130 printk(KERN_WARNING "md: %s has strangely different"
1131 " superblock to %s\n",
1132 bdevname(rdev->bdev,b),
1133 bdevname(refdev->bdev,b2));
1134 return -EINVAL;
1136 ev1 = le64_to_cpu(sb->events);
1137 ev2 = le64_to_cpu(refsb->events);
1139 if (ev1 > ev2)
1140 ret = 1;
1141 else
1142 ret = 0;
1144 if (minor_version)
1145 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1146 else
1147 rdev->size = rdev->sb_offset;
1148 if (rdev->size < le64_to_cpu(sb->data_size)/2)
1149 return -EINVAL;
1150 rdev->size = le64_to_cpu(sb->data_size)/2;
1151 if (le32_to_cpu(sb->chunksize))
1152 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1154 if (le64_to_cpu(sb->size) > rdev->size*2)
1155 return -EINVAL;
1156 return ret;
1159 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1161 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1162 __u64 ev1 = le64_to_cpu(sb->events);
1164 rdev->raid_disk = -1;
1165 clear_bit(Faulty, &rdev->flags);
1166 clear_bit(In_sync, &rdev->flags);
1167 clear_bit(WriteMostly, &rdev->flags);
1168 clear_bit(BarriersNotsupp, &rdev->flags);
1170 if (mddev->raid_disks == 0) {
1171 mddev->major_version = 1;
1172 mddev->patch_version = 0;
1173 mddev->external = 0;
1174 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1175 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1176 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1177 mddev->level = le32_to_cpu(sb->level);
1178 mddev->clevel[0] = 0;
1179 mddev->layout = le32_to_cpu(sb->layout);
1180 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1181 mddev->size = le64_to_cpu(sb->size)/2;
1182 mddev->events = ev1;
1183 mddev->bitmap_offset = 0;
1184 mddev->default_bitmap_offset = 1024 >> 9;
1186 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1187 memcpy(mddev->uuid, sb->set_uuid, 16);
1189 mddev->max_disks = (4096-256)/2;
1191 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1192 mddev->bitmap_file == NULL )
1193 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1195 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1196 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1197 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1198 mddev->new_level = le32_to_cpu(sb->new_level);
1199 mddev->new_layout = le32_to_cpu(sb->new_layout);
1200 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1201 } else {
1202 mddev->reshape_position = MaxSector;
1203 mddev->delta_disks = 0;
1204 mddev->new_level = mddev->level;
1205 mddev->new_layout = mddev->layout;
1206 mddev->new_chunk = mddev->chunk_size;
1209 } else if (mddev->pers == NULL) {
1210 /* Insist of good event counter while assembling */
1211 ++ev1;
1212 if (ev1 < mddev->events)
1213 return -EINVAL;
1214 } else if (mddev->bitmap) {
1215 /* If adding to array with a bitmap, then we can accept an
1216 * older device, but not too old.
1218 if (ev1 < mddev->bitmap->events_cleared)
1219 return 0;
1220 } else {
1221 if (ev1 < mddev->events)
1222 /* just a hot-add of a new device, leave raid_disk at -1 */
1223 return 0;
1225 if (mddev->level != LEVEL_MULTIPATH) {
1226 int role;
1227 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1228 switch(role) {
1229 case 0xffff: /* spare */
1230 break;
1231 case 0xfffe: /* faulty */
1232 set_bit(Faulty, &rdev->flags);
1233 break;
1234 default:
1235 if ((le32_to_cpu(sb->feature_map) &
1236 MD_FEATURE_RECOVERY_OFFSET))
1237 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1238 else
1239 set_bit(In_sync, &rdev->flags);
1240 rdev->raid_disk = role;
1241 break;
1243 if (sb->devflags & WriteMostly1)
1244 set_bit(WriteMostly, &rdev->flags);
1245 } else /* MULTIPATH are always insync */
1246 set_bit(In_sync, &rdev->flags);
1248 return 0;
1251 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1253 struct mdp_superblock_1 *sb;
1254 struct list_head *tmp;
1255 mdk_rdev_t *rdev2;
1256 int max_dev, i;
1257 /* make rdev->sb match mddev and rdev data. */
1259 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1261 sb->feature_map = 0;
1262 sb->pad0 = 0;
1263 sb->recovery_offset = cpu_to_le64(0);
1264 memset(sb->pad1, 0, sizeof(sb->pad1));
1265 memset(sb->pad2, 0, sizeof(sb->pad2));
1266 memset(sb->pad3, 0, sizeof(sb->pad3));
1268 sb->utime = cpu_to_le64((__u64)mddev->utime);
1269 sb->events = cpu_to_le64(mddev->events);
1270 if (mddev->in_sync)
1271 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1272 else
1273 sb->resync_offset = cpu_to_le64(0);
1275 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1277 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1278 sb->size = cpu_to_le64(mddev->size<<1);
1280 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1281 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1282 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1285 if (rdev->raid_disk >= 0 &&
1286 !test_bit(In_sync, &rdev->flags) &&
1287 rdev->recovery_offset > 0) {
1288 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1289 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1292 if (mddev->reshape_position != MaxSector) {
1293 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1294 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1295 sb->new_layout = cpu_to_le32(mddev->new_layout);
1296 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1297 sb->new_level = cpu_to_le32(mddev->new_level);
1298 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1301 max_dev = 0;
1302 rdev_for_each(rdev2, tmp, mddev)
1303 if (rdev2->desc_nr+1 > max_dev)
1304 max_dev = rdev2->desc_nr+1;
1306 if (max_dev > le32_to_cpu(sb->max_dev))
1307 sb->max_dev = cpu_to_le32(max_dev);
1308 for (i=0; i<max_dev;i++)
1309 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1311 rdev_for_each(rdev2, tmp, mddev) {
1312 i = rdev2->desc_nr;
1313 if (test_bit(Faulty, &rdev2->flags))
1314 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1315 else if (test_bit(In_sync, &rdev2->flags))
1316 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1317 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1318 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1319 else
1320 sb->dev_roles[i] = cpu_to_le16(0xffff);
1323 sb->sb_csum = calc_sb_1_csum(sb);
1327 static struct super_type super_types[] = {
1328 [0] = {
1329 .name = "0.90.0",
1330 .owner = THIS_MODULE,
1331 .load_super = super_90_load,
1332 .validate_super = super_90_validate,
1333 .sync_super = super_90_sync,
1335 [1] = {
1336 .name = "md-1",
1337 .owner = THIS_MODULE,
1338 .load_super = super_1_load,
1339 .validate_super = super_1_validate,
1340 .sync_super = super_1_sync,
1344 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1346 struct list_head *tmp, *tmp2;
1347 mdk_rdev_t *rdev, *rdev2;
1349 rdev_for_each(rdev, tmp, mddev1)
1350 rdev_for_each(rdev2, tmp2, mddev2)
1351 if (rdev->bdev->bd_contains ==
1352 rdev2->bdev->bd_contains)
1353 return 1;
1355 return 0;
1358 static LIST_HEAD(pending_raid_disks);
1360 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1362 char b[BDEVNAME_SIZE];
1363 struct kobject *ko;
1364 char *s;
1365 int err;
1367 if (rdev->mddev) {
1368 MD_BUG();
1369 return -EINVAL;
1371 /* make sure rdev->size exceeds mddev->size */
1372 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1373 if (mddev->pers) {
1374 /* Cannot change size, so fail
1375 * If mddev->level <= 0, then we don't care
1376 * about aligning sizes (e.g. linear)
1378 if (mddev->level > 0)
1379 return -ENOSPC;
1380 } else
1381 mddev->size = rdev->size;
1384 /* Verify rdev->desc_nr is unique.
1385 * If it is -1, assign a free number, else
1386 * check number is not in use
1388 if (rdev->desc_nr < 0) {
1389 int choice = 0;
1390 if (mddev->pers) choice = mddev->raid_disks;
1391 while (find_rdev_nr(mddev, choice))
1392 choice++;
1393 rdev->desc_nr = choice;
1394 } else {
1395 if (find_rdev_nr(mddev, rdev->desc_nr))
1396 return -EBUSY;
1398 bdevname(rdev->bdev,b);
1399 while ( (s=strchr(b, '/')) != NULL)
1400 *s = '!';
1402 rdev->mddev = mddev;
1403 printk(KERN_INFO "md: bind<%s>\n", b);
1405 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1406 goto fail;
1408 if (rdev->bdev->bd_part)
1409 ko = &rdev->bdev->bd_part->dev.kobj;
1410 else
1411 ko = &rdev->bdev->bd_disk->dev.kobj;
1412 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1413 kobject_del(&rdev->kobj);
1414 goto fail;
1416 list_add(&rdev->same_set, &mddev->disks);
1417 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1418 return 0;
1420 fail:
1421 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1422 b, mdname(mddev));
1423 return err;
1426 static void md_delayed_delete(struct work_struct *ws)
1428 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1429 kobject_del(&rdev->kobj);
1430 kobject_put(&rdev->kobj);
1433 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1435 char b[BDEVNAME_SIZE];
1436 if (!rdev->mddev) {
1437 MD_BUG();
1438 return;
1440 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1441 list_del_init(&rdev->same_set);
1442 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1443 rdev->mddev = NULL;
1444 sysfs_remove_link(&rdev->kobj, "block");
1446 /* We need to delay this, otherwise we can deadlock when
1447 * writing to 'remove' to "dev/state"
1449 INIT_WORK(&rdev->del_work, md_delayed_delete);
1450 kobject_get(&rdev->kobj);
1451 schedule_work(&rdev->del_work);
1455 * prevent the device from being mounted, repartitioned or
1456 * otherwise reused by a RAID array (or any other kernel
1457 * subsystem), by bd_claiming the device.
1459 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1461 int err = 0;
1462 struct block_device *bdev;
1463 char b[BDEVNAME_SIZE];
1465 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1466 if (IS_ERR(bdev)) {
1467 printk(KERN_ERR "md: could not open %s.\n",
1468 __bdevname(dev, b));
1469 return PTR_ERR(bdev);
1471 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1472 if (err) {
1473 printk(KERN_ERR "md: could not bd_claim %s.\n",
1474 bdevname(bdev, b));
1475 blkdev_put(bdev);
1476 return err;
1478 if (!shared)
1479 set_bit(AllReserved, &rdev->flags);
1480 rdev->bdev = bdev;
1481 return err;
1484 static void unlock_rdev(mdk_rdev_t *rdev)
1486 struct block_device *bdev = rdev->bdev;
1487 rdev->bdev = NULL;
1488 if (!bdev)
1489 MD_BUG();
1490 bd_release(bdev);
1491 blkdev_put(bdev);
1494 void md_autodetect_dev(dev_t dev);
1496 static void export_rdev(mdk_rdev_t * rdev)
1498 char b[BDEVNAME_SIZE];
1499 printk(KERN_INFO "md: export_rdev(%s)\n",
1500 bdevname(rdev->bdev,b));
1501 if (rdev->mddev)
1502 MD_BUG();
1503 free_disk_sb(rdev);
1504 list_del_init(&rdev->same_set);
1505 #ifndef MODULE
1506 if (test_bit(AutoDetected, &rdev->flags))
1507 md_autodetect_dev(rdev->bdev->bd_dev);
1508 #endif
1509 unlock_rdev(rdev);
1510 kobject_put(&rdev->kobj);
1513 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1515 unbind_rdev_from_array(rdev);
1516 export_rdev(rdev);
1519 static void export_array(mddev_t *mddev)
1521 struct list_head *tmp;
1522 mdk_rdev_t *rdev;
1524 rdev_for_each(rdev, tmp, mddev) {
1525 if (!rdev->mddev) {
1526 MD_BUG();
1527 continue;
1529 kick_rdev_from_array(rdev);
1531 if (!list_empty(&mddev->disks))
1532 MD_BUG();
1533 mddev->raid_disks = 0;
1534 mddev->major_version = 0;
1537 static void print_desc(mdp_disk_t *desc)
1539 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1540 desc->major,desc->minor,desc->raid_disk,desc->state);
1543 static void print_sb(mdp_super_t *sb)
1545 int i;
1547 printk(KERN_INFO
1548 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1549 sb->major_version, sb->minor_version, sb->patch_version,
1550 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1551 sb->ctime);
1552 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1553 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1554 sb->md_minor, sb->layout, sb->chunk_size);
1555 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1556 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1557 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1558 sb->failed_disks, sb->spare_disks,
1559 sb->sb_csum, (unsigned long)sb->events_lo);
1561 printk(KERN_INFO);
1562 for (i = 0; i < MD_SB_DISKS; i++) {
1563 mdp_disk_t *desc;
1565 desc = sb->disks + i;
1566 if (desc->number || desc->major || desc->minor ||
1567 desc->raid_disk || (desc->state && (desc->state != 4))) {
1568 printk(" D %2d: ", i);
1569 print_desc(desc);
1572 printk(KERN_INFO "md: THIS: ");
1573 print_desc(&sb->this_disk);
1577 static void print_rdev(mdk_rdev_t *rdev)
1579 char b[BDEVNAME_SIZE];
1580 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1581 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1582 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1583 rdev->desc_nr);
1584 if (rdev->sb_loaded) {
1585 printk(KERN_INFO "md: rdev superblock:\n");
1586 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1587 } else
1588 printk(KERN_INFO "md: no rdev superblock!\n");
1591 static void md_print_devices(void)
1593 struct list_head *tmp, *tmp2;
1594 mdk_rdev_t *rdev;
1595 mddev_t *mddev;
1596 char b[BDEVNAME_SIZE];
1598 printk("\n");
1599 printk("md: **********************************\n");
1600 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1601 printk("md: **********************************\n");
1602 for_each_mddev(mddev, tmp) {
1604 if (mddev->bitmap)
1605 bitmap_print_sb(mddev->bitmap);
1606 else
1607 printk("%s: ", mdname(mddev));
1608 rdev_for_each(rdev, tmp2, mddev)
1609 printk("<%s>", bdevname(rdev->bdev,b));
1610 printk("\n");
1612 rdev_for_each(rdev, tmp2, mddev)
1613 print_rdev(rdev);
1615 printk("md: **********************************\n");
1616 printk("\n");
1620 static void sync_sbs(mddev_t * mddev, int nospares)
1622 /* Update each superblock (in-memory image), but
1623 * if we are allowed to, skip spares which already
1624 * have the right event counter, or have one earlier
1625 * (which would mean they aren't being marked as dirty
1626 * with the rest of the array)
1628 mdk_rdev_t *rdev;
1629 struct list_head *tmp;
1631 rdev_for_each(rdev, tmp, mddev) {
1632 if (rdev->sb_events == mddev->events ||
1633 (nospares &&
1634 rdev->raid_disk < 0 &&
1635 (rdev->sb_events&1)==0 &&
1636 rdev->sb_events+1 == mddev->events)) {
1637 /* Don't update this superblock */
1638 rdev->sb_loaded = 2;
1639 } else {
1640 super_types[mddev->major_version].
1641 sync_super(mddev, rdev);
1642 rdev->sb_loaded = 1;
1647 static void md_update_sb(mddev_t * mddev, int force_change)
1649 struct list_head *tmp;
1650 mdk_rdev_t *rdev;
1651 int sync_req;
1652 int nospares = 0;
1654 repeat:
1655 spin_lock_irq(&mddev->write_lock);
1657 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1658 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1659 force_change = 1;
1660 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1661 /* just a clean<-> dirty transition, possibly leave spares alone,
1662 * though if events isn't the right even/odd, we will have to do
1663 * spares after all
1665 nospares = 1;
1666 if (force_change)
1667 nospares = 0;
1668 if (mddev->degraded)
1669 /* If the array is degraded, then skipping spares is both
1670 * dangerous and fairly pointless.
1671 * Dangerous because a device that was removed from the array
1672 * might have a event_count that still looks up-to-date,
1673 * so it can be re-added without a resync.
1674 * Pointless because if there are any spares to skip,
1675 * then a recovery will happen and soon that array won't
1676 * be degraded any more and the spare can go back to sleep then.
1678 nospares = 0;
1680 sync_req = mddev->in_sync;
1681 mddev->utime = get_seconds();
1683 /* If this is just a dirty<->clean transition, and the array is clean
1684 * and 'events' is odd, we can roll back to the previous clean state */
1685 if (nospares
1686 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1687 && (mddev->events & 1)
1688 && mddev->events != 1)
1689 mddev->events--;
1690 else {
1691 /* otherwise we have to go forward and ... */
1692 mddev->events ++;
1693 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1694 /* .. if the array isn't clean, insist on an odd 'events' */
1695 if ((mddev->events&1)==0) {
1696 mddev->events++;
1697 nospares = 0;
1699 } else {
1700 /* otherwise insist on an even 'events' (for clean states) */
1701 if ((mddev->events&1)) {
1702 mddev->events++;
1703 nospares = 0;
1708 if (!mddev->events) {
1710 * oops, this 64-bit counter should never wrap.
1711 * Either we are in around ~1 trillion A.C., assuming
1712 * 1 reboot per second, or we have a bug:
1714 MD_BUG();
1715 mddev->events --;
1719 * do not write anything to disk if using
1720 * nonpersistent superblocks
1722 if (!mddev->persistent) {
1723 if (!mddev->external)
1724 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1726 spin_unlock_irq(&mddev->write_lock);
1727 wake_up(&mddev->sb_wait);
1728 return;
1730 sync_sbs(mddev, nospares);
1731 spin_unlock_irq(&mddev->write_lock);
1733 dprintk(KERN_INFO
1734 "md: updating %s RAID superblock on device (in sync %d)\n",
1735 mdname(mddev),mddev->in_sync);
1737 bitmap_update_sb(mddev->bitmap);
1738 rdev_for_each(rdev, tmp, mddev) {
1739 char b[BDEVNAME_SIZE];
1740 dprintk(KERN_INFO "md: ");
1741 if (rdev->sb_loaded != 1)
1742 continue; /* no noise on spare devices */
1743 if (test_bit(Faulty, &rdev->flags))
1744 dprintk("(skipping faulty ");
1746 dprintk("%s ", bdevname(rdev->bdev,b));
1747 if (!test_bit(Faulty, &rdev->flags)) {
1748 md_super_write(mddev,rdev,
1749 rdev->sb_offset<<1, rdev->sb_size,
1750 rdev->sb_page);
1751 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1752 bdevname(rdev->bdev,b),
1753 (unsigned long long)rdev->sb_offset);
1754 rdev->sb_events = mddev->events;
1756 } else
1757 dprintk(")\n");
1758 if (mddev->level == LEVEL_MULTIPATH)
1759 /* only need to write one superblock... */
1760 break;
1762 md_super_wait(mddev);
1763 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1765 spin_lock_irq(&mddev->write_lock);
1766 if (mddev->in_sync != sync_req ||
1767 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1768 /* have to write it out again */
1769 spin_unlock_irq(&mddev->write_lock);
1770 goto repeat;
1772 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1773 spin_unlock_irq(&mddev->write_lock);
1774 wake_up(&mddev->sb_wait);
1778 /* words written to sysfs files may, or my not, be \n terminated.
1779 * We want to accept with case. For this we use cmd_match.
1781 static int cmd_match(const char *cmd, const char *str)
1783 /* See if cmd, written into a sysfs file, matches
1784 * str. They must either be the same, or cmd can
1785 * have a trailing newline
1787 while (*cmd && *str && *cmd == *str) {
1788 cmd++;
1789 str++;
1791 if (*cmd == '\n')
1792 cmd++;
1793 if (*str || *cmd)
1794 return 0;
1795 return 1;
1798 struct rdev_sysfs_entry {
1799 struct attribute attr;
1800 ssize_t (*show)(mdk_rdev_t *, char *);
1801 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1804 static ssize_t
1805 state_show(mdk_rdev_t *rdev, char *page)
1807 char *sep = "";
1808 size_t len = 0;
1810 if (test_bit(Faulty, &rdev->flags)) {
1811 len+= sprintf(page+len, "%sfaulty",sep);
1812 sep = ",";
1814 if (test_bit(In_sync, &rdev->flags)) {
1815 len += sprintf(page+len, "%sin_sync",sep);
1816 sep = ",";
1818 if (test_bit(WriteMostly, &rdev->flags)) {
1819 len += sprintf(page+len, "%swrite_mostly",sep);
1820 sep = ",";
1822 if (!test_bit(Faulty, &rdev->flags) &&
1823 !test_bit(In_sync, &rdev->flags)) {
1824 len += sprintf(page+len, "%sspare", sep);
1825 sep = ",";
1827 return len+sprintf(page+len, "\n");
1830 static ssize_t
1831 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1833 /* can write
1834 * faulty - simulates and error
1835 * remove - disconnects the device
1836 * writemostly - sets write_mostly
1837 * -writemostly - clears write_mostly
1839 int err = -EINVAL;
1840 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1841 md_error(rdev->mddev, rdev);
1842 err = 0;
1843 } else if (cmd_match(buf, "remove")) {
1844 if (rdev->raid_disk >= 0)
1845 err = -EBUSY;
1846 else {
1847 mddev_t *mddev = rdev->mddev;
1848 kick_rdev_from_array(rdev);
1849 if (mddev->pers)
1850 md_update_sb(mddev, 1);
1851 md_new_event(mddev);
1852 err = 0;
1854 } else if (cmd_match(buf, "writemostly")) {
1855 set_bit(WriteMostly, &rdev->flags);
1856 err = 0;
1857 } else if (cmd_match(buf, "-writemostly")) {
1858 clear_bit(WriteMostly, &rdev->flags);
1859 err = 0;
1861 return err ? err : len;
1863 static struct rdev_sysfs_entry rdev_state =
1864 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1866 static ssize_t
1867 errors_show(mdk_rdev_t *rdev, char *page)
1869 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1872 static ssize_t
1873 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1875 char *e;
1876 unsigned long n = simple_strtoul(buf, &e, 10);
1877 if (*buf && (*e == 0 || *e == '\n')) {
1878 atomic_set(&rdev->corrected_errors, n);
1879 return len;
1881 return -EINVAL;
1883 static struct rdev_sysfs_entry rdev_errors =
1884 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1886 static ssize_t
1887 slot_show(mdk_rdev_t *rdev, char *page)
1889 if (rdev->raid_disk < 0)
1890 return sprintf(page, "none\n");
1891 else
1892 return sprintf(page, "%d\n", rdev->raid_disk);
1895 static ssize_t
1896 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1898 char *e;
1899 int err;
1900 char nm[20];
1901 int slot = simple_strtoul(buf, &e, 10);
1902 if (strncmp(buf, "none", 4)==0)
1903 slot = -1;
1904 else if (e==buf || (*e && *e!= '\n'))
1905 return -EINVAL;
1906 if (rdev->mddev->pers) {
1907 /* Setting 'slot' on an active array requires also
1908 * updating the 'rd%d' link, and communicating
1909 * with the personality with ->hot_*_disk.
1910 * For now we only support removing
1911 * failed/spare devices. This normally happens automatically,
1912 * but not when the metadata is externally managed.
1914 if (slot != -1)
1915 return -EBUSY;
1916 if (rdev->raid_disk == -1)
1917 return -EEXIST;
1918 /* personality does all needed checks */
1919 if (rdev->mddev->pers->hot_add_disk == NULL)
1920 return -EINVAL;
1921 err = rdev->mddev->pers->
1922 hot_remove_disk(rdev->mddev, rdev->raid_disk);
1923 if (err)
1924 return err;
1925 sprintf(nm, "rd%d", rdev->raid_disk);
1926 sysfs_remove_link(&rdev->mddev->kobj, nm);
1927 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
1928 md_wakeup_thread(rdev->mddev->thread);
1929 } else {
1930 if (slot >= rdev->mddev->raid_disks)
1931 return -ENOSPC;
1932 rdev->raid_disk = slot;
1933 /* assume it is working */
1934 clear_bit(Faulty, &rdev->flags);
1935 clear_bit(WriteMostly, &rdev->flags);
1936 set_bit(In_sync, &rdev->flags);
1938 return len;
1942 static struct rdev_sysfs_entry rdev_slot =
1943 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1945 static ssize_t
1946 offset_show(mdk_rdev_t *rdev, char *page)
1948 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1951 static ssize_t
1952 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1954 char *e;
1955 unsigned long long offset = simple_strtoull(buf, &e, 10);
1956 if (e==buf || (*e && *e != '\n'))
1957 return -EINVAL;
1958 if (rdev->mddev->pers)
1959 return -EBUSY;
1960 if (rdev->size && rdev->mddev->external)
1961 /* Must set offset before size, so overlap checks
1962 * can be sane */
1963 return -EBUSY;
1964 rdev->data_offset = offset;
1965 return len;
1968 static struct rdev_sysfs_entry rdev_offset =
1969 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1971 static ssize_t
1972 rdev_size_show(mdk_rdev_t *rdev, char *page)
1974 return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1977 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
1979 /* check if two start/length pairs overlap */
1980 if (s1+l1 <= s2)
1981 return 0;
1982 if (s2+l2 <= s1)
1983 return 0;
1984 return 1;
1987 static ssize_t
1988 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1990 char *e;
1991 unsigned long long size = simple_strtoull(buf, &e, 10);
1992 unsigned long long oldsize = rdev->size;
1993 mddev_t *my_mddev = rdev->mddev;
1995 if (e==buf || (*e && *e != '\n'))
1996 return -EINVAL;
1997 if (my_mddev->pers)
1998 return -EBUSY;
1999 rdev->size = size;
2000 if (size > oldsize && rdev->mddev->external) {
2001 /* need to check that all other rdevs with the same ->bdev
2002 * do not overlap. We need to unlock the mddev to avoid
2003 * a deadlock. We have already changed rdev->size, and if
2004 * we have to change it back, we will have the lock again.
2006 mddev_t *mddev;
2007 int overlap = 0;
2008 struct list_head *tmp, *tmp2;
2010 mddev_unlock(my_mddev);
2011 for_each_mddev(mddev, tmp) {
2012 mdk_rdev_t *rdev2;
2014 mddev_lock(mddev);
2015 rdev_for_each(rdev2, tmp2, mddev)
2016 if (test_bit(AllReserved, &rdev2->flags) ||
2017 (rdev->bdev == rdev2->bdev &&
2018 rdev != rdev2 &&
2019 overlaps(rdev->data_offset, rdev->size,
2020 rdev2->data_offset, rdev2->size))) {
2021 overlap = 1;
2022 break;
2024 mddev_unlock(mddev);
2025 if (overlap) {
2026 mddev_put(mddev);
2027 break;
2030 mddev_lock(my_mddev);
2031 if (overlap) {
2032 /* Someone else could have slipped in a size
2033 * change here, but doing so is just silly.
2034 * We put oldsize back because we *know* it is
2035 * safe, and trust userspace not to race with
2036 * itself
2038 rdev->size = oldsize;
2039 return -EBUSY;
2042 if (size < my_mddev->size || my_mddev->size == 0)
2043 my_mddev->size = size;
2044 return len;
2047 static struct rdev_sysfs_entry rdev_size =
2048 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2050 static struct attribute *rdev_default_attrs[] = {
2051 &rdev_state.attr,
2052 &rdev_errors.attr,
2053 &rdev_slot.attr,
2054 &rdev_offset.attr,
2055 &rdev_size.attr,
2056 NULL,
2058 static ssize_t
2059 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2061 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2062 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2063 mddev_t *mddev = rdev->mddev;
2064 ssize_t rv;
2066 if (!entry->show)
2067 return -EIO;
2069 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2070 if (!rv) {
2071 if (rdev->mddev == NULL)
2072 rv = -EBUSY;
2073 else
2074 rv = entry->show(rdev, page);
2075 mddev_unlock(mddev);
2077 return rv;
2080 static ssize_t
2081 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2082 const char *page, size_t length)
2084 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2085 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2086 ssize_t rv;
2087 mddev_t *mddev = rdev->mddev;
2089 if (!entry->store)
2090 return -EIO;
2091 if (!capable(CAP_SYS_ADMIN))
2092 return -EACCES;
2093 rv = mddev ? mddev_lock(mddev): -EBUSY;
2094 if (!rv) {
2095 if (rdev->mddev == NULL)
2096 rv = -EBUSY;
2097 else
2098 rv = entry->store(rdev, page, length);
2099 mddev_unlock(rdev->mddev);
2101 return rv;
2104 static void rdev_free(struct kobject *ko)
2106 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2107 kfree(rdev);
2109 static struct sysfs_ops rdev_sysfs_ops = {
2110 .show = rdev_attr_show,
2111 .store = rdev_attr_store,
2113 static struct kobj_type rdev_ktype = {
2114 .release = rdev_free,
2115 .sysfs_ops = &rdev_sysfs_ops,
2116 .default_attrs = rdev_default_attrs,
2120 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2122 * mark the device faulty if:
2124 * - the device is nonexistent (zero size)
2125 * - the device has no valid superblock
2127 * a faulty rdev _never_ has rdev->sb set.
2129 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2131 char b[BDEVNAME_SIZE];
2132 int err;
2133 mdk_rdev_t *rdev;
2134 sector_t size;
2136 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2137 if (!rdev) {
2138 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2139 return ERR_PTR(-ENOMEM);
2142 if ((err = alloc_disk_sb(rdev)))
2143 goto abort_free;
2145 err = lock_rdev(rdev, newdev, super_format == -2);
2146 if (err)
2147 goto abort_free;
2149 kobject_init(&rdev->kobj, &rdev_ktype);
2151 rdev->desc_nr = -1;
2152 rdev->saved_raid_disk = -1;
2153 rdev->raid_disk = -1;
2154 rdev->flags = 0;
2155 rdev->data_offset = 0;
2156 rdev->sb_events = 0;
2157 atomic_set(&rdev->nr_pending, 0);
2158 atomic_set(&rdev->read_errors, 0);
2159 atomic_set(&rdev->corrected_errors, 0);
2161 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2162 if (!size) {
2163 printk(KERN_WARNING
2164 "md: %s has zero or unknown size, marking faulty!\n",
2165 bdevname(rdev->bdev,b));
2166 err = -EINVAL;
2167 goto abort_free;
2170 if (super_format >= 0) {
2171 err = super_types[super_format].
2172 load_super(rdev, NULL, super_minor);
2173 if (err == -EINVAL) {
2174 printk(KERN_WARNING
2175 "md: %s does not have a valid v%d.%d "
2176 "superblock, not importing!\n",
2177 bdevname(rdev->bdev,b),
2178 super_format, super_minor);
2179 goto abort_free;
2181 if (err < 0) {
2182 printk(KERN_WARNING
2183 "md: could not read %s's sb, not importing!\n",
2184 bdevname(rdev->bdev,b));
2185 goto abort_free;
2188 INIT_LIST_HEAD(&rdev->same_set);
2190 return rdev;
2192 abort_free:
2193 if (rdev->sb_page) {
2194 if (rdev->bdev)
2195 unlock_rdev(rdev);
2196 free_disk_sb(rdev);
2198 kfree(rdev);
2199 return ERR_PTR(err);
2203 * Check a full RAID array for plausibility
2207 static void analyze_sbs(mddev_t * mddev)
2209 int i;
2210 struct list_head *tmp;
2211 mdk_rdev_t *rdev, *freshest;
2212 char b[BDEVNAME_SIZE];
2214 freshest = NULL;
2215 rdev_for_each(rdev, tmp, mddev)
2216 switch (super_types[mddev->major_version].
2217 load_super(rdev, freshest, mddev->minor_version)) {
2218 case 1:
2219 freshest = rdev;
2220 break;
2221 case 0:
2222 break;
2223 default:
2224 printk( KERN_ERR \
2225 "md: fatal superblock inconsistency in %s"
2226 " -- removing from array\n",
2227 bdevname(rdev->bdev,b));
2228 kick_rdev_from_array(rdev);
2232 super_types[mddev->major_version].
2233 validate_super(mddev, freshest);
2235 i = 0;
2236 rdev_for_each(rdev, tmp, mddev) {
2237 if (rdev != freshest)
2238 if (super_types[mddev->major_version].
2239 validate_super(mddev, rdev)) {
2240 printk(KERN_WARNING "md: kicking non-fresh %s"
2241 " from array!\n",
2242 bdevname(rdev->bdev,b));
2243 kick_rdev_from_array(rdev);
2244 continue;
2246 if (mddev->level == LEVEL_MULTIPATH) {
2247 rdev->desc_nr = i++;
2248 rdev->raid_disk = rdev->desc_nr;
2249 set_bit(In_sync, &rdev->flags);
2250 } else if (rdev->raid_disk >= mddev->raid_disks) {
2251 rdev->raid_disk = -1;
2252 clear_bit(In_sync, &rdev->flags);
2258 if (mddev->recovery_cp != MaxSector &&
2259 mddev->level >= 1)
2260 printk(KERN_ERR "md: %s: raid array is not clean"
2261 " -- starting background reconstruction\n",
2262 mdname(mddev));
2266 static ssize_t
2267 safe_delay_show(mddev_t *mddev, char *page)
2269 int msec = (mddev->safemode_delay*1000)/HZ;
2270 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2272 static ssize_t
2273 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2275 int scale=1;
2276 int dot=0;
2277 int i;
2278 unsigned long msec;
2279 char buf[30];
2280 char *e;
2281 /* remove a period, and count digits after it */
2282 if (len >= sizeof(buf))
2283 return -EINVAL;
2284 strlcpy(buf, cbuf, len);
2285 buf[len] = 0;
2286 for (i=0; i<len; i++) {
2287 if (dot) {
2288 if (isdigit(buf[i])) {
2289 buf[i-1] = buf[i];
2290 scale *= 10;
2292 buf[i] = 0;
2293 } else if (buf[i] == '.') {
2294 dot=1;
2295 buf[i] = 0;
2298 msec = simple_strtoul(buf, &e, 10);
2299 if (e == buf || (*e && *e != '\n'))
2300 return -EINVAL;
2301 msec = (msec * 1000) / scale;
2302 if (msec == 0)
2303 mddev->safemode_delay = 0;
2304 else {
2305 mddev->safemode_delay = (msec*HZ)/1000;
2306 if (mddev->safemode_delay == 0)
2307 mddev->safemode_delay = 1;
2309 return len;
2311 static struct md_sysfs_entry md_safe_delay =
2312 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2314 static ssize_t
2315 level_show(mddev_t *mddev, char *page)
2317 struct mdk_personality *p = mddev->pers;
2318 if (p)
2319 return sprintf(page, "%s\n", p->name);
2320 else if (mddev->clevel[0])
2321 return sprintf(page, "%s\n", mddev->clevel);
2322 else if (mddev->level != LEVEL_NONE)
2323 return sprintf(page, "%d\n", mddev->level);
2324 else
2325 return 0;
2328 static ssize_t
2329 level_store(mddev_t *mddev, const char *buf, size_t len)
2331 ssize_t rv = len;
2332 if (mddev->pers)
2333 return -EBUSY;
2334 if (len == 0)
2335 return 0;
2336 if (len >= sizeof(mddev->clevel))
2337 return -ENOSPC;
2338 strncpy(mddev->clevel, buf, len);
2339 if (mddev->clevel[len-1] == '\n')
2340 len--;
2341 mddev->clevel[len] = 0;
2342 mddev->level = LEVEL_NONE;
2343 return rv;
2346 static struct md_sysfs_entry md_level =
2347 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2350 static ssize_t
2351 layout_show(mddev_t *mddev, char *page)
2353 /* just a number, not meaningful for all levels */
2354 if (mddev->reshape_position != MaxSector &&
2355 mddev->layout != mddev->new_layout)
2356 return sprintf(page, "%d (%d)\n",
2357 mddev->new_layout, mddev->layout);
2358 return sprintf(page, "%d\n", mddev->layout);
2361 static ssize_t
2362 layout_store(mddev_t *mddev, const char *buf, size_t len)
2364 char *e;
2365 unsigned long n = simple_strtoul(buf, &e, 10);
2367 if (!*buf || (*e && *e != '\n'))
2368 return -EINVAL;
2370 if (mddev->pers)
2371 return -EBUSY;
2372 if (mddev->reshape_position != MaxSector)
2373 mddev->new_layout = n;
2374 else
2375 mddev->layout = n;
2376 return len;
2378 static struct md_sysfs_entry md_layout =
2379 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2382 static ssize_t
2383 raid_disks_show(mddev_t *mddev, char *page)
2385 if (mddev->raid_disks == 0)
2386 return 0;
2387 if (mddev->reshape_position != MaxSector &&
2388 mddev->delta_disks != 0)
2389 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2390 mddev->raid_disks - mddev->delta_disks);
2391 return sprintf(page, "%d\n", mddev->raid_disks);
2394 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2396 static ssize_t
2397 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2399 char *e;
2400 int rv = 0;
2401 unsigned long n = simple_strtoul(buf, &e, 10);
2403 if (!*buf || (*e && *e != '\n'))
2404 return -EINVAL;
2406 if (mddev->pers)
2407 rv = update_raid_disks(mddev, n);
2408 else if (mddev->reshape_position != MaxSector) {
2409 int olddisks = mddev->raid_disks - mddev->delta_disks;
2410 mddev->delta_disks = n - olddisks;
2411 mddev->raid_disks = n;
2412 } else
2413 mddev->raid_disks = n;
2414 return rv ? rv : len;
2416 static struct md_sysfs_entry md_raid_disks =
2417 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2419 static ssize_t
2420 chunk_size_show(mddev_t *mddev, char *page)
2422 if (mddev->reshape_position != MaxSector &&
2423 mddev->chunk_size != mddev->new_chunk)
2424 return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2425 mddev->chunk_size);
2426 return sprintf(page, "%d\n", mddev->chunk_size);
2429 static ssize_t
2430 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2432 /* can only set chunk_size if array is not yet active */
2433 char *e;
2434 unsigned long n = simple_strtoul(buf, &e, 10);
2436 if (!*buf || (*e && *e != '\n'))
2437 return -EINVAL;
2439 if (mddev->pers)
2440 return -EBUSY;
2441 else if (mddev->reshape_position != MaxSector)
2442 mddev->new_chunk = n;
2443 else
2444 mddev->chunk_size = n;
2445 return len;
2447 static struct md_sysfs_entry md_chunk_size =
2448 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2450 static ssize_t
2451 resync_start_show(mddev_t *mddev, char *page)
2453 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2456 static ssize_t
2457 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2459 /* can only set chunk_size if array is not yet active */
2460 char *e;
2461 unsigned long long n = simple_strtoull(buf, &e, 10);
2463 if (mddev->pers)
2464 return -EBUSY;
2465 if (!*buf || (*e && *e != '\n'))
2466 return -EINVAL;
2468 mddev->recovery_cp = n;
2469 return len;
2471 static struct md_sysfs_entry md_resync_start =
2472 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2475 * The array state can be:
2477 * clear
2478 * No devices, no size, no level
2479 * Equivalent to STOP_ARRAY ioctl
2480 * inactive
2481 * May have some settings, but array is not active
2482 * all IO results in error
2483 * When written, doesn't tear down array, but just stops it
2484 * suspended (not supported yet)
2485 * All IO requests will block. The array can be reconfigured.
2486 * Writing this, if accepted, will block until array is quiessent
2487 * readonly
2488 * no resync can happen. no superblocks get written.
2489 * write requests fail
2490 * read-auto
2491 * like readonly, but behaves like 'clean' on a write request.
2493 * clean - no pending writes, but otherwise active.
2494 * When written to inactive array, starts without resync
2495 * If a write request arrives then
2496 * if metadata is known, mark 'dirty' and switch to 'active'.
2497 * if not known, block and switch to write-pending
2498 * If written to an active array that has pending writes, then fails.
2499 * active
2500 * fully active: IO and resync can be happening.
2501 * When written to inactive array, starts with resync
2503 * write-pending
2504 * clean, but writes are blocked waiting for 'active' to be written.
2506 * active-idle
2507 * like active, but no writes have been seen for a while (100msec).
2510 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2511 write_pending, active_idle, bad_word};
2512 static char *array_states[] = {
2513 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2514 "write-pending", "active-idle", NULL };
2516 static int match_word(const char *word, char **list)
2518 int n;
2519 for (n=0; list[n]; n++)
2520 if (cmd_match(word, list[n]))
2521 break;
2522 return n;
2525 static ssize_t
2526 array_state_show(mddev_t *mddev, char *page)
2528 enum array_state st = inactive;
2530 if (mddev->pers)
2531 switch(mddev->ro) {
2532 case 1:
2533 st = readonly;
2534 break;
2535 case 2:
2536 st = read_auto;
2537 break;
2538 case 0:
2539 if (mddev->in_sync)
2540 st = clean;
2541 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
2542 st = write_pending;
2543 else if (mddev->safemode)
2544 st = active_idle;
2545 else
2546 st = active;
2548 else {
2549 if (list_empty(&mddev->disks) &&
2550 mddev->raid_disks == 0 &&
2551 mddev->size == 0)
2552 st = clear;
2553 else
2554 st = inactive;
2556 return sprintf(page, "%s\n", array_states[st]);
2559 static int do_md_stop(mddev_t * mddev, int ro);
2560 static int do_md_run(mddev_t * mddev);
2561 static int restart_array(mddev_t *mddev);
2563 static ssize_t
2564 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2566 int err = -EINVAL;
2567 enum array_state st = match_word(buf, array_states);
2568 switch(st) {
2569 case bad_word:
2570 break;
2571 case clear:
2572 /* stopping an active array */
2573 if (atomic_read(&mddev->active) > 1)
2574 return -EBUSY;
2575 err = do_md_stop(mddev, 0);
2576 break;
2577 case inactive:
2578 /* stopping an active array */
2579 if (mddev->pers) {
2580 if (atomic_read(&mddev->active) > 1)
2581 return -EBUSY;
2582 err = do_md_stop(mddev, 2);
2583 } else
2584 err = 0; /* already inactive */
2585 break;
2586 case suspended:
2587 break; /* not supported yet */
2588 case readonly:
2589 if (mddev->pers)
2590 err = do_md_stop(mddev, 1);
2591 else {
2592 mddev->ro = 1;
2593 err = do_md_run(mddev);
2595 break;
2596 case read_auto:
2597 /* stopping an active array */
2598 if (mddev->pers) {
2599 err = do_md_stop(mddev, 1);
2600 if (err == 0)
2601 mddev->ro = 2; /* FIXME mark devices writable */
2602 } else {
2603 mddev->ro = 2;
2604 err = do_md_run(mddev);
2606 break;
2607 case clean:
2608 if (mddev->pers) {
2609 restart_array(mddev);
2610 spin_lock_irq(&mddev->write_lock);
2611 if (atomic_read(&mddev->writes_pending) == 0) {
2612 if (mddev->in_sync == 0) {
2613 mddev->in_sync = 1;
2614 if (mddev->persistent)
2615 set_bit(MD_CHANGE_CLEAN,
2616 &mddev->flags);
2618 err = 0;
2619 } else
2620 err = -EBUSY;
2621 spin_unlock_irq(&mddev->write_lock);
2622 } else {
2623 mddev->ro = 0;
2624 mddev->recovery_cp = MaxSector;
2625 err = do_md_run(mddev);
2627 break;
2628 case active:
2629 if (mddev->pers) {
2630 restart_array(mddev);
2631 if (mddev->external)
2632 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2633 wake_up(&mddev->sb_wait);
2634 err = 0;
2635 } else {
2636 mddev->ro = 0;
2637 err = do_md_run(mddev);
2639 break;
2640 case write_pending:
2641 case active_idle:
2642 /* these cannot be set */
2643 break;
2645 if (err)
2646 return err;
2647 else
2648 return len;
2650 static struct md_sysfs_entry md_array_state =
2651 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2653 static ssize_t
2654 null_show(mddev_t *mddev, char *page)
2656 return -EINVAL;
2659 static ssize_t
2660 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2662 /* buf must be %d:%d\n? giving major and minor numbers */
2663 /* The new device is added to the array.
2664 * If the array has a persistent superblock, we read the
2665 * superblock to initialise info and check validity.
2666 * Otherwise, only checking done is that in bind_rdev_to_array,
2667 * which mainly checks size.
2669 char *e;
2670 int major = simple_strtoul(buf, &e, 10);
2671 int minor;
2672 dev_t dev;
2673 mdk_rdev_t *rdev;
2674 int err;
2676 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2677 return -EINVAL;
2678 minor = simple_strtoul(e+1, &e, 10);
2679 if (*e && *e != '\n')
2680 return -EINVAL;
2681 dev = MKDEV(major, minor);
2682 if (major != MAJOR(dev) ||
2683 minor != MINOR(dev))
2684 return -EOVERFLOW;
2687 if (mddev->persistent) {
2688 rdev = md_import_device(dev, mddev->major_version,
2689 mddev->minor_version);
2690 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2691 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2692 mdk_rdev_t, same_set);
2693 err = super_types[mddev->major_version]
2694 .load_super(rdev, rdev0, mddev->minor_version);
2695 if (err < 0)
2696 goto out;
2698 } else if (mddev->external)
2699 rdev = md_import_device(dev, -2, -1);
2700 else
2701 rdev = md_import_device(dev, -1, -1);
2703 if (IS_ERR(rdev))
2704 return PTR_ERR(rdev);
2705 err = bind_rdev_to_array(rdev, mddev);
2706 out:
2707 if (err)
2708 export_rdev(rdev);
2709 return err ? err : len;
2712 static struct md_sysfs_entry md_new_device =
2713 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2715 static ssize_t
2716 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2718 char *end;
2719 unsigned long chunk, end_chunk;
2721 if (!mddev->bitmap)
2722 goto out;
2723 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2724 while (*buf) {
2725 chunk = end_chunk = simple_strtoul(buf, &end, 0);
2726 if (buf == end) break;
2727 if (*end == '-') { /* range */
2728 buf = end + 1;
2729 end_chunk = simple_strtoul(buf, &end, 0);
2730 if (buf == end) break;
2732 if (*end && !isspace(*end)) break;
2733 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2734 buf = end;
2735 while (isspace(*buf)) buf++;
2737 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2738 out:
2739 return len;
2742 static struct md_sysfs_entry md_bitmap =
2743 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2745 static ssize_t
2746 size_show(mddev_t *mddev, char *page)
2748 return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2751 static int update_size(mddev_t *mddev, unsigned long size);
2753 static ssize_t
2754 size_store(mddev_t *mddev, const char *buf, size_t len)
2756 /* If array is inactive, we can reduce the component size, but
2757 * not increase it (except from 0).
2758 * If array is active, we can try an on-line resize
2760 char *e;
2761 int err = 0;
2762 unsigned long long size = simple_strtoull(buf, &e, 10);
2763 if (!*buf || *buf == '\n' ||
2764 (*e && *e != '\n'))
2765 return -EINVAL;
2767 if (mddev->pers) {
2768 err = update_size(mddev, size);
2769 md_update_sb(mddev, 1);
2770 } else {
2771 if (mddev->size == 0 ||
2772 mddev->size > size)
2773 mddev->size = size;
2774 else
2775 err = -ENOSPC;
2777 return err ? err : len;
2780 static struct md_sysfs_entry md_size =
2781 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2784 /* Metdata version.
2785 * This is one of
2786 * 'none' for arrays with no metadata (good luck...)
2787 * 'external' for arrays with externally managed metadata,
2788 * or N.M for internally known formats
2790 static ssize_t
2791 metadata_show(mddev_t *mddev, char *page)
2793 if (mddev->persistent)
2794 return sprintf(page, "%d.%d\n",
2795 mddev->major_version, mddev->minor_version);
2796 else if (mddev->external)
2797 return sprintf(page, "external:%s\n", mddev->metadata_type);
2798 else
2799 return sprintf(page, "none\n");
2802 static ssize_t
2803 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2805 int major, minor;
2806 char *e;
2807 if (!list_empty(&mddev->disks))
2808 return -EBUSY;
2810 if (cmd_match(buf, "none")) {
2811 mddev->persistent = 0;
2812 mddev->external = 0;
2813 mddev->major_version = 0;
2814 mddev->minor_version = 90;
2815 return len;
2817 if (strncmp(buf, "external:", 9) == 0) {
2818 size_t namelen = len-9;
2819 if (namelen >= sizeof(mddev->metadata_type))
2820 namelen = sizeof(mddev->metadata_type)-1;
2821 strncpy(mddev->metadata_type, buf+9, namelen);
2822 mddev->metadata_type[namelen] = 0;
2823 if (namelen && mddev->metadata_type[namelen-1] == '\n')
2824 mddev->metadata_type[--namelen] = 0;
2825 mddev->persistent = 0;
2826 mddev->external = 1;
2827 mddev->major_version = 0;
2828 mddev->minor_version = 90;
2829 return len;
2831 major = simple_strtoul(buf, &e, 10);
2832 if (e==buf || *e != '.')
2833 return -EINVAL;
2834 buf = e+1;
2835 minor = simple_strtoul(buf, &e, 10);
2836 if (e==buf || (*e && *e != '\n') )
2837 return -EINVAL;
2838 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
2839 return -ENOENT;
2840 mddev->major_version = major;
2841 mddev->minor_version = minor;
2842 mddev->persistent = 1;
2843 mddev->external = 0;
2844 return len;
2847 static struct md_sysfs_entry md_metadata =
2848 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2850 static ssize_t
2851 action_show(mddev_t *mddev, char *page)
2853 char *type = "idle";
2854 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2855 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2856 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2857 type = "reshape";
2858 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2859 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2860 type = "resync";
2861 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2862 type = "check";
2863 else
2864 type = "repair";
2865 } else
2866 type = "recover";
2868 return sprintf(page, "%s\n", type);
2871 static ssize_t
2872 action_store(mddev_t *mddev, const char *page, size_t len)
2874 if (!mddev->pers || !mddev->pers->sync_request)
2875 return -EINVAL;
2877 if (cmd_match(page, "idle")) {
2878 if (mddev->sync_thread) {
2879 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2880 md_unregister_thread(mddev->sync_thread);
2881 mddev->sync_thread = NULL;
2882 mddev->recovery = 0;
2884 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2885 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2886 return -EBUSY;
2887 else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2888 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2889 else if (cmd_match(page, "reshape")) {
2890 int err;
2891 if (mddev->pers->start_reshape == NULL)
2892 return -EINVAL;
2893 err = mddev->pers->start_reshape(mddev);
2894 if (err)
2895 return err;
2896 } else {
2897 if (cmd_match(page, "check"))
2898 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2899 else if (!cmd_match(page, "repair"))
2900 return -EINVAL;
2901 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2902 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2904 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2905 md_wakeup_thread(mddev->thread);
2906 return len;
2909 static ssize_t
2910 mismatch_cnt_show(mddev_t *mddev, char *page)
2912 return sprintf(page, "%llu\n",
2913 (unsigned long long) mddev->resync_mismatches);
2916 static struct md_sysfs_entry md_scan_mode =
2917 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2920 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2922 static ssize_t
2923 sync_min_show(mddev_t *mddev, char *page)
2925 return sprintf(page, "%d (%s)\n", speed_min(mddev),
2926 mddev->sync_speed_min ? "local": "system");
2929 static ssize_t
2930 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2932 int min;
2933 char *e;
2934 if (strncmp(buf, "system", 6)==0) {
2935 mddev->sync_speed_min = 0;
2936 return len;
2938 min = simple_strtoul(buf, &e, 10);
2939 if (buf == e || (*e && *e != '\n') || min <= 0)
2940 return -EINVAL;
2941 mddev->sync_speed_min = min;
2942 return len;
2945 static struct md_sysfs_entry md_sync_min =
2946 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2948 static ssize_t
2949 sync_max_show(mddev_t *mddev, char *page)
2951 return sprintf(page, "%d (%s)\n", speed_max(mddev),
2952 mddev->sync_speed_max ? "local": "system");
2955 static ssize_t
2956 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2958 int max;
2959 char *e;
2960 if (strncmp(buf, "system", 6)==0) {
2961 mddev->sync_speed_max = 0;
2962 return len;
2964 max = simple_strtoul(buf, &e, 10);
2965 if (buf == e || (*e && *e != '\n') || max <= 0)
2966 return -EINVAL;
2967 mddev->sync_speed_max = max;
2968 return len;
2971 static struct md_sysfs_entry md_sync_max =
2972 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2974 static ssize_t
2975 degraded_show(mddev_t *mddev, char *page)
2977 return sprintf(page, "%d\n", mddev->degraded);
2979 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
2981 static ssize_t
2982 sync_speed_show(mddev_t *mddev, char *page)
2984 unsigned long resync, dt, db;
2985 resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2986 dt = ((jiffies - mddev->resync_mark) / HZ);
2987 if (!dt) dt++;
2988 db = resync - (mddev->resync_mark_cnt);
2989 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2992 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
2994 static ssize_t
2995 sync_completed_show(mddev_t *mddev, char *page)
2997 unsigned long max_blocks, resync;
2999 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3000 max_blocks = mddev->resync_max_sectors;
3001 else
3002 max_blocks = mddev->size << 1;
3004 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
3005 return sprintf(page, "%lu / %lu\n", resync, max_blocks);
3008 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3010 static ssize_t
3011 max_sync_show(mddev_t *mddev, char *page)
3013 if (mddev->resync_max == MaxSector)
3014 return sprintf(page, "max\n");
3015 else
3016 return sprintf(page, "%llu\n",
3017 (unsigned long long)mddev->resync_max);
3019 static ssize_t
3020 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3022 if (strncmp(buf, "max", 3) == 0)
3023 mddev->resync_max = MaxSector;
3024 else {
3025 char *ep;
3026 unsigned long long max = simple_strtoull(buf, &ep, 10);
3027 if (ep == buf || (*ep != 0 && *ep != '\n'))
3028 return -EINVAL;
3029 if (max < mddev->resync_max &&
3030 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3031 return -EBUSY;
3033 /* Must be a multiple of chunk_size */
3034 if (mddev->chunk_size) {
3035 if (max & (sector_t)((mddev->chunk_size>>9)-1))
3036 return -EINVAL;
3038 mddev->resync_max = max;
3040 wake_up(&mddev->recovery_wait);
3041 return len;
3044 static struct md_sysfs_entry md_max_sync =
3045 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3047 static ssize_t
3048 suspend_lo_show(mddev_t *mddev, char *page)
3050 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3053 static ssize_t
3054 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3056 char *e;
3057 unsigned long long new = simple_strtoull(buf, &e, 10);
3059 if (mddev->pers->quiesce == NULL)
3060 return -EINVAL;
3061 if (buf == e || (*e && *e != '\n'))
3062 return -EINVAL;
3063 if (new >= mddev->suspend_hi ||
3064 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3065 mddev->suspend_lo = new;
3066 mddev->pers->quiesce(mddev, 2);
3067 return len;
3068 } else
3069 return -EINVAL;
3071 static struct md_sysfs_entry md_suspend_lo =
3072 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3075 static ssize_t
3076 suspend_hi_show(mddev_t *mddev, char *page)
3078 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3081 static ssize_t
3082 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3084 char *e;
3085 unsigned long long new = simple_strtoull(buf, &e, 10);
3087 if (mddev->pers->quiesce == NULL)
3088 return -EINVAL;
3089 if (buf == e || (*e && *e != '\n'))
3090 return -EINVAL;
3091 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3092 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3093 mddev->suspend_hi = new;
3094 mddev->pers->quiesce(mddev, 1);
3095 mddev->pers->quiesce(mddev, 0);
3096 return len;
3097 } else
3098 return -EINVAL;
3100 static struct md_sysfs_entry md_suspend_hi =
3101 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3103 static ssize_t
3104 reshape_position_show(mddev_t *mddev, char *page)
3106 if (mddev->reshape_position != MaxSector)
3107 return sprintf(page, "%llu\n",
3108 (unsigned long long)mddev->reshape_position);
3109 strcpy(page, "none\n");
3110 return 5;
3113 static ssize_t
3114 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3116 char *e;
3117 unsigned long long new = simple_strtoull(buf, &e, 10);
3118 if (mddev->pers)
3119 return -EBUSY;
3120 if (buf == e || (*e && *e != '\n'))
3121 return -EINVAL;
3122 mddev->reshape_position = new;
3123 mddev->delta_disks = 0;
3124 mddev->new_level = mddev->level;
3125 mddev->new_layout = mddev->layout;
3126 mddev->new_chunk = mddev->chunk_size;
3127 return len;
3130 static struct md_sysfs_entry md_reshape_position =
3131 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3132 reshape_position_store);
3135 static struct attribute *md_default_attrs[] = {
3136 &md_level.attr,
3137 &md_layout.attr,
3138 &md_raid_disks.attr,
3139 &md_chunk_size.attr,
3140 &md_size.attr,
3141 &md_resync_start.attr,
3142 &md_metadata.attr,
3143 &md_new_device.attr,
3144 &md_safe_delay.attr,
3145 &md_array_state.attr,
3146 &md_reshape_position.attr,
3147 NULL,
3150 static struct attribute *md_redundancy_attrs[] = {
3151 &md_scan_mode.attr,
3152 &md_mismatches.attr,
3153 &md_sync_min.attr,
3154 &md_sync_max.attr,
3155 &md_sync_speed.attr,
3156 &md_sync_completed.attr,
3157 &md_max_sync.attr,
3158 &md_suspend_lo.attr,
3159 &md_suspend_hi.attr,
3160 &md_bitmap.attr,
3161 &md_degraded.attr,
3162 NULL,
3164 static struct attribute_group md_redundancy_group = {
3165 .name = NULL,
3166 .attrs = md_redundancy_attrs,
3170 static ssize_t
3171 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3173 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3174 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3175 ssize_t rv;
3177 if (!entry->show)
3178 return -EIO;
3179 rv = mddev_lock(mddev);
3180 if (!rv) {
3181 rv = entry->show(mddev, page);
3182 mddev_unlock(mddev);
3184 return rv;
3187 static ssize_t
3188 md_attr_store(struct kobject *kobj, struct attribute *attr,
3189 const char *page, size_t length)
3191 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3192 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3193 ssize_t rv;
3195 if (!entry->store)
3196 return -EIO;
3197 if (!capable(CAP_SYS_ADMIN))
3198 return -EACCES;
3199 rv = mddev_lock(mddev);
3200 if (!rv) {
3201 rv = entry->store(mddev, page, length);
3202 mddev_unlock(mddev);
3204 return rv;
3207 static void md_free(struct kobject *ko)
3209 mddev_t *mddev = container_of(ko, mddev_t, kobj);
3210 kfree(mddev);
3213 static struct sysfs_ops md_sysfs_ops = {
3214 .show = md_attr_show,
3215 .store = md_attr_store,
3217 static struct kobj_type md_ktype = {
3218 .release = md_free,
3219 .sysfs_ops = &md_sysfs_ops,
3220 .default_attrs = md_default_attrs,
3223 int mdp_major = 0;
3225 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3227 static DEFINE_MUTEX(disks_mutex);
3228 mddev_t *mddev = mddev_find(dev);
3229 struct gendisk *disk;
3230 int partitioned = (MAJOR(dev) != MD_MAJOR);
3231 int shift = partitioned ? MdpMinorShift : 0;
3232 int unit = MINOR(dev) >> shift;
3233 int error;
3235 if (!mddev)
3236 return NULL;
3238 mutex_lock(&disks_mutex);
3239 if (mddev->gendisk) {
3240 mutex_unlock(&disks_mutex);
3241 mddev_put(mddev);
3242 return NULL;
3244 disk = alloc_disk(1 << shift);
3245 if (!disk) {
3246 mutex_unlock(&disks_mutex);
3247 mddev_put(mddev);
3248 return NULL;
3250 disk->major = MAJOR(dev);
3251 disk->first_minor = unit << shift;
3252 if (partitioned)
3253 sprintf(disk->disk_name, "md_d%d", unit);
3254 else
3255 sprintf(disk->disk_name, "md%d", unit);
3256 disk->fops = &md_fops;
3257 disk->private_data = mddev;
3258 disk->queue = mddev->queue;
3259 add_disk(disk);
3260 mddev->gendisk = disk;
3261 mutex_unlock(&disks_mutex);
3262 error = kobject_init_and_add(&mddev->kobj, &md_ktype, &disk->dev.kobj,
3263 "%s", "md");
3264 if (error)
3265 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3266 disk->disk_name);
3267 else
3268 kobject_uevent(&mddev->kobj, KOBJ_ADD);
3269 return NULL;
3272 static void md_safemode_timeout(unsigned long data)
3274 mddev_t *mddev = (mddev_t *) data;
3276 mddev->safemode = 1;
3277 md_wakeup_thread(mddev->thread);
3280 static int start_dirty_degraded;
3282 static int do_md_run(mddev_t * mddev)
3284 int err;
3285 int chunk_size;
3286 struct list_head *tmp;
3287 mdk_rdev_t *rdev;
3288 struct gendisk *disk;
3289 struct mdk_personality *pers;
3290 char b[BDEVNAME_SIZE];
3292 if (list_empty(&mddev->disks))
3293 /* cannot run an array with no devices.. */
3294 return -EINVAL;
3296 if (mddev->pers)
3297 return -EBUSY;
3300 * Analyze all RAID superblock(s)
3302 if (!mddev->raid_disks) {
3303 if (!mddev->persistent)
3304 return -EINVAL;
3305 analyze_sbs(mddev);
3308 chunk_size = mddev->chunk_size;
3310 if (chunk_size) {
3311 if (chunk_size > MAX_CHUNK_SIZE) {
3312 printk(KERN_ERR "too big chunk_size: %d > %d\n",
3313 chunk_size, MAX_CHUNK_SIZE);
3314 return -EINVAL;
3317 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3319 if ( (1 << ffz(~chunk_size)) != chunk_size) {
3320 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3321 return -EINVAL;
3323 if (chunk_size < PAGE_SIZE) {
3324 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3325 chunk_size, PAGE_SIZE);
3326 return -EINVAL;
3329 /* devices must have minimum size of one chunk */
3330 rdev_for_each(rdev, tmp, mddev) {
3331 if (test_bit(Faulty, &rdev->flags))
3332 continue;
3333 if (rdev->size < chunk_size / 1024) {
3334 printk(KERN_WARNING
3335 "md: Dev %s smaller than chunk_size:"
3336 " %lluk < %dk\n",
3337 bdevname(rdev->bdev,b),
3338 (unsigned long long)rdev->size,
3339 chunk_size / 1024);
3340 return -EINVAL;
3345 #ifdef CONFIG_KMOD
3346 if (mddev->level != LEVEL_NONE)
3347 request_module("md-level-%d", mddev->level);
3348 else if (mddev->clevel[0])
3349 request_module("md-%s", mddev->clevel);
3350 #endif
3353 * Drop all container device buffers, from now on
3354 * the only valid external interface is through the md
3355 * device.
3357 rdev_for_each(rdev, tmp, mddev) {
3358 if (test_bit(Faulty, &rdev->flags))
3359 continue;
3360 sync_blockdev(rdev->bdev);
3361 invalidate_bdev(rdev->bdev);
3363 /* perform some consistency tests on the device.
3364 * We don't want the data to overlap the metadata,
3365 * Internal Bitmap issues has handled elsewhere.
3367 if (rdev->data_offset < rdev->sb_offset) {
3368 if (mddev->size &&
3369 rdev->data_offset + mddev->size*2
3370 > rdev->sb_offset*2) {
3371 printk("md: %s: data overlaps metadata\n",
3372 mdname(mddev));
3373 return -EINVAL;
3375 } else {
3376 if (rdev->sb_offset*2 + rdev->sb_size/512
3377 > rdev->data_offset) {
3378 printk("md: %s: metadata overlaps data\n",
3379 mdname(mddev));
3380 return -EINVAL;
3385 md_probe(mddev->unit, NULL, NULL);
3386 disk = mddev->gendisk;
3387 if (!disk)
3388 return -ENOMEM;
3390 spin_lock(&pers_lock);
3391 pers = find_pers(mddev->level, mddev->clevel);
3392 if (!pers || !try_module_get(pers->owner)) {
3393 spin_unlock(&pers_lock);
3394 if (mddev->level != LEVEL_NONE)
3395 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3396 mddev->level);
3397 else
3398 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3399 mddev->clevel);
3400 return -EINVAL;
3402 mddev->pers = pers;
3403 spin_unlock(&pers_lock);
3404 mddev->level = pers->level;
3405 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3407 if (mddev->reshape_position != MaxSector &&
3408 pers->start_reshape == NULL) {
3409 /* This personality cannot handle reshaping... */
3410 mddev->pers = NULL;
3411 module_put(pers->owner);
3412 return -EINVAL;
3415 if (pers->sync_request) {
3416 /* Warn if this is a potentially silly
3417 * configuration.
3419 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3420 mdk_rdev_t *rdev2;
3421 struct list_head *tmp2;
3422 int warned = 0;
3423 rdev_for_each(rdev, tmp, mddev) {
3424 rdev_for_each(rdev2, tmp2, mddev) {
3425 if (rdev < rdev2 &&
3426 rdev->bdev->bd_contains ==
3427 rdev2->bdev->bd_contains) {
3428 printk(KERN_WARNING
3429 "%s: WARNING: %s appears to be"
3430 " on the same physical disk as"
3431 " %s.\n",
3432 mdname(mddev),
3433 bdevname(rdev->bdev,b),
3434 bdevname(rdev2->bdev,b2));
3435 warned = 1;
3439 if (warned)
3440 printk(KERN_WARNING
3441 "True protection against single-disk"
3442 " failure might be compromised.\n");
3445 mddev->recovery = 0;
3446 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3447 mddev->barriers_work = 1;
3448 mddev->ok_start_degraded = start_dirty_degraded;
3450 if (start_readonly)
3451 mddev->ro = 2; /* read-only, but switch on first write */
3453 err = mddev->pers->run(mddev);
3454 if (!err && mddev->pers->sync_request) {
3455 err = bitmap_create(mddev);
3456 if (err) {
3457 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3458 mdname(mddev), err);
3459 mddev->pers->stop(mddev);
3462 if (err) {
3463 printk(KERN_ERR "md: pers->run() failed ...\n");
3464 module_put(mddev->pers->owner);
3465 mddev->pers = NULL;
3466 bitmap_destroy(mddev);
3467 return err;
3469 if (mddev->pers->sync_request) {
3470 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3471 printk(KERN_WARNING
3472 "md: cannot register extra attributes for %s\n",
3473 mdname(mddev));
3474 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
3475 mddev->ro = 0;
3477 atomic_set(&mddev->writes_pending,0);
3478 mddev->safemode = 0;
3479 mddev->safemode_timer.function = md_safemode_timeout;
3480 mddev->safemode_timer.data = (unsigned long) mddev;
3481 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3482 mddev->in_sync = 1;
3484 rdev_for_each(rdev, tmp, mddev)
3485 if (rdev->raid_disk >= 0) {
3486 char nm[20];
3487 sprintf(nm, "rd%d", rdev->raid_disk);
3488 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3489 printk("md: cannot register %s for %s\n",
3490 nm, mdname(mddev));
3493 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3495 if (mddev->flags)
3496 md_update_sb(mddev, 0);
3498 set_capacity(disk, mddev->array_size<<1);
3500 /* If we call blk_queue_make_request here, it will
3501 * re-initialise max_sectors etc which may have been
3502 * refined inside -> run. So just set the bits we need to set.
3503 * Most initialisation happended when we called
3504 * blk_queue_make_request(..., md_fail_request)
3505 * earlier.
3507 mddev->queue->queuedata = mddev;
3508 mddev->queue->make_request_fn = mddev->pers->make_request;
3510 /* If there is a partially-recovered drive we need to
3511 * start recovery here. If we leave it to md_check_recovery,
3512 * it will remove the drives and not do the right thing
3514 if (mddev->degraded && !mddev->sync_thread) {
3515 struct list_head *rtmp;
3516 int spares = 0;
3517 rdev_for_each(rdev, rtmp, mddev)
3518 if (rdev->raid_disk >= 0 &&
3519 !test_bit(In_sync, &rdev->flags) &&
3520 !test_bit(Faulty, &rdev->flags))
3521 /* complete an interrupted recovery */
3522 spares++;
3523 if (spares && mddev->pers->sync_request) {
3524 mddev->recovery = 0;
3525 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3526 mddev->sync_thread = md_register_thread(md_do_sync,
3527 mddev,
3528 "%s_resync");
3529 if (!mddev->sync_thread) {
3530 printk(KERN_ERR "%s: could not start resync"
3531 " thread...\n",
3532 mdname(mddev));
3533 /* leave the spares where they are, it shouldn't hurt */
3534 mddev->recovery = 0;
3538 md_wakeup_thread(mddev->thread);
3539 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3541 mddev->changed = 1;
3542 md_new_event(mddev);
3543 kobject_uevent(&mddev->gendisk->dev.kobj, KOBJ_CHANGE);
3544 return 0;
3547 static int restart_array(mddev_t *mddev)
3549 struct gendisk *disk = mddev->gendisk;
3550 int err;
3553 * Complain if it has no devices
3555 err = -ENXIO;
3556 if (list_empty(&mddev->disks))
3557 goto out;
3559 if (mddev->pers) {
3560 err = -EBUSY;
3561 if (!mddev->ro)
3562 goto out;
3564 mddev->safemode = 0;
3565 mddev->ro = 0;
3566 set_disk_ro(disk, 0);
3568 printk(KERN_INFO "md: %s switched to read-write mode.\n",
3569 mdname(mddev));
3571 * Kick recovery or resync if necessary
3573 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3574 md_wakeup_thread(mddev->thread);
3575 md_wakeup_thread(mddev->sync_thread);
3576 err = 0;
3577 } else
3578 err = -EINVAL;
3580 out:
3581 return err;
3584 /* similar to deny_write_access, but accounts for our holding a reference
3585 * to the file ourselves */
3586 static int deny_bitmap_write_access(struct file * file)
3588 struct inode *inode = file->f_mapping->host;
3590 spin_lock(&inode->i_lock);
3591 if (atomic_read(&inode->i_writecount) > 1) {
3592 spin_unlock(&inode->i_lock);
3593 return -ETXTBSY;
3595 atomic_set(&inode->i_writecount, -1);
3596 spin_unlock(&inode->i_lock);
3598 return 0;
3601 static void restore_bitmap_write_access(struct file *file)
3603 struct inode *inode = file->f_mapping->host;
3605 spin_lock(&inode->i_lock);
3606 atomic_set(&inode->i_writecount, 1);
3607 spin_unlock(&inode->i_lock);
3610 /* mode:
3611 * 0 - completely stop and dis-assemble array
3612 * 1 - switch to readonly
3613 * 2 - stop but do not disassemble array
3615 static int do_md_stop(mddev_t * mddev, int mode)
3617 int err = 0;
3618 struct gendisk *disk = mddev->gendisk;
3620 if (mddev->pers) {
3621 if (atomic_read(&mddev->active)>2) {
3622 printk("md: %s still in use.\n",mdname(mddev));
3623 return -EBUSY;
3626 if (mddev->sync_thread) {
3627 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3628 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3629 md_unregister_thread(mddev->sync_thread);
3630 mddev->sync_thread = NULL;
3633 del_timer_sync(&mddev->safemode_timer);
3635 invalidate_partition(disk, 0);
3637 switch(mode) {
3638 case 1: /* readonly */
3639 err = -ENXIO;
3640 if (mddev->ro==1)
3641 goto out;
3642 mddev->ro = 1;
3643 break;
3644 case 0: /* disassemble */
3645 case 2: /* stop */
3646 bitmap_flush(mddev);
3647 md_super_wait(mddev);
3648 if (mddev->ro)
3649 set_disk_ro(disk, 0);
3650 blk_queue_make_request(mddev->queue, md_fail_request);
3651 mddev->pers->stop(mddev);
3652 mddev->queue->merge_bvec_fn = NULL;
3653 mddev->queue->unplug_fn = NULL;
3654 mddev->queue->backing_dev_info.congested_fn = NULL;
3655 if (mddev->pers->sync_request)
3656 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3658 module_put(mddev->pers->owner);
3659 mddev->pers = NULL;
3661 set_capacity(disk, 0);
3662 mddev->changed = 1;
3664 if (mddev->ro)
3665 mddev->ro = 0;
3667 if (!mddev->in_sync || mddev->flags) {
3668 /* mark array as shutdown cleanly */
3669 mddev->in_sync = 1;
3670 md_update_sb(mddev, 1);
3672 if (mode == 1)
3673 set_disk_ro(disk, 1);
3674 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3678 * Free resources if final stop
3680 if (mode == 0) {
3681 mdk_rdev_t *rdev;
3682 struct list_head *tmp;
3684 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3686 bitmap_destroy(mddev);
3687 if (mddev->bitmap_file) {
3688 restore_bitmap_write_access(mddev->bitmap_file);
3689 fput(mddev->bitmap_file);
3690 mddev->bitmap_file = NULL;
3692 mddev->bitmap_offset = 0;
3694 rdev_for_each(rdev, tmp, mddev)
3695 if (rdev->raid_disk >= 0) {
3696 char nm[20];
3697 sprintf(nm, "rd%d", rdev->raid_disk);
3698 sysfs_remove_link(&mddev->kobj, nm);
3701 /* make sure all md_delayed_delete calls have finished */
3702 flush_scheduled_work();
3704 export_array(mddev);
3706 mddev->array_size = 0;
3707 mddev->size = 0;
3708 mddev->raid_disks = 0;
3709 mddev->recovery_cp = 0;
3710 mddev->resync_max = MaxSector;
3711 mddev->reshape_position = MaxSector;
3712 mddev->external = 0;
3713 mddev->persistent = 0;
3715 } else if (mddev->pers)
3716 printk(KERN_INFO "md: %s switched to read-only mode.\n",
3717 mdname(mddev));
3718 err = 0;
3719 md_new_event(mddev);
3720 out:
3721 return err;
3724 #ifndef MODULE
3725 static void autorun_array(mddev_t *mddev)
3727 mdk_rdev_t *rdev;
3728 struct list_head *tmp;
3729 int err;
3731 if (list_empty(&mddev->disks))
3732 return;
3734 printk(KERN_INFO "md: running: ");
3736 rdev_for_each(rdev, tmp, mddev) {
3737 char b[BDEVNAME_SIZE];
3738 printk("<%s>", bdevname(rdev->bdev,b));
3740 printk("\n");
3742 err = do_md_run (mddev);
3743 if (err) {
3744 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3745 do_md_stop (mddev, 0);
3750 * lets try to run arrays based on all disks that have arrived
3751 * until now. (those are in pending_raid_disks)
3753 * the method: pick the first pending disk, collect all disks with
3754 * the same UUID, remove all from the pending list and put them into
3755 * the 'same_array' list. Then order this list based on superblock
3756 * update time (freshest comes first), kick out 'old' disks and
3757 * compare superblocks. If everything's fine then run it.
3759 * If "unit" is allocated, then bump its reference count
3761 static void autorun_devices(int part)
3763 struct list_head *tmp;
3764 mdk_rdev_t *rdev0, *rdev;
3765 mddev_t *mddev;
3766 char b[BDEVNAME_SIZE];
3768 printk(KERN_INFO "md: autorun ...\n");
3769 while (!list_empty(&pending_raid_disks)) {
3770 int unit;
3771 dev_t dev;
3772 LIST_HEAD(candidates);
3773 rdev0 = list_entry(pending_raid_disks.next,
3774 mdk_rdev_t, same_set);
3776 printk(KERN_INFO "md: considering %s ...\n",
3777 bdevname(rdev0->bdev,b));
3778 INIT_LIST_HEAD(&candidates);
3779 rdev_for_each_list(rdev, tmp, pending_raid_disks)
3780 if (super_90_load(rdev, rdev0, 0) >= 0) {
3781 printk(KERN_INFO "md: adding %s ...\n",
3782 bdevname(rdev->bdev,b));
3783 list_move(&rdev->same_set, &candidates);
3786 * now we have a set of devices, with all of them having
3787 * mostly sane superblocks. It's time to allocate the
3788 * mddev.
3790 if (part) {
3791 dev = MKDEV(mdp_major,
3792 rdev0->preferred_minor << MdpMinorShift);
3793 unit = MINOR(dev) >> MdpMinorShift;
3794 } else {
3795 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3796 unit = MINOR(dev);
3798 if (rdev0->preferred_minor != unit) {
3799 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3800 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3801 break;
3804 md_probe(dev, NULL, NULL);
3805 mddev = mddev_find(dev);
3806 if (!mddev) {
3807 printk(KERN_ERR
3808 "md: cannot allocate memory for md drive.\n");
3809 break;
3811 if (mddev_lock(mddev))
3812 printk(KERN_WARNING "md: %s locked, cannot run\n",
3813 mdname(mddev));
3814 else if (mddev->raid_disks || mddev->major_version
3815 || !list_empty(&mddev->disks)) {
3816 printk(KERN_WARNING
3817 "md: %s already running, cannot run %s\n",
3818 mdname(mddev), bdevname(rdev0->bdev,b));
3819 mddev_unlock(mddev);
3820 } else {
3821 printk(KERN_INFO "md: created %s\n", mdname(mddev));
3822 mddev->persistent = 1;
3823 rdev_for_each_list(rdev, tmp, candidates) {
3824 list_del_init(&rdev->same_set);
3825 if (bind_rdev_to_array(rdev, mddev))
3826 export_rdev(rdev);
3828 autorun_array(mddev);
3829 mddev_unlock(mddev);
3831 /* on success, candidates will be empty, on error
3832 * it won't...
3834 rdev_for_each_list(rdev, tmp, candidates)
3835 export_rdev(rdev);
3836 mddev_put(mddev);
3838 printk(KERN_INFO "md: ... autorun DONE.\n");
3840 #endif /* !MODULE */
3842 static int get_version(void __user * arg)
3844 mdu_version_t ver;
3846 ver.major = MD_MAJOR_VERSION;
3847 ver.minor = MD_MINOR_VERSION;
3848 ver.patchlevel = MD_PATCHLEVEL_VERSION;
3850 if (copy_to_user(arg, &ver, sizeof(ver)))
3851 return -EFAULT;
3853 return 0;
3856 static int get_array_info(mddev_t * mddev, void __user * arg)
3858 mdu_array_info_t info;
3859 int nr,working,active,failed,spare;
3860 mdk_rdev_t *rdev;
3861 struct list_head *tmp;
3863 nr=working=active=failed=spare=0;
3864 rdev_for_each(rdev, tmp, mddev) {
3865 nr++;
3866 if (test_bit(Faulty, &rdev->flags))
3867 failed++;
3868 else {
3869 working++;
3870 if (test_bit(In_sync, &rdev->flags))
3871 active++;
3872 else
3873 spare++;
3877 info.major_version = mddev->major_version;
3878 info.minor_version = mddev->minor_version;
3879 info.patch_version = MD_PATCHLEVEL_VERSION;
3880 info.ctime = mddev->ctime;
3881 info.level = mddev->level;
3882 info.size = mddev->size;
3883 if (info.size != mddev->size) /* overflow */
3884 info.size = -1;
3885 info.nr_disks = nr;
3886 info.raid_disks = mddev->raid_disks;
3887 info.md_minor = mddev->md_minor;
3888 info.not_persistent= !mddev->persistent;
3890 info.utime = mddev->utime;
3891 info.state = 0;
3892 if (mddev->in_sync)
3893 info.state = (1<<MD_SB_CLEAN);
3894 if (mddev->bitmap && mddev->bitmap_offset)
3895 info.state = (1<<MD_SB_BITMAP_PRESENT);
3896 info.active_disks = active;
3897 info.working_disks = working;
3898 info.failed_disks = failed;
3899 info.spare_disks = spare;
3901 info.layout = mddev->layout;
3902 info.chunk_size = mddev->chunk_size;
3904 if (copy_to_user(arg, &info, sizeof(info)))
3905 return -EFAULT;
3907 return 0;
3910 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3912 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3913 char *ptr, *buf = NULL;
3914 int err = -ENOMEM;
3916 md_allow_write(mddev);
3918 file = kmalloc(sizeof(*file), GFP_KERNEL);
3919 if (!file)
3920 goto out;
3922 /* bitmap disabled, zero the first byte and copy out */
3923 if (!mddev->bitmap || !mddev->bitmap->file) {
3924 file->pathname[0] = '\0';
3925 goto copy_out;
3928 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3929 if (!buf)
3930 goto out;
3932 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3933 if (!ptr)
3934 goto out;
3936 strcpy(file->pathname, ptr);
3938 copy_out:
3939 err = 0;
3940 if (copy_to_user(arg, file, sizeof(*file)))
3941 err = -EFAULT;
3942 out:
3943 kfree(buf);
3944 kfree(file);
3945 return err;
3948 static int get_disk_info(mddev_t * mddev, void __user * arg)
3950 mdu_disk_info_t info;
3951 unsigned int nr;
3952 mdk_rdev_t *rdev;
3954 if (copy_from_user(&info, arg, sizeof(info)))
3955 return -EFAULT;
3957 nr = info.number;
3959 rdev = find_rdev_nr(mddev, nr);
3960 if (rdev) {
3961 info.major = MAJOR(rdev->bdev->bd_dev);
3962 info.minor = MINOR(rdev->bdev->bd_dev);
3963 info.raid_disk = rdev->raid_disk;
3964 info.state = 0;
3965 if (test_bit(Faulty, &rdev->flags))
3966 info.state |= (1<<MD_DISK_FAULTY);
3967 else if (test_bit(In_sync, &rdev->flags)) {
3968 info.state |= (1<<MD_DISK_ACTIVE);
3969 info.state |= (1<<MD_DISK_SYNC);
3971 if (test_bit(WriteMostly, &rdev->flags))
3972 info.state |= (1<<MD_DISK_WRITEMOSTLY);
3973 } else {
3974 info.major = info.minor = 0;
3975 info.raid_disk = -1;
3976 info.state = (1<<MD_DISK_REMOVED);
3979 if (copy_to_user(arg, &info, sizeof(info)))
3980 return -EFAULT;
3982 return 0;
3985 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3987 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3988 mdk_rdev_t *rdev;
3989 dev_t dev = MKDEV(info->major,info->minor);
3991 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3992 return -EOVERFLOW;
3994 if (!mddev->raid_disks) {
3995 int err;
3996 /* expecting a device which has a superblock */
3997 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3998 if (IS_ERR(rdev)) {
3999 printk(KERN_WARNING
4000 "md: md_import_device returned %ld\n",
4001 PTR_ERR(rdev));
4002 return PTR_ERR(rdev);
4004 if (!list_empty(&mddev->disks)) {
4005 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4006 mdk_rdev_t, same_set);
4007 int err = super_types[mddev->major_version]
4008 .load_super(rdev, rdev0, mddev->minor_version);
4009 if (err < 0) {
4010 printk(KERN_WARNING
4011 "md: %s has different UUID to %s\n",
4012 bdevname(rdev->bdev,b),
4013 bdevname(rdev0->bdev,b2));
4014 export_rdev(rdev);
4015 return -EINVAL;
4018 err = bind_rdev_to_array(rdev, mddev);
4019 if (err)
4020 export_rdev(rdev);
4021 return err;
4025 * add_new_disk can be used once the array is assembled
4026 * to add "hot spares". They must already have a superblock
4027 * written
4029 if (mddev->pers) {
4030 int err;
4031 if (!mddev->pers->hot_add_disk) {
4032 printk(KERN_WARNING
4033 "%s: personality does not support diskops!\n",
4034 mdname(mddev));
4035 return -EINVAL;
4037 if (mddev->persistent)
4038 rdev = md_import_device(dev, mddev->major_version,
4039 mddev->minor_version);
4040 else
4041 rdev = md_import_device(dev, -1, -1);
4042 if (IS_ERR(rdev)) {
4043 printk(KERN_WARNING
4044 "md: md_import_device returned %ld\n",
4045 PTR_ERR(rdev));
4046 return PTR_ERR(rdev);
4048 /* set save_raid_disk if appropriate */
4049 if (!mddev->persistent) {
4050 if (info->state & (1<<MD_DISK_SYNC) &&
4051 info->raid_disk < mddev->raid_disks)
4052 rdev->raid_disk = info->raid_disk;
4053 else
4054 rdev->raid_disk = -1;
4055 } else
4056 super_types[mddev->major_version].
4057 validate_super(mddev, rdev);
4058 rdev->saved_raid_disk = rdev->raid_disk;
4060 clear_bit(In_sync, &rdev->flags); /* just to be sure */
4061 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4062 set_bit(WriteMostly, &rdev->flags);
4064 rdev->raid_disk = -1;
4065 err = bind_rdev_to_array(rdev, mddev);
4066 if (!err && !mddev->pers->hot_remove_disk) {
4067 /* If there is hot_add_disk but no hot_remove_disk
4068 * then added disks for geometry changes,
4069 * and should be added immediately.
4071 super_types[mddev->major_version].
4072 validate_super(mddev, rdev);
4073 err = mddev->pers->hot_add_disk(mddev, rdev);
4074 if (err)
4075 unbind_rdev_from_array(rdev);
4077 if (err)
4078 export_rdev(rdev);
4080 md_update_sb(mddev, 1);
4081 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4082 md_wakeup_thread(mddev->thread);
4083 return err;
4086 /* otherwise, add_new_disk is only allowed
4087 * for major_version==0 superblocks
4089 if (mddev->major_version != 0) {
4090 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4091 mdname(mddev));
4092 return -EINVAL;
4095 if (!(info->state & (1<<MD_DISK_FAULTY))) {
4096 int err;
4097 rdev = md_import_device (dev, -1, 0);
4098 if (IS_ERR(rdev)) {
4099 printk(KERN_WARNING
4100 "md: error, md_import_device() returned %ld\n",
4101 PTR_ERR(rdev));
4102 return PTR_ERR(rdev);
4104 rdev->desc_nr = info->number;
4105 if (info->raid_disk < mddev->raid_disks)
4106 rdev->raid_disk = info->raid_disk;
4107 else
4108 rdev->raid_disk = -1;
4110 if (rdev->raid_disk < mddev->raid_disks)
4111 if (info->state & (1<<MD_DISK_SYNC))
4112 set_bit(In_sync, &rdev->flags);
4114 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4115 set_bit(WriteMostly, &rdev->flags);
4117 if (!mddev->persistent) {
4118 printk(KERN_INFO "md: nonpersistent superblock ...\n");
4119 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
4120 } else
4121 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
4122 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
4124 err = bind_rdev_to_array(rdev, mddev);
4125 if (err) {
4126 export_rdev(rdev);
4127 return err;
4131 return 0;
4134 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4136 char b[BDEVNAME_SIZE];
4137 mdk_rdev_t *rdev;
4139 if (!mddev->pers)
4140 return -ENODEV;
4142 rdev = find_rdev(mddev, dev);
4143 if (!rdev)
4144 return -ENXIO;
4146 if (rdev->raid_disk >= 0)
4147 goto busy;
4149 kick_rdev_from_array(rdev);
4150 md_update_sb(mddev, 1);
4151 md_new_event(mddev);
4153 return 0;
4154 busy:
4155 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
4156 bdevname(rdev->bdev,b), mdname(mddev));
4157 return -EBUSY;
4160 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4162 char b[BDEVNAME_SIZE];
4163 int err;
4164 unsigned int size;
4165 mdk_rdev_t *rdev;
4167 if (!mddev->pers)
4168 return -ENODEV;
4170 if (mddev->major_version != 0) {
4171 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4172 " version-0 superblocks.\n",
4173 mdname(mddev));
4174 return -EINVAL;
4176 if (!mddev->pers->hot_add_disk) {
4177 printk(KERN_WARNING
4178 "%s: personality does not support diskops!\n",
4179 mdname(mddev));
4180 return -EINVAL;
4183 rdev = md_import_device (dev, -1, 0);
4184 if (IS_ERR(rdev)) {
4185 printk(KERN_WARNING
4186 "md: error, md_import_device() returned %ld\n",
4187 PTR_ERR(rdev));
4188 return -EINVAL;
4191 if (mddev->persistent)
4192 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
4193 else
4194 rdev->sb_offset =
4195 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
4197 size = calc_dev_size(rdev, mddev->chunk_size);
4198 rdev->size = size;
4200 if (test_bit(Faulty, &rdev->flags)) {
4201 printk(KERN_WARNING
4202 "md: can not hot-add faulty %s disk to %s!\n",
4203 bdevname(rdev->bdev,b), mdname(mddev));
4204 err = -EINVAL;
4205 goto abort_export;
4207 clear_bit(In_sync, &rdev->flags);
4208 rdev->desc_nr = -1;
4209 rdev->saved_raid_disk = -1;
4210 err = bind_rdev_to_array(rdev, mddev);
4211 if (err)
4212 goto abort_export;
4215 * The rest should better be atomic, we can have disk failures
4216 * noticed in interrupt contexts ...
4219 if (rdev->desc_nr == mddev->max_disks) {
4220 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
4221 mdname(mddev));
4222 err = -EBUSY;
4223 goto abort_unbind_export;
4226 rdev->raid_disk = -1;
4228 md_update_sb(mddev, 1);
4231 * Kick recovery, maybe this spare has to be added to the
4232 * array immediately.
4234 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4235 md_wakeup_thread(mddev->thread);
4236 md_new_event(mddev);
4237 return 0;
4239 abort_unbind_export:
4240 unbind_rdev_from_array(rdev);
4242 abort_export:
4243 export_rdev(rdev);
4244 return err;
4247 static int set_bitmap_file(mddev_t *mddev, int fd)
4249 int err;
4251 if (mddev->pers) {
4252 if (!mddev->pers->quiesce)
4253 return -EBUSY;
4254 if (mddev->recovery || mddev->sync_thread)
4255 return -EBUSY;
4256 /* we should be able to change the bitmap.. */
4260 if (fd >= 0) {
4261 if (mddev->bitmap)
4262 return -EEXIST; /* cannot add when bitmap is present */
4263 mddev->bitmap_file = fget(fd);
4265 if (mddev->bitmap_file == NULL) {
4266 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4267 mdname(mddev));
4268 return -EBADF;
4271 err = deny_bitmap_write_access(mddev->bitmap_file);
4272 if (err) {
4273 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4274 mdname(mddev));
4275 fput(mddev->bitmap_file);
4276 mddev->bitmap_file = NULL;
4277 return err;
4279 mddev->bitmap_offset = 0; /* file overrides offset */
4280 } else if (mddev->bitmap == NULL)
4281 return -ENOENT; /* cannot remove what isn't there */
4282 err = 0;
4283 if (mddev->pers) {
4284 mddev->pers->quiesce(mddev, 1);
4285 if (fd >= 0)
4286 err = bitmap_create(mddev);
4287 if (fd < 0 || err) {
4288 bitmap_destroy(mddev);
4289 fd = -1; /* make sure to put the file */
4291 mddev->pers->quiesce(mddev, 0);
4293 if (fd < 0) {
4294 if (mddev->bitmap_file) {
4295 restore_bitmap_write_access(mddev->bitmap_file);
4296 fput(mddev->bitmap_file);
4298 mddev->bitmap_file = NULL;
4301 return err;
4305 * set_array_info is used two different ways
4306 * The original usage is when creating a new array.
4307 * In this usage, raid_disks is > 0 and it together with
4308 * level, size, not_persistent,layout,chunksize determine the
4309 * shape of the array.
4310 * This will always create an array with a type-0.90.0 superblock.
4311 * The newer usage is when assembling an array.
4312 * In this case raid_disks will be 0, and the major_version field is
4313 * use to determine which style super-blocks are to be found on the devices.
4314 * The minor and patch _version numbers are also kept incase the
4315 * super_block handler wishes to interpret them.
4317 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4320 if (info->raid_disks == 0) {
4321 /* just setting version number for superblock loading */
4322 if (info->major_version < 0 ||
4323 info->major_version >= ARRAY_SIZE(super_types) ||
4324 super_types[info->major_version].name == NULL) {
4325 /* maybe try to auto-load a module? */
4326 printk(KERN_INFO
4327 "md: superblock version %d not known\n",
4328 info->major_version);
4329 return -EINVAL;
4331 mddev->major_version = info->major_version;
4332 mddev->minor_version = info->minor_version;
4333 mddev->patch_version = info->patch_version;
4334 mddev->persistent = !info->not_persistent;
4335 return 0;
4337 mddev->major_version = MD_MAJOR_VERSION;
4338 mddev->minor_version = MD_MINOR_VERSION;
4339 mddev->patch_version = MD_PATCHLEVEL_VERSION;
4340 mddev->ctime = get_seconds();
4342 mddev->level = info->level;
4343 mddev->clevel[0] = 0;
4344 mddev->size = info->size;
4345 mddev->raid_disks = info->raid_disks;
4346 /* don't set md_minor, it is determined by which /dev/md* was
4347 * openned
4349 if (info->state & (1<<MD_SB_CLEAN))
4350 mddev->recovery_cp = MaxSector;
4351 else
4352 mddev->recovery_cp = 0;
4353 mddev->persistent = ! info->not_persistent;
4354 mddev->external = 0;
4356 mddev->layout = info->layout;
4357 mddev->chunk_size = info->chunk_size;
4359 mddev->max_disks = MD_SB_DISKS;
4361 if (mddev->persistent)
4362 mddev->flags = 0;
4363 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4365 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4366 mddev->bitmap_offset = 0;
4368 mddev->reshape_position = MaxSector;
4371 * Generate a 128 bit UUID
4373 get_random_bytes(mddev->uuid, 16);
4375 mddev->new_level = mddev->level;
4376 mddev->new_chunk = mddev->chunk_size;
4377 mddev->new_layout = mddev->layout;
4378 mddev->delta_disks = 0;
4380 return 0;
4383 static int update_size(mddev_t *mddev, unsigned long size)
4385 mdk_rdev_t * rdev;
4386 int rv;
4387 struct list_head *tmp;
4388 int fit = (size == 0);
4390 if (mddev->pers->resize == NULL)
4391 return -EINVAL;
4392 /* The "size" is the amount of each device that is used.
4393 * This can only make sense for arrays with redundancy.
4394 * linear and raid0 always use whatever space is available
4395 * We can only consider changing the size if no resync
4396 * or reconstruction is happening, and if the new size
4397 * is acceptable. It must fit before the sb_offset or,
4398 * if that is <data_offset, it must fit before the
4399 * size of each device.
4400 * If size is zero, we find the largest size that fits.
4402 if (mddev->sync_thread)
4403 return -EBUSY;
4404 rdev_for_each(rdev, tmp, mddev) {
4405 sector_t avail;
4406 avail = rdev->size * 2;
4408 if (fit && (size == 0 || size > avail/2))
4409 size = avail/2;
4410 if (avail < ((sector_t)size << 1))
4411 return -ENOSPC;
4413 rv = mddev->pers->resize(mddev, (sector_t)size *2);
4414 if (!rv) {
4415 struct block_device *bdev;
4417 bdev = bdget_disk(mddev->gendisk, 0);
4418 if (bdev) {
4419 mutex_lock(&bdev->bd_inode->i_mutex);
4420 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4421 mutex_unlock(&bdev->bd_inode->i_mutex);
4422 bdput(bdev);
4425 return rv;
4428 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4430 int rv;
4431 /* change the number of raid disks */
4432 if (mddev->pers->check_reshape == NULL)
4433 return -EINVAL;
4434 if (raid_disks <= 0 ||
4435 raid_disks >= mddev->max_disks)
4436 return -EINVAL;
4437 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4438 return -EBUSY;
4439 mddev->delta_disks = raid_disks - mddev->raid_disks;
4441 rv = mddev->pers->check_reshape(mddev);
4442 return rv;
4447 * update_array_info is used to change the configuration of an
4448 * on-line array.
4449 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4450 * fields in the info are checked against the array.
4451 * Any differences that cannot be handled will cause an error.
4452 * Normally, only one change can be managed at a time.
4454 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4456 int rv = 0;
4457 int cnt = 0;
4458 int state = 0;
4460 /* calculate expected state,ignoring low bits */
4461 if (mddev->bitmap && mddev->bitmap_offset)
4462 state |= (1 << MD_SB_BITMAP_PRESENT);
4464 if (mddev->major_version != info->major_version ||
4465 mddev->minor_version != info->minor_version ||
4466 /* mddev->patch_version != info->patch_version || */
4467 mddev->ctime != info->ctime ||
4468 mddev->level != info->level ||
4469 /* mddev->layout != info->layout || */
4470 !mddev->persistent != info->not_persistent||
4471 mddev->chunk_size != info->chunk_size ||
4472 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4473 ((state^info->state) & 0xfffffe00)
4475 return -EINVAL;
4476 /* Check there is only one change */
4477 if (info->size >= 0 && mddev->size != info->size) cnt++;
4478 if (mddev->raid_disks != info->raid_disks) cnt++;
4479 if (mddev->layout != info->layout) cnt++;
4480 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4481 if (cnt == 0) return 0;
4482 if (cnt > 1) return -EINVAL;
4484 if (mddev->layout != info->layout) {
4485 /* Change layout
4486 * we don't need to do anything at the md level, the
4487 * personality will take care of it all.
4489 if (mddev->pers->reconfig == NULL)
4490 return -EINVAL;
4491 else
4492 return mddev->pers->reconfig(mddev, info->layout, -1);
4494 if (info->size >= 0 && mddev->size != info->size)
4495 rv = update_size(mddev, info->size);
4497 if (mddev->raid_disks != info->raid_disks)
4498 rv = update_raid_disks(mddev, info->raid_disks);
4500 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4501 if (mddev->pers->quiesce == NULL)
4502 return -EINVAL;
4503 if (mddev->recovery || mddev->sync_thread)
4504 return -EBUSY;
4505 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4506 /* add the bitmap */
4507 if (mddev->bitmap)
4508 return -EEXIST;
4509 if (mddev->default_bitmap_offset == 0)
4510 return -EINVAL;
4511 mddev->bitmap_offset = mddev->default_bitmap_offset;
4512 mddev->pers->quiesce(mddev, 1);
4513 rv = bitmap_create(mddev);
4514 if (rv)
4515 bitmap_destroy(mddev);
4516 mddev->pers->quiesce(mddev, 0);
4517 } else {
4518 /* remove the bitmap */
4519 if (!mddev->bitmap)
4520 return -ENOENT;
4521 if (mddev->bitmap->file)
4522 return -EINVAL;
4523 mddev->pers->quiesce(mddev, 1);
4524 bitmap_destroy(mddev);
4525 mddev->pers->quiesce(mddev, 0);
4526 mddev->bitmap_offset = 0;
4529 md_update_sb(mddev, 1);
4530 return rv;
4533 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4535 mdk_rdev_t *rdev;
4537 if (mddev->pers == NULL)
4538 return -ENODEV;
4540 rdev = find_rdev(mddev, dev);
4541 if (!rdev)
4542 return -ENODEV;
4544 md_error(mddev, rdev);
4545 return 0;
4548 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4550 mddev_t *mddev = bdev->bd_disk->private_data;
4552 geo->heads = 2;
4553 geo->sectors = 4;
4554 geo->cylinders = get_capacity(mddev->gendisk) / 8;
4555 return 0;
4558 static int md_ioctl(struct inode *inode, struct file *file,
4559 unsigned int cmd, unsigned long arg)
4561 int err = 0;
4562 void __user *argp = (void __user *)arg;
4563 mddev_t *mddev = NULL;
4565 if (!capable(CAP_SYS_ADMIN))
4566 return -EACCES;
4569 * Commands dealing with the RAID driver but not any
4570 * particular array:
4572 switch (cmd)
4574 case RAID_VERSION:
4575 err = get_version(argp);
4576 goto done;
4578 case PRINT_RAID_DEBUG:
4579 err = 0;
4580 md_print_devices();
4581 goto done;
4583 #ifndef MODULE
4584 case RAID_AUTORUN:
4585 err = 0;
4586 autostart_arrays(arg);
4587 goto done;
4588 #endif
4589 default:;
4593 * Commands creating/starting a new array:
4596 mddev = inode->i_bdev->bd_disk->private_data;
4598 if (!mddev) {
4599 BUG();
4600 goto abort;
4603 err = mddev_lock(mddev);
4604 if (err) {
4605 printk(KERN_INFO
4606 "md: ioctl lock interrupted, reason %d, cmd %d\n",
4607 err, cmd);
4608 goto abort;
4611 switch (cmd)
4613 case SET_ARRAY_INFO:
4615 mdu_array_info_t info;
4616 if (!arg)
4617 memset(&info, 0, sizeof(info));
4618 else if (copy_from_user(&info, argp, sizeof(info))) {
4619 err = -EFAULT;
4620 goto abort_unlock;
4622 if (mddev->pers) {
4623 err = update_array_info(mddev, &info);
4624 if (err) {
4625 printk(KERN_WARNING "md: couldn't update"
4626 " array info. %d\n", err);
4627 goto abort_unlock;
4629 goto done_unlock;
4631 if (!list_empty(&mddev->disks)) {
4632 printk(KERN_WARNING
4633 "md: array %s already has disks!\n",
4634 mdname(mddev));
4635 err = -EBUSY;
4636 goto abort_unlock;
4638 if (mddev->raid_disks) {
4639 printk(KERN_WARNING
4640 "md: array %s already initialised!\n",
4641 mdname(mddev));
4642 err = -EBUSY;
4643 goto abort_unlock;
4645 err = set_array_info(mddev, &info);
4646 if (err) {
4647 printk(KERN_WARNING "md: couldn't set"
4648 " array info. %d\n", err);
4649 goto abort_unlock;
4652 goto done_unlock;
4654 default:;
4658 * Commands querying/configuring an existing array:
4660 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4661 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
4662 if ((!mddev->raid_disks && !mddev->external)
4663 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4664 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
4665 && cmd != GET_BITMAP_FILE) {
4666 err = -ENODEV;
4667 goto abort_unlock;
4671 * Commands even a read-only array can execute:
4673 switch (cmd)
4675 case GET_ARRAY_INFO:
4676 err = get_array_info(mddev, argp);
4677 goto done_unlock;
4679 case GET_BITMAP_FILE:
4680 err = get_bitmap_file(mddev, argp);
4681 goto done_unlock;
4683 case GET_DISK_INFO:
4684 err = get_disk_info(mddev, argp);
4685 goto done_unlock;
4687 case RESTART_ARRAY_RW:
4688 err = restart_array(mddev);
4689 goto done_unlock;
4691 case STOP_ARRAY:
4692 err = do_md_stop (mddev, 0);
4693 goto done_unlock;
4695 case STOP_ARRAY_RO:
4696 err = do_md_stop (mddev, 1);
4697 goto done_unlock;
4700 * We have a problem here : there is no easy way to give a CHS
4701 * virtual geometry. We currently pretend that we have a 2 heads
4702 * 4 sectors (with a BIG number of cylinders...). This drives
4703 * dosfs just mad... ;-)
4708 * The remaining ioctls are changing the state of the
4709 * superblock, so we do not allow them on read-only arrays.
4710 * However non-MD ioctls (e.g. get-size) will still come through
4711 * here and hit the 'default' below, so only disallow
4712 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4714 if (_IOC_TYPE(cmd) == MD_MAJOR &&
4715 mddev->ro && mddev->pers) {
4716 if (mddev->ro == 2) {
4717 mddev->ro = 0;
4718 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4719 md_wakeup_thread(mddev->thread);
4721 } else {
4722 err = -EROFS;
4723 goto abort_unlock;
4727 switch (cmd)
4729 case ADD_NEW_DISK:
4731 mdu_disk_info_t info;
4732 if (copy_from_user(&info, argp, sizeof(info)))
4733 err = -EFAULT;
4734 else
4735 err = add_new_disk(mddev, &info);
4736 goto done_unlock;
4739 case HOT_REMOVE_DISK:
4740 err = hot_remove_disk(mddev, new_decode_dev(arg));
4741 goto done_unlock;
4743 case HOT_ADD_DISK:
4744 err = hot_add_disk(mddev, new_decode_dev(arg));
4745 goto done_unlock;
4747 case SET_DISK_FAULTY:
4748 err = set_disk_faulty(mddev, new_decode_dev(arg));
4749 goto done_unlock;
4751 case RUN_ARRAY:
4752 err = do_md_run (mddev);
4753 goto done_unlock;
4755 case SET_BITMAP_FILE:
4756 err = set_bitmap_file(mddev, (int)arg);
4757 goto done_unlock;
4759 default:
4760 err = -EINVAL;
4761 goto abort_unlock;
4764 done_unlock:
4765 abort_unlock:
4766 mddev_unlock(mddev);
4768 return err;
4769 done:
4770 if (err)
4771 MD_BUG();
4772 abort:
4773 return err;
4776 static int md_open(struct inode *inode, struct file *file)
4779 * Succeed if we can lock the mddev, which confirms that
4780 * it isn't being stopped right now.
4782 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4783 int err;
4785 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
4786 goto out;
4788 err = 0;
4789 mddev_get(mddev);
4790 mddev_unlock(mddev);
4792 check_disk_change(inode->i_bdev);
4793 out:
4794 return err;
4797 static int md_release(struct inode *inode, struct file * file)
4799 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4801 BUG_ON(!mddev);
4802 mddev_put(mddev);
4804 return 0;
4807 static int md_media_changed(struct gendisk *disk)
4809 mddev_t *mddev = disk->private_data;
4811 return mddev->changed;
4814 static int md_revalidate(struct gendisk *disk)
4816 mddev_t *mddev = disk->private_data;
4818 mddev->changed = 0;
4819 return 0;
4821 static struct block_device_operations md_fops =
4823 .owner = THIS_MODULE,
4824 .open = md_open,
4825 .release = md_release,
4826 .ioctl = md_ioctl,
4827 .getgeo = md_getgeo,
4828 .media_changed = md_media_changed,
4829 .revalidate_disk= md_revalidate,
4832 static int md_thread(void * arg)
4834 mdk_thread_t *thread = arg;
4837 * md_thread is a 'system-thread', it's priority should be very
4838 * high. We avoid resource deadlocks individually in each
4839 * raid personality. (RAID5 does preallocation) We also use RR and
4840 * the very same RT priority as kswapd, thus we will never get
4841 * into a priority inversion deadlock.
4843 * we definitely have to have equal or higher priority than
4844 * bdflush, otherwise bdflush will deadlock if there are too
4845 * many dirty RAID5 blocks.
4848 allow_signal(SIGKILL);
4849 while (!kthread_should_stop()) {
4851 /* We need to wait INTERRUPTIBLE so that
4852 * we don't add to the load-average.
4853 * That means we need to be sure no signals are
4854 * pending
4856 if (signal_pending(current))
4857 flush_signals(current);
4859 wait_event_interruptible_timeout
4860 (thread->wqueue,
4861 test_bit(THREAD_WAKEUP, &thread->flags)
4862 || kthread_should_stop(),
4863 thread->timeout);
4865 clear_bit(THREAD_WAKEUP, &thread->flags);
4867 thread->run(thread->mddev);
4870 return 0;
4873 void md_wakeup_thread(mdk_thread_t *thread)
4875 if (thread) {
4876 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4877 set_bit(THREAD_WAKEUP, &thread->flags);
4878 wake_up(&thread->wqueue);
4882 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4883 const char *name)
4885 mdk_thread_t *thread;
4887 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4888 if (!thread)
4889 return NULL;
4891 init_waitqueue_head(&thread->wqueue);
4893 thread->run = run;
4894 thread->mddev = mddev;
4895 thread->timeout = MAX_SCHEDULE_TIMEOUT;
4896 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4897 if (IS_ERR(thread->tsk)) {
4898 kfree(thread);
4899 return NULL;
4901 return thread;
4904 void md_unregister_thread(mdk_thread_t *thread)
4906 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
4908 kthread_stop(thread->tsk);
4909 kfree(thread);
4912 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4914 if (!mddev) {
4915 MD_BUG();
4916 return;
4919 if (!rdev || test_bit(Faulty, &rdev->flags))
4920 return;
4922 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4923 mdname(mddev),
4924 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4925 __builtin_return_address(0),__builtin_return_address(1),
4926 __builtin_return_address(2),__builtin_return_address(3));
4928 if (!mddev->pers)
4929 return;
4930 if (!mddev->pers->error_handler)
4931 return;
4932 mddev->pers->error_handler(mddev,rdev);
4933 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4934 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4935 md_wakeup_thread(mddev->thread);
4936 md_new_event_inintr(mddev);
4939 /* seq_file implementation /proc/mdstat */
4941 static void status_unused(struct seq_file *seq)
4943 int i = 0;
4944 mdk_rdev_t *rdev;
4945 struct list_head *tmp;
4947 seq_printf(seq, "unused devices: ");
4949 rdev_for_each_list(rdev, tmp, pending_raid_disks) {
4950 char b[BDEVNAME_SIZE];
4951 i++;
4952 seq_printf(seq, "%s ",
4953 bdevname(rdev->bdev,b));
4955 if (!i)
4956 seq_printf(seq, "<none>");
4958 seq_printf(seq, "\n");
4962 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4964 sector_t max_blocks, resync, res;
4965 unsigned long dt, db, rt;
4966 int scale;
4967 unsigned int per_milli;
4969 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4971 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4972 max_blocks = mddev->resync_max_sectors >> 1;
4973 else
4974 max_blocks = mddev->size;
4977 * Should not happen.
4979 if (!max_blocks) {
4980 MD_BUG();
4981 return;
4983 /* Pick 'scale' such that (resync>>scale)*1000 will fit
4984 * in a sector_t, and (max_blocks>>scale) will fit in a
4985 * u32, as those are the requirements for sector_div.
4986 * Thus 'scale' must be at least 10
4988 scale = 10;
4989 if (sizeof(sector_t) > sizeof(unsigned long)) {
4990 while ( max_blocks/2 > (1ULL<<(scale+32)))
4991 scale++;
4993 res = (resync>>scale)*1000;
4994 sector_div(res, (u32)((max_blocks>>scale)+1));
4996 per_milli = res;
4998 int i, x = per_milli/50, y = 20-x;
4999 seq_printf(seq, "[");
5000 for (i = 0; i < x; i++)
5001 seq_printf(seq, "=");
5002 seq_printf(seq, ">");
5003 for (i = 0; i < y; i++)
5004 seq_printf(seq, ".");
5005 seq_printf(seq, "] ");
5007 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5008 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5009 "reshape" :
5010 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5011 "check" :
5012 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5013 "resync" : "recovery"))),
5014 per_milli/10, per_milli % 10,
5015 (unsigned long long) resync,
5016 (unsigned long long) max_blocks);
5019 * We do not want to overflow, so the order of operands and
5020 * the * 100 / 100 trick are important. We do a +1 to be
5021 * safe against division by zero. We only estimate anyway.
5023 * dt: time from mark until now
5024 * db: blocks written from mark until now
5025 * rt: remaining time
5027 dt = ((jiffies - mddev->resync_mark) / HZ);
5028 if (!dt) dt++;
5029 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5030 - mddev->resync_mark_cnt;
5031 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
5033 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
5035 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5038 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5040 struct list_head *tmp;
5041 loff_t l = *pos;
5042 mddev_t *mddev;
5044 if (l >= 0x10000)
5045 return NULL;
5046 if (!l--)
5047 /* header */
5048 return (void*)1;
5050 spin_lock(&all_mddevs_lock);
5051 list_for_each(tmp,&all_mddevs)
5052 if (!l--) {
5053 mddev = list_entry(tmp, mddev_t, all_mddevs);
5054 mddev_get(mddev);
5055 spin_unlock(&all_mddevs_lock);
5056 return mddev;
5058 spin_unlock(&all_mddevs_lock);
5059 if (!l--)
5060 return (void*)2;/* tail */
5061 return NULL;
5064 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5066 struct list_head *tmp;
5067 mddev_t *next_mddev, *mddev = v;
5069 ++*pos;
5070 if (v == (void*)2)
5071 return NULL;
5073 spin_lock(&all_mddevs_lock);
5074 if (v == (void*)1)
5075 tmp = all_mddevs.next;
5076 else
5077 tmp = mddev->all_mddevs.next;
5078 if (tmp != &all_mddevs)
5079 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5080 else {
5081 next_mddev = (void*)2;
5082 *pos = 0x10000;
5084 spin_unlock(&all_mddevs_lock);
5086 if (v != (void*)1)
5087 mddev_put(mddev);
5088 return next_mddev;
5092 static void md_seq_stop(struct seq_file *seq, void *v)
5094 mddev_t *mddev = v;
5096 if (mddev && v != (void*)1 && v != (void*)2)
5097 mddev_put(mddev);
5100 struct mdstat_info {
5101 int event;
5104 static int md_seq_show(struct seq_file *seq, void *v)
5106 mddev_t *mddev = v;
5107 sector_t size;
5108 struct list_head *tmp2;
5109 mdk_rdev_t *rdev;
5110 struct mdstat_info *mi = seq->private;
5111 struct bitmap *bitmap;
5113 if (v == (void*)1) {
5114 struct mdk_personality *pers;
5115 seq_printf(seq, "Personalities : ");
5116 spin_lock(&pers_lock);
5117 list_for_each_entry(pers, &pers_list, list)
5118 seq_printf(seq, "[%s] ", pers->name);
5120 spin_unlock(&pers_lock);
5121 seq_printf(seq, "\n");
5122 mi->event = atomic_read(&md_event_count);
5123 return 0;
5125 if (v == (void*)2) {
5126 status_unused(seq);
5127 return 0;
5130 if (mddev_lock(mddev) < 0)
5131 return -EINTR;
5133 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5134 seq_printf(seq, "%s : %sactive", mdname(mddev),
5135 mddev->pers ? "" : "in");
5136 if (mddev->pers) {
5137 if (mddev->ro==1)
5138 seq_printf(seq, " (read-only)");
5139 if (mddev->ro==2)
5140 seq_printf(seq, " (auto-read-only)");
5141 seq_printf(seq, " %s", mddev->pers->name);
5144 size = 0;
5145 rdev_for_each(rdev, tmp2, mddev) {
5146 char b[BDEVNAME_SIZE];
5147 seq_printf(seq, " %s[%d]",
5148 bdevname(rdev->bdev,b), rdev->desc_nr);
5149 if (test_bit(WriteMostly, &rdev->flags))
5150 seq_printf(seq, "(W)");
5151 if (test_bit(Faulty, &rdev->flags)) {
5152 seq_printf(seq, "(F)");
5153 continue;
5154 } else if (rdev->raid_disk < 0)
5155 seq_printf(seq, "(S)"); /* spare */
5156 size += rdev->size;
5159 if (!list_empty(&mddev->disks)) {
5160 if (mddev->pers)
5161 seq_printf(seq, "\n %llu blocks",
5162 (unsigned long long)mddev->array_size);
5163 else
5164 seq_printf(seq, "\n %llu blocks",
5165 (unsigned long long)size);
5167 if (mddev->persistent) {
5168 if (mddev->major_version != 0 ||
5169 mddev->minor_version != 90) {
5170 seq_printf(seq," super %d.%d",
5171 mddev->major_version,
5172 mddev->minor_version);
5174 } else if (mddev->external)
5175 seq_printf(seq, " super external:%s",
5176 mddev->metadata_type);
5177 else
5178 seq_printf(seq, " super non-persistent");
5180 if (mddev->pers) {
5181 mddev->pers->status (seq, mddev);
5182 seq_printf(seq, "\n ");
5183 if (mddev->pers->sync_request) {
5184 if (mddev->curr_resync > 2) {
5185 status_resync (seq, mddev);
5186 seq_printf(seq, "\n ");
5187 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5188 seq_printf(seq, "\tresync=DELAYED\n ");
5189 else if (mddev->recovery_cp < MaxSector)
5190 seq_printf(seq, "\tresync=PENDING\n ");
5192 } else
5193 seq_printf(seq, "\n ");
5195 if ((bitmap = mddev->bitmap)) {
5196 unsigned long chunk_kb;
5197 unsigned long flags;
5198 spin_lock_irqsave(&bitmap->lock, flags);
5199 chunk_kb = bitmap->chunksize >> 10;
5200 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5201 "%lu%s chunk",
5202 bitmap->pages - bitmap->missing_pages,
5203 bitmap->pages,
5204 (bitmap->pages - bitmap->missing_pages)
5205 << (PAGE_SHIFT - 10),
5206 chunk_kb ? chunk_kb : bitmap->chunksize,
5207 chunk_kb ? "KB" : "B");
5208 if (bitmap->file) {
5209 seq_printf(seq, ", file: ");
5210 seq_path(seq, &bitmap->file->f_path, " \t\n");
5213 seq_printf(seq, "\n");
5214 spin_unlock_irqrestore(&bitmap->lock, flags);
5217 seq_printf(seq, "\n");
5219 mddev_unlock(mddev);
5221 return 0;
5224 static struct seq_operations md_seq_ops = {
5225 .start = md_seq_start,
5226 .next = md_seq_next,
5227 .stop = md_seq_stop,
5228 .show = md_seq_show,
5231 static int md_seq_open(struct inode *inode, struct file *file)
5233 int error;
5234 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5235 if (mi == NULL)
5236 return -ENOMEM;
5238 error = seq_open(file, &md_seq_ops);
5239 if (error)
5240 kfree(mi);
5241 else {
5242 struct seq_file *p = file->private_data;
5243 p->private = mi;
5244 mi->event = atomic_read(&md_event_count);
5246 return error;
5249 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5251 struct seq_file *m = filp->private_data;
5252 struct mdstat_info *mi = m->private;
5253 int mask;
5255 poll_wait(filp, &md_event_waiters, wait);
5257 /* always allow read */
5258 mask = POLLIN | POLLRDNORM;
5260 if (mi->event != atomic_read(&md_event_count))
5261 mask |= POLLERR | POLLPRI;
5262 return mask;
5265 static const struct file_operations md_seq_fops = {
5266 .owner = THIS_MODULE,
5267 .open = md_seq_open,
5268 .read = seq_read,
5269 .llseek = seq_lseek,
5270 .release = seq_release_private,
5271 .poll = mdstat_poll,
5274 int register_md_personality(struct mdk_personality *p)
5276 spin_lock(&pers_lock);
5277 list_add_tail(&p->list, &pers_list);
5278 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5279 spin_unlock(&pers_lock);
5280 return 0;
5283 int unregister_md_personality(struct mdk_personality *p)
5285 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5286 spin_lock(&pers_lock);
5287 list_del_init(&p->list);
5288 spin_unlock(&pers_lock);
5289 return 0;
5292 static int is_mddev_idle(mddev_t *mddev)
5294 mdk_rdev_t * rdev;
5295 struct list_head *tmp;
5296 int idle;
5297 long curr_events;
5299 idle = 1;
5300 rdev_for_each(rdev, tmp, mddev) {
5301 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5302 curr_events = disk_stat_read(disk, sectors[0]) +
5303 disk_stat_read(disk, sectors[1]) -
5304 atomic_read(&disk->sync_io);
5305 /* sync IO will cause sync_io to increase before the disk_stats
5306 * as sync_io is counted when a request starts, and
5307 * disk_stats is counted when it completes.
5308 * So resync activity will cause curr_events to be smaller than
5309 * when there was no such activity.
5310 * non-sync IO will cause disk_stat to increase without
5311 * increasing sync_io so curr_events will (eventually)
5312 * be larger than it was before. Once it becomes
5313 * substantially larger, the test below will cause
5314 * the array to appear non-idle, and resync will slow
5315 * down.
5316 * If there is a lot of outstanding resync activity when
5317 * we set last_event to curr_events, then all that activity
5318 * completing might cause the array to appear non-idle
5319 * and resync will be slowed down even though there might
5320 * not have been non-resync activity. This will only
5321 * happen once though. 'last_events' will soon reflect
5322 * the state where there is little or no outstanding
5323 * resync requests, and further resync activity will
5324 * always make curr_events less than last_events.
5327 if (curr_events - rdev->last_events > 4096) {
5328 rdev->last_events = curr_events;
5329 idle = 0;
5332 return idle;
5335 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5337 /* another "blocks" (512byte) blocks have been synced */
5338 atomic_sub(blocks, &mddev->recovery_active);
5339 wake_up(&mddev->recovery_wait);
5340 if (!ok) {
5341 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5342 md_wakeup_thread(mddev->thread);
5343 // stop recovery, signal do_sync ....
5348 /* md_write_start(mddev, bi)
5349 * If we need to update some array metadata (e.g. 'active' flag
5350 * in superblock) before writing, schedule a superblock update
5351 * and wait for it to complete.
5353 void md_write_start(mddev_t *mddev, struct bio *bi)
5355 if (bio_data_dir(bi) != WRITE)
5356 return;
5358 BUG_ON(mddev->ro == 1);
5359 if (mddev->ro == 2) {
5360 /* need to switch to read/write */
5361 mddev->ro = 0;
5362 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5363 md_wakeup_thread(mddev->thread);
5364 md_wakeup_thread(mddev->sync_thread);
5366 atomic_inc(&mddev->writes_pending);
5367 if (mddev->in_sync) {
5368 spin_lock_irq(&mddev->write_lock);
5369 if (mddev->in_sync) {
5370 mddev->in_sync = 0;
5371 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5372 md_wakeup_thread(mddev->thread);
5374 spin_unlock_irq(&mddev->write_lock);
5376 wait_event(mddev->sb_wait, mddev->flags==0);
5379 void md_write_end(mddev_t *mddev)
5381 if (atomic_dec_and_test(&mddev->writes_pending)) {
5382 if (mddev->safemode == 2)
5383 md_wakeup_thread(mddev->thread);
5384 else if (mddev->safemode_delay)
5385 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5389 /* md_allow_write(mddev)
5390 * Calling this ensures that the array is marked 'active' so that writes
5391 * may proceed without blocking. It is important to call this before
5392 * attempting a GFP_KERNEL allocation while holding the mddev lock.
5393 * Must be called with mddev_lock held.
5395 void md_allow_write(mddev_t *mddev)
5397 if (!mddev->pers)
5398 return;
5399 if (mddev->ro)
5400 return;
5402 spin_lock_irq(&mddev->write_lock);
5403 if (mddev->in_sync) {
5404 mddev->in_sync = 0;
5405 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5406 if (mddev->safemode_delay &&
5407 mddev->safemode == 0)
5408 mddev->safemode = 1;
5409 spin_unlock_irq(&mddev->write_lock);
5410 md_update_sb(mddev, 0);
5411 } else
5412 spin_unlock_irq(&mddev->write_lock);
5414 EXPORT_SYMBOL_GPL(md_allow_write);
5416 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5418 #define SYNC_MARKS 10
5419 #define SYNC_MARK_STEP (3*HZ)
5420 void md_do_sync(mddev_t *mddev)
5422 mddev_t *mddev2;
5423 unsigned int currspeed = 0,
5424 window;
5425 sector_t max_sectors,j, io_sectors;
5426 unsigned long mark[SYNC_MARKS];
5427 sector_t mark_cnt[SYNC_MARKS];
5428 int last_mark,m;
5429 struct list_head *tmp;
5430 sector_t last_check;
5431 int skipped = 0;
5432 struct list_head *rtmp;
5433 mdk_rdev_t *rdev;
5434 char *desc;
5436 /* just incase thread restarts... */
5437 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5438 return;
5439 if (mddev->ro) /* never try to sync a read-only array */
5440 return;
5442 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5443 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5444 desc = "data-check";
5445 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5446 desc = "requested-resync";
5447 else
5448 desc = "resync";
5449 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5450 desc = "reshape";
5451 else
5452 desc = "recovery";
5454 /* we overload curr_resync somewhat here.
5455 * 0 == not engaged in resync at all
5456 * 2 == checking that there is no conflict with another sync
5457 * 1 == like 2, but have yielded to allow conflicting resync to
5458 * commense
5459 * other == active in resync - this many blocks
5461 * Before starting a resync we must have set curr_resync to
5462 * 2, and then checked that every "conflicting" array has curr_resync
5463 * less than ours. When we find one that is the same or higher
5464 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
5465 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5466 * This will mean we have to start checking from the beginning again.
5470 do {
5471 mddev->curr_resync = 2;
5473 try_again:
5474 if (kthread_should_stop()) {
5475 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5476 goto skip;
5478 for_each_mddev(mddev2, tmp) {
5479 if (mddev2 == mddev)
5480 continue;
5481 if (mddev2->curr_resync &&
5482 match_mddev_units(mddev,mddev2)) {
5483 DEFINE_WAIT(wq);
5484 if (mddev < mddev2 && mddev->curr_resync == 2) {
5485 /* arbitrarily yield */
5486 mddev->curr_resync = 1;
5487 wake_up(&resync_wait);
5489 if (mddev > mddev2 && mddev->curr_resync == 1)
5490 /* no need to wait here, we can wait the next
5491 * time 'round when curr_resync == 2
5493 continue;
5494 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5495 if (!kthread_should_stop() &&
5496 mddev2->curr_resync >= mddev->curr_resync) {
5497 printk(KERN_INFO "md: delaying %s of %s"
5498 " until %s has finished (they"
5499 " share one or more physical units)\n",
5500 desc, mdname(mddev), mdname(mddev2));
5501 mddev_put(mddev2);
5502 schedule();
5503 finish_wait(&resync_wait, &wq);
5504 goto try_again;
5506 finish_wait(&resync_wait, &wq);
5509 } while (mddev->curr_resync < 2);
5511 j = 0;
5512 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5513 /* resync follows the size requested by the personality,
5514 * which defaults to physical size, but can be virtual size
5516 max_sectors = mddev->resync_max_sectors;
5517 mddev->resync_mismatches = 0;
5518 /* we don't use the checkpoint if there's a bitmap */
5519 if (!mddev->bitmap &&
5520 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5521 j = mddev->recovery_cp;
5522 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5523 max_sectors = mddev->size << 1;
5524 else {
5525 /* recovery follows the physical size of devices */
5526 max_sectors = mddev->size << 1;
5527 j = MaxSector;
5528 rdev_for_each(rdev, rtmp, mddev)
5529 if (rdev->raid_disk >= 0 &&
5530 !test_bit(Faulty, &rdev->flags) &&
5531 !test_bit(In_sync, &rdev->flags) &&
5532 rdev->recovery_offset < j)
5533 j = rdev->recovery_offset;
5536 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5537 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
5538 " %d KB/sec/disk.\n", speed_min(mddev));
5539 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5540 "(but not more than %d KB/sec) for %s.\n",
5541 speed_max(mddev), desc);
5543 is_mddev_idle(mddev); /* this also initializes IO event counters */
5545 io_sectors = 0;
5546 for (m = 0; m < SYNC_MARKS; m++) {
5547 mark[m] = jiffies;
5548 mark_cnt[m] = io_sectors;
5550 last_mark = 0;
5551 mddev->resync_mark = mark[last_mark];
5552 mddev->resync_mark_cnt = mark_cnt[last_mark];
5555 * Tune reconstruction:
5557 window = 32*(PAGE_SIZE/512);
5558 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5559 window/2,(unsigned long long) max_sectors/2);
5561 atomic_set(&mddev->recovery_active, 0);
5562 init_waitqueue_head(&mddev->recovery_wait);
5563 last_check = 0;
5565 if (j>2) {
5566 printk(KERN_INFO
5567 "md: resuming %s of %s from checkpoint.\n",
5568 desc, mdname(mddev));
5569 mddev->curr_resync = j;
5572 while (j < max_sectors) {
5573 sector_t sectors;
5575 skipped = 0;
5576 if (j >= mddev->resync_max) {
5577 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5578 wait_event(mddev->recovery_wait,
5579 mddev->resync_max > j
5580 || kthread_should_stop());
5582 if (kthread_should_stop())
5583 goto interrupted;
5584 sectors = mddev->pers->sync_request(mddev, j, &skipped,
5585 currspeed < speed_min(mddev));
5586 if (sectors == 0) {
5587 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5588 goto out;
5591 if (!skipped) { /* actual IO requested */
5592 io_sectors += sectors;
5593 atomic_add(sectors, &mddev->recovery_active);
5596 j += sectors;
5597 if (j>1) mddev->curr_resync = j;
5598 mddev->curr_mark_cnt = io_sectors;
5599 if (last_check == 0)
5600 /* this is the earliers that rebuilt will be
5601 * visible in /proc/mdstat
5603 md_new_event(mddev);
5605 if (last_check + window > io_sectors || j == max_sectors)
5606 continue;
5608 last_check = io_sectors;
5610 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5611 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5612 break;
5614 repeat:
5615 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5616 /* step marks */
5617 int next = (last_mark+1) % SYNC_MARKS;
5619 mddev->resync_mark = mark[next];
5620 mddev->resync_mark_cnt = mark_cnt[next];
5621 mark[next] = jiffies;
5622 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5623 last_mark = next;
5627 if (kthread_should_stop())
5628 goto interrupted;
5632 * this loop exits only if either when we are slower than
5633 * the 'hard' speed limit, or the system was IO-idle for
5634 * a jiffy.
5635 * the system might be non-idle CPU-wise, but we only care
5636 * about not overloading the IO subsystem. (things like an
5637 * e2fsck being done on the RAID array should execute fast)
5639 blk_unplug(mddev->queue);
5640 cond_resched();
5642 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5643 /((jiffies-mddev->resync_mark)/HZ +1) +1;
5645 if (currspeed > speed_min(mddev)) {
5646 if ((currspeed > speed_max(mddev)) ||
5647 !is_mddev_idle(mddev)) {
5648 msleep(500);
5649 goto repeat;
5653 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5655 * this also signals 'finished resyncing' to md_stop
5657 out:
5658 blk_unplug(mddev->queue);
5660 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5662 /* tell personality that we are finished */
5663 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5665 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5666 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5667 mddev->curr_resync > 2) {
5668 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5669 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5670 if (mddev->curr_resync >= mddev->recovery_cp) {
5671 printk(KERN_INFO
5672 "md: checkpointing %s of %s.\n",
5673 desc, mdname(mddev));
5674 mddev->recovery_cp = mddev->curr_resync;
5676 } else
5677 mddev->recovery_cp = MaxSector;
5678 } else {
5679 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5680 mddev->curr_resync = MaxSector;
5681 rdev_for_each(rdev, rtmp, mddev)
5682 if (rdev->raid_disk >= 0 &&
5683 !test_bit(Faulty, &rdev->flags) &&
5684 !test_bit(In_sync, &rdev->flags) &&
5685 rdev->recovery_offset < mddev->curr_resync)
5686 rdev->recovery_offset = mddev->curr_resync;
5689 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5691 skip:
5692 mddev->curr_resync = 0;
5693 mddev->resync_max = MaxSector;
5694 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5695 wake_up(&resync_wait);
5696 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5697 md_wakeup_thread(mddev->thread);
5698 return;
5700 interrupted:
5702 * got a signal, exit.
5704 printk(KERN_INFO
5705 "md: md_do_sync() got signal ... exiting\n");
5706 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5707 goto out;
5710 EXPORT_SYMBOL_GPL(md_do_sync);
5713 static int remove_and_add_spares(mddev_t *mddev)
5715 mdk_rdev_t *rdev;
5716 struct list_head *rtmp;
5717 int spares = 0;
5719 rdev_for_each(rdev, rtmp, mddev)
5720 if (rdev->raid_disk >= 0 &&
5721 !mddev->external &&
5722 (test_bit(Faulty, &rdev->flags) ||
5723 ! test_bit(In_sync, &rdev->flags)) &&
5724 atomic_read(&rdev->nr_pending)==0) {
5725 if (mddev->pers->hot_remove_disk(
5726 mddev, rdev->raid_disk)==0) {
5727 char nm[20];
5728 sprintf(nm,"rd%d", rdev->raid_disk);
5729 sysfs_remove_link(&mddev->kobj, nm);
5730 rdev->raid_disk = -1;
5734 if (mddev->degraded) {
5735 rdev_for_each(rdev, rtmp, mddev)
5736 if (rdev->raid_disk < 0
5737 && !test_bit(Faulty, &rdev->flags)) {
5738 rdev->recovery_offset = 0;
5739 if (mddev->pers->hot_add_disk(mddev,rdev)) {
5740 char nm[20];
5741 sprintf(nm, "rd%d", rdev->raid_disk);
5742 if (sysfs_create_link(&mddev->kobj,
5743 &rdev->kobj, nm))
5744 printk(KERN_WARNING
5745 "md: cannot register "
5746 "%s for %s\n",
5747 nm, mdname(mddev));
5748 spares++;
5749 md_new_event(mddev);
5750 } else
5751 break;
5754 return spares;
5757 * This routine is regularly called by all per-raid-array threads to
5758 * deal with generic issues like resync and super-block update.
5759 * Raid personalities that don't have a thread (linear/raid0) do not
5760 * need this as they never do any recovery or update the superblock.
5762 * It does not do any resync itself, but rather "forks" off other threads
5763 * to do that as needed.
5764 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5765 * "->recovery" and create a thread at ->sync_thread.
5766 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5767 * and wakeups up this thread which will reap the thread and finish up.
5768 * This thread also removes any faulty devices (with nr_pending == 0).
5770 * The overall approach is:
5771 * 1/ if the superblock needs updating, update it.
5772 * 2/ If a recovery thread is running, don't do anything else.
5773 * 3/ If recovery has finished, clean up, possibly marking spares active.
5774 * 4/ If there are any faulty devices, remove them.
5775 * 5/ If array is degraded, try to add spares devices
5776 * 6/ If array has spares or is not in-sync, start a resync thread.
5778 void md_check_recovery(mddev_t *mddev)
5780 mdk_rdev_t *rdev;
5781 struct list_head *rtmp;
5784 if (mddev->bitmap)
5785 bitmap_daemon_work(mddev->bitmap);
5787 if (mddev->ro)
5788 return;
5790 if (signal_pending(current)) {
5791 if (mddev->pers->sync_request) {
5792 printk(KERN_INFO "md: %s in immediate safe mode\n",
5793 mdname(mddev));
5794 mddev->safemode = 2;
5796 flush_signals(current);
5799 if ( ! (
5800 (mddev->flags && !mddev->external) ||
5801 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5802 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5803 (mddev->safemode == 1) ||
5804 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5805 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5807 return;
5809 if (mddev_trylock(mddev)) {
5810 int spares = 0;
5812 spin_lock_irq(&mddev->write_lock);
5813 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5814 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5815 mddev->in_sync = 1;
5816 if (mddev->persistent)
5817 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5819 if (mddev->safemode == 1)
5820 mddev->safemode = 0;
5821 spin_unlock_irq(&mddev->write_lock);
5823 if (mddev->flags)
5824 md_update_sb(mddev, 0);
5827 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5828 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5829 /* resync/recovery still happening */
5830 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5831 goto unlock;
5833 if (mddev->sync_thread) {
5834 /* resync has finished, collect result */
5835 md_unregister_thread(mddev->sync_thread);
5836 mddev->sync_thread = NULL;
5837 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5838 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5839 /* success...*/
5840 /* activate any spares */
5841 mddev->pers->spare_active(mddev);
5843 md_update_sb(mddev, 1);
5845 /* if array is no-longer degraded, then any saved_raid_disk
5846 * information must be scrapped
5848 if (!mddev->degraded)
5849 rdev_for_each(rdev, rtmp, mddev)
5850 rdev->saved_raid_disk = -1;
5852 mddev->recovery = 0;
5853 /* flag recovery needed just to double check */
5854 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5855 md_new_event(mddev);
5856 goto unlock;
5858 /* Clear some bits that don't mean anything, but
5859 * might be left set
5861 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5862 clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5863 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5864 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5866 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5867 goto unlock;
5868 /* no recovery is running.
5869 * remove any failed drives, then
5870 * add spares if possible.
5871 * Spare are also removed and re-added, to allow
5872 * the personality to fail the re-add.
5875 if (mddev->reshape_position != MaxSector) {
5876 if (mddev->pers->check_reshape(mddev) != 0)
5877 /* Cannot proceed */
5878 goto unlock;
5879 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5880 } else if ((spares = remove_and_add_spares(mddev))) {
5881 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5882 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5883 } else if (mddev->recovery_cp < MaxSector) {
5884 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5885 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5886 /* nothing to be done ... */
5887 goto unlock;
5889 if (mddev->pers->sync_request) {
5890 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5891 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5892 /* We are adding a device or devices to an array
5893 * which has the bitmap stored on all devices.
5894 * So make sure all bitmap pages get written
5896 bitmap_write_all(mddev->bitmap);
5898 mddev->sync_thread = md_register_thread(md_do_sync,
5899 mddev,
5900 "%s_resync");
5901 if (!mddev->sync_thread) {
5902 printk(KERN_ERR "%s: could not start resync"
5903 " thread...\n",
5904 mdname(mddev));
5905 /* leave the spares where they are, it shouldn't hurt */
5906 mddev->recovery = 0;
5907 } else
5908 md_wakeup_thread(mddev->sync_thread);
5909 md_new_event(mddev);
5911 unlock:
5912 mddev_unlock(mddev);
5916 static int md_notify_reboot(struct notifier_block *this,
5917 unsigned long code, void *x)
5919 struct list_head *tmp;
5920 mddev_t *mddev;
5922 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5924 printk(KERN_INFO "md: stopping all md devices.\n");
5926 for_each_mddev(mddev, tmp)
5927 if (mddev_trylock(mddev)) {
5928 do_md_stop (mddev, 1);
5929 mddev_unlock(mddev);
5932 * certain more exotic SCSI devices are known to be
5933 * volatile wrt too early system reboots. While the
5934 * right place to handle this issue is the given
5935 * driver, we do want to have a safe RAID driver ...
5937 mdelay(1000*1);
5939 return NOTIFY_DONE;
5942 static struct notifier_block md_notifier = {
5943 .notifier_call = md_notify_reboot,
5944 .next = NULL,
5945 .priority = INT_MAX, /* before any real devices */
5948 static void md_geninit(void)
5950 struct proc_dir_entry *p;
5952 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5954 p = create_proc_entry("mdstat", S_IRUGO, NULL);
5955 if (p)
5956 p->proc_fops = &md_seq_fops;
5959 static int __init md_init(void)
5961 if (register_blkdev(MAJOR_NR, "md"))
5962 return -1;
5963 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5964 unregister_blkdev(MAJOR_NR, "md");
5965 return -1;
5967 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
5968 md_probe, NULL, NULL);
5969 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
5970 md_probe, NULL, NULL);
5972 register_reboot_notifier(&md_notifier);
5973 raid_table_header = register_sysctl_table(raid_root_table);
5975 md_geninit();
5976 return (0);
5980 #ifndef MODULE
5983 * Searches all registered partitions for autorun RAID arrays
5984 * at boot time.
5987 static LIST_HEAD(all_detected_devices);
5988 struct detected_devices_node {
5989 struct list_head list;
5990 dev_t dev;
5993 void md_autodetect_dev(dev_t dev)
5995 struct detected_devices_node *node_detected_dev;
5997 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
5998 if (node_detected_dev) {
5999 node_detected_dev->dev = dev;
6000 list_add_tail(&node_detected_dev->list, &all_detected_devices);
6001 } else {
6002 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6003 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6008 static void autostart_arrays(int part)
6010 mdk_rdev_t *rdev;
6011 struct detected_devices_node *node_detected_dev;
6012 dev_t dev;
6013 int i_scanned, i_passed;
6015 i_scanned = 0;
6016 i_passed = 0;
6018 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6020 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6021 i_scanned++;
6022 node_detected_dev = list_entry(all_detected_devices.next,
6023 struct detected_devices_node, list);
6024 list_del(&node_detected_dev->list);
6025 dev = node_detected_dev->dev;
6026 kfree(node_detected_dev);
6027 rdev = md_import_device(dev,0, 90);
6028 if (IS_ERR(rdev))
6029 continue;
6031 if (test_bit(Faulty, &rdev->flags)) {
6032 MD_BUG();
6033 continue;
6035 set_bit(AutoDetected, &rdev->flags);
6036 list_add(&rdev->same_set, &pending_raid_disks);
6037 i_passed++;
6040 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6041 i_scanned, i_passed);
6043 autorun_devices(part);
6046 #endif /* !MODULE */
6048 static __exit void md_exit(void)
6050 mddev_t *mddev;
6051 struct list_head *tmp;
6053 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
6054 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6056 unregister_blkdev(MAJOR_NR,"md");
6057 unregister_blkdev(mdp_major, "mdp");
6058 unregister_reboot_notifier(&md_notifier);
6059 unregister_sysctl_table(raid_table_header);
6060 remove_proc_entry("mdstat", NULL);
6061 for_each_mddev(mddev, tmp) {
6062 struct gendisk *disk = mddev->gendisk;
6063 if (!disk)
6064 continue;
6065 export_array(mddev);
6066 del_gendisk(disk);
6067 put_disk(disk);
6068 mddev->gendisk = NULL;
6069 mddev_put(mddev);
6073 subsys_initcall(md_init);
6074 module_exit(md_exit)
6076 static int get_ro(char *buffer, struct kernel_param *kp)
6078 return sprintf(buffer, "%d", start_readonly);
6080 static int set_ro(const char *val, struct kernel_param *kp)
6082 char *e;
6083 int num = simple_strtoul(val, &e, 10);
6084 if (*val && (*e == '\0' || *e == '\n')) {
6085 start_readonly = num;
6086 return 0;
6088 return -EINVAL;
6091 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6092 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6095 EXPORT_SYMBOL(register_md_personality);
6096 EXPORT_SYMBOL(unregister_md_personality);
6097 EXPORT_SYMBOL(md_error);
6098 EXPORT_SYMBOL(md_done_sync);
6099 EXPORT_SYMBOL(md_write_start);
6100 EXPORT_SYMBOL(md_write_end);
6101 EXPORT_SYMBOL(md_register_thread);
6102 EXPORT_SYMBOL(md_unregister_thread);
6103 EXPORT_SYMBOL(md_wakeup_thread);
6104 EXPORT_SYMBOL(md_check_recovery);
6105 MODULE_LICENSE("GPL");
6106 MODULE_ALIAS("md");
6107 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);