[NETFILTER]: nf_conntrack: properly use RCU API for nf_ct_protos/nf_ct_l3protos arrays
[linux-2.6/zen-sources.git] / drivers / block / cciss.c
blob05dfe357527c231037365be190baef05b39ef5f3
1 /*
2 * Disk Array driver for HP SA 5xxx and 6xxx Controllers
3 * Copyright 2000, 2006 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13 * NON INFRINGEMENT. See the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/init.h>
37 #include <linux/hdreg.h>
38 #include <linux/spinlock.h>
39 #include <linux/compat.h>
40 #include <linux/blktrace_api.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
44 #include <linux/dma-mapping.h>
45 #include <linux/blkdev.h>
46 #include <linux/genhd.h>
47 #include <linux/completion.h>
49 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
50 #define DRIVER_NAME "HP CISS Driver (v 3.6.14)"
51 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3,6,14)
53 /* Embedded module documentation macros - see modules.h */
54 MODULE_AUTHOR("Hewlett-Packard Company");
55 MODULE_DESCRIPTION("Driver for HP Controller SA5xxx SA6xxx version 3.6.14");
56 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
57 " SA6i P600 P800 P400 P400i E200 E200i E500");
58 MODULE_VERSION("3.6.14");
59 MODULE_LICENSE("GPL");
61 #include "cciss_cmd.h"
62 #include "cciss.h"
63 #include <linux/cciss_ioctl.h>
65 /* define the PCI info for the cards we can control */
66 static const struct pci_device_id cciss_pci_device_id[] = {
67 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
68 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
69 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
70 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
71 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
72 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
73 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
74 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
75 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
76 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
77 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
78 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
79 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
80 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
81 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
82 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
86 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
87 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
88 {0,}
91 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
93 /* board_id = Subsystem Device ID & Vendor ID
94 * product = Marketing Name for the board
95 * access = Address of the struct of function pointers
96 * nr_cmds = Number of commands supported by controller
98 static struct board_type products[] = {
99 {0x40700E11, "Smart Array 5300", &SA5_access, 512},
100 {0x40800E11, "Smart Array 5i", &SA5B_access, 512},
101 {0x40820E11, "Smart Array 532", &SA5B_access, 512},
102 {0x40830E11, "Smart Array 5312", &SA5B_access, 512},
103 {0x409A0E11, "Smart Array 641", &SA5_access, 512},
104 {0x409B0E11, "Smart Array 642", &SA5_access, 512},
105 {0x409C0E11, "Smart Array 6400", &SA5_access, 512},
106 {0x409D0E11, "Smart Array 6400 EM", &SA5_access, 512},
107 {0x40910E11, "Smart Array 6i", &SA5_access, 512},
108 {0x3225103C, "Smart Array P600", &SA5_access, 512},
109 {0x3223103C, "Smart Array P800", &SA5_access, 512},
110 {0x3234103C, "Smart Array P400", &SA5_access, 512},
111 {0x3235103C, "Smart Array P400i", &SA5_access, 512},
112 {0x3211103C, "Smart Array E200i", &SA5_access, 120},
113 {0x3212103C, "Smart Array E200", &SA5_access, 120},
114 {0x3213103C, "Smart Array E200i", &SA5_access, 120},
115 {0x3214103C, "Smart Array E200i", &SA5_access, 120},
116 {0x3215103C, "Smart Array E200i", &SA5_access, 120},
117 {0x3237103C, "Smart Array E500", &SA5_access, 512},
118 {0xFFFF103C, "Unknown Smart Array", &SA5_access, 120},
121 /* How long to wait (in milliseconds) for board to go into simple mode */
122 #define MAX_CONFIG_WAIT 30000
123 #define MAX_IOCTL_CONFIG_WAIT 1000
125 /*define how many times we will try a command because of bus resets */
126 #define MAX_CMD_RETRIES 3
128 #define READ_AHEAD 1024
129 #define MAX_CTLR 32
131 /* Originally cciss driver only supports 8 major numbers */
132 #define MAX_CTLR_ORIG 8
134 static ctlr_info_t *hba[MAX_CTLR];
136 static void do_cciss_request(request_queue_t *q);
137 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
138 static int cciss_open(struct inode *inode, struct file *filep);
139 static int cciss_release(struct inode *inode, struct file *filep);
140 static int cciss_ioctl(struct inode *inode, struct file *filep,
141 unsigned int cmd, unsigned long arg);
142 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
144 static int cciss_revalidate(struct gendisk *disk);
145 static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk);
146 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
147 int clear_all);
149 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
150 sector_t *total_size, unsigned int *block_size);
151 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
152 sector_t *total_size, unsigned int *block_size);
153 static void cciss_geometry_inquiry(int ctlr, int logvol,
154 int withirq, sector_t total_size,
155 unsigned int block_size, InquiryData_struct *inq_buff,
156 drive_info_struct *drv);
157 static void cciss_getgeometry(int cntl_num);
158 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
159 __u32);
160 static void start_io(ctlr_info_t *h);
161 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
162 unsigned int use_unit_num, unsigned int log_unit,
163 __u8 page_code, unsigned char *scsi3addr, int cmd_type);
164 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
165 unsigned int use_unit_num, unsigned int log_unit,
166 __u8 page_code, int cmd_type);
168 static void fail_all_cmds(unsigned long ctlr);
170 #ifdef CONFIG_PROC_FS
171 static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
172 int length, int *eof, void *data);
173 static void cciss_procinit(int i);
174 #else
175 static void cciss_procinit(int i)
178 #endif /* CONFIG_PROC_FS */
180 #ifdef CONFIG_COMPAT
181 static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg);
182 #endif
184 static struct block_device_operations cciss_fops = {
185 .owner = THIS_MODULE,
186 .open = cciss_open,
187 .release = cciss_release,
188 .ioctl = cciss_ioctl,
189 .getgeo = cciss_getgeo,
190 #ifdef CONFIG_COMPAT
191 .compat_ioctl = cciss_compat_ioctl,
192 #endif
193 .revalidate_disk = cciss_revalidate,
197 * Enqueuing and dequeuing functions for cmdlists.
199 static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c)
201 if (*Qptr == NULL) {
202 *Qptr = c;
203 c->next = c->prev = c;
204 } else {
205 c->prev = (*Qptr)->prev;
206 c->next = (*Qptr);
207 (*Qptr)->prev->next = c;
208 (*Qptr)->prev = c;
212 static inline CommandList_struct *removeQ(CommandList_struct **Qptr,
213 CommandList_struct *c)
215 if (c && c->next != c) {
216 if (*Qptr == c)
217 *Qptr = c->next;
218 c->prev->next = c->next;
219 c->next->prev = c->prev;
220 } else {
221 *Qptr = NULL;
223 return c;
226 #include "cciss_scsi.c" /* For SCSI tape support */
228 #define RAID_UNKNOWN 6
230 #ifdef CONFIG_PROC_FS
233 * Report information about this controller.
235 #define ENG_GIG 1000000000
236 #define ENG_GIG_FACTOR (ENG_GIG/512)
237 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
238 "UNKNOWN"
241 static struct proc_dir_entry *proc_cciss;
243 static int cciss_proc_get_info(char *buffer, char **start, off_t offset,
244 int length, int *eof, void *data)
246 off_t pos = 0;
247 off_t len = 0;
248 int size, i, ctlr;
249 ctlr_info_t *h = (ctlr_info_t *) data;
250 drive_info_struct *drv;
251 unsigned long flags;
252 sector_t vol_sz, vol_sz_frac;
254 ctlr = h->ctlr;
256 /* prevent displaying bogus info during configuration
257 * or deconfiguration of a logical volume
259 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
260 if (h->busy_configuring) {
261 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
262 return -EBUSY;
264 h->busy_configuring = 1;
265 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
267 size = sprintf(buffer, "%s: HP %s Controller\n"
268 "Board ID: 0x%08lx\n"
269 "Firmware Version: %c%c%c%c\n"
270 "IRQ: %d\n"
271 "Logical drives: %d\n"
272 "Max sectors: %d\n"
273 "Current Q depth: %d\n"
274 "Current # commands on controller: %d\n"
275 "Max Q depth since init: %d\n"
276 "Max # commands on controller since init: %d\n"
277 "Max SG entries since init: %d\n\n",
278 h->devname,
279 h->product_name,
280 (unsigned long)h->board_id,
281 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
282 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
283 h->num_luns,
284 h->cciss_max_sectors,
285 h->Qdepth, h->commands_outstanding,
286 h->maxQsinceinit, h->max_outstanding, h->maxSG);
288 pos += size;
289 len += size;
290 cciss_proc_tape_report(ctlr, buffer, &pos, &len);
291 for (i = 0; i <= h->highest_lun; i++) {
293 drv = &h->drv[i];
294 if (drv->heads == 0)
295 continue;
297 vol_sz = drv->nr_blocks;
298 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
299 vol_sz_frac *= 100;
300 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
302 if (drv->raid_level > 5)
303 drv->raid_level = RAID_UNKNOWN;
304 size = sprintf(buffer + len, "cciss/c%dd%d:"
305 "\t%4u.%02uGB\tRAID %s\n",
306 ctlr, i, (int)vol_sz, (int)vol_sz_frac,
307 raid_label[drv->raid_level]);
308 pos += size;
309 len += size;
312 *eof = 1;
313 *start = buffer + offset;
314 len -= offset;
315 if (len > length)
316 len = length;
317 h->busy_configuring = 0;
318 return len;
321 static int
322 cciss_proc_write(struct file *file, const char __user *buffer,
323 unsigned long count, void *data)
325 unsigned char cmd[80];
326 int len;
327 #ifdef CONFIG_CISS_SCSI_TAPE
328 ctlr_info_t *h = (ctlr_info_t *) data;
329 int rc;
330 #endif
332 if (count > sizeof(cmd) - 1)
333 return -EINVAL;
334 if (copy_from_user(cmd, buffer, count))
335 return -EFAULT;
336 cmd[count] = '\0';
337 len = strlen(cmd); // above 3 lines ensure safety
338 if (len && cmd[len - 1] == '\n')
339 cmd[--len] = '\0';
340 # ifdef CONFIG_CISS_SCSI_TAPE
341 if (strcmp("engage scsi", cmd) == 0) {
342 rc = cciss_engage_scsi(h->ctlr);
343 if (rc != 0)
344 return -rc;
345 return count;
347 /* might be nice to have "disengage" too, but it's not
348 safely possible. (only 1 module use count, lock issues.) */
349 # endif
350 return -EINVAL;
354 * Get us a file in /proc/cciss that says something about each controller.
355 * Create /proc/cciss if it doesn't exist yet.
357 static void __devinit cciss_procinit(int i)
359 struct proc_dir_entry *pde;
361 if (proc_cciss == NULL) {
362 proc_cciss = proc_mkdir("cciss", proc_root_driver);
363 if (!proc_cciss)
364 return;
367 pde = create_proc_read_entry(hba[i]->devname,
368 S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH,
369 proc_cciss, cciss_proc_get_info, hba[i]);
370 pde->write_proc = cciss_proc_write;
372 #endif /* CONFIG_PROC_FS */
375 * For operations that cannot sleep, a command block is allocated at init,
376 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
377 * which ones are free or in use. For operations that can wait for kmalloc
378 * to possible sleep, this routine can be called with get_from_pool set to 0.
379 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
381 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
383 CommandList_struct *c;
384 int i;
385 u64bit temp64;
386 dma_addr_t cmd_dma_handle, err_dma_handle;
388 if (!get_from_pool) {
389 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
390 sizeof(CommandList_struct), &cmd_dma_handle);
391 if (c == NULL)
392 return NULL;
393 memset(c, 0, sizeof(CommandList_struct));
395 c->cmdindex = -1;
397 c->err_info = (ErrorInfo_struct *)
398 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
399 &err_dma_handle);
401 if (c->err_info == NULL) {
402 pci_free_consistent(h->pdev,
403 sizeof(CommandList_struct), c, cmd_dma_handle);
404 return NULL;
406 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
407 } else { /* get it out of the controllers pool */
409 do {
410 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
411 if (i == h->nr_cmds)
412 return NULL;
413 } while (test_and_set_bit
414 (i & (BITS_PER_LONG - 1),
415 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
416 #ifdef CCISS_DEBUG
417 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
418 #endif
419 c = h->cmd_pool + i;
420 memset(c, 0, sizeof(CommandList_struct));
421 cmd_dma_handle = h->cmd_pool_dhandle
422 + i * sizeof(CommandList_struct);
423 c->err_info = h->errinfo_pool + i;
424 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
425 err_dma_handle = h->errinfo_pool_dhandle
426 + i * sizeof(ErrorInfo_struct);
427 h->nr_allocs++;
429 c->cmdindex = i;
432 c->busaddr = (__u32) cmd_dma_handle;
433 temp64.val = (__u64) err_dma_handle;
434 c->ErrDesc.Addr.lower = temp64.val32.lower;
435 c->ErrDesc.Addr.upper = temp64.val32.upper;
436 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
438 c->ctlr = h->ctlr;
439 return c;
443 * Frees a command block that was previously allocated with cmd_alloc().
445 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
447 int i;
448 u64bit temp64;
450 if (!got_from_pool) {
451 temp64.val32.lower = c->ErrDesc.Addr.lower;
452 temp64.val32.upper = c->ErrDesc.Addr.upper;
453 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
454 c->err_info, (dma_addr_t) temp64.val);
455 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
456 c, (dma_addr_t) c->busaddr);
457 } else {
458 i = c - h->cmd_pool;
459 clear_bit(i & (BITS_PER_LONG - 1),
460 h->cmd_pool_bits + (i / BITS_PER_LONG));
461 h->nr_frees++;
465 static inline ctlr_info_t *get_host(struct gendisk *disk)
467 return disk->queue->queuedata;
470 static inline drive_info_struct *get_drv(struct gendisk *disk)
472 return disk->private_data;
476 * Open. Make sure the device is really there.
478 static int cciss_open(struct inode *inode, struct file *filep)
480 ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
481 drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
483 #ifdef CCISS_DEBUG
484 printk(KERN_DEBUG "cciss_open %s\n", inode->i_bdev->bd_disk->disk_name);
485 #endif /* CCISS_DEBUG */
487 if (host->busy_initializing || drv->busy_configuring)
488 return -EBUSY;
490 * Root is allowed to open raw volume zero even if it's not configured
491 * so array config can still work. Root is also allowed to open any
492 * volume that has a LUN ID, so it can issue IOCTL to reread the
493 * disk information. I don't think I really like this
494 * but I'm already using way to many device nodes to claim another one
495 * for "raw controller".
497 if (drv->heads == 0) {
498 if (iminor(inode) != 0) { /* not node 0? */
499 /* if not node 0 make sure it is a partition = 0 */
500 if (iminor(inode) & 0x0f) {
501 return -ENXIO;
502 /* if it is, make sure we have a LUN ID */
503 } else if (drv->LunID == 0) {
504 return -ENXIO;
507 if (!capable(CAP_SYS_ADMIN))
508 return -EPERM;
510 drv->usage_count++;
511 host->usage_count++;
512 return 0;
516 * Close. Sync first.
518 static int cciss_release(struct inode *inode, struct file *filep)
520 ctlr_info_t *host = get_host(inode->i_bdev->bd_disk);
521 drive_info_struct *drv = get_drv(inode->i_bdev->bd_disk);
523 #ifdef CCISS_DEBUG
524 printk(KERN_DEBUG "cciss_release %s\n",
525 inode->i_bdev->bd_disk->disk_name);
526 #endif /* CCISS_DEBUG */
528 drv->usage_count--;
529 host->usage_count--;
530 return 0;
533 #ifdef CONFIG_COMPAT
535 static int do_ioctl(struct file *f, unsigned cmd, unsigned long arg)
537 int ret;
538 lock_kernel();
539 ret = cciss_ioctl(f->f_path.dentry->d_inode, f, cmd, arg);
540 unlock_kernel();
541 return ret;
544 static int cciss_ioctl32_passthru(struct file *f, unsigned cmd,
545 unsigned long arg);
546 static int cciss_ioctl32_big_passthru(struct file *f, unsigned cmd,
547 unsigned long arg);
549 static long cciss_compat_ioctl(struct file *f, unsigned cmd, unsigned long arg)
551 switch (cmd) {
552 case CCISS_GETPCIINFO:
553 case CCISS_GETINTINFO:
554 case CCISS_SETINTINFO:
555 case CCISS_GETNODENAME:
556 case CCISS_SETNODENAME:
557 case CCISS_GETHEARTBEAT:
558 case CCISS_GETBUSTYPES:
559 case CCISS_GETFIRMVER:
560 case CCISS_GETDRIVVER:
561 case CCISS_REVALIDVOLS:
562 case CCISS_DEREGDISK:
563 case CCISS_REGNEWDISK:
564 case CCISS_REGNEWD:
565 case CCISS_RESCANDISK:
566 case CCISS_GETLUNINFO:
567 return do_ioctl(f, cmd, arg);
569 case CCISS_PASSTHRU32:
570 return cciss_ioctl32_passthru(f, cmd, arg);
571 case CCISS_BIG_PASSTHRU32:
572 return cciss_ioctl32_big_passthru(f, cmd, arg);
574 default:
575 return -ENOIOCTLCMD;
579 static int cciss_ioctl32_passthru(struct file *f, unsigned cmd,
580 unsigned long arg)
582 IOCTL32_Command_struct __user *arg32 =
583 (IOCTL32_Command_struct __user *) arg;
584 IOCTL_Command_struct arg64;
585 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
586 int err;
587 u32 cp;
589 err = 0;
590 err |=
591 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
592 sizeof(arg64.LUN_info));
593 err |=
594 copy_from_user(&arg64.Request, &arg32->Request,
595 sizeof(arg64.Request));
596 err |=
597 copy_from_user(&arg64.error_info, &arg32->error_info,
598 sizeof(arg64.error_info));
599 err |= get_user(arg64.buf_size, &arg32->buf_size);
600 err |= get_user(cp, &arg32->buf);
601 arg64.buf = compat_ptr(cp);
602 err |= copy_to_user(p, &arg64, sizeof(arg64));
604 if (err)
605 return -EFAULT;
607 err = do_ioctl(f, CCISS_PASSTHRU, (unsigned long)p);
608 if (err)
609 return err;
610 err |=
611 copy_in_user(&arg32->error_info, &p->error_info,
612 sizeof(arg32->error_info));
613 if (err)
614 return -EFAULT;
615 return err;
618 static int cciss_ioctl32_big_passthru(struct file *file, unsigned cmd,
619 unsigned long arg)
621 BIG_IOCTL32_Command_struct __user *arg32 =
622 (BIG_IOCTL32_Command_struct __user *) arg;
623 BIG_IOCTL_Command_struct arg64;
624 BIG_IOCTL_Command_struct __user *p =
625 compat_alloc_user_space(sizeof(arg64));
626 int err;
627 u32 cp;
629 err = 0;
630 err |=
631 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
632 sizeof(arg64.LUN_info));
633 err |=
634 copy_from_user(&arg64.Request, &arg32->Request,
635 sizeof(arg64.Request));
636 err |=
637 copy_from_user(&arg64.error_info, &arg32->error_info,
638 sizeof(arg64.error_info));
639 err |= get_user(arg64.buf_size, &arg32->buf_size);
640 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
641 err |= get_user(cp, &arg32->buf);
642 arg64.buf = compat_ptr(cp);
643 err |= copy_to_user(p, &arg64, sizeof(arg64));
645 if (err)
646 return -EFAULT;
648 err = do_ioctl(file, CCISS_BIG_PASSTHRU, (unsigned long)p);
649 if (err)
650 return err;
651 err |=
652 copy_in_user(&arg32->error_info, &p->error_info,
653 sizeof(arg32->error_info));
654 if (err)
655 return -EFAULT;
656 return err;
658 #endif
660 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
662 drive_info_struct *drv = get_drv(bdev->bd_disk);
664 if (!drv->cylinders)
665 return -ENXIO;
667 geo->heads = drv->heads;
668 geo->sectors = drv->sectors;
669 geo->cylinders = drv->cylinders;
670 return 0;
674 * ioctl
676 static int cciss_ioctl(struct inode *inode, struct file *filep,
677 unsigned int cmd, unsigned long arg)
679 struct block_device *bdev = inode->i_bdev;
680 struct gendisk *disk = bdev->bd_disk;
681 ctlr_info_t *host = get_host(disk);
682 drive_info_struct *drv = get_drv(disk);
683 int ctlr = host->ctlr;
684 void __user *argp = (void __user *)arg;
686 #ifdef CCISS_DEBUG
687 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
688 #endif /* CCISS_DEBUG */
690 switch (cmd) {
691 case CCISS_GETPCIINFO:
693 cciss_pci_info_struct pciinfo;
695 if (!arg)
696 return -EINVAL;
697 pciinfo.domain = pci_domain_nr(host->pdev->bus);
698 pciinfo.bus = host->pdev->bus->number;
699 pciinfo.dev_fn = host->pdev->devfn;
700 pciinfo.board_id = host->board_id;
701 if (copy_to_user
702 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
703 return -EFAULT;
704 return 0;
706 case CCISS_GETINTINFO:
708 cciss_coalint_struct intinfo;
709 if (!arg)
710 return -EINVAL;
711 intinfo.delay =
712 readl(&host->cfgtable->HostWrite.CoalIntDelay);
713 intinfo.count =
714 readl(&host->cfgtable->HostWrite.CoalIntCount);
715 if (copy_to_user
716 (argp, &intinfo, sizeof(cciss_coalint_struct)))
717 return -EFAULT;
718 return 0;
720 case CCISS_SETINTINFO:
722 cciss_coalint_struct intinfo;
723 unsigned long flags;
724 int i;
726 if (!arg)
727 return -EINVAL;
728 if (!capable(CAP_SYS_ADMIN))
729 return -EPERM;
730 if (copy_from_user
731 (&intinfo, argp, sizeof(cciss_coalint_struct)))
732 return -EFAULT;
733 if ((intinfo.delay == 0) && (intinfo.count == 0))
735 // printk("cciss_ioctl: delay and count cannot be 0\n");
736 return -EINVAL;
738 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
739 /* Update the field, and then ring the doorbell */
740 writel(intinfo.delay,
741 &(host->cfgtable->HostWrite.CoalIntDelay));
742 writel(intinfo.count,
743 &(host->cfgtable->HostWrite.CoalIntCount));
744 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
746 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
747 if (!(readl(host->vaddr + SA5_DOORBELL)
748 & CFGTBL_ChangeReq))
749 break;
750 /* delay and try again */
751 udelay(1000);
753 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
754 if (i >= MAX_IOCTL_CONFIG_WAIT)
755 return -EAGAIN;
756 return 0;
758 case CCISS_GETNODENAME:
760 NodeName_type NodeName;
761 int i;
763 if (!arg)
764 return -EINVAL;
765 for (i = 0; i < 16; i++)
766 NodeName[i] =
767 readb(&host->cfgtable->ServerName[i]);
768 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
769 return -EFAULT;
770 return 0;
772 case CCISS_SETNODENAME:
774 NodeName_type NodeName;
775 unsigned long flags;
776 int i;
778 if (!arg)
779 return -EINVAL;
780 if (!capable(CAP_SYS_ADMIN))
781 return -EPERM;
783 if (copy_from_user
784 (NodeName, argp, sizeof(NodeName_type)))
785 return -EFAULT;
787 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
789 /* Update the field, and then ring the doorbell */
790 for (i = 0; i < 16; i++)
791 writeb(NodeName[i],
792 &host->cfgtable->ServerName[i]);
794 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
796 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
797 if (!(readl(host->vaddr + SA5_DOORBELL)
798 & CFGTBL_ChangeReq))
799 break;
800 /* delay and try again */
801 udelay(1000);
803 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
804 if (i >= MAX_IOCTL_CONFIG_WAIT)
805 return -EAGAIN;
806 return 0;
809 case CCISS_GETHEARTBEAT:
811 Heartbeat_type heartbeat;
813 if (!arg)
814 return -EINVAL;
815 heartbeat = readl(&host->cfgtable->HeartBeat);
816 if (copy_to_user
817 (argp, &heartbeat, sizeof(Heartbeat_type)))
818 return -EFAULT;
819 return 0;
821 case CCISS_GETBUSTYPES:
823 BusTypes_type BusTypes;
825 if (!arg)
826 return -EINVAL;
827 BusTypes = readl(&host->cfgtable->BusTypes);
828 if (copy_to_user
829 (argp, &BusTypes, sizeof(BusTypes_type)))
830 return -EFAULT;
831 return 0;
833 case CCISS_GETFIRMVER:
835 FirmwareVer_type firmware;
837 if (!arg)
838 return -EINVAL;
839 memcpy(firmware, host->firm_ver, 4);
841 if (copy_to_user
842 (argp, firmware, sizeof(FirmwareVer_type)))
843 return -EFAULT;
844 return 0;
846 case CCISS_GETDRIVVER:
848 DriverVer_type DriverVer = DRIVER_VERSION;
850 if (!arg)
851 return -EINVAL;
853 if (copy_to_user
854 (argp, &DriverVer, sizeof(DriverVer_type)))
855 return -EFAULT;
856 return 0;
859 case CCISS_REVALIDVOLS:
860 return rebuild_lun_table(host, NULL);
862 case CCISS_GETLUNINFO:{
863 LogvolInfo_struct luninfo;
865 luninfo.LunID = drv->LunID;
866 luninfo.num_opens = drv->usage_count;
867 luninfo.num_parts = 0;
868 if (copy_to_user(argp, &luninfo,
869 sizeof(LogvolInfo_struct)))
870 return -EFAULT;
871 return 0;
873 case CCISS_DEREGDISK:
874 return rebuild_lun_table(host, disk);
876 case CCISS_REGNEWD:
877 return rebuild_lun_table(host, NULL);
879 case CCISS_PASSTHRU:
881 IOCTL_Command_struct iocommand;
882 CommandList_struct *c;
883 char *buff = NULL;
884 u64bit temp64;
885 unsigned long flags;
886 DECLARE_COMPLETION_ONSTACK(wait);
888 if (!arg)
889 return -EINVAL;
891 if (!capable(CAP_SYS_RAWIO))
892 return -EPERM;
894 if (copy_from_user
895 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
896 return -EFAULT;
897 if ((iocommand.buf_size < 1) &&
898 (iocommand.Request.Type.Direction != XFER_NONE)) {
899 return -EINVAL;
901 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
902 /* Check kmalloc limits */
903 if (iocommand.buf_size > 128000)
904 return -EINVAL;
905 #endif
906 if (iocommand.buf_size > 0) {
907 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
908 if (buff == NULL)
909 return -EFAULT;
911 if (iocommand.Request.Type.Direction == XFER_WRITE) {
912 /* Copy the data into the buffer we created */
913 if (copy_from_user
914 (buff, iocommand.buf, iocommand.buf_size)) {
915 kfree(buff);
916 return -EFAULT;
918 } else {
919 memset(buff, 0, iocommand.buf_size);
921 if ((c = cmd_alloc(host, 0)) == NULL) {
922 kfree(buff);
923 return -ENOMEM;
925 // Fill in the command type
926 c->cmd_type = CMD_IOCTL_PEND;
927 // Fill in Command Header
928 c->Header.ReplyQueue = 0; // unused in simple mode
929 if (iocommand.buf_size > 0) // buffer to fill
931 c->Header.SGList = 1;
932 c->Header.SGTotal = 1;
933 } else // no buffers to fill
935 c->Header.SGList = 0;
936 c->Header.SGTotal = 0;
938 c->Header.LUN = iocommand.LUN_info;
939 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
941 // Fill in Request block
942 c->Request = iocommand.Request;
944 // Fill in the scatter gather information
945 if (iocommand.buf_size > 0) {
946 temp64.val = pci_map_single(host->pdev, buff,
947 iocommand.buf_size,
948 PCI_DMA_BIDIRECTIONAL);
949 c->SG[0].Addr.lower = temp64.val32.lower;
950 c->SG[0].Addr.upper = temp64.val32.upper;
951 c->SG[0].Len = iocommand.buf_size;
952 c->SG[0].Ext = 0; // we are not chaining
954 c->waiting = &wait;
956 /* Put the request on the tail of the request queue */
957 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
958 addQ(&host->reqQ, c);
959 host->Qdepth++;
960 start_io(host);
961 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
963 wait_for_completion(&wait);
965 /* unlock the buffers from DMA */
966 temp64.val32.lower = c->SG[0].Addr.lower;
967 temp64.val32.upper = c->SG[0].Addr.upper;
968 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
969 iocommand.buf_size,
970 PCI_DMA_BIDIRECTIONAL);
972 /* Copy the error information out */
973 iocommand.error_info = *(c->err_info);
974 if (copy_to_user
975 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
976 kfree(buff);
977 cmd_free(host, c, 0);
978 return -EFAULT;
981 if (iocommand.Request.Type.Direction == XFER_READ) {
982 /* Copy the data out of the buffer we created */
983 if (copy_to_user
984 (iocommand.buf, buff, iocommand.buf_size)) {
985 kfree(buff);
986 cmd_free(host, c, 0);
987 return -EFAULT;
990 kfree(buff);
991 cmd_free(host, c, 0);
992 return 0;
994 case CCISS_BIG_PASSTHRU:{
995 BIG_IOCTL_Command_struct *ioc;
996 CommandList_struct *c;
997 unsigned char **buff = NULL;
998 int *buff_size = NULL;
999 u64bit temp64;
1000 unsigned long flags;
1001 BYTE sg_used = 0;
1002 int status = 0;
1003 int i;
1004 DECLARE_COMPLETION_ONSTACK(wait);
1005 __u32 left;
1006 __u32 sz;
1007 BYTE __user *data_ptr;
1009 if (!arg)
1010 return -EINVAL;
1011 if (!capable(CAP_SYS_RAWIO))
1012 return -EPERM;
1013 ioc = (BIG_IOCTL_Command_struct *)
1014 kmalloc(sizeof(*ioc), GFP_KERNEL);
1015 if (!ioc) {
1016 status = -ENOMEM;
1017 goto cleanup1;
1019 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1020 status = -EFAULT;
1021 goto cleanup1;
1023 if ((ioc->buf_size < 1) &&
1024 (ioc->Request.Type.Direction != XFER_NONE)) {
1025 status = -EINVAL;
1026 goto cleanup1;
1028 /* Check kmalloc limits using all SGs */
1029 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1030 status = -EINVAL;
1031 goto cleanup1;
1033 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1034 status = -EINVAL;
1035 goto cleanup1;
1037 buff =
1038 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1039 if (!buff) {
1040 status = -ENOMEM;
1041 goto cleanup1;
1043 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1044 GFP_KERNEL);
1045 if (!buff_size) {
1046 status = -ENOMEM;
1047 goto cleanup1;
1049 left = ioc->buf_size;
1050 data_ptr = ioc->buf;
1051 while (left) {
1052 sz = (left >
1053 ioc->malloc_size) ? ioc->
1054 malloc_size : left;
1055 buff_size[sg_used] = sz;
1056 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1057 if (buff[sg_used] == NULL) {
1058 status = -ENOMEM;
1059 goto cleanup1;
1061 if (ioc->Request.Type.Direction == XFER_WRITE) {
1062 if (copy_from_user
1063 (buff[sg_used], data_ptr, sz)) {
1064 status = -ENOMEM;
1065 goto cleanup1;
1067 } else {
1068 memset(buff[sg_used], 0, sz);
1070 left -= sz;
1071 data_ptr += sz;
1072 sg_used++;
1074 if ((c = cmd_alloc(host, 0)) == NULL) {
1075 status = -ENOMEM;
1076 goto cleanup1;
1078 c->cmd_type = CMD_IOCTL_PEND;
1079 c->Header.ReplyQueue = 0;
1081 if (ioc->buf_size > 0) {
1082 c->Header.SGList = sg_used;
1083 c->Header.SGTotal = sg_used;
1084 } else {
1085 c->Header.SGList = 0;
1086 c->Header.SGTotal = 0;
1088 c->Header.LUN = ioc->LUN_info;
1089 c->Header.Tag.lower = c->busaddr;
1091 c->Request = ioc->Request;
1092 if (ioc->buf_size > 0) {
1093 int i;
1094 for (i = 0; i < sg_used; i++) {
1095 temp64.val =
1096 pci_map_single(host->pdev, buff[i],
1097 buff_size[i],
1098 PCI_DMA_BIDIRECTIONAL);
1099 c->SG[i].Addr.lower =
1100 temp64.val32.lower;
1101 c->SG[i].Addr.upper =
1102 temp64.val32.upper;
1103 c->SG[i].Len = buff_size[i];
1104 c->SG[i].Ext = 0; /* we are not chaining */
1107 c->waiting = &wait;
1108 /* Put the request on the tail of the request queue */
1109 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1110 addQ(&host->reqQ, c);
1111 host->Qdepth++;
1112 start_io(host);
1113 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1114 wait_for_completion(&wait);
1115 /* unlock the buffers from DMA */
1116 for (i = 0; i < sg_used; i++) {
1117 temp64.val32.lower = c->SG[i].Addr.lower;
1118 temp64.val32.upper = c->SG[i].Addr.upper;
1119 pci_unmap_single(host->pdev,
1120 (dma_addr_t) temp64.val, buff_size[i],
1121 PCI_DMA_BIDIRECTIONAL);
1123 /* Copy the error information out */
1124 ioc->error_info = *(c->err_info);
1125 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1126 cmd_free(host, c, 0);
1127 status = -EFAULT;
1128 goto cleanup1;
1130 if (ioc->Request.Type.Direction == XFER_READ) {
1131 /* Copy the data out of the buffer we created */
1132 BYTE __user *ptr = ioc->buf;
1133 for (i = 0; i < sg_used; i++) {
1134 if (copy_to_user
1135 (ptr, buff[i], buff_size[i])) {
1136 cmd_free(host, c, 0);
1137 status = -EFAULT;
1138 goto cleanup1;
1140 ptr += buff_size[i];
1143 cmd_free(host, c, 0);
1144 status = 0;
1145 cleanup1:
1146 if (buff) {
1147 for (i = 0; i < sg_used; i++)
1148 kfree(buff[i]);
1149 kfree(buff);
1151 kfree(buff_size);
1152 kfree(ioc);
1153 return status;
1155 default:
1156 return -ENOTTY;
1160 static inline void complete_buffers(struct bio *bio, int status)
1162 while (bio) {
1163 struct bio *xbh = bio->bi_next;
1164 int nr_sectors = bio_sectors(bio);
1166 bio->bi_next = NULL;
1167 bio_endio(bio, nr_sectors << 9, status ? 0 : -EIO);
1168 bio = xbh;
1172 static void cciss_check_queues(ctlr_info_t *h)
1174 int start_queue = h->next_to_run;
1175 int i;
1177 /* check to see if we have maxed out the number of commands that can
1178 * be placed on the queue. If so then exit. We do this check here
1179 * in case the interrupt we serviced was from an ioctl and did not
1180 * free any new commands.
1182 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1183 return;
1185 /* We have room on the queue for more commands. Now we need to queue
1186 * them up. We will also keep track of the next queue to run so
1187 * that every queue gets a chance to be started first.
1189 for (i = 0; i < h->highest_lun + 1; i++) {
1190 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1191 /* make sure the disk has been added and the drive is real
1192 * because this can be called from the middle of init_one.
1194 if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
1195 continue;
1196 blk_start_queue(h->gendisk[curr_queue]->queue);
1198 /* check to see if we have maxed out the number of commands
1199 * that can be placed on the queue.
1201 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1202 if (curr_queue == start_queue) {
1203 h->next_to_run =
1204 (start_queue + 1) % (h->highest_lun + 1);
1205 break;
1206 } else {
1207 h->next_to_run = curr_queue;
1208 break;
1210 } else {
1211 curr_queue = (curr_queue + 1) % (h->highest_lun + 1);
1216 static void cciss_softirq_done(struct request *rq)
1218 CommandList_struct *cmd = rq->completion_data;
1219 ctlr_info_t *h = hba[cmd->ctlr];
1220 unsigned long flags;
1221 u64bit temp64;
1222 int i, ddir;
1224 if (cmd->Request.Type.Direction == XFER_READ)
1225 ddir = PCI_DMA_FROMDEVICE;
1226 else
1227 ddir = PCI_DMA_TODEVICE;
1229 /* command did not need to be retried */
1230 /* unmap the DMA mapping for all the scatter gather elements */
1231 for (i = 0; i < cmd->Header.SGList; i++) {
1232 temp64.val32.lower = cmd->SG[i].Addr.lower;
1233 temp64.val32.upper = cmd->SG[i].Addr.upper;
1234 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1237 complete_buffers(rq->bio, rq->errors);
1239 if (blk_fs_request(rq)) {
1240 const int rw = rq_data_dir(rq);
1242 disk_stat_add(rq->rq_disk, sectors[rw], rq->nr_sectors);
1245 #ifdef CCISS_DEBUG
1246 printk("Done with %p\n", rq);
1247 #endif /* CCISS_DEBUG */
1249 add_disk_randomness(rq->rq_disk);
1250 spin_lock_irqsave(&h->lock, flags);
1251 end_that_request_last(rq, rq->errors);
1252 cmd_free(h, cmd, 1);
1253 cciss_check_queues(h);
1254 spin_unlock_irqrestore(&h->lock, flags);
1257 /* This function will check the usage_count of the drive to be updated/added.
1258 * If the usage_count is zero then the drive information will be updated and
1259 * the disk will be re-registered with the kernel. If not then it will be
1260 * left alone for the next reboot. The exception to this is disk 0 which
1261 * will always be left registered with the kernel since it is also the
1262 * controller node. Any changes to disk 0 will show up on the next
1263 * reboot.
1265 static void cciss_update_drive_info(int ctlr, int drv_index)
1267 ctlr_info_t *h = hba[ctlr];
1268 struct gendisk *disk;
1269 InquiryData_struct *inq_buff = NULL;
1270 unsigned int block_size;
1271 sector_t total_size;
1272 unsigned long flags = 0;
1273 int ret = 0;
1275 /* if the disk already exists then deregister it before proceeding */
1276 if (h->drv[drv_index].raid_level != -1) {
1277 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1278 h->drv[drv_index].busy_configuring = 1;
1279 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1280 ret = deregister_disk(h->gendisk[drv_index],
1281 &h->drv[drv_index], 0);
1282 h->drv[drv_index].busy_configuring = 0;
1285 /* If the disk is in use return */
1286 if (ret)
1287 return;
1289 /* Get information about the disk and modify the driver structure */
1290 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1291 if (inq_buff == NULL)
1292 goto mem_msg;
1294 cciss_read_capacity(ctlr, drv_index, 1,
1295 &total_size, &block_size);
1297 /* total size = last LBA + 1 */
1298 /* FFFFFFFF + 1 = 0, cannot have a logical volume of size 0 */
1299 /* so we assume this volume this must be >2TB in size */
1300 if (total_size == (__u32) 0) {
1301 cciss_read_capacity_16(ctlr, drv_index, 1,
1302 &total_size, &block_size);
1303 h->cciss_read = CCISS_READ_16;
1304 h->cciss_write = CCISS_WRITE_16;
1305 } else {
1306 h->cciss_read = CCISS_READ_10;
1307 h->cciss_write = CCISS_WRITE_10;
1309 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1310 inq_buff, &h->drv[drv_index]);
1312 ++h->num_luns;
1313 disk = h->gendisk[drv_index];
1314 set_capacity(disk, h->drv[drv_index].nr_blocks);
1316 /* if it's the controller it's already added */
1317 if (drv_index) {
1318 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1319 sprintf(disk->disk_name, "cciss/c%dd%d", ctlr, drv_index);
1320 disk->major = h->major;
1321 disk->first_minor = drv_index << NWD_SHIFT;
1322 disk->fops = &cciss_fops;
1323 disk->private_data = &h->drv[drv_index];
1325 /* Set up queue information */
1326 disk->queue->backing_dev_info.ra_pages = READ_AHEAD;
1327 blk_queue_bounce_limit(disk->queue, hba[ctlr]->pdev->dma_mask);
1329 /* This is a hardware imposed limit. */
1330 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1332 /* This is a limit in the driver and could be eliminated. */
1333 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1335 blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1337 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1339 disk->queue->queuedata = hba[ctlr];
1341 blk_queue_hardsect_size(disk->queue,
1342 hba[ctlr]->drv[drv_index].block_size);
1344 h->drv[drv_index].queue = disk->queue;
1345 add_disk(disk);
1348 freeret:
1349 kfree(inq_buff);
1350 return;
1351 mem_msg:
1352 printk(KERN_ERR "cciss: out of memory\n");
1353 goto freeret;
1356 /* This function will find the first index of the controllers drive array
1357 * that has a -1 for the raid_level and will return that index. This is
1358 * where new drives will be added. If the index to be returned is greater
1359 * than the highest_lun index for the controller then highest_lun is set
1360 * to this new index. If there are no available indexes then -1 is returned.
1362 static int cciss_find_free_drive_index(int ctlr)
1364 int i;
1366 for (i = 0; i < CISS_MAX_LUN; i++) {
1367 if (hba[ctlr]->drv[i].raid_level == -1) {
1368 if (i > hba[ctlr]->highest_lun)
1369 hba[ctlr]->highest_lun = i;
1370 return i;
1373 return -1;
1376 /* This function will add and remove logical drives from the Logical
1377 * drive array of the controller and maintain persistency of ordering
1378 * so that mount points are preserved until the next reboot. This allows
1379 * for the removal of logical drives in the middle of the drive array
1380 * without a re-ordering of those drives.
1381 * INPUT
1382 * h = The controller to perform the operations on
1383 * del_disk = The disk to remove if specified. If the value given
1384 * is NULL then no disk is removed.
1386 static int rebuild_lun_table(ctlr_info_t *h, struct gendisk *del_disk)
1388 int ctlr = h->ctlr;
1389 int num_luns;
1390 ReportLunData_struct *ld_buff = NULL;
1391 drive_info_struct *drv = NULL;
1392 int return_code;
1393 int listlength = 0;
1394 int i;
1395 int drv_found;
1396 int drv_index = 0;
1397 __u32 lunid = 0;
1398 unsigned long flags;
1400 /* Set busy_configuring flag for this operation */
1401 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1402 if (h->busy_configuring) {
1403 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1404 return -EBUSY;
1406 h->busy_configuring = 1;
1408 /* if del_disk is NULL then we are being called to add a new disk
1409 * and update the logical drive table. If it is not NULL then
1410 * we will check if the disk is in use or not.
1412 if (del_disk != NULL) {
1413 drv = get_drv(del_disk);
1414 drv->busy_configuring = 1;
1415 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1416 return_code = deregister_disk(del_disk, drv, 1);
1417 drv->busy_configuring = 0;
1418 h->busy_configuring = 0;
1419 return return_code;
1420 } else {
1421 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1422 if (!capable(CAP_SYS_RAWIO))
1423 return -EPERM;
1425 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1426 if (ld_buff == NULL)
1427 goto mem_msg;
1429 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1430 sizeof(ReportLunData_struct), 0,
1431 0, 0, TYPE_CMD);
1433 if (return_code == IO_OK) {
1434 listlength =
1435 be32_to_cpu(*(__u32 *) ld_buff->LUNListLength);
1436 } else { /* reading number of logical volumes failed */
1437 printk(KERN_WARNING "cciss: report logical volume"
1438 " command failed\n");
1439 listlength = 0;
1440 goto freeret;
1443 num_luns = listlength / 8; /* 8 bytes per entry */
1444 if (num_luns > CISS_MAX_LUN) {
1445 num_luns = CISS_MAX_LUN;
1446 printk(KERN_WARNING "cciss: more luns configured"
1447 " on controller than can be handled by"
1448 " this driver.\n");
1451 /* Compare controller drive array to drivers drive array.
1452 * Check for updates in the drive information and any new drives
1453 * on the controller.
1455 for (i = 0; i < num_luns; i++) {
1456 int j;
1458 drv_found = 0;
1460 lunid = (0xff &
1461 (unsigned int)(ld_buff->LUN[i][3])) << 24;
1462 lunid |= (0xff &
1463 (unsigned int)(ld_buff->LUN[i][2])) << 16;
1464 lunid |= (0xff &
1465 (unsigned int)(ld_buff->LUN[i][1])) << 8;
1466 lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
1468 /* Find if the LUN is already in the drive array
1469 * of the controller. If so then update its info
1470 * if not is use. If it does not exist then find
1471 * the first free index and add it.
1473 for (j = 0; j <= h->highest_lun; j++) {
1474 if (h->drv[j].LunID == lunid) {
1475 drv_index = j;
1476 drv_found = 1;
1480 /* check if the drive was found already in the array */
1481 if (!drv_found) {
1482 drv_index = cciss_find_free_drive_index(ctlr);
1483 if (drv_index == -1)
1484 goto freeret;
1486 /*Check if the gendisk needs to be allocated */
1487 if (!h->gendisk[drv_index]){
1488 h->gendisk[drv_index] = alloc_disk(1 << NWD_SHIFT);
1489 if (!h->gendisk[drv_index]){
1490 printk(KERN_ERR "cciss: could not allocate new disk %d\n", drv_index);
1491 goto mem_msg;
1495 h->drv[drv_index].LunID = lunid;
1496 cciss_update_drive_info(ctlr, drv_index);
1497 } /* end for */
1498 } /* end else */
1500 freeret:
1501 kfree(ld_buff);
1502 h->busy_configuring = 0;
1503 /* We return -1 here to tell the ACU that we have registered/updated
1504 * all of the drives that we can and to keep it from calling us
1505 * additional times.
1507 return -1;
1508 mem_msg:
1509 printk(KERN_ERR "cciss: out of memory\n");
1510 goto freeret;
1513 /* This function will deregister the disk and it's queue from the
1514 * kernel. It must be called with the controller lock held and the
1515 * drv structures busy_configuring flag set. It's parameters are:
1517 * disk = This is the disk to be deregistered
1518 * drv = This is the drive_info_struct associated with the disk to be
1519 * deregistered. It contains information about the disk used
1520 * by the driver.
1521 * clear_all = This flag determines whether or not the disk information
1522 * is going to be completely cleared out and the highest_lun
1523 * reset. Sometimes we want to clear out information about
1524 * the disk in preparation for re-adding it. In this case
1525 * the highest_lun should be left unchanged and the LunID
1526 * should not be cleared.
1528 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
1529 int clear_all)
1531 int i;
1532 ctlr_info_t *h = get_host(disk);
1534 if (!capable(CAP_SYS_RAWIO))
1535 return -EPERM;
1537 /* make sure logical volume is NOT is use */
1538 if (clear_all || (h->gendisk[0] == disk)) {
1539 if (drv->usage_count > 1)
1540 return -EBUSY;
1541 } else if (drv->usage_count > 0)
1542 return -EBUSY;
1544 /* invalidate the devices and deregister the disk. If it is disk
1545 * zero do not deregister it but just zero out it's values. This
1546 * allows us to delete disk zero but keep the controller registered.
1548 if (h->gendisk[0] != disk) {
1549 if (disk) {
1550 request_queue_t *q = disk->queue;
1551 if (disk->flags & GENHD_FL_UP)
1552 del_gendisk(disk);
1553 if (q) {
1554 blk_cleanup_queue(q);
1555 /* Set drv->queue to NULL so that we do not try
1556 * to call blk_start_queue on this queue in the
1557 * interrupt handler
1559 drv->queue = NULL;
1561 /* If clear_all is set then we are deleting the logical
1562 * drive, not just refreshing its info. For drives
1563 * other than disk 0 we will call put_disk. We do not
1564 * do this for disk 0 as we need it to be able to
1565 * configure the controller.
1567 if (clear_all){
1568 /* This isn't pretty, but we need to find the
1569 * disk in our array and NULL our the pointer.
1570 * This is so that we will call alloc_disk if
1571 * this index is used again later.
1573 for (i=0; i < CISS_MAX_LUN; i++){
1574 if(h->gendisk[i] == disk){
1575 h->gendisk[i] = NULL;
1576 break;
1579 put_disk(disk);
1582 } else {
1583 set_capacity(disk, 0);
1586 --h->num_luns;
1587 /* zero out the disk size info */
1588 drv->nr_blocks = 0;
1589 drv->block_size = 0;
1590 drv->heads = 0;
1591 drv->sectors = 0;
1592 drv->cylinders = 0;
1593 drv->raid_level = -1; /* This can be used as a flag variable to
1594 * indicate that this element of the drive
1595 * array is free.
1598 if (clear_all) {
1599 /* check to see if it was the last disk */
1600 if (drv == h->drv + h->highest_lun) {
1601 /* if so, find the new hightest lun */
1602 int i, newhighest = -1;
1603 for (i = 0; i < h->highest_lun; i++) {
1604 /* if the disk has size > 0, it is available */
1605 if (h->drv[i].heads)
1606 newhighest = i;
1608 h->highest_lun = newhighest;
1611 drv->LunID = 0;
1613 return 0;
1616 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
1617 1: address logical volume log_unit,
1618 2: periph device address is scsi3addr */
1619 unsigned int log_unit, __u8 page_code,
1620 unsigned char *scsi3addr, int cmd_type)
1622 ctlr_info_t *h = hba[ctlr];
1623 u64bit buff_dma_handle;
1624 int status = IO_OK;
1626 c->cmd_type = CMD_IOCTL_PEND;
1627 c->Header.ReplyQueue = 0;
1628 if (buff != NULL) {
1629 c->Header.SGList = 1;
1630 c->Header.SGTotal = 1;
1631 } else {
1632 c->Header.SGList = 0;
1633 c->Header.SGTotal = 0;
1635 c->Header.Tag.lower = c->busaddr;
1637 c->Request.Type.Type = cmd_type;
1638 if (cmd_type == TYPE_CMD) {
1639 switch (cmd) {
1640 case CISS_INQUIRY:
1641 /* If the logical unit number is 0 then, this is going
1642 to controller so It's a physical command
1643 mode = 0 target = 0. So we have nothing to write.
1644 otherwise, if use_unit_num == 1,
1645 mode = 1(volume set addressing) target = LUNID
1646 otherwise, if use_unit_num == 2,
1647 mode = 0(periph dev addr) target = scsi3addr */
1648 if (use_unit_num == 1) {
1649 c->Header.LUN.LogDev.VolId =
1650 h->drv[log_unit].LunID;
1651 c->Header.LUN.LogDev.Mode = 1;
1652 } else if (use_unit_num == 2) {
1653 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr,
1655 c->Header.LUN.LogDev.Mode = 0;
1657 /* are we trying to read a vital product page */
1658 if (page_code != 0) {
1659 c->Request.CDB[1] = 0x01;
1660 c->Request.CDB[2] = page_code;
1662 c->Request.CDBLen = 6;
1663 c->Request.Type.Attribute = ATTR_SIMPLE;
1664 c->Request.Type.Direction = XFER_READ;
1665 c->Request.Timeout = 0;
1666 c->Request.CDB[0] = CISS_INQUIRY;
1667 c->Request.CDB[4] = size & 0xFF;
1668 break;
1669 case CISS_REPORT_LOG:
1670 case CISS_REPORT_PHYS:
1671 /* Talking to controller so It's a physical command
1672 mode = 00 target = 0. Nothing to write.
1674 c->Request.CDBLen = 12;
1675 c->Request.Type.Attribute = ATTR_SIMPLE;
1676 c->Request.Type.Direction = XFER_READ;
1677 c->Request.Timeout = 0;
1678 c->Request.CDB[0] = cmd;
1679 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
1680 c->Request.CDB[7] = (size >> 16) & 0xFF;
1681 c->Request.CDB[8] = (size >> 8) & 0xFF;
1682 c->Request.CDB[9] = size & 0xFF;
1683 break;
1685 case CCISS_READ_CAPACITY:
1686 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1687 c->Header.LUN.LogDev.Mode = 1;
1688 c->Request.CDBLen = 10;
1689 c->Request.Type.Attribute = ATTR_SIMPLE;
1690 c->Request.Type.Direction = XFER_READ;
1691 c->Request.Timeout = 0;
1692 c->Request.CDB[0] = cmd;
1693 break;
1694 case CCISS_READ_CAPACITY_16:
1695 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1696 c->Header.LUN.LogDev.Mode = 1;
1697 c->Request.CDBLen = 16;
1698 c->Request.Type.Attribute = ATTR_SIMPLE;
1699 c->Request.Type.Direction = XFER_READ;
1700 c->Request.Timeout = 0;
1701 c->Request.CDB[0] = cmd;
1702 c->Request.CDB[1] = 0x10;
1703 c->Request.CDB[10] = (size >> 24) & 0xFF;
1704 c->Request.CDB[11] = (size >> 16) & 0xFF;
1705 c->Request.CDB[12] = (size >> 8) & 0xFF;
1706 c->Request.CDB[13] = size & 0xFF;
1707 c->Request.Timeout = 0;
1708 c->Request.CDB[0] = cmd;
1709 break;
1710 case CCISS_CACHE_FLUSH:
1711 c->Request.CDBLen = 12;
1712 c->Request.Type.Attribute = ATTR_SIMPLE;
1713 c->Request.Type.Direction = XFER_WRITE;
1714 c->Request.Timeout = 0;
1715 c->Request.CDB[0] = BMIC_WRITE;
1716 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
1717 break;
1718 default:
1719 printk(KERN_WARNING
1720 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
1721 return IO_ERROR;
1723 } else if (cmd_type == TYPE_MSG) {
1724 switch (cmd) {
1725 case 0: /* ABORT message */
1726 c->Request.CDBLen = 12;
1727 c->Request.Type.Attribute = ATTR_SIMPLE;
1728 c->Request.Type.Direction = XFER_WRITE;
1729 c->Request.Timeout = 0;
1730 c->Request.CDB[0] = cmd; /* abort */
1731 c->Request.CDB[1] = 0; /* abort a command */
1732 /* buff contains the tag of the command to abort */
1733 memcpy(&c->Request.CDB[4], buff, 8);
1734 break;
1735 case 1: /* RESET message */
1736 c->Request.CDBLen = 12;
1737 c->Request.Type.Attribute = ATTR_SIMPLE;
1738 c->Request.Type.Direction = XFER_WRITE;
1739 c->Request.Timeout = 0;
1740 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
1741 c->Request.CDB[0] = cmd; /* reset */
1742 c->Request.CDB[1] = 0x04; /* reset a LUN */
1743 break;
1744 case 3: /* No-Op message */
1745 c->Request.CDBLen = 1;
1746 c->Request.Type.Attribute = ATTR_SIMPLE;
1747 c->Request.Type.Direction = XFER_WRITE;
1748 c->Request.Timeout = 0;
1749 c->Request.CDB[0] = cmd;
1750 break;
1751 default:
1752 printk(KERN_WARNING
1753 "cciss%d: unknown message type %d\n", ctlr, cmd);
1754 return IO_ERROR;
1756 } else {
1757 printk(KERN_WARNING
1758 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
1759 return IO_ERROR;
1761 /* Fill in the scatter gather information */
1762 if (size > 0) {
1763 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
1764 buff, size,
1765 PCI_DMA_BIDIRECTIONAL);
1766 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
1767 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
1768 c->SG[0].Len = size;
1769 c->SG[0].Ext = 0; /* we are not chaining */
1771 return status;
1774 static int sendcmd_withirq(__u8 cmd,
1775 int ctlr,
1776 void *buff,
1777 size_t size,
1778 unsigned int use_unit_num,
1779 unsigned int log_unit, __u8 page_code, int cmd_type)
1781 ctlr_info_t *h = hba[ctlr];
1782 CommandList_struct *c;
1783 u64bit buff_dma_handle;
1784 unsigned long flags;
1785 int return_status;
1786 DECLARE_COMPLETION_ONSTACK(wait);
1788 if ((c = cmd_alloc(h, 0)) == NULL)
1789 return -ENOMEM;
1790 return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
1791 log_unit, page_code, NULL, cmd_type);
1792 if (return_status != IO_OK) {
1793 cmd_free(h, c, 0);
1794 return return_status;
1796 resend_cmd2:
1797 c->waiting = &wait;
1799 /* Put the request on the tail of the queue and send it */
1800 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1801 addQ(&h->reqQ, c);
1802 h->Qdepth++;
1803 start_io(h);
1804 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1806 wait_for_completion(&wait);
1808 if (c->err_info->CommandStatus != 0) { /* an error has occurred */
1809 switch (c->err_info->CommandStatus) {
1810 case CMD_TARGET_STATUS:
1811 printk(KERN_WARNING "cciss: cmd %p has "
1812 " completed with errors\n", c);
1813 if (c->err_info->ScsiStatus) {
1814 printk(KERN_WARNING "cciss: cmd %p "
1815 "has SCSI Status = %x\n",
1816 c, c->err_info->ScsiStatus);
1819 break;
1820 case CMD_DATA_UNDERRUN:
1821 case CMD_DATA_OVERRUN:
1822 /* expected for inquire and report lun commands */
1823 break;
1824 case CMD_INVALID:
1825 printk(KERN_WARNING "cciss: Cmd %p is "
1826 "reported invalid\n", c);
1827 return_status = IO_ERROR;
1828 break;
1829 case CMD_PROTOCOL_ERR:
1830 printk(KERN_WARNING "cciss: cmd %p has "
1831 "protocol error \n", c);
1832 return_status = IO_ERROR;
1833 break;
1834 case CMD_HARDWARE_ERR:
1835 printk(KERN_WARNING "cciss: cmd %p had "
1836 " hardware error\n", c);
1837 return_status = IO_ERROR;
1838 break;
1839 case CMD_CONNECTION_LOST:
1840 printk(KERN_WARNING "cciss: cmd %p had "
1841 "connection lost\n", c);
1842 return_status = IO_ERROR;
1843 break;
1844 case CMD_ABORTED:
1845 printk(KERN_WARNING "cciss: cmd %p was "
1846 "aborted\n", c);
1847 return_status = IO_ERROR;
1848 break;
1849 case CMD_ABORT_FAILED:
1850 printk(KERN_WARNING "cciss: cmd %p reports "
1851 "abort failed\n", c);
1852 return_status = IO_ERROR;
1853 break;
1854 case CMD_UNSOLICITED_ABORT:
1855 printk(KERN_WARNING
1856 "cciss%d: unsolicited abort %p\n", ctlr, c);
1857 if (c->retry_count < MAX_CMD_RETRIES) {
1858 printk(KERN_WARNING
1859 "cciss%d: retrying %p\n", ctlr, c);
1860 c->retry_count++;
1861 /* erase the old error information */
1862 memset(c->err_info, 0,
1863 sizeof(ErrorInfo_struct));
1864 return_status = IO_OK;
1865 INIT_COMPLETION(wait);
1866 goto resend_cmd2;
1868 return_status = IO_ERROR;
1869 break;
1870 default:
1871 printk(KERN_WARNING "cciss: cmd %p returned "
1872 "unknown status %x\n", c,
1873 c->err_info->CommandStatus);
1874 return_status = IO_ERROR;
1877 /* unlock the buffers from DMA */
1878 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
1879 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
1880 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
1881 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
1882 cmd_free(h, c, 0);
1883 return return_status;
1886 static void cciss_geometry_inquiry(int ctlr, int logvol,
1887 int withirq, sector_t total_size,
1888 unsigned int block_size,
1889 InquiryData_struct *inq_buff,
1890 drive_info_struct *drv)
1892 int return_code;
1893 unsigned long t;
1895 memset(inq_buff, 0, sizeof(InquiryData_struct));
1896 if (withirq)
1897 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
1898 inq_buff, sizeof(*inq_buff), 1,
1899 logvol, 0xC1, TYPE_CMD);
1900 else
1901 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
1902 sizeof(*inq_buff), 1, logvol, 0xC1, NULL,
1903 TYPE_CMD);
1904 if (return_code == IO_OK) {
1905 if (inq_buff->data_byte[8] == 0xFF) {
1906 printk(KERN_WARNING
1907 "cciss: reading geometry failed, volume "
1908 "does not support reading geometry\n");
1909 drv->heads = 255;
1910 drv->sectors = 32; // Sectors per track
1911 drv->raid_level = RAID_UNKNOWN;
1912 } else {
1913 drv->heads = inq_buff->data_byte[6];
1914 drv->sectors = inq_buff->data_byte[7];
1915 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
1916 drv->cylinders += inq_buff->data_byte[5];
1917 drv->raid_level = inq_buff->data_byte[8];
1919 drv->block_size = block_size;
1920 drv->nr_blocks = total_size;
1921 t = drv->heads * drv->sectors;
1922 if (t > 1) {
1923 unsigned rem = sector_div(total_size, t);
1924 if (rem)
1925 total_size++;
1926 drv->cylinders = total_size;
1928 } else { /* Get geometry failed */
1929 printk(KERN_WARNING "cciss: reading geometry failed\n");
1931 printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n",
1932 drv->heads, drv->sectors, drv->cylinders);
1935 static void
1936 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
1937 unsigned int *block_size)
1939 ReadCapdata_struct *buf;
1940 int return_code;
1941 buf = kmalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
1942 if (buf == NULL) {
1943 printk(KERN_WARNING "cciss: out of memory\n");
1944 return;
1946 memset(buf, 0, sizeof(ReadCapdata_struct));
1947 if (withirq)
1948 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
1949 ctlr, buf, sizeof(ReadCapdata_struct),
1950 1, logvol, 0, TYPE_CMD);
1951 else
1952 return_code = sendcmd(CCISS_READ_CAPACITY,
1953 ctlr, buf, sizeof(ReadCapdata_struct),
1954 1, logvol, 0, NULL, TYPE_CMD);
1955 if (return_code == IO_OK) {
1956 *total_size = be32_to_cpu(*(__u32 *) buf->total_size)+1;
1957 *block_size = be32_to_cpu(*(__u32 *) buf->block_size);
1958 } else { /* read capacity command failed */
1959 printk(KERN_WARNING "cciss: read capacity failed\n");
1960 *total_size = 0;
1961 *block_size = BLOCK_SIZE;
1963 if (*total_size != (__u32) 0)
1964 printk(KERN_INFO " blocks= %llu block_size= %d\n",
1965 (unsigned long long)*total_size, *block_size);
1966 kfree(buf);
1967 return;
1970 static void
1971 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
1973 ReadCapdata_struct_16 *buf;
1974 int return_code;
1975 buf = kmalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
1976 if (buf == NULL) {
1977 printk(KERN_WARNING "cciss: out of memory\n");
1978 return;
1980 memset(buf, 0, sizeof(ReadCapdata_struct_16));
1981 if (withirq) {
1982 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
1983 ctlr, buf, sizeof(ReadCapdata_struct_16),
1984 1, logvol, 0, TYPE_CMD);
1986 else {
1987 return_code = sendcmd(CCISS_READ_CAPACITY_16,
1988 ctlr, buf, sizeof(ReadCapdata_struct_16),
1989 1, logvol, 0, NULL, TYPE_CMD);
1991 if (return_code == IO_OK) {
1992 *total_size = be64_to_cpu(*(__u64 *) buf->total_size)+1;
1993 *block_size = be32_to_cpu(*(__u32 *) buf->block_size);
1994 } else { /* read capacity command failed */
1995 printk(KERN_WARNING "cciss: read capacity failed\n");
1996 *total_size = 0;
1997 *block_size = BLOCK_SIZE;
1999 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2000 (unsigned long long)*total_size, *block_size);
2001 kfree(buf);
2002 return;
2005 static int cciss_revalidate(struct gendisk *disk)
2007 ctlr_info_t *h = get_host(disk);
2008 drive_info_struct *drv = get_drv(disk);
2009 int logvol;
2010 int FOUND = 0;
2011 unsigned int block_size;
2012 sector_t total_size;
2013 InquiryData_struct *inq_buff = NULL;
2015 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2016 if (h->drv[logvol].LunID == drv->LunID) {
2017 FOUND = 1;
2018 break;
2022 if (!FOUND)
2023 return 1;
2025 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2026 if (inq_buff == NULL) {
2027 printk(KERN_WARNING "cciss: out of memory\n");
2028 return 1;
2030 if (h->cciss_read == CCISS_READ_10) {
2031 cciss_read_capacity(h->ctlr, logvol, 1,
2032 &total_size, &block_size);
2033 } else {
2034 cciss_read_capacity_16(h->ctlr, logvol, 1,
2035 &total_size, &block_size);
2037 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2038 inq_buff, drv);
2040 blk_queue_hardsect_size(drv->queue, drv->block_size);
2041 set_capacity(disk, drv->nr_blocks);
2043 kfree(inq_buff);
2044 return 0;
2048 * Wait polling for a command to complete.
2049 * The memory mapped FIFO is polled for the completion.
2050 * Used only at init time, interrupts from the HBA are disabled.
2052 static unsigned long pollcomplete(int ctlr)
2054 unsigned long done;
2055 int i;
2057 /* Wait (up to 20 seconds) for a command to complete */
2059 for (i = 20 * HZ; i > 0; i--) {
2060 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2061 if (done == FIFO_EMPTY)
2062 schedule_timeout_uninterruptible(1);
2063 else
2064 return done;
2066 /* Invalid address to tell caller we ran out of time */
2067 return 1;
2070 static int add_sendcmd_reject(__u8 cmd, int ctlr, unsigned long complete)
2072 /* We get in here if sendcmd() is polling for completions
2073 and gets some command back that it wasn't expecting --
2074 something other than that which it just sent down.
2075 Ordinarily, that shouldn't happen, but it can happen when
2076 the scsi tape stuff gets into error handling mode, and
2077 starts using sendcmd() to try to abort commands and
2078 reset tape drives. In that case, sendcmd may pick up
2079 completions of commands that were sent to logical drives
2080 through the block i/o system, or cciss ioctls completing, etc.
2081 In that case, we need to save those completions for later
2082 processing by the interrupt handler.
2085 #ifdef CONFIG_CISS_SCSI_TAPE
2086 struct sendcmd_reject_list *srl = &hba[ctlr]->scsi_rejects;
2088 /* If it's not the scsi tape stuff doing error handling, (abort */
2089 /* or reset) then we don't expect anything weird. */
2090 if (cmd != CCISS_RESET_MSG && cmd != CCISS_ABORT_MSG) {
2091 #endif
2092 printk(KERN_WARNING "cciss cciss%d: SendCmd "
2093 "Invalid command list address returned! (%lx)\n",
2094 ctlr, complete);
2095 /* not much we can do. */
2096 #ifdef CONFIG_CISS_SCSI_TAPE
2097 return 1;
2100 /* We've sent down an abort or reset, but something else
2101 has completed */
2102 if (srl->ncompletions >= (hba[ctlr]->nr_cmds + 2)) {
2103 /* Uh oh. No room to save it for later... */
2104 printk(KERN_WARNING "cciss%d: Sendcmd: Invalid command addr, "
2105 "reject list overflow, command lost!\n", ctlr);
2106 return 1;
2108 /* Save it for later */
2109 srl->complete[srl->ncompletions] = complete;
2110 srl->ncompletions++;
2111 #endif
2112 return 0;
2116 * Send a command to the controller, and wait for it to complete.
2117 * Only used at init time.
2119 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
2120 1: address logical volume log_unit,
2121 2: periph device address is scsi3addr */
2122 unsigned int log_unit,
2123 __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2125 CommandList_struct *c;
2126 int i;
2127 unsigned long complete;
2128 ctlr_info_t *info_p = hba[ctlr];
2129 u64bit buff_dma_handle;
2130 int status, done = 0;
2132 if ((c = cmd_alloc(info_p, 1)) == NULL) {
2133 printk(KERN_WARNING "cciss: unable to get memory");
2134 return IO_ERROR;
2136 status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
2137 log_unit, page_code, scsi3addr, cmd_type);
2138 if (status != IO_OK) {
2139 cmd_free(info_p, c, 1);
2140 return status;
2142 resend_cmd1:
2144 * Disable interrupt
2146 #ifdef CCISS_DEBUG
2147 printk(KERN_DEBUG "cciss: turning intr off\n");
2148 #endif /* CCISS_DEBUG */
2149 info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
2151 /* Make sure there is room in the command FIFO */
2152 /* Actually it should be completely empty at this time */
2153 /* unless we are in here doing error handling for the scsi */
2154 /* tape side of the driver. */
2155 for (i = 200000; i > 0; i--) {
2156 /* if fifo isn't full go */
2157 if (!(info_p->access.fifo_full(info_p))) {
2159 break;
2161 udelay(10);
2162 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2163 " waiting!\n", ctlr);
2166 * Send the cmd
2168 info_p->access.submit_command(info_p, c);
2169 done = 0;
2170 do {
2171 complete = pollcomplete(ctlr);
2173 #ifdef CCISS_DEBUG
2174 printk(KERN_DEBUG "cciss: command completed\n");
2175 #endif /* CCISS_DEBUG */
2177 if (complete == 1) {
2178 printk(KERN_WARNING
2179 "cciss cciss%d: SendCmd Timeout out, "
2180 "No command list address returned!\n", ctlr);
2181 status = IO_ERROR;
2182 done = 1;
2183 break;
2186 /* This will need to change for direct lookup completions */
2187 if ((complete & CISS_ERROR_BIT)
2188 && (complete & ~CISS_ERROR_BIT) == c->busaddr) {
2189 /* if data overrun or underun on Report command
2190 ignore it
2192 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2193 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2194 (c->Request.CDB[0] == CISS_INQUIRY)) &&
2195 ((c->err_info->CommandStatus ==
2196 CMD_DATA_OVERRUN) ||
2197 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN)
2198 )) {
2199 complete = c->busaddr;
2200 } else {
2201 if (c->err_info->CommandStatus ==
2202 CMD_UNSOLICITED_ABORT) {
2203 printk(KERN_WARNING "cciss%d: "
2204 "unsolicited abort %p\n",
2205 ctlr, c);
2206 if (c->retry_count < MAX_CMD_RETRIES) {
2207 printk(KERN_WARNING
2208 "cciss%d: retrying %p\n",
2209 ctlr, c);
2210 c->retry_count++;
2211 /* erase the old error */
2212 /* information */
2213 memset(c->err_info, 0,
2214 sizeof
2215 (ErrorInfo_struct));
2216 goto resend_cmd1;
2217 } else {
2218 printk(KERN_WARNING
2219 "cciss%d: retried %p too "
2220 "many times\n", ctlr, c);
2221 status = IO_ERROR;
2222 goto cleanup1;
2224 } else if (c->err_info->CommandStatus ==
2225 CMD_UNABORTABLE) {
2226 printk(KERN_WARNING
2227 "cciss%d: command could not be aborted.\n",
2228 ctlr);
2229 status = IO_ERROR;
2230 goto cleanup1;
2232 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2233 " Error %x \n", ctlr,
2234 c->err_info->CommandStatus);
2235 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2236 " offensive info\n"
2237 " size %x\n num %x value %x\n",
2238 ctlr,
2239 c->err_info->MoreErrInfo.Invalid_Cmd.
2240 offense_size,
2241 c->err_info->MoreErrInfo.Invalid_Cmd.
2242 offense_num,
2243 c->err_info->MoreErrInfo.Invalid_Cmd.
2244 offense_value);
2245 status = IO_ERROR;
2246 goto cleanup1;
2249 /* This will need changing for direct lookup completions */
2250 if (complete != c->busaddr) {
2251 if (add_sendcmd_reject(cmd, ctlr, complete) != 0) {
2252 BUG(); /* we are pretty much hosed if we get here. */
2254 continue;
2255 } else
2256 done = 1;
2257 } while (!done);
2259 cleanup1:
2260 /* unlock the data buffer from DMA */
2261 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2262 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2263 pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
2264 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2265 #ifdef CONFIG_CISS_SCSI_TAPE
2266 /* if we saved some commands for later, process them now. */
2267 if (info_p->scsi_rejects.ncompletions > 0)
2268 do_cciss_intr(0, info_p);
2269 #endif
2270 cmd_free(info_p, c, 1);
2271 return status;
2275 * Map (physical) PCI mem into (virtual) kernel space
2277 static void __iomem *remap_pci_mem(ulong base, ulong size)
2279 ulong page_base = ((ulong) base) & PAGE_MASK;
2280 ulong page_offs = ((ulong) base) - page_base;
2281 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2283 return page_remapped ? (page_remapped + page_offs) : NULL;
2287 * Takes jobs of the Q and sends them to the hardware, then puts it on
2288 * the Q to wait for completion.
2290 static void start_io(ctlr_info_t *h)
2292 CommandList_struct *c;
2294 while ((c = h->reqQ) != NULL) {
2295 /* can't do anything if fifo is full */
2296 if ((h->access.fifo_full(h))) {
2297 printk(KERN_WARNING "cciss: fifo full\n");
2298 break;
2301 /* Get the first entry from the Request Q */
2302 removeQ(&(h->reqQ), c);
2303 h->Qdepth--;
2305 /* Tell the controller execute command */
2306 h->access.submit_command(h, c);
2308 /* Put job onto the completed Q */
2309 addQ(&(h->cmpQ), c);
2313 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2314 /* Zeros out the error record and then resends the command back */
2315 /* to the controller */
2316 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2318 /* erase the old error information */
2319 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2321 /* add it to software queue and then send it to the controller */
2322 addQ(&(h->reqQ), c);
2323 h->Qdepth++;
2324 if (h->Qdepth > h->maxQsinceinit)
2325 h->maxQsinceinit = h->Qdepth;
2327 start_io(h);
2330 /* checks the status of the job and calls complete buffers to mark all
2331 * buffers for the completed job. Note that this function does not need
2332 * to hold the hba/queue lock.
2334 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2335 int timeout)
2337 int status = 1;
2338 int retry_cmd = 0;
2340 if (timeout)
2341 status = 0;
2343 if (cmd->err_info->CommandStatus != 0) { /* an error has occurred */
2344 switch (cmd->err_info->CommandStatus) {
2345 unsigned char sense_key;
2346 case CMD_TARGET_STATUS:
2347 status = 0;
2349 if (cmd->err_info->ScsiStatus == 0x02) {
2350 printk(KERN_WARNING "cciss: cmd %p "
2351 "has CHECK CONDITION "
2352 " byte 2 = 0x%x\n", cmd,
2353 cmd->err_info->SenseInfo[2]
2355 /* check the sense key */
2356 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2357 /* no status or recovered error */
2358 if ((sense_key == 0x0) || (sense_key == 0x1)) {
2359 status = 1;
2361 } else {
2362 printk(KERN_WARNING "cciss: cmd %p "
2363 "has SCSI Status 0x%x\n",
2364 cmd, cmd->err_info->ScsiStatus);
2366 break;
2367 case CMD_DATA_UNDERRUN:
2368 printk(KERN_WARNING "cciss: cmd %p has"
2369 " completed with data underrun "
2370 "reported\n", cmd);
2371 break;
2372 case CMD_DATA_OVERRUN:
2373 printk(KERN_WARNING "cciss: cmd %p has"
2374 " completed with data overrun "
2375 "reported\n", cmd);
2376 break;
2377 case CMD_INVALID:
2378 printk(KERN_WARNING "cciss: cmd %p is "
2379 "reported invalid\n", cmd);
2380 status = 0;
2381 break;
2382 case CMD_PROTOCOL_ERR:
2383 printk(KERN_WARNING "cciss: cmd %p has "
2384 "protocol error \n", cmd);
2385 status = 0;
2386 break;
2387 case CMD_HARDWARE_ERR:
2388 printk(KERN_WARNING "cciss: cmd %p had "
2389 " hardware error\n", cmd);
2390 status = 0;
2391 break;
2392 case CMD_CONNECTION_LOST:
2393 printk(KERN_WARNING "cciss: cmd %p had "
2394 "connection lost\n", cmd);
2395 status = 0;
2396 break;
2397 case CMD_ABORTED:
2398 printk(KERN_WARNING "cciss: cmd %p was "
2399 "aborted\n", cmd);
2400 status = 0;
2401 break;
2402 case CMD_ABORT_FAILED:
2403 printk(KERN_WARNING "cciss: cmd %p reports "
2404 "abort failed\n", cmd);
2405 status = 0;
2406 break;
2407 case CMD_UNSOLICITED_ABORT:
2408 printk(KERN_WARNING "cciss%d: unsolicited "
2409 "abort %p\n", h->ctlr, cmd);
2410 if (cmd->retry_count < MAX_CMD_RETRIES) {
2411 retry_cmd = 1;
2412 printk(KERN_WARNING
2413 "cciss%d: retrying %p\n", h->ctlr, cmd);
2414 cmd->retry_count++;
2415 } else
2416 printk(KERN_WARNING
2417 "cciss%d: %p retried too "
2418 "many times\n", h->ctlr, cmd);
2419 status = 0;
2420 break;
2421 case CMD_TIMEOUT:
2422 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
2423 status = 0;
2424 break;
2425 default:
2426 printk(KERN_WARNING "cciss: cmd %p returned "
2427 "unknown status %x\n", cmd,
2428 cmd->err_info->CommandStatus);
2429 status = 0;
2432 /* We need to return this command */
2433 if (retry_cmd) {
2434 resend_cciss_cmd(h, cmd);
2435 return;
2438 cmd->rq->completion_data = cmd;
2439 cmd->rq->errors = status;
2440 blk_add_trace_rq(cmd->rq->q, cmd->rq, BLK_TA_COMPLETE);
2441 blk_complete_request(cmd->rq);
2445 * Get a request and submit it to the controller.
2447 static void do_cciss_request(request_queue_t *q)
2449 ctlr_info_t *h = q->queuedata;
2450 CommandList_struct *c;
2451 sector_t start_blk;
2452 int seg;
2453 struct request *creq;
2454 u64bit temp64;
2455 struct scatterlist tmp_sg[MAXSGENTRIES];
2456 drive_info_struct *drv;
2457 int i, dir;
2459 /* We call start_io here in case there is a command waiting on the
2460 * queue that has not been sent.
2462 if (blk_queue_plugged(q))
2463 goto startio;
2465 queue:
2466 creq = elv_next_request(q);
2467 if (!creq)
2468 goto startio;
2470 BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
2472 if ((c = cmd_alloc(h, 1)) == NULL)
2473 goto full;
2475 blkdev_dequeue_request(creq);
2477 spin_unlock_irq(q->queue_lock);
2479 c->cmd_type = CMD_RWREQ;
2480 c->rq = creq;
2482 /* fill in the request */
2483 drv = creq->rq_disk->private_data;
2484 c->Header.ReplyQueue = 0; // unused in simple mode
2485 /* got command from pool, so use the command block index instead */
2486 /* for direct lookups. */
2487 /* The first 2 bits are reserved for controller error reporting. */
2488 c->Header.Tag.lower = (c->cmdindex << 3);
2489 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
2490 c->Header.LUN.LogDev.VolId = drv->LunID;
2491 c->Header.LUN.LogDev.Mode = 1;
2492 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
2493 c->Request.Type.Type = TYPE_CMD; // It is a command.
2494 c->Request.Type.Attribute = ATTR_SIMPLE;
2495 c->Request.Type.Direction =
2496 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
2497 c->Request.Timeout = 0; // Don't time out
2498 c->Request.CDB[0] =
2499 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
2500 start_blk = creq->sector;
2501 #ifdef CCISS_DEBUG
2502 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n", (int)creq->sector,
2503 (int)creq->nr_sectors);
2504 #endif /* CCISS_DEBUG */
2506 seg = blk_rq_map_sg(q, creq, tmp_sg);
2508 /* get the DMA records for the setup */
2509 if (c->Request.Type.Direction == XFER_READ)
2510 dir = PCI_DMA_FROMDEVICE;
2511 else
2512 dir = PCI_DMA_TODEVICE;
2514 for (i = 0; i < seg; i++) {
2515 c->SG[i].Len = tmp_sg[i].length;
2516 temp64.val = (__u64) pci_map_page(h->pdev, tmp_sg[i].page,
2517 tmp_sg[i].offset,
2518 tmp_sg[i].length, dir);
2519 c->SG[i].Addr.lower = temp64.val32.lower;
2520 c->SG[i].Addr.upper = temp64.val32.upper;
2521 c->SG[i].Ext = 0; // we are not chaining
2523 /* track how many SG entries we are using */
2524 if (seg > h->maxSG)
2525 h->maxSG = seg;
2527 #ifdef CCISS_DEBUG
2528 printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n",
2529 creq->nr_sectors, seg);
2530 #endif /* CCISS_DEBUG */
2532 c->Header.SGList = c->Header.SGTotal = seg;
2533 if(h->cciss_read == CCISS_READ_10) {
2534 c->Request.CDB[1] = 0;
2535 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
2536 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
2537 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
2538 c->Request.CDB[5] = start_blk & 0xff;
2539 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
2540 c->Request.CDB[7] = (creq->nr_sectors >> 8) & 0xff;
2541 c->Request.CDB[8] = creq->nr_sectors & 0xff;
2542 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
2543 } else {
2544 c->Request.CDBLen = 16;
2545 c->Request.CDB[1]= 0;
2546 c->Request.CDB[2]= (start_blk >> 56) & 0xff; //MSB
2547 c->Request.CDB[3]= (start_blk >> 48) & 0xff;
2548 c->Request.CDB[4]= (start_blk >> 40) & 0xff;
2549 c->Request.CDB[5]= (start_blk >> 32) & 0xff;
2550 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
2551 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
2552 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
2553 c->Request.CDB[9]= start_blk & 0xff;
2554 c->Request.CDB[10]= (creq->nr_sectors >> 24) & 0xff;
2555 c->Request.CDB[11]= (creq->nr_sectors >> 16) & 0xff;
2556 c->Request.CDB[12]= (creq->nr_sectors >> 8) & 0xff;
2557 c->Request.CDB[13]= creq->nr_sectors & 0xff;
2558 c->Request.CDB[14] = c->Request.CDB[15] = 0;
2561 spin_lock_irq(q->queue_lock);
2563 addQ(&(h->reqQ), c);
2564 h->Qdepth++;
2565 if (h->Qdepth > h->maxQsinceinit)
2566 h->maxQsinceinit = h->Qdepth;
2568 goto queue;
2569 full:
2570 blk_stop_queue(q);
2571 startio:
2572 /* We will already have the driver lock here so not need
2573 * to lock it.
2575 start_io(h);
2578 static inline unsigned long get_next_completion(ctlr_info_t *h)
2580 #ifdef CONFIG_CISS_SCSI_TAPE
2581 /* Any rejects from sendcmd() lying around? Process them first */
2582 if (h->scsi_rejects.ncompletions == 0)
2583 return h->access.command_completed(h);
2584 else {
2585 struct sendcmd_reject_list *srl;
2586 int n;
2587 srl = &h->scsi_rejects;
2588 n = --srl->ncompletions;
2589 /* printk("cciss%d: processing saved reject\n", h->ctlr); */
2590 printk("p");
2591 return srl->complete[n];
2593 #else
2594 return h->access.command_completed(h);
2595 #endif
2598 static inline int interrupt_pending(ctlr_info_t *h)
2600 #ifdef CONFIG_CISS_SCSI_TAPE
2601 return (h->access.intr_pending(h)
2602 || (h->scsi_rejects.ncompletions > 0));
2603 #else
2604 return h->access.intr_pending(h);
2605 #endif
2608 static inline long interrupt_not_for_us(ctlr_info_t *h)
2610 #ifdef CONFIG_CISS_SCSI_TAPE
2611 return (((h->access.intr_pending(h) == 0) ||
2612 (h->interrupts_enabled == 0))
2613 && (h->scsi_rejects.ncompletions == 0));
2614 #else
2615 return (((h->access.intr_pending(h) == 0) ||
2616 (h->interrupts_enabled == 0)));
2617 #endif
2620 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
2622 ctlr_info_t *h = dev_id;
2623 CommandList_struct *c;
2624 unsigned long flags;
2625 __u32 a, a1, a2;
2627 if (interrupt_not_for_us(h))
2628 return IRQ_NONE;
2630 * If there are completed commands in the completion queue,
2631 * we had better do something about it.
2633 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2634 while (interrupt_pending(h)) {
2635 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
2636 a1 = a;
2637 if ((a & 0x04)) {
2638 a2 = (a >> 3);
2639 if (a2 >= h->nr_cmds) {
2640 printk(KERN_WARNING
2641 "cciss: controller cciss%d failed, stopping.\n",
2642 h->ctlr);
2643 fail_all_cmds(h->ctlr);
2644 return IRQ_HANDLED;
2647 c = h->cmd_pool + a2;
2648 a = c->busaddr;
2650 } else {
2651 a &= ~3;
2652 if ((c = h->cmpQ) == NULL) {
2653 printk(KERN_WARNING
2654 "cciss: Completion of %08x ignored\n",
2655 a1);
2656 continue;
2658 while (c->busaddr != a) {
2659 c = c->next;
2660 if (c == h->cmpQ)
2661 break;
2665 * If we've found the command, take it off the
2666 * completion Q and free it
2668 if (c->busaddr == a) {
2669 removeQ(&h->cmpQ, c);
2670 if (c->cmd_type == CMD_RWREQ) {
2671 complete_command(h, c, 0);
2672 } else if (c->cmd_type == CMD_IOCTL_PEND) {
2673 complete(c->waiting);
2675 # ifdef CONFIG_CISS_SCSI_TAPE
2676 else if (c->cmd_type == CMD_SCSI)
2677 complete_scsi_command(c, 0, a1);
2678 # endif
2679 continue;
2684 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2685 return IRQ_HANDLED;
2689 * We cannot read the structure directly, for portability we must use
2690 * the io functions.
2691 * This is for debug only.
2693 #ifdef CCISS_DEBUG
2694 static void print_cfg_table(CfgTable_struct *tb)
2696 int i;
2697 char temp_name[17];
2699 printk("Controller Configuration information\n");
2700 printk("------------------------------------\n");
2701 for (i = 0; i < 4; i++)
2702 temp_name[i] = readb(&(tb->Signature[i]));
2703 temp_name[4] = '\0';
2704 printk(" Signature = %s\n", temp_name);
2705 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
2706 printk(" Transport methods supported = 0x%x\n",
2707 readl(&(tb->TransportSupport)));
2708 printk(" Transport methods active = 0x%x\n",
2709 readl(&(tb->TransportActive)));
2710 printk(" Requested transport Method = 0x%x\n",
2711 readl(&(tb->HostWrite.TransportRequest)));
2712 printk(" Coalesce Interrupt Delay = 0x%x\n",
2713 readl(&(tb->HostWrite.CoalIntDelay)));
2714 printk(" Coalesce Interrupt Count = 0x%x\n",
2715 readl(&(tb->HostWrite.CoalIntCount)));
2716 printk(" Max outstanding commands = 0x%d\n",
2717 readl(&(tb->CmdsOutMax)));
2718 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
2719 for (i = 0; i < 16; i++)
2720 temp_name[i] = readb(&(tb->ServerName[i]));
2721 temp_name[16] = '\0';
2722 printk(" Server Name = %s\n", temp_name);
2723 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
2725 #endif /* CCISS_DEBUG */
2727 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
2729 int i, offset, mem_type, bar_type;
2730 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
2731 return 0;
2732 offset = 0;
2733 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
2734 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
2735 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
2736 offset += 4;
2737 else {
2738 mem_type = pci_resource_flags(pdev, i) &
2739 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
2740 switch (mem_type) {
2741 case PCI_BASE_ADDRESS_MEM_TYPE_32:
2742 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
2743 offset += 4; /* 32 bit */
2744 break;
2745 case PCI_BASE_ADDRESS_MEM_TYPE_64:
2746 offset += 8;
2747 break;
2748 default: /* reserved in PCI 2.2 */
2749 printk(KERN_WARNING
2750 "Base address is invalid\n");
2751 return -1;
2752 break;
2755 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
2756 return i + 1;
2758 return -1;
2761 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
2762 * controllers that are capable. If not, we use IO-APIC mode.
2765 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
2766 struct pci_dev *pdev, __u32 board_id)
2768 #ifdef CONFIG_PCI_MSI
2769 int err;
2770 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
2771 {0, 2}, {0, 3}
2774 /* Some boards advertise MSI but don't really support it */
2775 if ((board_id == 0x40700E11) ||
2776 (board_id == 0x40800E11) ||
2777 (board_id == 0x40820E11) || (board_id == 0x40830E11))
2778 goto default_int_mode;
2780 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
2781 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
2782 if (!err) {
2783 c->intr[0] = cciss_msix_entries[0].vector;
2784 c->intr[1] = cciss_msix_entries[1].vector;
2785 c->intr[2] = cciss_msix_entries[2].vector;
2786 c->intr[3] = cciss_msix_entries[3].vector;
2787 c->msix_vector = 1;
2788 return;
2790 if (err > 0) {
2791 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
2792 "available\n", err);
2793 goto default_int_mode;
2794 } else {
2795 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
2796 err);
2797 goto default_int_mode;
2800 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
2801 if (!pci_enable_msi(pdev)) {
2802 c->msi_vector = 1;
2803 } else {
2804 printk(KERN_WARNING "cciss: MSI init failed\n");
2807 default_int_mode:
2808 #endif /* CONFIG_PCI_MSI */
2809 /* if we get here we're going to use the default interrupt mode */
2810 c->intr[SIMPLE_MODE_INT] = pdev->irq;
2811 return;
2814 static int cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
2816 ushort subsystem_vendor_id, subsystem_device_id, command;
2817 __u32 board_id, scratchpad = 0;
2818 __u64 cfg_offset;
2819 __u32 cfg_base_addr;
2820 __u64 cfg_base_addr_index;
2821 int i, err;
2823 /* check to see if controller has been disabled */
2824 /* BEFORE trying to enable it */
2825 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
2826 if (!(command & 0x02)) {
2827 printk(KERN_WARNING
2828 "cciss: controller appears to be disabled\n");
2829 return -ENODEV;
2832 err = pci_enable_device(pdev);
2833 if (err) {
2834 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
2835 return err;
2838 err = pci_request_regions(pdev, "cciss");
2839 if (err) {
2840 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
2841 "aborting\n");
2842 return err;
2845 subsystem_vendor_id = pdev->subsystem_vendor;
2846 subsystem_device_id = pdev->subsystem_device;
2847 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
2848 subsystem_vendor_id);
2850 #ifdef CCISS_DEBUG
2851 printk("command = %x\n", command);
2852 printk("irq = %x\n", pdev->irq);
2853 printk("board_id = %x\n", board_id);
2854 #endif /* CCISS_DEBUG */
2856 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
2857 * else we use the IO-APIC interrupt assigned to us by system ROM.
2859 cciss_interrupt_mode(c, pdev, board_id);
2862 * Memory base addr is first addr , the second points to the config
2863 * table
2866 c->paddr = pci_resource_start(pdev, 0); /* addressing mode bits already removed */
2867 #ifdef CCISS_DEBUG
2868 printk("address 0 = %x\n", c->paddr);
2869 #endif /* CCISS_DEBUG */
2870 c->vaddr = remap_pci_mem(c->paddr, 0x250);
2872 /* Wait for the board to become ready. (PCI hotplug needs this.)
2873 * We poll for up to 120 secs, once per 100ms. */
2874 for (i = 0; i < 1200; i++) {
2875 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
2876 if (scratchpad == CCISS_FIRMWARE_READY)
2877 break;
2878 set_current_state(TASK_INTERRUPTIBLE);
2879 schedule_timeout(HZ / 10); /* wait 100ms */
2881 if (scratchpad != CCISS_FIRMWARE_READY) {
2882 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
2883 err = -ENODEV;
2884 goto err_out_free_res;
2887 /* get the address index number */
2888 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
2889 cfg_base_addr &= (__u32) 0x0000ffff;
2890 #ifdef CCISS_DEBUG
2891 printk("cfg base address = %x\n", cfg_base_addr);
2892 #endif /* CCISS_DEBUG */
2893 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
2894 #ifdef CCISS_DEBUG
2895 printk("cfg base address index = %x\n", cfg_base_addr_index);
2896 #endif /* CCISS_DEBUG */
2897 if (cfg_base_addr_index == -1) {
2898 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
2899 err = -ENODEV;
2900 goto err_out_free_res;
2903 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
2904 #ifdef CCISS_DEBUG
2905 printk("cfg offset = %x\n", cfg_offset);
2906 #endif /* CCISS_DEBUG */
2907 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
2908 cfg_base_addr_index) +
2909 cfg_offset, sizeof(CfgTable_struct));
2910 c->board_id = board_id;
2912 #ifdef CCISS_DEBUG
2913 print_cfg_table(c->cfgtable);
2914 #endif /* CCISS_DEBUG */
2916 for (i = 0; i < ARRAY_SIZE(products); i++) {
2917 if (board_id == products[i].board_id) {
2918 c->product_name = products[i].product_name;
2919 c->access = *(products[i].access);
2920 c->nr_cmds = products[i].nr_cmds;
2921 break;
2924 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
2925 (readb(&c->cfgtable->Signature[1]) != 'I') ||
2926 (readb(&c->cfgtable->Signature[2]) != 'S') ||
2927 (readb(&c->cfgtable->Signature[3]) != 'S')) {
2928 printk("Does not appear to be a valid CISS config table\n");
2929 err = -ENODEV;
2930 goto err_out_free_res;
2932 /* We didn't find the controller in our list. We know the
2933 * signature is valid. If it's an HP device let's try to
2934 * bind to the device and fire it up. Otherwise we bail.
2936 if (i == ARRAY_SIZE(products)) {
2937 if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
2938 c->product_name = products[i-1].product_name;
2939 c->access = *(products[i-1].access);
2940 c->nr_cmds = products[i-1].nr_cmds;
2941 printk(KERN_WARNING "cciss: This is an unknown "
2942 "Smart Array controller.\n"
2943 "cciss: Please update to the latest driver "
2944 "available from www.hp.com.\n");
2945 } else {
2946 printk(KERN_WARNING "cciss: Sorry, I don't know how"
2947 " to access the Smart Array controller %08lx\n"
2948 , (unsigned long)board_id);
2949 err = -ENODEV;
2950 goto err_out_free_res;
2953 #ifdef CONFIG_X86
2955 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
2956 __u32 prefetch;
2957 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
2958 prefetch |= 0x100;
2959 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
2961 #endif
2963 /* Disabling DMA prefetch for the P600
2964 * An ASIC bug may result in a prefetch beyond
2965 * physical memory.
2967 if(board_id == 0x3225103C) {
2968 __u32 dma_prefetch;
2969 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
2970 dma_prefetch |= 0x8000;
2971 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
2974 #ifdef CCISS_DEBUG
2975 printk("Trying to put board into Simple mode\n");
2976 #endif /* CCISS_DEBUG */
2977 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
2978 /* Update the field, and then ring the doorbell */
2979 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
2980 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
2982 /* under certain very rare conditions, this can take awhile.
2983 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
2984 * as we enter this code.) */
2985 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
2986 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
2987 break;
2988 /* delay and try again */
2989 set_current_state(TASK_INTERRUPTIBLE);
2990 schedule_timeout(10);
2993 #ifdef CCISS_DEBUG
2994 printk(KERN_DEBUG "I counter got to %d %x\n", i,
2995 readl(c->vaddr + SA5_DOORBELL));
2996 #endif /* CCISS_DEBUG */
2997 #ifdef CCISS_DEBUG
2998 print_cfg_table(c->cfgtable);
2999 #endif /* CCISS_DEBUG */
3001 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3002 printk(KERN_WARNING "cciss: unable to get board into"
3003 " simple mode\n");
3004 err = -ENODEV;
3005 goto err_out_free_res;
3007 return 0;
3009 err_out_free_res:
3011 * Deliberately omit pci_disable_device(): it does something nasty to
3012 * Smart Array controllers that pci_enable_device does not undo
3014 pci_release_regions(pdev);
3015 return err;
3019 * Gets information about the local volumes attached to the controller.
3021 static void cciss_getgeometry(int cntl_num)
3023 ReportLunData_struct *ld_buff;
3024 InquiryData_struct *inq_buff;
3025 int return_code;
3026 int i;
3027 int listlength = 0;
3028 __u32 lunid = 0;
3029 int block_size;
3030 sector_t total_size;
3032 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
3033 if (ld_buff == NULL) {
3034 printk(KERN_ERR "cciss: out of memory\n");
3035 return;
3037 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
3038 if (inq_buff == NULL) {
3039 printk(KERN_ERR "cciss: out of memory\n");
3040 kfree(ld_buff);
3041 return;
3043 /* Get the firmware version */
3044 return_code = sendcmd(CISS_INQUIRY, cntl_num, inq_buff,
3045 sizeof(InquiryData_struct), 0, 0, 0, NULL,
3046 TYPE_CMD);
3047 if (return_code == IO_OK) {
3048 hba[cntl_num]->firm_ver[0] = inq_buff->data_byte[32];
3049 hba[cntl_num]->firm_ver[1] = inq_buff->data_byte[33];
3050 hba[cntl_num]->firm_ver[2] = inq_buff->data_byte[34];
3051 hba[cntl_num]->firm_ver[3] = inq_buff->data_byte[35];
3052 } else { /* send command failed */
3054 printk(KERN_WARNING "cciss: unable to determine firmware"
3055 " version of controller\n");
3057 /* Get the number of logical volumes */
3058 return_code = sendcmd(CISS_REPORT_LOG, cntl_num, ld_buff,
3059 sizeof(ReportLunData_struct), 0, 0, 0, NULL,
3060 TYPE_CMD);
3062 if (return_code == IO_OK) {
3063 #ifdef CCISS_DEBUG
3064 printk("LUN Data\n--------------------------\n");
3065 #endif /* CCISS_DEBUG */
3067 listlength |=
3068 (0xff & (unsigned int)(ld_buff->LUNListLength[0])) << 24;
3069 listlength |=
3070 (0xff & (unsigned int)(ld_buff->LUNListLength[1])) << 16;
3071 listlength |=
3072 (0xff & (unsigned int)(ld_buff->LUNListLength[2])) << 8;
3073 listlength |= 0xff & (unsigned int)(ld_buff->LUNListLength[3]);
3074 } else { /* reading number of logical volumes failed */
3076 printk(KERN_WARNING "cciss: report logical volume"
3077 " command failed\n");
3078 listlength = 0;
3080 hba[cntl_num]->num_luns = listlength / 8; // 8 bytes pre entry
3081 if (hba[cntl_num]->num_luns > CISS_MAX_LUN) {
3082 printk(KERN_ERR
3083 "ciss: only %d number of logical volumes supported\n",
3084 CISS_MAX_LUN);
3085 hba[cntl_num]->num_luns = CISS_MAX_LUN;
3087 #ifdef CCISS_DEBUG
3088 printk(KERN_DEBUG "Length = %x %x %x %x = %d\n",
3089 ld_buff->LUNListLength[0], ld_buff->LUNListLength[1],
3090 ld_buff->LUNListLength[2], ld_buff->LUNListLength[3],
3091 hba[cntl_num]->num_luns);
3092 #endif /* CCISS_DEBUG */
3094 hba[cntl_num]->highest_lun = hba[cntl_num]->num_luns - 1;
3095 for (i = 0; i < CISS_MAX_LUN; i++) {
3096 if (i < hba[cntl_num]->num_luns) {
3097 lunid = (0xff & (unsigned int)(ld_buff->LUN[i][3]))
3098 << 24;
3099 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][2]))
3100 << 16;
3101 lunid |= (0xff & (unsigned int)(ld_buff->LUN[i][1]))
3102 << 8;
3103 lunid |= 0xff & (unsigned int)(ld_buff->LUN[i][0]);
3105 hba[cntl_num]->drv[i].LunID = lunid;
3107 #ifdef CCISS_DEBUG
3108 printk(KERN_DEBUG "LUN[%d]: %x %x %x %x = %x\n", i,
3109 ld_buff->LUN[i][0], ld_buff->LUN[i][1],
3110 ld_buff->LUN[i][2], ld_buff->LUN[i][3],
3111 hba[cntl_num]->drv[i].LunID);
3112 #endif /* CCISS_DEBUG */
3114 /* testing to see if 16-byte CDBs are already being used */
3115 if(hba[cntl_num]->cciss_read == CCISS_READ_16) {
3116 cciss_read_capacity_16(cntl_num, i, 0,
3117 &total_size, &block_size);
3118 goto geo_inq;
3120 cciss_read_capacity(cntl_num, i, 0, &total_size, &block_size);
3122 /* total_size = last LBA + 1 */
3123 if(total_size == (__u32) 0) {
3124 cciss_read_capacity_16(cntl_num, i, 0,
3125 &total_size, &block_size);
3126 hba[cntl_num]->cciss_read = CCISS_READ_16;
3127 hba[cntl_num]->cciss_write = CCISS_WRITE_16;
3128 } else {
3129 hba[cntl_num]->cciss_read = CCISS_READ_10;
3130 hba[cntl_num]->cciss_write = CCISS_WRITE_10;
3132 geo_inq:
3133 cciss_geometry_inquiry(cntl_num, i, 0, total_size,
3134 block_size, inq_buff,
3135 &hba[cntl_num]->drv[i]);
3136 } else {
3137 /* initialize raid_level to indicate a free space */
3138 hba[cntl_num]->drv[i].raid_level = -1;
3141 kfree(ld_buff);
3142 kfree(inq_buff);
3145 /* Function to find the first free pointer into our hba[] array */
3146 /* Returns -1 if no free entries are left. */
3147 static int alloc_cciss_hba(void)
3149 int i;
3151 for (i = 0; i < MAX_CTLR; i++) {
3152 if (!hba[i]) {
3153 ctlr_info_t *p;
3154 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3155 if (!p)
3156 goto Enomem;
3157 p->gendisk[0] = alloc_disk(1 << NWD_SHIFT);
3158 if (!p->gendisk[0])
3159 goto Enomem;
3160 hba[i] = p;
3161 return i;
3164 printk(KERN_WARNING "cciss: This driver supports a maximum"
3165 " of %d controllers.\n", MAX_CTLR);
3166 return -1;
3167 Enomem:
3168 printk(KERN_ERR "cciss: out of memory.\n");
3169 return -1;
3172 static void free_hba(int i)
3174 ctlr_info_t *p = hba[i];
3175 int n;
3177 hba[i] = NULL;
3178 for (n = 0; n < CISS_MAX_LUN; n++)
3179 put_disk(p->gendisk[n]);
3180 kfree(p);
3184 * This is it. Find all the controllers and register them. I really hate
3185 * stealing all these major device numbers.
3186 * returns the number of block devices registered.
3188 static int __devinit cciss_init_one(struct pci_dev *pdev,
3189 const struct pci_device_id *ent)
3191 int i;
3192 int j = 0;
3193 int rc;
3194 int dac;
3196 i = alloc_cciss_hba();
3197 if (i < 0)
3198 return -1;
3200 hba[i]->busy_initializing = 1;
3202 if (cciss_pci_init(hba[i], pdev) != 0)
3203 goto clean1;
3205 sprintf(hba[i]->devname, "cciss%d", i);
3206 hba[i]->ctlr = i;
3207 hba[i]->pdev = pdev;
3209 /* configure PCI DMA stuff */
3210 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK))
3211 dac = 1;
3212 else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK))
3213 dac = 0;
3214 else {
3215 printk(KERN_ERR "cciss: no suitable DMA available\n");
3216 goto clean1;
3220 * register with the major number, or get a dynamic major number
3221 * by passing 0 as argument. This is done for greater than
3222 * 8 controller support.
3224 if (i < MAX_CTLR_ORIG)
3225 hba[i]->major = COMPAQ_CISS_MAJOR + i;
3226 rc = register_blkdev(hba[i]->major, hba[i]->devname);
3227 if (rc == -EBUSY || rc == -EINVAL) {
3228 printk(KERN_ERR
3229 "cciss: Unable to get major number %d for %s "
3230 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
3231 goto clean1;
3232 } else {
3233 if (i >= MAX_CTLR_ORIG)
3234 hba[i]->major = rc;
3237 /* make sure the board interrupts are off */
3238 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
3239 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
3240 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
3241 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
3242 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
3243 goto clean2;
3246 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3247 hba[i]->devname, pdev->device, pci_name(pdev),
3248 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
3250 hba[i]->cmd_pool_bits =
3251 kmalloc(((hba[i]->nr_cmds + BITS_PER_LONG -
3252 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3253 hba[i]->cmd_pool = (CommandList_struct *)
3254 pci_alloc_consistent(hba[i]->pdev,
3255 hba[i]->nr_cmds * sizeof(CommandList_struct),
3256 &(hba[i]->cmd_pool_dhandle));
3257 hba[i]->errinfo_pool = (ErrorInfo_struct *)
3258 pci_alloc_consistent(hba[i]->pdev,
3259 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3260 &(hba[i]->errinfo_pool_dhandle));
3261 if ((hba[i]->cmd_pool_bits == NULL)
3262 || (hba[i]->cmd_pool == NULL)
3263 || (hba[i]->errinfo_pool == NULL)) {
3264 printk(KERN_ERR "cciss: out of memory");
3265 goto clean4;
3267 #ifdef CONFIG_CISS_SCSI_TAPE
3268 hba[i]->scsi_rejects.complete =
3269 kmalloc(sizeof(hba[i]->scsi_rejects.complete[0]) *
3270 (hba[i]->nr_cmds + 5), GFP_KERNEL);
3271 if (hba[i]->scsi_rejects.complete == NULL) {
3272 printk(KERN_ERR "cciss: out of memory");
3273 goto clean4;
3275 #endif
3276 spin_lock_init(&hba[i]->lock);
3278 /* Initialize the pdev driver private data.
3279 have it point to hba[i]. */
3280 pci_set_drvdata(pdev, hba[i]);
3281 /* command and error info recs zeroed out before
3282 they are used */
3283 memset(hba[i]->cmd_pool_bits, 0,
3284 ((hba[i]->nr_cmds + BITS_PER_LONG -
3285 1) / BITS_PER_LONG) * sizeof(unsigned long));
3287 #ifdef CCISS_DEBUG
3288 printk(KERN_DEBUG "Scanning for drives on controller cciss%d\n", i);
3289 #endif /* CCISS_DEBUG */
3291 cciss_getgeometry(i);
3293 cciss_scsi_setup(i);
3295 /* Turn the interrupts on so we can service requests */
3296 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
3298 cciss_procinit(i);
3300 hba[i]->cciss_max_sectors = 2048;
3302 hba[i]->busy_initializing = 0;
3304 do {
3305 drive_info_struct *drv = &(hba[i]->drv[j]);
3306 struct gendisk *disk = hba[i]->gendisk[j];
3307 request_queue_t *q;
3309 /* Check if the disk was allocated already */
3310 if (!disk){
3311 hba[i]->gendisk[j] = alloc_disk(1 << NWD_SHIFT);
3312 disk = hba[i]->gendisk[j];
3315 /* Check that the disk was able to be allocated */
3316 if (!disk) {
3317 printk(KERN_ERR "cciss: unable to allocate memory for disk %d\n", j);
3318 goto clean4;
3321 q = blk_init_queue(do_cciss_request, &hba[i]->lock);
3322 if (!q) {
3323 printk(KERN_ERR
3324 "cciss: unable to allocate queue for disk %d\n",
3326 goto clean4;
3328 drv->queue = q;
3330 q->backing_dev_info.ra_pages = READ_AHEAD;
3331 blk_queue_bounce_limit(q, hba[i]->pdev->dma_mask);
3333 /* This is a hardware imposed limit. */
3334 blk_queue_max_hw_segments(q, MAXSGENTRIES);
3336 /* This is a limit in the driver and could be eliminated. */
3337 blk_queue_max_phys_segments(q, MAXSGENTRIES);
3339 blk_queue_max_sectors(q, hba[i]->cciss_max_sectors);
3341 blk_queue_softirq_done(q, cciss_softirq_done);
3343 q->queuedata = hba[i];
3344 sprintf(disk->disk_name, "cciss/c%dd%d", i, j);
3345 disk->major = hba[i]->major;
3346 disk->first_minor = j << NWD_SHIFT;
3347 disk->fops = &cciss_fops;
3348 disk->queue = q;
3349 disk->private_data = drv;
3350 disk->driverfs_dev = &pdev->dev;
3351 /* we must register the controller even if no disks exist */
3352 /* this is for the online array utilities */
3353 if (!drv->heads && j)
3354 continue;
3355 blk_queue_hardsect_size(q, drv->block_size);
3356 set_capacity(disk, drv->nr_blocks);
3357 add_disk(disk);
3358 j++;
3359 } while (j <= hba[i]->highest_lun);
3361 return 1;
3363 clean4:
3364 #ifdef CONFIG_CISS_SCSI_TAPE
3365 kfree(hba[i]->scsi_rejects.complete);
3366 #endif
3367 kfree(hba[i]->cmd_pool_bits);
3368 if (hba[i]->cmd_pool)
3369 pci_free_consistent(hba[i]->pdev,
3370 hba[i]->nr_cmds * sizeof(CommandList_struct),
3371 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3372 if (hba[i]->errinfo_pool)
3373 pci_free_consistent(hba[i]->pdev,
3374 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3375 hba[i]->errinfo_pool,
3376 hba[i]->errinfo_pool_dhandle);
3377 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
3378 clean2:
3379 unregister_blkdev(hba[i]->major, hba[i]->devname);
3380 clean1:
3381 hba[i]->busy_initializing = 0;
3382 /* cleanup any queues that may have been initialized */
3383 for (j=0; j <= hba[i]->highest_lun; j++){
3384 drive_info_struct *drv = &(hba[i]->drv[j]);
3385 if (drv->queue)
3386 blk_cleanup_queue(drv->queue);
3389 * Deliberately omit pci_disable_device(): it does something nasty to
3390 * Smart Array controllers that pci_enable_device does not undo
3392 pci_release_regions(pdev);
3393 pci_set_drvdata(pdev, NULL);
3394 free_hba(i);
3395 return -1;
3398 static void __devexit cciss_remove_one(struct pci_dev *pdev)
3400 ctlr_info_t *tmp_ptr;
3401 int i, j;
3402 char flush_buf[4];
3403 int return_code;
3405 if (pci_get_drvdata(pdev) == NULL) {
3406 printk(KERN_ERR "cciss: Unable to remove device \n");
3407 return;
3409 tmp_ptr = pci_get_drvdata(pdev);
3410 i = tmp_ptr->ctlr;
3411 if (hba[i] == NULL) {
3412 printk(KERN_ERR "cciss: device appears to "
3413 "already be removed \n");
3414 return;
3416 /* Turn board interrupts off and send the flush cache command */
3417 /* sendcmd will turn off interrupt, and send the flush...
3418 * To write all data in the battery backed cache to disks */
3419 memset(flush_buf, 0, 4);
3420 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL,
3421 TYPE_CMD);
3422 if (return_code != IO_OK) {
3423 printk(KERN_WARNING "Error Flushing cache on controller %d\n",
3426 free_irq(hba[i]->intr[2], hba[i]);
3428 #ifdef CONFIG_PCI_MSI
3429 if (hba[i]->msix_vector)
3430 pci_disable_msix(hba[i]->pdev);
3431 else if (hba[i]->msi_vector)
3432 pci_disable_msi(hba[i]->pdev);
3433 #endif /* CONFIG_PCI_MSI */
3435 iounmap(hba[i]->vaddr);
3436 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
3437 unregister_blkdev(hba[i]->major, hba[i]->devname);
3438 remove_proc_entry(hba[i]->devname, proc_cciss);
3440 /* remove it from the disk list */
3441 for (j = 0; j < CISS_MAX_LUN; j++) {
3442 struct gendisk *disk = hba[i]->gendisk[j];
3443 if (disk) {
3444 request_queue_t *q = disk->queue;
3446 if (disk->flags & GENHD_FL_UP)
3447 del_gendisk(disk);
3448 if (q)
3449 blk_cleanup_queue(q);
3453 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
3454 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3455 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3456 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
3457 kfree(hba[i]->cmd_pool_bits);
3458 #ifdef CONFIG_CISS_SCSI_TAPE
3459 kfree(hba[i]->scsi_rejects.complete);
3460 #endif
3462 * Deliberately omit pci_disable_device(): it does something nasty to
3463 * Smart Array controllers that pci_enable_device does not undo
3465 pci_release_regions(pdev);
3466 pci_set_drvdata(pdev, NULL);
3467 free_hba(i);
3470 static struct pci_driver cciss_pci_driver = {
3471 .name = "cciss",
3472 .probe = cciss_init_one,
3473 .remove = __devexit_p(cciss_remove_one),
3474 .id_table = cciss_pci_device_id, /* id_table */
3478 * This is it. Register the PCI driver information for the cards we control
3479 * the OS will call our registered routines when it finds one of our cards.
3481 static int __init cciss_init(void)
3483 printk(KERN_INFO DRIVER_NAME "\n");
3485 /* Register for our PCI devices */
3486 return pci_register_driver(&cciss_pci_driver);
3489 static void __exit cciss_cleanup(void)
3491 int i;
3493 pci_unregister_driver(&cciss_pci_driver);
3494 /* double check that all controller entrys have been removed */
3495 for (i = 0; i < MAX_CTLR; i++) {
3496 if (hba[i] != NULL) {
3497 printk(KERN_WARNING "cciss: had to remove"
3498 " controller %d\n", i);
3499 cciss_remove_one(hba[i]->pdev);
3502 remove_proc_entry("cciss", proc_root_driver);
3505 static void fail_all_cmds(unsigned long ctlr)
3507 /* If we get here, the board is apparently dead. */
3508 ctlr_info_t *h = hba[ctlr];
3509 CommandList_struct *c;
3510 unsigned long flags;
3512 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
3513 h->alive = 0; /* the controller apparently died... */
3515 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
3517 pci_disable_device(h->pdev); /* Make sure it is really dead. */
3519 /* move everything off the request queue onto the completed queue */
3520 while ((c = h->reqQ) != NULL) {
3521 removeQ(&(h->reqQ), c);
3522 h->Qdepth--;
3523 addQ(&(h->cmpQ), c);
3526 /* Now, fail everything on the completed queue with a HW error */
3527 while ((c = h->cmpQ) != NULL) {
3528 removeQ(&h->cmpQ, c);
3529 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
3530 if (c->cmd_type == CMD_RWREQ) {
3531 complete_command(h, c, 0);
3532 } else if (c->cmd_type == CMD_IOCTL_PEND)
3533 complete(c->waiting);
3534 #ifdef CONFIG_CISS_SCSI_TAPE
3535 else if (c->cmd_type == CMD_SCSI)
3536 complete_scsi_command(c, 0, 0);
3537 #endif
3539 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
3540 return;
3543 module_init(cciss_init);
3544 module_exit(cciss_cleanup);