1 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
2 * auto carrier detecting ethernet driver. Also known as the
3 * "Happy Meal Ethernet" found on SunSwift SBUS cards.
5 * Copyright (C) 1996, 1998, 1999, 2002, 2003,
6 2006 David S. Miller (davem@davemloft.net)
9 * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
10 * - port to non-sparc architectures. Tested only on x86 and
11 * only currently works with QFE PCI cards.
12 * - ability to specify the MAC address at module load time by passing this
13 * argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/fcntl.h>
20 #include <linux/interrupt.h>
21 #include <linux/ioport.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/ethtool.h>
28 #include <linux/mii.h>
29 #include <linux/crc32.h>
30 #include <linux/random.h>
31 #include <linux/errno.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
36 #include <linux/bitops.h>
38 #include <asm/system.h>
41 #include <asm/byteorder.h>
44 #include <asm/idprom.h>
46 #include <asm/openprom.h>
47 #include <asm/oplib.h>
49 #include <asm/auxio.h>
51 #include <asm/uaccess.h>
53 #include <asm/pgtable.h>
57 #include <linux/pci.h>
62 #define DRV_NAME "sunhme"
63 #define DRV_VERSION "3.00"
64 #define DRV_RELDATE "June 23, 2006"
65 #define DRV_AUTHOR "David S. Miller (davem@davemloft.net)"
67 static char version
[] =
68 DRV_NAME
".c:v" DRV_VERSION
" " DRV_RELDATE
" " DRV_AUTHOR
"\n";
70 MODULE_VERSION(DRV_VERSION
);
71 MODULE_AUTHOR(DRV_AUTHOR
);
72 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
73 MODULE_LICENSE("GPL");
75 static int macaddr
[6];
77 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
78 module_param_array(macaddr
, int, NULL
, 0);
79 MODULE_PARM_DESC(macaddr
, "Happy Meal MAC address to set");
82 static struct quattro
*qfe_sbus_list
;
86 static struct quattro
*qfe_pci_list
;
96 struct hme_tx_logent
{
100 #define TXLOG_ACTION_IRQ 0x01
101 #define TXLOG_ACTION_TXMIT 0x02
102 #define TXLOG_ACTION_TBUSY 0x04
103 #define TXLOG_ACTION_NBUFS 0x08
106 #define TX_LOG_LEN 128
107 static struct hme_tx_logent tx_log
[TX_LOG_LEN
];
108 static int txlog_cur_entry
;
109 static __inline__
void tx_add_log(struct happy_meal
*hp
, unsigned int a
, unsigned int s
)
111 struct hme_tx_logent
*tlp
;
115 tlp
= &tx_log
[txlog_cur_entry
];
116 tlp
->tstamp
= (unsigned int)jiffies
;
117 tlp
->tx_new
= hp
->tx_new
;
118 tlp
->tx_old
= hp
->tx_old
;
121 txlog_cur_entry
= (txlog_cur_entry
+ 1) & (TX_LOG_LEN
- 1);
122 restore_flags(flags
);
124 static __inline__
void tx_dump_log(void)
128 this = txlog_cur_entry
;
129 for (i
= 0; i
< TX_LOG_LEN
; i
++) {
130 printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i
,
132 tx_log
[this].tx_new
, tx_log
[this].tx_old
,
133 tx_log
[this].action
, tx_log
[this].status
);
134 this = (this + 1) & (TX_LOG_LEN
- 1);
137 static __inline__
void tx_dump_ring(struct happy_meal
*hp
)
139 struct hmeal_init_block
*hb
= hp
->happy_block
;
140 struct happy_meal_txd
*tp
= &hb
->happy_meal_txd
[0];
143 for (i
= 0; i
< TX_RING_SIZE
; i
+=4) {
144 printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
146 le32_to_cpu(tp
[i
].tx_flags
), le32_to_cpu(tp
[i
].tx_addr
),
147 le32_to_cpu(tp
[i
+ 1].tx_flags
), le32_to_cpu(tp
[i
+ 1].tx_addr
),
148 le32_to_cpu(tp
[i
+ 2].tx_flags
), le32_to_cpu(tp
[i
+ 2].tx_addr
),
149 le32_to_cpu(tp
[i
+ 3].tx_flags
), le32_to_cpu(tp
[i
+ 3].tx_addr
));
153 #define tx_add_log(hp, a, s) do { } while(0)
154 #define tx_dump_log() do { } while(0)
155 #define tx_dump_ring(hp) do { } while(0)
159 #define HMD(x) printk x
164 /* #define AUTO_SWITCH_DEBUG */
166 #ifdef AUTO_SWITCH_DEBUG
167 #define ASD(x) printk x
172 #define DEFAULT_IPG0 16 /* For lance-mode only */
173 #define DEFAULT_IPG1 8 /* For all modes */
174 #define DEFAULT_IPG2 4 /* For all modes */
175 #define DEFAULT_JAMSIZE 4 /* Toe jam */
177 /* NOTE: In the descriptor writes one _must_ write the address
178 * member _first_. The card must not be allowed to see
179 * the updated descriptor flags until the address is
180 * correct. I've added a write memory barrier between
181 * the two stores so that I can sleep well at night... -DaveM
184 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
185 static void sbus_hme_write32(void __iomem
*reg
, u32 val
)
187 sbus_writel(val
, reg
);
190 static u32
sbus_hme_read32(void __iomem
*reg
)
192 return sbus_readl(reg
);
195 static void sbus_hme_write_rxd(struct happy_meal_rxd
*rxd
, u32 flags
, u32 addr
)
197 rxd
->rx_addr
= (__force hme32
)addr
;
199 rxd
->rx_flags
= (__force hme32
)flags
;
202 static void sbus_hme_write_txd(struct happy_meal_txd
*txd
, u32 flags
, u32 addr
)
204 txd
->tx_addr
= (__force hme32
)addr
;
206 txd
->tx_flags
= (__force hme32
)flags
;
209 static u32
sbus_hme_read_desc32(hme32
*p
)
211 return (__force u32
)*p
;
214 static void pci_hme_write32(void __iomem
*reg
, u32 val
)
219 static u32
pci_hme_read32(void __iomem
*reg
)
224 static void pci_hme_write_rxd(struct happy_meal_rxd
*rxd
, u32 flags
, u32 addr
)
226 rxd
->rx_addr
= (__force hme32
)cpu_to_le32(addr
);
228 rxd
->rx_flags
= (__force hme32
)cpu_to_le32(flags
);
231 static void pci_hme_write_txd(struct happy_meal_txd
*txd
, u32 flags
, u32 addr
)
233 txd
->tx_addr
= (__force hme32
)cpu_to_le32(addr
);
235 txd
->tx_flags
= (__force hme32
)cpu_to_le32(flags
);
238 static u32
pci_hme_read_desc32(hme32
*p
)
240 return le32_to_cpup((__le32
*)p
);
243 #define hme_write32(__hp, __reg, __val) \
244 ((__hp)->write32((__reg), (__val)))
245 #define hme_read32(__hp, __reg) \
246 ((__hp)->read32(__reg))
247 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
248 ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
249 #define hme_write_txd(__hp, __txd, __flags, __addr) \
250 ((__hp)->write_txd((__txd), (__flags), (__addr)))
251 #define hme_read_desc32(__hp, __p) \
252 ((__hp)->read_desc32(__p))
253 #define hme_dma_map(__hp, __ptr, __size, __dir) \
254 ((__hp)->dma_map((__hp)->happy_dev, (__ptr), (__size), (__dir)))
255 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
256 ((__hp)->dma_unmap((__hp)->happy_dev, (__addr), (__size), (__dir)))
257 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
258 ((__hp)->dma_sync_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir)))
259 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
260 ((__hp)->dma_sync_for_device((__hp)->happy_dev, (__addr), (__size), (__dir)))
263 /* SBUS only compilation */
264 #define hme_write32(__hp, __reg, __val) \
265 sbus_writel((__val), (__reg))
266 #define hme_read32(__hp, __reg) \
268 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
269 do { (__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
271 (__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
273 #define hme_write_txd(__hp, __txd, __flags, __addr) \
274 do { (__txd)->tx_addr = (__force hme32)(u32)(__addr); \
276 (__txd)->tx_flags = (__force hme32)(u32)(__flags); \
278 #define hme_read_desc32(__hp, __p) ((__force u32)(hme32)*(__p))
279 #define hme_dma_map(__hp, __ptr, __size, __dir) \
280 sbus_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir))
281 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
282 sbus_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir))
283 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
284 sbus_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))
285 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
286 sbus_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))
288 /* PCI only compilation */
289 #define hme_write32(__hp, __reg, __val) \
290 writel((__val), (__reg))
291 #define hme_read32(__hp, __reg) \
293 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
294 do { (__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
296 (__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
298 #define hme_write_txd(__hp, __txd, __flags, __addr) \
299 do { (__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
301 (__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
303 static inline u32
hme_read_desc32(struct happy_meal
*hp
, hme32
*p
)
305 return le32_to_cpup((__le32
*)p
);
307 #define hme_dma_map(__hp, __ptr, __size, __dir) \
308 pci_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir))
309 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
310 pci_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir))
311 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
312 pci_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))
313 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
314 pci_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))
319 #ifdef SBUS_DMA_BIDIRECTIONAL
320 # define DMA_BIDIRECTIONAL SBUS_DMA_BIDIRECTIONAL
322 # define DMA_BIDIRECTIONAL 0
325 #ifdef SBUS_DMA_FROMDEVICE
326 # define DMA_FROMDEVICE SBUS_DMA_FROMDEVICE
328 # define DMA_TODEVICE 1
331 #ifdef SBUS_DMA_TODEVICE
332 # define DMA_TODEVICE SBUS_DMA_TODEVICE
334 # define DMA_FROMDEVICE 2
338 /* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */
339 static void BB_PUT_BIT(struct happy_meal
*hp
, void __iomem
*tregs
, int bit
)
341 hme_write32(hp
, tregs
+ TCVR_BBDATA
, bit
);
342 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 0);
343 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 1);
347 static u32
BB_GET_BIT(struct happy_meal
*hp
, void __iomem
*tregs
, int internal
)
351 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 0);
352 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 1);
353 ret
= hme_read32(hp
, tregs
+ TCVR_CFG
);
355 ret
&= TCV_CFG_MDIO0
;
357 ret
&= TCV_CFG_MDIO1
;
363 static u32
BB_GET_BIT2(struct happy_meal
*hp
, void __iomem
*tregs
, int internal
)
367 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 0);
369 retval
= hme_read32(hp
, tregs
+ TCVR_CFG
);
371 retval
&= TCV_CFG_MDIO0
;
373 retval
&= TCV_CFG_MDIO1
;
374 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 1);
379 #define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */
381 static int happy_meal_bb_read(struct happy_meal
*hp
,
382 void __iomem
*tregs
, int reg
)
388 ASD(("happy_meal_bb_read: reg=%d ", reg
));
390 /* Enable the MIF BitBang outputs. */
391 hme_write32(hp
, tregs
+ TCVR_BBOENAB
, 1);
393 /* Force BitBang into the idle state. */
394 for (i
= 0; i
< 32; i
++)
395 BB_PUT_BIT(hp
, tregs
, 1);
397 /* Give it the read sequence. */
398 BB_PUT_BIT(hp
, tregs
, 0);
399 BB_PUT_BIT(hp
, tregs
, 1);
400 BB_PUT_BIT(hp
, tregs
, 1);
401 BB_PUT_BIT(hp
, tregs
, 0);
403 /* Give it the PHY address. */
404 tmp
= hp
->paddr
& 0xff;
405 for (i
= 4; i
>= 0; i
--)
406 BB_PUT_BIT(hp
, tregs
, ((tmp
>> i
) & 1));
408 /* Tell it what register we want to read. */
410 for (i
= 4; i
>= 0; i
--)
411 BB_PUT_BIT(hp
, tregs
, ((tmp
>> i
) & 1));
413 /* Close down the MIF BitBang outputs. */
414 hme_write32(hp
, tregs
+ TCVR_BBOENAB
, 0);
416 /* Now read in the value. */
417 (void) BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
418 for (i
= 15; i
>= 0; i
--)
419 retval
|= BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
420 (void) BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
421 (void) BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
422 (void) BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
423 ASD(("value=%x\n", retval
));
427 static void happy_meal_bb_write(struct happy_meal
*hp
,
428 void __iomem
*tregs
, int reg
,
429 unsigned short value
)
434 ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg
, value
));
436 /* Enable the MIF BitBang outputs. */
437 hme_write32(hp
, tregs
+ TCVR_BBOENAB
, 1);
439 /* Force BitBang into the idle state. */
440 for (i
= 0; i
< 32; i
++)
441 BB_PUT_BIT(hp
, tregs
, 1);
443 /* Give it write sequence. */
444 BB_PUT_BIT(hp
, tregs
, 0);
445 BB_PUT_BIT(hp
, tregs
, 1);
446 BB_PUT_BIT(hp
, tregs
, 0);
447 BB_PUT_BIT(hp
, tregs
, 1);
449 /* Give it the PHY address. */
450 tmp
= (hp
->paddr
& 0xff);
451 for (i
= 4; i
>= 0; i
--)
452 BB_PUT_BIT(hp
, tregs
, ((tmp
>> i
) & 1));
454 /* Tell it what register we will be writing. */
456 for (i
= 4; i
>= 0; i
--)
457 BB_PUT_BIT(hp
, tregs
, ((tmp
>> i
) & 1));
459 /* Tell it to become ready for the bits. */
460 BB_PUT_BIT(hp
, tregs
, 1);
461 BB_PUT_BIT(hp
, tregs
, 0);
463 for (i
= 15; i
>= 0; i
--)
464 BB_PUT_BIT(hp
, tregs
, ((value
>> i
) & 1));
466 /* Close down the MIF BitBang outputs. */
467 hme_write32(hp
, tregs
+ TCVR_BBOENAB
, 0);
470 #define TCVR_READ_TRIES 16
472 static int happy_meal_tcvr_read(struct happy_meal
*hp
,
473 void __iomem
*tregs
, int reg
)
475 int tries
= TCVR_READ_TRIES
;
478 ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg
));
479 if (hp
->tcvr_type
== none
) {
480 ASD(("no transceiver, value=TCVR_FAILURE\n"));
484 if (!(hp
->happy_flags
& HFLAG_FENABLE
)) {
485 ASD(("doing bit bang\n"));
486 return happy_meal_bb_read(hp
, tregs
, reg
);
489 hme_write32(hp
, tregs
+ TCVR_FRAME
,
490 (FRAME_READ
| (hp
->paddr
<< 23) | ((reg
& 0xff) << 18)));
491 while (!(hme_read32(hp
, tregs
+ TCVR_FRAME
) & 0x10000) && --tries
)
494 printk(KERN_ERR
"happy meal: Aieee, transceiver MIF read bolixed\n");
497 retval
= hme_read32(hp
, tregs
+ TCVR_FRAME
) & 0xffff;
498 ASD(("value=%04x\n", retval
));
502 #define TCVR_WRITE_TRIES 16
504 static void happy_meal_tcvr_write(struct happy_meal
*hp
,
505 void __iomem
*tregs
, int reg
,
506 unsigned short value
)
508 int tries
= TCVR_WRITE_TRIES
;
510 ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg
, value
));
512 /* Welcome to Sun Microsystems, can I take your order please? */
513 if (!(hp
->happy_flags
& HFLAG_FENABLE
)) {
514 happy_meal_bb_write(hp
, tregs
, reg
, value
);
518 /* Would you like fries with that? */
519 hme_write32(hp
, tregs
+ TCVR_FRAME
,
520 (FRAME_WRITE
| (hp
->paddr
<< 23) |
521 ((reg
& 0xff) << 18) | (value
& 0xffff)));
522 while (!(hme_read32(hp
, tregs
+ TCVR_FRAME
) & 0x10000) && --tries
)
527 printk(KERN_ERR
"happy meal: Aieee, transceiver MIF write bolixed\n");
529 /* Fifty-two cents is your change, have a nice day. */
532 /* Auto negotiation. The scheme is very simple. We have a timer routine
533 * that keeps watching the auto negotiation process as it progresses.
534 * The DP83840 is first told to start doing it's thing, we set up the time
535 * and place the timer state machine in it's initial state.
537 * Here the timer peeks at the DP83840 status registers at each click to see
538 * if the auto negotiation has completed, we assume here that the DP83840 PHY
539 * will time out at some point and just tell us what (didn't) happen. For
540 * complete coverage we only allow so many of the ticks at this level to run,
541 * when this has expired we print a warning message and try another strategy.
542 * This "other" strategy is to force the interface into various speed/duplex
543 * configurations and we stop when we see a link-up condition before the
544 * maximum number of "peek" ticks have occurred.
546 * Once a valid link status has been detected we configure the BigMAC and
547 * the rest of the Happy Meal to speak the most efficient protocol we could
548 * get a clean link for. The priority for link configurations, highest first
550 * 100 Base-T Full Duplex
551 * 100 Base-T Half Duplex
552 * 10 Base-T Full Duplex
553 * 10 Base-T Half Duplex
555 * We start a new timer now, after a successful auto negotiation status has
556 * been detected. This timer just waits for the link-up bit to get set in
557 * the BMCR of the DP83840. When this occurs we print a kernel log message
558 * describing the link type in use and the fact that it is up.
560 * If a fatal error of some sort is signalled and detected in the interrupt
561 * service routine, and the chip is reset, or the link is ifconfig'd down
562 * and then back up, this entire process repeats itself all over again.
564 static int try_next_permutation(struct happy_meal
*hp
, void __iomem
*tregs
)
566 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
568 /* Downgrade from full to half duplex. Only possible
571 if (hp
->sw_bmcr
& BMCR_FULLDPLX
) {
572 hp
->sw_bmcr
&= ~(BMCR_FULLDPLX
);
573 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
577 /* Downgrade from 100 to 10. */
578 if (hp
->sw_bmcr
& BMCR_SPEED100
) {
579 hp
->sw_bmcr
&= ~(BMCR_SPEED100
);
580 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
584 /* We've tried everything. */
588 static void display_link_mode(struct happy_meal
*hp
, void __iomem
*tregs
)
590 printk(KERN_INFO
"%s: Link is up using ", hp
->dev
->name
);
591 if (hp
->tcvr_type
== external
)
595 printk("transceiver at ");
596 hp
->sw_lpa
= happy_meal_tcvr_read(hp
, tregs
, MII_LPA
);
597 if (hp
->sw_lpa
& (LPA_100HALF
| LPA_100FULL
)) {
598 if (hp
->sw_lpa
& LPA_100FULL
)
599 printk("100Mb/s, Full Duplex.\n");
601 printk("100Mb/s, Half Duplex.\n");
603 if (hp
->sw_lpa
& LPA_10FULL
)
604 printk("10Mb/s, Full Duplex.\n");
606 printk("10Mb/s, Half Duplex.\n");
610 static void display_forced_link_mode(struct happy_meal
*hp
, void __iomem
*tregs
)
612 printk(KERN_INFO
"%s: Link has been forced up using ", hp
->dev
->name
);
613 if (hp
->tcvr_type
== external
)
617 printk("transceiver at ");
618 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
619 if (hp
->sw_bmcr
& BMCR_SPEED100
)
623 if (hp
->sw_bmcr
& BMCR_FULLDPLX
)
624 printk("Full Duplex.\n");
626 printk("Half Duplex.\n");
629 static int set_happy_link_modes(struct happy_meal
*hp
, void __iomem
*tregs
)
633 /* All we care about is making sure the bigmac tx_cfg has a
634 * proper duplex setting.
636 if (hp
->timer_state
== arbwait
) {
637 hp
->sw_lpa
= happy_meal_tcvr_read(hp
, tregs
, MII_LPA
);
638 if (!(hp
->sw_lpa
& (LPA_10HALF
| LPA_10FULL
| LPA_100HALF
| LPA_100FULL
)))
640 if (hp
->sw_lpa
& LPA_100FULL
)
642 else if (hp
->sw_lpa
& LPA_100HALF
)
644 else if (hp
->sw_lpa
& LPA_10FULL
)
649 /* Forcing a link mode. */
650 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
651 if (hp
->sw_bmcr
& BMCR_FULLDPLX
)
657 /* Before changing other bits in the tx_cfg register, and in
658 * general any of other the TX config registers too, you
661 * 2) Poll with reads until that bit reads back as zero
662 * 3) Make TX configuration changes
663 * 4) Set Enable once more
665 hme_write32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
,
666 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) &
667 ~(BIGMAC_TXCFG_ENABLE
));
668 while (hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) & BIGMAC_TXCFG_ENABLE
)
671 hp
->happy_flags
|= HFLAG_FULL
;
672 hme_write32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
,
673 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) |
674 BIGMAC_TXCFG_FULLDPLX
);
676 hp
->happy_flags
&= ~(HFLAG_FULL
);
677 hme_write32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
,
678 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) &
679 ~(BIGMAC_TXCFG_FULLDPLX
));
681 hme_write32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
,
682 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) |
683 BIGMAC_TXCFG_ENABLE
);
689 static int happy_meal_init(struct happy_meal
*hp
);
691 static int is_lucent_phy(struct happy_meal
*hp
)
693 void __iomem
*tregs
= hp
->tcvregs
;
694 unsigned short mr2
, mr3
;
697 mr2
= happy_meal_tcvr_read(hp
, tregs
, 2);
698 mr3
= happy_meal_tcvr_read(hp
, tregs
, 3);
699 if ((mr2
& 0xffff) == 0x0180 &&
700 ((mr3
& 0xffff) >> 10) == 0x1d)
706 static void happy_meal_timer(unsigned long data
)
708 struct happy_meal
*hp
= (struct happy_meal
*) data
;
709 void __iomem
*tregs
= hp
->tcvregs
;
710 int restart_timer
= 0;
712 spin_lock_irq(&hp
->happy_lock
);
715 switch(hp
->timer_state
) {
717 /* Only allow for 5 ticks, thats 10 seconds and much too
718 * long to wait for arbitration to complete.
720 if (hp
->timer_ticks
>= 10) {
721 /* Enter force mode. */
723 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
724 printk(KERN_NOTICE
"%s: Auto-Negotiation unsuccessful, trying force link mode\n",
726 hp
->sw_bmcr
= BMCR_SPEED100
;
727 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
729 if (!is_lucent_phy(hp
)) {
730 /* OK, seems we need do disable the transceiver for the first
731 * tick to make sure we get an accurate link state at the
734 hp
->sw_csconfig
= happy_meal_tcvr_read(hp
, tregs
, DP83840_CSCONFIG
);
735 hp
->sw_csconfig
&= ~(CSCONFIG_TCVDISAB
);
736 happy_meal_tcvr_write(hp
, tregs
, DP83840_CSCONFIG
, hp
->sw_csconfig
);
738 hp
->timer_state
= ltrywait
;
742 /* Anything interesting happen? */
743 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
744 if (hp
->sw_bmsr
& BMSR_ANEGCOMPLETE
) {
747 /* Just what we've been waiting for... */
748 ret
= set_happy_link_modes(hp
, tregs
);
750 /* Ooops, something bad happened, go to force
753 * XXX Broken hubs which don't support 802.3u
754 * XXX auto-negotiation make this happen as well.
759 /* Success, at least so far, advance our state engine. */
760 hp
->timer_state
= lupwait
;
769 /* Auto negotiation was successful and we are awaiting a
770 * link up status. I have decided to let this timer run
771 * forever until some sort of error is signalled, reporting
772 * a message to the user at 10 second intervals.
774 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
775 if (hp
->sw_bmsr
& BMSR_LSTATUS
) {
776 /* Wheee, it's up, display the link mode in use and put
777 * the timer to sleep.
779 display_link_mode(hp
, tregs
);
780 hp
->timer_state
= asleep
;
783 if (hp
->timer_ticks
>= 10) {
784 printk(KERN_NOTICE
"%s: Auto negotiation successful, link still "
785 "not completely up.\n", hp
->dev
->name
);
795 /* Making the timeout here too long can make it take
796 * annoyingly long to attempt all of the link mode
797 * permutations, but then again this is essentially
798 * error recovery code for the most part.
800 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
801 hp
->sw_csconfig
= happy_meal_tcvr_read(hp
, tregs
, DP83840_CSCONFIG
);
802 if (hp
->timer_ticks
== 1) {
803 if (!is_lucent_phy(hp
)) {
804 /* Re-enable transceiver, we'll re-enable the transceiver next
805 * tick, then check link state on the following tick.
807 hp
->sw_csconfig
|= CSCONFIG_TCVDISAB
;
808 happy_meal_tcvr_write(hp
, tregs
,
809 DP83840_CSCONFIG
, hp
->sw_csconfig
);
814 if (hp
->timer_ticks
== 2) {
815 if (!is_lucent_phy(hp
)) {
816 hp
->sw_csconfig
&= ~(CSCONFIG_TCVDISAB
);
817 happy_meal_tcvr_write(hp
, tregs
,
818 DP83840_CSCONFIG
, hp
->sw_csconfig
);
823 if (hp
->sw_bmsr
& BMSR_LSTATUS
) {
824 /* Force mode selection success. */
825 display_forced_link_mode(hp
, tregs
);
826 set_happy_link_modes(hp
, tregs
); /* XXX error? then what? */
827 hp
->timer_state
= asleep
;
830 if (hp
->timer_ticks
>= 4) { /* 6 seconds or so... */
833 ret
= try_next_permutation(hp
, tregs
);
835 /* Aieee, tried them all, reset the
836 * chip and try all over again.
839 /* Let the user know... */
840 printk(KERN_NOTICE
"%s: Link down, cable problem?\n",
843 ret
= happy_meal_init(hp
);
846 printk(KERN_ERR
"%s: Error, cannot re-init the "
847 "Happy Meal.\n", hp
->dev
->name
);
851 if (!is_lucent_phy(hp
)) {
852 hp
->sw_csconfig
= happy_meal_tcvr_read(hp
, tregs
,
854 hp
->sw_csconfig
|= CSCONFIG_TCVDISAB
;
855 happy_meal_tcvr_write(hp
, tregs
,
856 DP83840_CSCONFIG
, hp
->sw_csconfig
);
868 /* Can't happens.... */
869 printk(KERN_ERR
"%s: Aieee, link timer is asleep but we got one anyways!\n",
873 hp
->timer_state
= asleep
; /* foo on you */
878 hp
->happy_timer
.expires
= jiffies
+ ((12 * HZ
)/10); /* 1.2 sec. */
879 add_timer(&hp
->happy_timer
);
883 spin_unlock_irq(&hp
->happy_lock
);
886 #define TX_RESET_TRIES 32
887 #define RX_RESET_TRIES 32
889 /* hp->happy_lock must be held */
890 static void happy_meal_tx_reset(struct happy_meal
*hp
, void __iomem
*bregs
)
892 int tries
= TX_RESET_TRIES
;
894 HMD(("happy_meal_tx_reset: reset, "));
896 /* Would you like to try our SMCC Delux? */
897 hme_write32(hp
, bregs
+ BMAC_TXSWRESET
, 0);
898 while ((hme_read32(hp
, bregs
+ BMAC_TXSWRESET
) & 1) && --tries
)
901 /* Lettuce, tomato, buggy hardware (no extra charge)? */
903 printk(KERN_ERR
"happy meal: Transceiver BigMac ATTACK!");
909 /* hp->happy_lock must be held */
910 static void happy_meal_rx_reset(struct happy_meal
*hp
, void __iomem
*bregs
)
912 int tries
= RX_RESET_TRIES
;
914 HMD(("happy_meal_rx_reset: reset, "));
916 /* We have a special on GNU/Viking hardware bugs today. */
917 hme_write32(hp
, bregs
+ BMAC_RXSWRESET
, 0);
918 while ((hme_read32(hp
, bregs
+ BMAC_RXSWRESET
) & 1) && --tries
)
921 /* Will that be all? */
923 printk(KERN_ERR
"happy meal: Receiver BigMac ATTACK!");
925 /* Don't forget your vik_1137125_wa. Have a nice day. */
929 #define STOP_TRIES 16
931 /* hp->happy_lock must be held */
932 static void happy_meal_stop(struct happy_meal
*hp
, void __iomem
*gregs
)
934 int tries
= STOP_TRIES
;
936 HMD(("happy_meal_stop: reset, "));
938 /* We're consolidating our STB products, it's your lucky day. */
939 hme_write32(hp
, gregs
+ GREG_SWRESET
, GREG_RESET_ALL
);
940 while (hme_read32(hp
, gregs
+ GREG_SWRESET
) && --tries
)
943 /* Come back next week when we are "Sun Microelectronics". */
945 printk(KERN_ERR
"happy meal: Fry guys.");
947 /* Remember: "Different name, same old buggy as shit hardware." */
951 /* hp->happy_lock must be held */
952 static void happy_meal_get_counters(struct happy_meal
*hp
, void __iomem
*bregs
)
954 struct net_device_stats
*stats
= &hp
->net_stats
;
956 stats
->rx_crc_errors
+= hme_read32(hp
, bregs
+ BMAC_RCRCECTR
);
957 hme_write32(hp
, bregs
+ BMAC_RCRCECTR
, 0);
959 stats
->rx_frame_errors
+= hme_read32(hp
, bregs
+ BMAC_UNALECTR
);
960 hme_write32(hp
, bregs
+ BMAC_UNALECTR
, 0);
962 stats
->rx_length_errors
+= hme_read32(hp
, bregs
+ BMAC_GLECTR
);
963 hme_write32(hp
, bregs
+ BMAC_GLECTR
, 0);
965 stats
->tx_aborted_errors
+= hme_read32(hp
, bregs
+ BMAC_EXCTR
);
968 (hme_read32(hp
, bregs
+ BMAC_EXCTR
) +
969 hme_read32(hp
, bregs
+ BMAC_LTCTR
));
970 hme_write32(hp
, bregs
+ BMAC_EXCTR
, 0);
971 hme_write32(hp
, bregs
+ BMAC_LTCTR
, 0);
974 /* hp->happy_lock must be held */
975 static void happy_meal_poll_stop(struct happy_meal
*hp
, void __iomem
*tregs
)
977 ASD(("happy_meal_poll_stop: "));
979 /* If polling disabled or not polling already, nothing to do. */
980 if ((hp
->happy_flags
& (HFLAG_POLLENABLE
| HFLAG_POLL
)) !=
981 (HFLAG_POLLENABLE
| HFLAG_POLL
)) {
982 HMD(("not polling, return\n"));
986 /* Shut up the MIF. */
987 ASD(("were polling, mif ints off, "));
988 hme_write32(hp
, tregs
+ TCVR_IMASK
, 0xffff);
990 /* Turn off polling. */
991 ASD(("polling off, "));
992 hme_write32(hp
, tregs
+ TCVR_CFG
,
993 hme_read32(hp
, tregs
+ TCVR_CFG
) & ~(TCV_CFG_PENABLE
));
995 /* We are no longer polling. */
996 hp
->happy_flags
&= ~(HFLAG_POLL
);
998 /* Let the bits set. */
1003 /* Only Sun can take such nice parts and fuck up the programming interface
1004 * like this. Good job guys...
1006 #define TCVR_RESET_TRIES 16 /* It should reset quickly */
1007 #define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */
1009 /* hp->happy_lock must be held */
1010 static int happy_meal_tcvr_reset(struct happy_meal
*hp
, void __iomem
*tregs
)
1013 int result
, tries
= TCVR_RESET_TRIES
;
1015 tconfig
= hme_read32(hp
, tregs
+ TCVR_CFG
);
1016 ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig
));
1017 if (hp
->tcvr_type
== external
) {
1019 hme_write32(hp
, tregs
+ TCVR_CFG
, tconfig
& ~(TCV_CFG_PSELECT
));
1020 hp
->tcvr_type
= internal
;
1021 hp
->paddr
= TCV_PADDR_ITX
;
1023 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
,
1024 (BMCR_LOOPBACK
|BMCR_PDOWN
|BMCR_ISOLATE
));
1025 result
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1026 if (result
== TCVR_FAILURE
) {
1027 ASD(("phyread_fail>\n"));
1030 ASD(("phyread_ok,PSELECT>"));
1031 hme_write32(hp
, tregs
+ TCVR_CFG
, tconfig
| TCV_CFG_PSELECT
);
1032 hp
->tcvr_type
= external
;
1033 hp
->paddr
= TCV_PADDR_ETX
;
1035 if (tconfig
& TCV_CFG_MDIO1
) {
1036 ASD(("internal<PSELECT,"));
1037 hme_write32(hp
, tregs
+ TCVR_CFG
, (tconfig
| TCV_CFG_PSELECT
));
1039 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
,
1040 (BMCR_LOOPBACK
|BMCR_PDOWN
|BMCR_ISOLATE
));
1041 result
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1042 if (result
== TCVR_FAILURE
) {
1043 ASD(("phyread_fail>\n"));
1046 ASD(("phyread_ok,~PSELECT>"));
1047 hme_write32(hp
, tregs
+ TCVR_CFG
, (tconfig
& ~(TCV_CFG_PSELECT
)));
1048 hp
->tcvr_type
= internal
;
1049 hp
->paddr
= TCV_PADDR_ITX
;
1053 ASD(("BMCR_RESET "));
1054 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, BMCR_RESET
);
1057 result
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1058 if (result
== TCVR_FAILURE
)
1060 hp
->sw_bmcr
= result
;
1061 if (!(result
& BMCR_RESET
))
1066 ASD(("BMCR RESET FAILED!\n"));
1069 ASD(("RESET_OK\n"));
1071 /* Get fresh copies of the PHY registers. */
1072 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
1073 hp
->sw_physid1
= happy_meal_tcvr_read(hp
, tregs
, MII_PHYSID1
);
1074 hp
->sw_physid2
= happy_meal_tcvr_read(hp
, tregs
, MII_PHYSID2
);
1075 hp
->sw_advertise
= happy_meal_tcvr_read(hp
, tregs
, MII_ADVERTISE
);
1078 hp
->sw_bmcr
&= ~(BMCR_ISOLATE
);
1079 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1081 tries
= TCVR_UNISOLATE_TRIES
;
1083 result
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1084 if (result
== TCVR_FAILURE
)
1086 if (!(result
& BMCR_ISOLATE
))
1091 ASD((" FAILED!\n"));
1094 ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1095 if (!is_lucent_phy(hp
)) {
1096 result
= happy_meal_tcvr_read(hp
, tregs
,
1098 happy_meal_tcvr_write(hp
, tregs
,
1099 DP83840_CSCONFIG
, (result
| CSCONFIG_DFBYPASS
));
1104 /* Figure out whether we have an internal or external transceiver.
1106 * hp->happy_lock must be held
1108 static void happy_meal_transceiver_check(struct happy_meal
*hp
, void __iomem
*tregs
)
1110 unsigned long tconfig
= hme_read32(hp
, tregs
+ TCVR_CFG
);
1112 ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig
));
1113 if (hp
->happy_flags
& HFLAG_POLL
) {
1114 /* If we are polling, we must stop to get the transceiver type. */
1115 ASD(("<polling> "));
1116 if (hp
->tcvr_type
== internal
) {
1117 if (tconfig
& TCV_CFG_MDIO1
) {
1118 ASD(("<internal> <poll stop> "));
1119 happy_meal_poll_stop(hp
, tregs
);
1120 hp
->paddr
= TCV_PADDR_ETX
;
1121 hp
->tcvr_type
= external
;
1122 ASD(("<external>\n"));
1123 tconfig
&= ~(TCV_CFG_PENABLE
);
1124 tconfig
|= TCV_CFG_PSELECT
;
1125 hme_write32(hp
, tregs
+ TCVR_CFG
, tconfig
);
1128 if (hp
->tcvr_type
== external
) {
1129 ASD(("<external> "));
1130 if (!(hme_read32(hp
, tregs
+ TCVR_STATUS
) >> 16)) {
1131 ASD(("<poll stop> "));
1132 happy_meal_poll_stop(hp
, tregs
);
1133 hp
->paddr
= TCV_PADDR_ITX
;
1134 hp
->tcvr_type
= internal
;
1135 ASD(("<internal>\n"));
1136 hme_write32(hp
, tregs
+ TCVR_CFG
,
1137 hme_read32(hp
, tregs
+ TCVR_CFG
) &
1138 ~(TCV_CFG_PSELECT
));
1146 u32 reread
= hme_read32(hp
, tregs
+ TCVR_CFG
);
1148 /* Else we can just work off of the MDIO bits. */
1149 ASD(("<not polling> "));
1150 if (reread
& TCV_CFG_MDIO1
) {
1151 hme_write32(hp
, tregs
+ TCVR_CFG
, tconfig
| TCV_CFG_PSELECT
);
1152 hp
->paddr
= TCV_PADDR_ETX
;
1153 hp
->tcvr_type
= external
;
1154 ASD(("<external>\n"));
1156 if (reread
& TCV_CFG_MDIO0
) {
1157 hme_write32(hp
, tregs
+ TCVR_CFG
,
1158 tconfig
& ~(TCV_CFG_PSELECT
));
1159 hp
->paddr
= TCV_PADDR_ITX
;
1160 hp
->tcvr_type
= internal
;
1161 ASD(("<internal>\n"));
1163 printk(KERN_ERR
"happy meal: Transceiver and a coke please.");
1164 hp
->tcvr_type
= none
; /* Grrr... */
1171 /* The receive ring buffers are a bit tricky to get right. Here goes...
1173 * The buffers we dma into must be 64 byte aligned. So we use a special
1174 * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1177 * We use skb_reserve() to align the data block we get in the skb. We
1178 * also program the etxregs->cfg register to use an offset of 2. This
1179 * imperical constant plus the ethernet header size will always leave
1180 * us with a nicely aligned ip header once we pass things up to the
1183 * The numbers work out to:
1185 * Max ethernet frame size 1518
1186 * Ethernet header size 14
1187 * Happy Meal base offset 2
1189 * Say a skb data area is at 0xf001b010, and its size alloced is
1190 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1192 * First our alloc_skb() routine aligns the data base to a 64 byte
1193 * boundary. We now have 0xf001b040 as our skb data address. We
1194 * plug this into the receive descriptor address.
1196 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1197 * So now the data we will end up looking at starts at 0xf001b042. When
1198 * the packet arrives, we will check out the size received and subtract
1199 * this from the skb->length. Then we just pass the packet up to the
1200 * protocols as is, and allocate a new skb to replace this slot we have
1201 * just received from.
1203 * The ethernet layer will strip the ether header from the front of the
1204 * skb we just sent to it, this leaves us with the ip header sitting
1205 * nicely aligned at 0xf001b050. Also, for tcp and udp packets the
1206 * Happy Meal has even checksummed the tcp/udp data for us. The 16
1207 * bit checksum is obtained from the low bits of the receive descriptor
1210 * skb->csum = rxd->rx_flags & 0xffff;
1211 * skb->ip_summed = CHECKSUM_COMPLETE;
1213 * before sending off the skb to the protocols, and we are good as gold.
1215 static void happy_meal_clean_rings(struct happy_meal
*hp
)
1219 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1220 if (hp
->rx_skbs
[i
] != NULL
) {
1221 struct sk_buff
*skb
= hp
->rx_skbs
[i
];
1222 struct happy_meal_rxd
*rxd
;
1225 rxd
= &hp
->happy_block
->happy_meal_rxd
[i
];
1226 dma_addr
= hme_read_desc32(hp
, &rxd
->rx_addr
);
1227 hme_dma_unmap(hp
, dma_addr
, RX_BUF_ALLOC_SIZE
, DMA_FROMDEVICE
);
1228 dev_kfree_skb_any(skb
);
1229 hp
->rx_skbs
[i
] = NULL
;
1233 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1234 if (hp
->tx_skbs
[i
] != NULL
) {
1235 struct sk_buff
*skb
= hp
->tx_skbs
[i
];
1236 struct happy_meal_txd
*txd
;
1240 hp
->tx_skbs
[i
] = NULL
;
1242 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1243 txd
= &hp
->happy_block
->happy_meal_txd
[i
];
1244 dma_addr
= hme_read_desc32(hp
, &txd
->tx_addr
);
1245 hme_dma_unmap(hp
, dma_addr
,
1246 (hme_read_desc32(hp
, &txd
->tx_flags
)
1250 if (frag
!= skb_shinfo(skb
)->nr_frags
)
1254 dev_kfree_skb_any(skb
);
1259 /* hp->happy_lock must be held */
1260 static void happy_meal_init_rings(struct happy_meal
*hp
)
1262 struct hmeal_init_block
*hb
= hp
->happy_block
;
1263 struct net_device
*dev
= hp
->dev
;
1266 HMD(("happy_meal_init_rings: counters to zero, "));
1267 hp
->rx_new
= hp
->rx_old
= hp
->tx_new
= hp
->tx_old
= 0;
1269 /* Free any skippy bufs left around in the rings. */
1271 happy_meal_clean_rings(hp
);
1273 /* Now get new skippy bufs for the receive ring. */
1274 HMD(("init rxring, "));
1275 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1276 struct sk_buff
*skb
;
1278 skb
= happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE
, GFP_ATOMIC
);
1280 hme_write_rxd(hp
, &hb
->happy_meal_rxd
[i
], 0, 0);
1283 hp
->rx_skbs
[i
] = skb
;
1286 /* Because we reserve afterwards. */
1287 skb_put(skb
, (ETH_FRAME_LEN
+ RX_OFFSET
+ 4));
1288 hme_write_rxd(hp
, &hb
->happy_meal_rxd
[i
],
1289 (RXFLAG_OWN
| ((RX_BUF_ALLOC_SIZE
- RX_OFFSET
) << 16)),
1290 hme_dma_map(hp
, skb
->data
, RX_BUF_ALLOC_SIZE
, DMA_FROMDEVICE
));
1291 skb_reserve(skb
, RX_OFFSET
);
1294 HMD(("init txring, "));
1295 for (i
= 0; i
< TX_RING_SIZE
; i
++)
1296 hme_write_txd(hp
, &hb
->happy_meal_txd
[i
], 0, 0);
1301 /* hp->happy_lock must be held */
1302 static void happy_meal_begin_auto_negotiation(struct happy_meal
*hp
,
1303 void __iomem
*tregs
,
1304 struct ethtool_cmd
*ep
)
1308 /* Read all of the registers we are interested in now. */
1309 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
1310 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1311 hp
->sw_physid1
= happy_meal_tcvr_read(hp
, tregs
, MII_PHYSID1
);
1312 hp
->sw_physid2
= happy_meal_tcvr_read(hp
, tregs
, MII_PHYSID2
);
1314 /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1316 hp
->sw_advertise
= happy_meal_tcvr_read(hp
, tregs
, MII_ADVERTISE
);
1317 if (ep
== NULL
|| ep
->autoneg
== AUTONEG_ENABLE
) {
1318 /* Advertise everything we can support. */
1319 if (hp
->sw_bmsr
& BMSR_10HALF
)
1320 hp
->sw_advertise
|= (ADVERTISE_10HALF
);
1322 hp
->sw_advertise
&= ~(ADVERTISE_10HALF
);
1324 if (hp
->sw_bmsr
& BMSR_10FULL
)
1325 hp
->sw_advertise
|= (ADVERTISE_10FULL
);
1327 hp
->sw_advertise
&= ~(ADVERTISE_10FULL
);
1328 if (hp
->sw_bmsr
& BMSR_100HALF
)
1329 hp
->sw_advertise
|= (ADVERTISE_100HALF
);
1331 hp
->sw_advertise
&= ~(ADVERTISE_100HALF
);
1332 if (hp
->sw_bmsr
& BMSR_100FULL
)
1333 hp
->sw_advertise
|= (ADVERTISE_100FULL
);
1335 hp
->sw_advertise
&= ~(ADVERTISE_100FULL
);
1336 happy_meal_tcvr_write(hp
, tregs
, MII_ADVERTISE
, hp
->sw_advertise
);
1338 /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1339 * XXX and this is because the DP83840 does not support it, changes
1340 * XXX would need to be made to the tx/rx logic in the driver as well
1341 * XXX so I completely skip checking for it in the BMSR for now.
1344 #ifdef AUTO_SWITCH_DEBUG
1345 ASD(("%s: Advertising [ ", hp
->dev
->name
));
1346 if (hp
->sw_advertise
& ADVERTISE_10HALF
)
1348 if (hp
->sw_advertise
& ADVERTISE_10FULL
)
1350 if (hp
->sw_advertise
& ADVERTISE_100HALF
)
1352 if (hp
->sw_advertise
& ADVERTISE_100FULL
)
1356 /* Enable Auto-Negotiation, this is usually on already... */
1357 hp
->sw_bmcr
|= BMCR_ANENABLE
;
1358 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1360 /* Restart it to make sure it is going. */
1361 hp
->sw_bmcr
|= BMCR_ANRESTART
;
1362 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1364 /* BMCR_ANRESTART self clears when the process has begun. */
1366 timeout
= 64; /* More than enough. */
1368 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1369 if (!(hp
->sw_bmcr
& BMCR_ANRESTART
))
1370 break; /* got it. */
1374 printk(KERN_ERR
"%s: Happy Meal would not start auto negotiation "
1375 "BMCR=0x%04x\n", hp
->dev
->name
, hp
->sw_bmcr
);
1376 printk(KERN_NOTICE
"%s: Performing force link detection.\n",
1380 hp
->timer_state
= arbwait
;
1384 /* Force the link up, trying first a particular mode.
1385 * Either we are here at the request of ethtool or
1386 * because the Happy Meal would not start to autoneg.
1389 /* Disable auto-negotiation in BMCR, enable the duplex and
1390 * speed setting, init the timer state machine, and fire it off.
1392 if (ep
== NULL
|| ep
->autoneg
== AUTONEG_ENABLE
) {
1393 hp
->sw_bmcr
= BMCR_SPEED100
;
1395 if (ep
->speed
== SPEED_100
)
1396 hp
->sw_bmcr
= BMCR_SPEED100
;
1399 if (ep
->duplex
== DUPLEX_FULL
)
1400 hp
->sw_bmcr
|= BMCR_FULLDPLX
;
1402 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1404 if (!is_lucent_phy(hp
)) {
1405 /* OK, seems we need do disable the transceiver for the first
1406 * tick to make sure we get an accurate link state at the
1409 hp
->sw_csconfig
= happy_meal_tcvr_read(hp
, tregs
,
1411 hp
->sw_csconfig
&= ~(CSCONFIG_TCVDISAB
);
1412 happy_meal_tcvr_write(hp
, tregs
, DP83840_CSCONFIG
,
1415 hp
->timer_state
= ltrywait
;
1418 hp
->timer_ticks
= 0;
1419 hp
->happy_timer
.expires
= jiffies
+ (12 * HZ
)/10; /* 1.2 sec. */
1420 hp
->happy_timer
.data
= (unsigned long) hp
;
1421 hp
->happy_timer
.function
= &happy_meal_timer
;
1422 add_timer(&hp
->happy_timer
);
1425 /* hp->happy_lock must be held */
1426 static int happy_meal_init(struct happy_meal
*hp
)
1428 void __iomem
*gregs
= hp
->gregs
;
1429 void __iomem
*etxregs
= hp
->etxregs
;
1430 void __iomem
*erxregs
= hp
->erxregs
;
1431 void __iomem
*bregs
= hp
->bigmacregs
;
1432 void __iomem
*tregs
= hp
->tcvregs
;
1434 unsigned char *e
= &hp
->dev
->dev_addr
[0];
1436 /* If auto-negotiation timer is running, kill it. */
1437 del_timer(&hp
->happy_timer
);
1439 HMD(("happy_meal_init: happy_flags[%08x] ",
1441 if (!(hp
->happy_flags
& HFLAG_INIT
)) {
1442 HMD(("set HFLAG_INIT, "));
1443 hp
->happy_flags
|= HFLAG_INIT
;
1444 happy_meal_get_counters(hp
, bregs
);
1448 HMD(("to happy_meal_poll_stop\n"));
1449 happy_meal_poll_stop(hp
, tregs
);
1451 /* Stop transmitter and receiver. */
1452 HMD(("happy_meal_init: to happy_meal_stop\n"));
1453 happy_meal_stop(hp
, gregs
);
1455 /* Alloc and reset the tx/rx descriptor chains. */
1456 HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1457 happy_meal_init_rings(hp
);
1459 /* Shut up the MIF. */
1460 HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1461 hme_read32(hp
, tregs
+ TCVR_IMASK
)));
1462 hme_write32(hp
, tregs
+ TCVR_IMASK
, 0xffff);
1464 /* See if we can enable the MIF frame on this card to speak to the DP83840. */
1465 if (hp
->happy_flags
& HFLAG_FENABLE
) {
1466 HMD(("use frame old[%08x], ",
1467 hme_read32(hp
, tregs
+ TCVR_CFG
)));
1468 hme_write32(hp
, tregs
+ TCVR_CFG
,
1469 hme_read32(hp
, tregs
+ TCVR_CFG
) & ~(TCV_CFG_BENABLE
));
1471 HMD(("use bitbang old[%08x], ",
1472 hme_read32(hp
, tregs
+ TCVR_CFG
)));
1473 hme_write32(hp
, tregs
+ TCVR_CFG
,
1474 hme_read32(hp
, tregs
+ TCVR_CFG
) | TCV_CFG_BENABLE
);
1477 /* Check the state of the transceiver. */
1478 HMD(("to happy_meal_transceiver_check\n"));
1479 happy_meal_transceiver_check(hp
, tregs
);
1481 /* Put the Big Mac into a sane state. */
1482 HMD(("happy_meal_init: "));
1483 switch(hp
->tcvr_type
) {
1485 /* Cannot operate if we don't know the transceiver type! */
1486 HMD(("AAIEEE no transceiver type, EAGAIN"));
1490 /* Using the MII buffers. */
1491 HMD(("internal, using MII, "));
1492 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, 0);
1496 /* Not using the MII, disable it. */
1497 HMD(("external, disable MII, "));
1498 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, BIGMAC_XCFG_MIIDISAB
);
1502 if (happy_meal_tcvr_reset(hp
, tregs
))
1505 /* Reset the Happy Meal Big Mac transceiver and the receiver. */
1506 HMD(("tx/rx reset, "));
1507 happy_meal_tx_reset(hp
, bregs
);
1508 happy_meal_rx_reset(hp
, bregs
);
1510 /* Set jam size and inter-packet gaps to reasonable defaults. */
1511 HMD(("jsize/ipg1/ipg2, "));
1512 hme_write32(hp
, bregs
+ BMAC_JSIZE
, DEFAULT_JAMSIZE
);
1513 hme_write32(hp
, bregs
+ BMAC_IGAP1
, DEFAULT_IPG1
);
1514 hme_write32(hp
, bregs
+ BMAC_IGAP2
, DEFAULT_IPG2
);
1516 /* Load up the MAC address and random seed. */
1517 HMD(("rseed/macaddr, "));
1519 /* The docs recommend to use the 10LSB of our MAC here. */
1520 hme_write32(hp
, bregs
+ BMAC_RSEED
, ((e
[5] | e
[4]<<8)&0x3ff));
1522 hme_write32(hp
, bregs
+ BMAC_MACADDR2
, ((e
[4] << 8) | e
[5]));
1523 hme_write32(hp
, bregs
+ BMAC_MACADDR1
, ((e
[2] << 8) | e
[3]));
1524 hme_write32(hp
, bregs
+ BMAC_MACADDR0
, ((e
[0] << 8) | e
[1]));
1527 if ((hp
->dev
->flags
& IFF_ALLMULTI
) ||
1528 (hp
->dev
->mc_count
> 64)) {
1529 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, 0xffff);
1530 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, 0xffff);
1531 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, 0xffff);
1532 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, 0xffff);
1533 } else if ((hp
->dev
->flags
& IFF_PROMISC
) == 0) {
1535 struct dev_mc_list
*dmi
= hp
->dev
->mc_list
;
1540 for (i
= 0; i
< 4; i
++)
1543 for (i
= 0; i
< hp
->dev
->mc_count
; i
++) {
1544 addrs
= dmi
->dmi_addr
;
1550 crc
= ether_crc_le(6, addrs
);
1552 hash_table
[crc
>> 4] |= 1 << (crc
& 0xf);
1554 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, hash_table
[0]);
1555 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, hash_table
[1]);
1556 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, hash_table
[2]);
1557 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, hash_table
[3]);
1559 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, 0);
1560 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, 0);
1561 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, 0);
1562 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, 0);
1565 /* Set the RX and TX ring ptrs. */
1566 HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1567 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_rxd
, 0)),
1568 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_txd
, 0))));
1569 hme_write32(hp
, erxregs
+ ERX_RING
,
1570 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_rxd
, 0)));
1571 hme_write32(hp
, etxregs
+ ETX_RING
,
1572 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_txd
, 0)));
1574 /* Parity issues in the ERX unit of some HME revisions can cause some
1575 * registers to not be written unless their parity is even. Detect such
1576 * lost writes and simply rewrite with a low bit set (which will be ignored
1577 * since the rxring needs to be 2K aligned).
1579 if (hme_read32(hp
, erxregs
+ ERX_RING
) !=
1580 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_rxd
, 0)))
1581 hme_write32(hp
, erxregs
+ ERX_RING
,
1582 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_rxd
, 0))
1585 /* Set the supported burst sizes. */
1586 HMD(("happy_meal_init: old[%08x] bursts<",
1587 hme_read32(hp
, gregs
+ GREG_CFG
)));
1589 #ifndef CONFIG_SPARC
1590 /* It is always PCI and can handle 64byte bursts. */
1591 hme_write32(hp
, gregs
+ GREG_CFG
, GREG_CFG_BURST64
);
1593 if ((hp
->happy_bursts
& DMA_BURST64
) &&
1594 ((hp
->happy_flags
& HFLAG_PCI
) != 0
1596 || sbus_can_burst64(hp
->happy_dev
)
1599 u32 gcfg
= GREG_CFG_BURST64
;
1601 /* I have no idea if I should set the extended
1602 * transfer mode bit for Cheerio, so for now I
1606 if ((hp
->happy_flags
& HFLAG_PCI
) == 0 &&
1607 sbus_can_dma_64bit(hp
->happy_dev
)) {
1608 sbus_set_sbus64(hp
->happy_dev
,
1610 gcfg
|= GREG_CFG_64BIT
;
1615 hme_write32(hp
, gregs
+ GREG_CFG
, gcfg
);
1616 } else if (hp
->happy_bursts
& DMA_BURST32
) {
1618 hme_write32(hp
, gregs
+ GREG_CFG
, GREG_CFG_BURST32
);
1619 } else if (hp
->happy_bursts
& DMA_BURST16
) {
1621 hme_write32(hp
, gregs
+ GREG_CFG
, GREG_CFG_BURST16
);
1624 hme_write32(hp
, gregs
+ GREG_CFG
, 0);
1626 #endif /* CONFIG_SPARC */
1628 /* Turn off interrupts we do not want to hear. */
1629 HMD((", enable global interrupts, "));
1630 hme_write32(hp
, gregs
+ GREG_IMASK
,
1631 (GREG_IMASK_GOTFRAME
| GREG_IMASK_RCNTEXP
|
1632 GREG_IMASK_SENTFRAME
| GREG_IMASK_TXPERR
));
1634 /* Set the transmit ring buffer size. */
1635 HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE
,
1636 hme_read32(hp
, etxregs
+ ETX_RSIZE
)));
1637 hme_write32(hp
, etxregs
+ ETX_RSIZE
, (TX_RING_SIZE
>> ETX_RSIZE_SHIFT
) - 1);
1639 /* Enable transmitter DVMA. */
1640 HMD(("tx dma enable old[%08x], ",
1641 hme_read32(hp
, etxregs
+ ETX_CFG
)));
1642 hme_write32(hp
, etxregs
+ ETX_CFG
,
1643 hme_read32(hp
, etxregs
+ ETX_CFG
) | ETX_CFG_DMAENABLE
);
1645 /* This chip really rots, for the receiver sometimes when you
1646 * write to its control registers not all the bits get there
1647 * properly. I cannot think of a sane way to provide complete
1648 * coverage for this hardware bug yet.
1650 HMD(("erx regs bug old[%08x]\n",
1651 hme_read32(hp
, erxregs
+ ERX_CFG
)));
1652 hme_write32(hp
, erxregs
+ ERX_CFG
, ERX_CFG_DEFAULT(RX_OFFSET
));
1653 regtmp
= hme_read32(hp
, erxregs
+ ERX_CFG
);
1654 hme_write32(hp
, erxregs
+ ERX_CFG
, ERX_CFG_DEFAULT(RX_OFFSET
));
1655 if (hme_read32(hp
, erxregs
+ ERX_CFG
) != ERX_CFG_DEFAULT(RX_OFFSET
)) {
1656 printk(KERN_ERR
"happy meal: Eieee, rx config register gets greasy fries.\n");
1657 printk(KERN_ERR
"happy meal: Trying to set %08x, reread gives %08x\n",
1658 ERX_CFG_DEFAULT(RX_OFFSET
), regtmp
);
1659 /* XXX Should return failure here... */
1662 /* Enable Big Mac hash table filter. */
1663 HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1664 hme_read32(hp
, bregs
+ BMAC_RXCFG
)));
1665 rxcfg
= BIGMAC_RXCFG_HENABLE
| BIGMAC_RXCFG_REJME
;
1666 if (hp
->dev
->flags
& IFF_PROMISC
)
1667 rxcfg
|= BIGMAC_RXCFG_PMISC
;
1668 hme_write32(hp
, bregs
+ BMAC_RXCFG
, rxcfg
);
1670 /* Let the bits settle in the chip. */
1673 /* Ok, configure the Big Mac transmitter. */
1674 HMD(("BIGMAC init, "));
1676 if (hp
->happy_flags
& HFLAG_FULL
)
1677 regtmp
|= BIGMAC_TXCFG_FULLDPLX
;
1679 /* Don't turn on the "don't give up" bit for now. It could cause hme
1680 * to deadlock with the PHY if a Jabber occurs.
1682 hme_write32(hp
, bregs
+ BMAC_TXCFG
, regtmp
/*| BIGMAC_TXCFG_DGIVEUP*/);
1684 /* Give up after 16 TX attempts. */
1685 hme_write32(hp
, bregs
+ BMAC_ALIMIT
, 16);
1687 /* Enable the output drivers no matter what. */
1688 regtmp
= BIGMAC_XCFG_ODENABLE
;
1690 /* If card can do lance mode, enable it. */
1691 if (hp
->happy_flags
& HFLAG_LANCE
)
1692 regtmp
|= (DEFAULT_IPG0
<< 5) | BIGMAC_XCFG_LANCE
;
1694 /* Disable the MII buffers if using external transceiver. */
1695 if (hp
->tcvr_type
== external
)
1696 regtmp
|= BIGMAC_XCFG_MIIDISAB
;
1698 HMD(("XIF config old[%08x], ",
1699 hme_read32(hp
, bregs
+ BMAC_XIFCFG
)));
1700 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, regtmp
);
1702 /* Start things up. */
1703 HMD(("tx old[%08x] and rx [%08x] ON!\n",
1704 hme_read32(hp
, bregs
+ BMAC_TXCFG
),
1705 hme_read32(hp
, bregs
+ BMAC_RXCFG
)));
1707 /* Set larger TX/RX size to allow for 802.1q */
1708 hme_write32(hp
, bregs
+ BMAC_TXMAX
, ETH_FRAME_LEN
+ 8);
1709 hme_write32(hp
, bregs
+ BMAC_RXMAX
, ETH_FRAME_LEN
+ 8);
1711 hme_write32(hp
, bregs
+ BMAC_TXCFG
,
1712 hme_read32(hp
, bregs
+ BMAC_TXCFG
) | BIGMAC_TXCFG_ENABLE
);
1713 hme_write32(hp
, bregs
+ BMAC_RXCFG
,
1714 hme_read32(hp
, bregs
+ BMAC_RXCFG
) | BIGMAC_RXCFG_ENABLE
);
1716 /* Get the autonegotiation started, and the watch timer ticking. */
1717 happy_meal_begin_auto_negotiation(hp
, tregs
, NULL
);
1723 /* hp->happy_lock must be held */
1724 static void happy_meal_set_initial_advertisement(struct happy_meal
*hp
)
1726 void __iomem
*tregs
= hp
->tcvregs
;
1727 void __iomem
*bregs
= hp
->bigmacregs
;
1728 void __iomem
*gregs
= hp
->gregs
;
1730 happy_meal_stop(hp
, gregs
);
1731 hme_write32(hp
, tregs
+ TCVR_IMASK
, 0xffff);
1732 if (hp
->happy_flags
& HFLAG_FENABLE
)
1733 hme_write32(hp
, tregs
+ TCVR_CFG
,
1734 hme_read32(hp
, tregs
+ TCVR_CFG
) & ~(TCV_CFG_BENABLE
));
1736 hme_write32(hp
, tregs
+ TCVR_CFG
,
1737 hme_read32(hp
, tregs
+ TCVR_CFG
) | TCV_CFG_BENABLE
);
1738 happy_meal_transceiver_check(hp
, tregs
);
1739 switch(hp
->tcvr_type
) {
1743 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, 0);
1746 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, BIGMAC_XCFG_MIIDISAB
);
1749 if (happy_meal_tcvr_reset(hp
, tregs
))
1752 /* Latch PHY registers as of now. */
1753 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
1754 hp
->sw_advertise
= happy_meal_tcvr_read(hp
, tregs
, MII_ADVERTISE
);
1756 /* Advertise everything we can support. */
1757 if (hp
->sw_bmsr
& BMSR_10HALF
)
1758 hp
->sw_advertise
|= (ADVERTISE_10HALF
);
1760 hp
->sw_advertise
&= ~(ADVERTISE_10HALF
);
1762 if (hp
->sw_bmsr
& BMSR_10FULL
)
1763 hp
->sw_advertise
|= (ADVERTISE_10FULL
);
1765 hp
->sw_advertise
&= ~(ADVERTISE_10FULL
);
1766 if (hp
->sw_bmsr
& BMSR_100HALF
)
1767 hp
->sw_advertise
|= (ADVERTISE_100HALF
);
1769 hp
->sw_advertise
&= ~(ADVERTISE_100HALF
);
1770 if (hp
->sw_bmsr
& BMSR_100FULL
)
1771 hp
->sw_advertise
|= (ADVERTISE_100FULL
);
1773 hp
->sw_advertise
&= ~(ADVERTISE_100FULL
);
1775 /* Update the PHY advertisement register. */
1776 happy_meal_tcvr_write(hp
, tregs
, MII_ADVERTISE
, hp
->sw_advertise
);
1779 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1780 * the hardware, so we cannot re-read it and get a correct value.
1782 * hp->happy_lock must be held
1784 static int happy_meal_is_not_so_happy(struct happy_meal
*hp
, u32 status
)
1788 /* Only print messages for non-counter related interrupts. */
1789 if (status
& (GREG_STAT_STSTERR
| GREG_STAT_TFIFO_UND
|
1790 GREG_STAT_MAXPKTERR
| GREG_STAT_RXERR
|
1791 GREG_STAT_RXPERR
| GREG_STAT_RXTERR
| GREG_STAT_EOPERR
|
1792 GREG_STAT_MIFIRQ
| GREG_STAT_TXEACK
| GREG_STAT_TXLERR
|
1793 GREG_STAT_TXPERR
| GREG_STAT_TXTERR
| GREG_STAT_SLVERR
|
1795 printk(KERN_ERR
"%s: Error interrupt for happy meal, status = %08x\n",
1796 hp
->dev
->name
, status
);
1798 if (status
& GREG_STAT_RFIFOVF
) {
1799 /* Receive FIFO overflow is harmless and the hardware will take
1800 care of it, just some packets are lost. Who cares. */
1801 printk(KERN_DEBUG
"%s: Happy Meal receive FIFO overflow.\n", hp
->dev
->name
);
1804 if (status
& GREG_STAT_STSTERR
) {
1805 /* BigMAC SQE link test failed. */
1806 printk(KERN_ERR
"%s: Happy Meal BigMAC SQE test failed.\n", hp
->dev
->name
);
1810 if (status
& GREG_STAT_TFIFO_UND
) {
1811 /* Transmit FIFO underrun, again DMA error likely. */
1812 printk(KERN_ERR
"%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1817 if (status
& GREG_STAT_MAXPKTERR
) {
1818 /* Driver error, tried to transmit something larger
1819 * than ethernet max mtu.
1821 printk(KERN_ERR
"%s: Happy Meal MAX Packet size error.\n", hp
->dev
->name
);
1825 if (status
& GREG_STAT_NORXD
) {
1826 /* This is harmless, it just means the system is
1827 * quite loaded and the incoming packet rate was
1828 * faster than the interrupt handler could keep up
1831 printk(KERN_INFO
"%s: Happy Meal out of receive "
1832 "descriptors, packet dropped.\n",
1836 if (status
& (GREG_STAT_RXERR
|GREG_STAT_RXPERR
|GREG_STAT_RXTERR
)) {
1837 /* All sorts of DMA receive errors. */
1838 printk(KERN_ERR
"%s: Happy Meal rx DMA errors [ ", hp
->dev
->name
);
1839 if (status
& GREG_STAT_RXERR
)
1840 printk("GenericError ");
1841 if (status
& GREG_STAT_RXPERR
)
1842 printk("ParityError ");
1843 if (status
& GREG_STAT_RXTERR
)
1844 printk("RxTagBotch ");
1849 if (status
& GREG_STAT_EOPERR
) {
1850 /* Driver bug, didn't set EOP bit in tx descriptor given
1851 * to the happy meal.
1853 printk(KERN_ERR
"%s: EOP not set in happy meal transmit descriptor!\n",
1858 if (status
& GREG_STAT_MIFIRQ
) {
1859 /* MIF signalled an interrupt, were we polling it? */
1860 printk(KERN_ERR
"%s: Happy Meal MIF interrupt.\n", hp
->dev
->name
);
1864 (GREG_STAT_TXEACK
|GREG_STAT_TXLERR
|GREG_STAT_TXPERR
|GREG_STAT_TXTERR
)) {
1865 /* All sorts of transmit DMA errors. */
1866 printk(KERN_ERR
"%s: Happy Meal tx DMA errors [ ", hp
->dev
->name
);
1867 if (status
& GREG_STAT_TXEACK
)
1868 printk("GenericError ");
1869 if (status
& GREG_STAT_TXLERR
)
1870 printk("LateError ");
1871 if (status
& GREG_STAT_TXPERR
)
1872 printk("ParityErro ");
1873 if (status
& GREG_STAT_TXTERR
)
1874 printk("TagBotch ");
1879 if (status
& (GREG_STAT_SLVERR
|GREG_STAT_SLVPERR
)) {
1880 /* Bus or parity error when cpu accessed happy meal registers
1881 * or it's internal FIFO's. Should never see this.
1883 printk(KERN_ERR
"%s: Happy Meal register access SBUS slave (%s) error.\n",
1885 (status
& GREG_STAT_SLVPERR
) ? "parity" : "generic");
1890 printk(KERN_NOTICE
"%s: Resetting...\n", hp
->dev
->name
);
1891 happy_meal_init(hp
);
1897 /* hp->happy_lock must be held */
1898 static void happy_meal_mif_interrupt(struct happy_meal
*hp
)
1900 void __iomem
*tregs
= hp
->tcvregs
;
1902 printk(KERN_INFO
"%s: Link status change.\n", hp
->dev
->name
);
1903 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1904 hp
->sw_lpa
= happy_meal_tcvr_read(hp
, tregs
, MII_LPA
);
1906 /* Use the fastest transmission protocol possible. */
1907 if (hp
->sw_lpa
& LPA_100FULL
) {
1908 printk(KERN_INFO
"%s: Switching to 100Mbps at full duplex.", hp
->dev
->name
);
1909 hp
->sw_bmcr
|= (BMCR_FULLDPLX
| BMCR_SPEED100
);
1910 } else if (hp
->sw_lpa
& LPA_100HALF
) {
1911 printk(KERN_INFO
"%s: Switching to 100MBps at half duplex.", hp
->dev
->name
);
1912 hp
->sw_bmcr
|= BMCR_SPEED100
;
1913 } else if (hp
->sw_lpa
& LPA_10FULL
) {
1914 printk(KERN_INFO
"%s: Switching to 10MBps at full duplex.", hp
->dev
->name
);
1915 hp
->sw_bmcr
|= BMCR_FULLDPLX
;
1917 printk(KERN_INFO
"%s: Using 10Mbps at half duplex.", hp
->dev
->name
);
1919 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1921 /* Finally stop polling and shut up the MIF. */
1922 happy_meal_poll_stop(hp
, tregs
);
1926 #define TXD(x) printk x
1931 /* hp->happy_lock must be held */
1932 static void happy_meal_tx(struct happy_meal
*hp
)
1934 struct happy_meal_txd
*txbase
= &hp
->happy_block
->happy_meal_txd
[0];
1935 struct happy_meal_txd
*this;
1936 struct net_device
*dev
= hp
->dev
;
1941 while (elem
!= hp
->tx_new
) {
1942 struct sk_buff
*skb
;
1943 u32 flags
, dma_addr
, dma_len
;
1946 TXD(("[%d]", elem
));
1947 this = &txbase
[elem
];
1948 flags
= hme_read_desc32(hp
, &this->tx_flags
);
1949 if (flags
& TXFLAG_OWN
)
1951 skb
= hp
->tx_skbs
[elem
];
1952 if (skb_shinfo(skb
)->nr_frags
) {
1955 last
= elem
+ skb_shinfo(skb
)->nr_frags
;
1956 last
&= (TX_RING_SIZE
- 1);
1957 flags
= hme_read_desc32(hp
, &txbase
[last
].tx_flags
);
1958 if (flags
& TXFLAG_OWN
)
1961 hp
->tx_skbs
[elem
] = NULL
;
1962 hp
->net_stats
.tx_bytes
+= skb
->len
;
1964 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1965 dma_addr
= hme_read_desc32(hp
, &this->tx_addr
);
1966 dma_len
= hme_read_desc32(hp
, &this->tx_flags
);
1968 dma_len
&= TXFLAG_SIZE
;
1969 hme_dma_unmap(hp
, dma_addr
, dma_len
, DMA_TODEVICE
);
1971 elem
= NEXT_TX(elem
);
1972 this = &txbase
[elem
];
1975 dev_kfree_skb_irq(skb
);
1976 hp
->net_stats
.tx_packets
++;
1981 if (netif_queue_stopped(dev
) &&
1982 TX_BUFFS_AVAIL(hp
) > (MAX_SKB_FRAGS
+ 1))
1983 netif_wake_queue(dev
);
1987 #define RXD(x) printk x
1992 /* Originally I used to handle the allocation failure by just giving back just
1993 * that one ring buffer to the happy meal. Problem is that usually when that
1994 * condition is triggered, the happy meal expects you to do something reasonable
1995 * with all of the packets it has DMA'd in. So now I just drop the entire
1996 * ring when we cannot get a new skb and give them all back to the happy meal,
1997 * maybe things will be "happier" now.
1999 * hp->happy_lock must be held
2001 static void happy_meal_rx(struct happy_meal
*hp
, struct net_device
*dev
)
2003 struct happy_meal_rxd
*rxbase
= &hp
->happy_block
->happy_meal_rxd
[0];
2004 struct happy_meal_rxd
*this;
2005 int elem
= hp
->rx_new
, drops
= 0;
2009 this = &rxbase
[elem
];
2010 while (!((flags
= hme_read_desc32(hp
, &this->rx_flags
)) & RXFLAG_OWN
)) {
2011 struct sk_buff
*skb
;
2012 int len
= flags
>> 16;
2013 u16 csum
= flags
& RXFLAG_CSUM
;
2014 u32 dma_addr
= hme_read_desc32(hp
, &this->rx_addr
);
2016 RXD(("[%d ", elem
));
2018 /* Check for errors. */
2019 if ((len
< ETH_ZLEN
) || (flags
& RXFLAG_OVERFLOW
)) {
2020 RXD(("ERR(%08x)]", flags
));
2021 hp
->net_stats
.rx_errors
++;
2023 hp
->net_stats
.rx_length_errors
++;
2024 if (len
& (RXFLAG_OVERFLOW
>> 16)) {
2025 hp
->net_stats
.rx_over_errors
++;
2026 hp
->net_stats
.rx_fifo_errors
++;
2029 /* Return it to the Happy meal. */
2031 hp
->net_stats
.rx_dropped
++;
2032 hme_write_rxd(hp
, this,
2033 (RXFLAG_OWN
|((RX_BUF_ALLOC_SIZE
-RX_OFFSET
)<<16)),
2037 skb
= hp
->rx_skbs
[elem
];
2038 if (len
> RX_COPY_THRESHOLD
) {
2039 struct sk_buff
*new_skb
;
2041 /* Now refill the entry, if we can. */
2042 new_skb
= happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE
, GFP_ATOMIC
);
2043 if (new_skb
== NULL
) {
2047 hme_dma_unmap(hp
, dma_addr
, RX_BUF_ALLOC_SIZE
, DMA_FROMDEVICE
);
2048 hp
->rx_skbs
[elem
] = new_skb
;
2050 skb_put(new_skb
, (ETH_FRAME_LEN
+ RX_OFFSET
+ 4));
2051 hme_write_rxd(hp
, this,
2052 (RXFLAG_OWN
|((RX_BUF_ALLOC_SIZE
-RX_OFFSET
)<<16)),
2053 hme_dma_map(hp
, new_skb
->data
, RX_BUF_ALLOC_SIZE
, DMA_FROMDEVICE
));
2054 skb_reserve(new_skb
, RX_OFFSET
);
2056 /* Trim the original skb for the netif. */
2059 struct sk_buff
*copy_skb
= dev_alloc_skb(len
+ 2);
2061 if (copy_skb
== NULL
) {
2066 skb_reserve(copy_skb
, 2);
2067 skb_put(copy_skb
, len
);
2068 hme_dma_sync_for_cpu(hp
, dma_addr
, len
, DMA_FROMDEVICE
);
2069 skb_copy_from_linear_data(skb
, copy_skb
->data
, len
);
2070 hme_dma_sync_for_device(hp
, dma_addr
, len
, DMA_FROMDEVICE
);
2072 /* Reuse original ring buffer. */
2073 hme_write_rxd(hp
, this,
2074 (RXFLAG_OWN
|((RX_BUF_ALLOC_SIZE
-RX_OFFSET
)<<16)),
2080 /* This card is _fucking_ hot... */
2081 skb
->csum
= csum_unfold(~(__force __sum16
)htons(csum
));
2082 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2084 RXD(("len=%d csum=%4x]", len
, csum
));
2085 skb
->protocol
= eth_type_trans(skb
, dev
);
2088 dev
->last_rx
= jiffies
;
2089 hp
->net_stats
.rx_packets
++;
2090 hp
->net_stats
.rx_bytes
+= len
;
2092 elem
= NEXT_RX(elem
);
2093 this = &rxbase
[elem
];
2097 printk(KERN_INFO
"%s: Memory squeeze, deferring packet.\n", hp
->dev
->name
);
2101 static irqreturn_t
happy_meal_interrupt(int irq
, void *dev_id
)
2103 struct net_device
*dev
= dev_id
;
2104 struct happy_meal
*hp
= netdev_priv(dev
);
2105 u32 happy_status
= hme_read32(hp
, hp
->gregs
+ GREG_STAT
);
2107 HMD(("happy_meal_interrupt: status=%08x ", happy_status
));
2109 spin_lock(&hp
->happy_lock
);
2111 if (happy_status
& GREG_STAT_ERRORS
) {
2113 if (happy_meal_is_not_so_happy(hp
, /* un- */ happy_status
))
2117 if (happy_status
& GREG_STAT_MIFIRQ
) {
2119 happy_meal_mif_interrupt(hp
);
2122 if (happy_status
& GREG_STAT_TXALL
) {
2127 if (happy_status
& GREG_STAT_RXTOHOST
) {
2129 happy_meal_rx(hp
, dev
);
2134 spin_unlock(&hp
->happy_lock
);
2140 static irqreturn_t
quattro_sbus_interrupt(int irq
, void *cookie
)
2142 struct quattro
*qp
= (struct quattro
*) cookie
;
2145 for (i
= 0; i
< 4; i
++) {
2146 struct net_device
*dev
= qp
->happy_meals
[i
];
2147 struct happy_meal
*hp
= dev
->priv
;
2148 u32 happy_status
= hme_read32(hp
, hp
->gregs
+ GREG_STAT
);
2150 HMD(("quattro_interrupt: status=%08x ", happy_status
));
2152 if (!(happy_status
& (GREG_STAT_ERRORS
|
2155 GREG_STAT_RXTOHOST
)))
2158 spin_lock(&hp
->happy_lock
);
2160 if (happy_status
& GREG_STAT_ERRORS
) {
2162 if (happy_meal_is_not_so_happy(hp
, happy_status
))
2166 if (happy_status
& GREG_STAT_MIFIRQ
) {
2168 happy_meal_mif_interrupt(hp
);
2171 if (happy_status
& GREG_STAT_TXALL
) {
2176 if (happy_status
& GREG_STAT_RXTOHOST
) {
2178 happy_meal_rx(hp
, dev
);
2182 spin_unlock(&hp
->happy_lock
);
2190 static int happy_meal_open(struct net_device
*dev
)
2192 struct happy_meal
*hp
= dev
->priv
;
2195 HMD(("happy_meal_open: "));
2197 /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2198 * into a single source which we register handling at probe time.
2200 if ((hp
->happy_flags
& (HFLAG_QUATTRO
|HFLAG_PCI
)) != HFLAG_QUATTRO
) {
2201 if (request_irq(dev
->irq
, &happy_meal_interrupt
,
2202 IRQF_SHARED
, dev
->name
, (void *)dev
)) {
2204 printk(KERN_ERR
"happy_meal(SBUS): Can't order irq %d to go.\n",
2211 HMD(("to happy_meal_init\n"));
2213 spin_lock_irq(&hp
->happy_lock
);
2214 res
= happy_meal_init(hp
);
2215 spin_unlock_irq(&hp
->happy_lock
);
2217 if (res
&& ((hp
->happy_flags
& (HFLAG_QUATTRO
|HFLAG_PCI
)) != HFLAG_QUATTRO
))
2218 free_irq(dev
->irq
, dev
);
2222 static int happy_meal_close(struct net_device
*dev
)
2224 struct happy_meal
*hp
= dev
->priv
;
2226 spin_lock_irq(&hp
->happy_lock
);
2227 happy_meal_stop(hp
, hp
->gregs
);
2228 happy_meal_clean_rings(hp
);
2230 /* If auto-negotiation timer is running, kill it. */
2231 del_timer(&hp
->happy_timer
);
2233 spin_unlock_irq(&hp
->happy_lock
);
2235 /* On Quattro QFE cards, all hme interrupts are concentrated
2236 * into a single source which we register handling at probe
2237 * time and never unregister.
2239 if ((hp
->happy_flags
& (HFLAG_QUATTRO
|HFLAG_PCI
)) != HFLAG_QUATTRO
)
2240 free_irq(dev
->irq
, dev
);
2246 #define SXD(x) printk x
2251 static void happy_meal_tx_timeout(struct net_device
*dev
)
2253 struct happy_meal
*hp
= dev
->priv
;
2255 printk (KERN_ERR
"%s: transmit timed out, resetting\n", dev
->name
);
2257 printk (KERN_ERR
"%s: Happy Status %08x TX[%08x:%08x]\n", dev
->name
,
2258 hme_read32(hp
, hp
->gregs
+ GREG_STAT
),
2259 hme_read32(hp
, hp
->etxregs
+ ETX_CFG
),
2260 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
));
2262 spin_lock_irq(&hp
->happy_lock
);
2263 happy_meal_init(hp
);
2264 spin_unlock_irq(&hp
->happy_lock
);
2266 netif_wake_queue(dev
);
2269 static int happy_meal_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2271 struct happy_meal
*hp
= dev
->priv
;
2275 tx_flags
= TXFLAG_OWN
;
2276 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2277 const u32 csum_start_off
= skb_transport_offset(skb
);
2278 const u32 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
2280 tx_flags
= (TXFLAG_OWN
| TXFLAG_CSENABLE
|
2281 ((csum_start_off
<< 14) & TXFLAG_CSBUFBEGIN
) |
2282 ((csum_stuff_off
<< 20) & TXFLAG_CSLOCATION
));
2285 spin_lock_irq(&hp
->happy_lock
);
2287 if (TX_BUFFS_AVAIL(hp
) <= (skb_shinfo(skb
)->nr_frags
+ 1)) {
2288 netif_stop_queue(dev
);
2289 spin_unlock_irq(&hp
->happy_lock
);
2290 printk(KERN_ERR
"%s: BUG! Tx Ring full when queue awake!\n",
2296 SXD(("SX<l[%d]e[%d]>", len
, entry
));
2297 hp
->tx_skbs
[entry
] = skb
;
2299 if (skb_shinfo(skb
)->nr_frags
== 0) {
2303 mapping
= hme_dma_map(hp
, skb
->data
, len
, DMA_TODEVICE
);
2304 tx_flags
|= (TXFLAG_SOP
| TXFLAG_EOP
);
2305 hme_write_txd(hp
, &hp
->happy_block
->happy_meal_txd
[entry
],
2306 (tx_flags
| (len
& TXFLAG_SIZE
)),
2308 entry
= NEXT_TX(entry
);
2310 u32 first_len
, first_mapping
;
2311 int frag
, first_entry
= entry
;
2313 /* We must give this initial chunk to the device last.
2314 * Otherwise we could race with the device.
2316 first_len
= skb_headlen(skb
);
2317 first_mapping
= hme_dma_map(hp
, skb
->data
, first_len
, DMA_TODEVICE
);
2318 entry
= NEXT_TX(entry
);
2320 for (frag
= 0; frag
< skb_shinfo(skb
)->nr_frags
; frag
++) {
2321 skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[frag
];
2322 u32 len
, mapping
, this_txflags
;
2324 len
= this_frag
->size
;
2325 mapping
= hme_dma_map(hp
,
2326 ((void *) page_address(this_frag
->page
) +
2327 this_frag
->page_offset
),
2329 this_txflags
= tx_flags
;
2330 if (frag
== skb_shinfo(skb
)->nr_frags
- 1)
2331 this_txflags
|= TXFLAG_EOP
;
2332 hme_write_txd(hp
, &hp
->happy_block
->happy_meal_txd
[entry
],
2333 (this_txflags
| (len
& TXFLAG_SIZE
)),
2335 entry
= NEXT_TX(entry
);
2337 hme_write_txd(hp
, &hp
->happy_block
->happy_meal_txd
[first_entry
],
2338 (tx_flags
| TXFLAG_SOP
| (first_len
& TXFLAG_SIZE
)),
2344 if (TX_BUFFS_AVAIL(hp
) <= (MAX_SKB_FRAGS
+ 1))
2345 netif_stop_queue(dev
);
2348 hme_write32(hp
, hp
->etxregs
+ ETX_PENDING
, ETX_TP_DMAWAKEUP
);
2350 spin_unlock_irq(&hp
->happy_lock
);
2352 dev
->trans_start
= jiffies
;
2354 tx_add_log(hp
, TXLOG_ACTION_TXMIT
, 0);
2358 static struct net_device_stats
*happy_meal_get_stats(struct net_device
*dev
)
2360 struct happy_meal
*hp
= dev
->priv
;
2362 spin_lock_irq(&hp
->happy_lock
);
2363 happy_meal_get_counters(hp
, hp
->bigmacregs
);
2364 spin_unlock_irq(&hp
->happy_lock
);
2366 return &hp
->net_stats
;
2369 static void happy_meal_set_multicast(struct net_device
*dev
)
2371 struct happy_meal
*hp
= dev
->priv
;
2372 void __iomem
*bregs
= hp
->bigmacregs
;
2373 struct dev_mc_list
*dmi
= dev
->mc_list
;
2378 spin_lock_irq(&hp
->happy_lock
);
2380 netif_stop_queue(dev
);
2382 if ((dev
->flags
& IFF_ALLMULTI
) || (dev
->mc_count
> 64)) {
2383 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, 0xffff);
2384 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, 0xffff);
2385 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, 0xffff);
2386 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, 0xffff);
2387 } else if (dev
->flags
& IFF_PROMISC
) {
2388 hme_write32(hp
, bregs
+ BMAC_RXCFG
,
2389 hme_read32(hp
, bregs
+ BMAC_RXCFG
) | BIGMAC_RXCFG_PMISC
);
2393 for (i
= 0; i
< 4; i
++)
2396 for (i
= 0; i
< dev
->mc_count
; i
++) {
2397 addrs
= dmi
->dmi_addr
;
2403 crc
= ether_crc_le(6, addrs
);
2405 hash_table
[crc
>> 4] |= 1 << (crc
& 0xf);
2407 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, hash_table
[0]);
2408 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, hash_table
[1]);
2409 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, hash_table
[2]);
2410 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, hash_table
[3]);
2413 netif_wake_queue(dev
);
2415 spin_unlock_irq(&hp
->happy_lock
);
2418 /* Ethtool support... */
2419 static int hme_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2421 struct happy_meal
*hp
= dev
->priv
;
2424 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2425 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2426 SUPPORTED_Autoneg
| SUPPORTED_TP
| SUPPORTED_MII
);
2428 /* XXX hardcoded stuff for now */
2429 cmd
->port
= PORT_TP
; /* XXX no MII support */
2430 cmd
->transceiver
= XCVR_INTERNAL
; /* XXX no external xcvr support */
2431 cmd
->phy_address
= 0; /* XXX fixed PHYAD */
2433 /* Record PHY settings. */
2434 spin_lock_irq(&hp
->happy_lock
);
2435 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, hp
->tcvregs
, MII_BMCR
);
2436 hp
->sw_lpa
= happy_meal_tcvr_read(hp
, hp
->tcvregs
, MII_LPA
);
2437 spin_unlock_irq(&hp
->happy_lock
);
2439 if (hp
->sw_bmcr
& BMCR_ANENABLE
) {
2440 cmd
->autoneg
= AUTONEG_ENABLE
;
2442 (hp
->sw_lpa
& (LPA_100HALF
| LPA_100FULL
)) ?
2443 SPEED_100
: SPEED_10
;
2444 if (cmd
->speed
== SPEED_100
)
2446 (hp
->sw_lpa
& (LPA_100FULL
)) ?
2447 DUPLEX_FULL
: DUPLEX_HALF
;
2450 (hp
->sw_lpa
& (LPA_10FULL
)) ?
2451 DUPLEX_FULL
: DUPLEX_HALF
;
2453 cmd
->autoneg
= AUTONEG_DISABLE
;
2455 (hp
->sw_bmcr
& BMCR_SPEED100
) ?
2456 SPEED_100
: SPEED_10
;
2458 (hp
->sw_bmcr
& BMCR_FULLDPLX
) ?
2459 DUPLEX_FULL
: DUPLEX_HALF
;
2464 static int hme_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2466 struct happy_meal
*hp
= dev
->priv
;
2468 /* Verify the settings we care about. */
2469 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
2470 cmd
->autoneg
!= AUTONEG_DISABLE
)
2472 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
2473 ((cmd
->speed
!= SPEED_100
&&
2474 cmd
->speed
!= SPEED_10
) ||
2475 (cmd
->duplex
!= DUPLEX_HALF
&&
2476 cmd
->duplex
!= DUPLEX_FULL
)))
2479 /* Ok, do it to it. */
2480 spin_lock_irq(&hp
->happy_lock
);
2481 del_timer(&hp
->happy_timer
);
2482 happy_meal_begin_auto_negotiation(hp
, hp
->tcvregs
, cmd
);
2483 spin_unlock_irq(&hp
->happy_lock
);
2488 static void hme_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
2490 struct happy_meal
*hp
= dev
->priv
;
2492 strcpy(info
->driver
, "sunhme");
2493 strcpy(info
->version
, "2.02");
2494 if (hp
->happy_flags
& HFLAG_PCI
) {
2495 struct pci_dev
*pdev
= hp
->happy_dev
;
2496 strcpy(info
->bus_info
, pci_name(pdev
));
2500 struct sbus_dev
*sdev
= hp
->happy_dev
;
2501 sprintf(info
->bus_info
, "SBUS:%d",
2507 static u32
hme_get_link(struct net_device
*dev
)
2509 struct happy_meal
*hp
= dev
->priv
;
2511 spin_lock_irq(&hp
->happy_lock
);
2512 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, hp
->tcvregs
, MII_BMCR
);
2513 spin_unlock_irq(&hp
->happy_lock
);
2515 return (hp
->sw_bmsr
& BMSR_LSTATUS
);
2518 static const struct ethtool_ops hme_ethtool_ops
= {
2519 .get_settings
= hme_get_settings
,
2520 .set_settings
= hme_set_settings
,
2521 .get_drvinfo
= hme_get_drvinfo
,
2522 .get_link
= hme_get_link
,
2525 static int hme_version_printed
;
2528 void __devinit
quattro_get_ranges(struct quattro
*qp
)
2530 struct sbus_dev
*sdev
= qp
->quattro_dev
;
2533 err
= prom_getproperty(sdev
->prom_node
,
2535 (char *)&qp
->ranges
[0],
2536 sizeof(qp
->ranges
));
2537 if (err
== 0 || err
== -1) {
2541 qp
->nranges
= (err
/ sizeof(struct linux_prom_ranges
));
2544 static void __devinit
quattro_apply_ranges(struct quattro
*qp
, struct happy_meal
*hp
)
2546 struct sbus_dev
*sdev
= hp
->happy_dev
;
2549 for (rng
= 0; rng
< qp
->nranges
; rng
++) {
2550 struct linux_prom_ranges
*rngp
= &qp
->ranges
[rng
];
2553 for (reg
= 0; reg
< 5; reg
++) {
2554 if (sdev
->reg_addrs
[reg
].which_io
==
2555 rngp
->ot_child_space
)
2561 sdev
->reg_addrs
[reg
].which_io
= rngp
->ot_parent_space
;
2562 sdev
->reg_addrs
[reg
].phys_addr
+= rngp
->ot_parent_base
;
2566 /* Given a happy meal sbus device, find it's quattro parent.
2567 * If none exist, allocate and return a new one.
2569 * Return NULL on failure.
2571 static struct quattro
* __devinit
quattro_sbus_find(struct sbus_dev
*goal_sdev
)
2573 struct sbus_dev
*sdev
;
2577 for (qp
= qfe_sbus_list
; qp
!= NULL
; qp
= qp
->next
) {
2578 for (i
= 0, sdev
= qp
->quattro_dev
;
2579 (sdev
!= NULL
) && (i
< 4);
2580 sdev
= sdev
->next
, i
++) {
2581 if (sdev
== goal_sdev
)
2586 qp
= kmalloc(sizeof(struct quattro
), GFP_KERNEL
);
2590 for (i
= 0; i
< 4; i
++)
2591 qp
->happy_meals
[i
] = NULL
;
2593 qp
->quattro_dev
= goal_sdev
;
2594 qp
->next
= qfe_sbus_list
;
2596 quattro_get_ranges(qp
);
2601 /* After all quattro cards have been probed, we call these functions
2602 * to register the IRQ handlers.
2604 static void __init
quattro_sbus_register_irqs(void)
2608 for (qp
= qfe_sbus_list
; qp
!= NULL
; qp
= qp
->next
) {
2609 struct sbus_dev
*sdev
= qp
->quattro_dev
;
2612 err
= request_irq(sdev
->irqs
[0],
2613 quattro_sbus_interrupt
,
2614 IRQF_SHARED
, "Quattro",
2617 printk(KERN_ERR
"Quattro: Fatal IRQ registery error %d.\n", err
);
2618 panic("QFE request irq");
2623 static void quattro_sbus_free_irqs(void)
2627 for (qp
= qfe_sbus_list
; qp
!= NULL
; qp
= qp
->next
) {
2628 struct sbus_dev
*sdev
= qp
->quattro_dev
;
2630 free_irq(sdev
->irqs
[0], qp
);
2633 #endif /* CONFIG_SBUS */
2636 static struct quattro
* __devinit
quattro_pci_find(struct pci_dev
*pdev
)
2638 struct pci_dev
*bdev
= pdev
->bus
->self
;
2641 if (!bdev
) return NULL
;
2642 for (qp
= qfe_pci_list
; qp
!= NULL
; qp
= qp
->next
) {
2643 struct pci_dev
*qpdev
= qp
->quattro_dev
;
2648 qp
= kmalloc(sizeof(struct quattro
), GFP_KERNEL
);
2652 for (i
= 0; i
< 4; i
++)
2653 qp
->happy_meals
[i
] = NULL
;
2655 qp
->quattro_dev
= bdev
;
2656 qp
->next
= qfe_pci_list
;
2659 /* No range tricks necessary on PCI. */
2664 #endif /* CONFIG_PCI */
2667 static int __devinit
happy_meal_sbus_probe_one(struct sbus_dev
*sdev
, int is_qfe
)
2669 struct device_node
*dp
= sdev
->ofdev
.node
;
2670 struct quattro
*qp
= NULL
;
2671 struct happy_meal
*hp
;
2672 struct net_device
*dev
;
2673 int i
, qfe_slot
= -1;
2675 DECLARE_MAC_BUF(mac
);
2678 qp
= quattro_sbus_find(sdev
);
2681 for (qfe_slot
= 0; qfe_slot
< 4; qfe_slot
++)
2682 if (qp
->happy_meals
[qfe_slot
] == NULL
)
2689 dev
= alloc_etherdev(sizeof(struct happy_meal
));
2692 SET_NETDEV_DEV(dev
, &sdev
->ofdev
.dev
);
2694 if (hme_version_printed
++ == 0)
2695 printk(KERN_INFO
"%s", version
);
2697 /* If user did not specify a MAC address specifically, use
2698 * the Quattro local-mac-address property...
2700 for (i
= 0; i
< 6; i
++) {
2701 if (macaddr
[i
] != 0)
2704 if (i
< 6) { /* a mac address was given */
2705 for (i
= 0; i
< 6; i
++)
2706 dev
->dev_addr
[i
] = macaddr
[i
];
2709 const unsigned char *addr
;
2712 addr
= of_get_property(dp
, "local-mac-address", &len
);
2714 if (qfe_slot
!= -1 && addr
&& len
== 6)
2715 memcpy(dev
->dev_addr
, addr
, 6);
2717 memcpy(dev
->dev_addr
, idprom
->id_ethaddr
, 6);
2722 hp
->happy_dev
= sdev
;
2724 spin_lock_init(&hp
->happy_lock
);
2727 if (sdev
->num_registers
!= 5) {
2728 printk(KERN_ERR
"happymeal: Device needs 5 regs, has %d.\n",
2729 sdev
->num_registers
);
2730 goto err_out_free_netdev
;
2734 hp
->qfe_parent
= qp
;
2735 hp
->qfe_ent
= qfe_slot
;
2736 qp
->happy_meals
[qfe_slot
] = dev
;
2737 quattro_apply_ranges(qp
, hp
);
2740 hp
->gregs
= sbus_ioremap(&sdev
->resource
[0], 0,
2741 GREG_REG_SIZE
, "HME Global Regs");
2743 printk(KERN_ERR
"happymeal: Cannot map global registers.\n");
2744 goto err_out_free_netdev
;
2747 hp
->etxregs
= sbus_ioremap(&sdev
->resource
[1], 0,
2748 ETX_REG_SIZE
, "HME TX Regs");
2750 printk(KERN_ERR
"happymeal: Cannot map MAC TX registers.\n");
2751 goto err_out_iounmap
;
2754 hp
->erxregs
= sbus_ioremap(&sdev
->resource
[2], 0,
2755 ERX_REG_SIZE
, "HME RX Regs");
2757 printk(KERN_ERR
"happymeal: Cannot map MAC RX registers.\n");
2758 goto err_out_iounmap
;
2761 hp
->bigmacregs
= sbus_ioremap(&sdev
->resource
[3], 0,
2762 BMAC_REG_SIZE
, "HME BIGMAC Regs");
2763 if (!hp
->bigmacregs
) {
2764 printk(KERN_ERR
"happymeal: Cannot map BIGMAC registers.\n");
2765 goto err_out_iounmap
;
2768 hp
->tcvregs
= sbus_ioremap(&sdev
->resource
[4], 0,
2769 TCVR_REG_SIZE
, "HME Tranceiver Regs");
2771 printk(KERN_ERR
"happymeal: Cannot map TCVR registers.\n");
2772 goto err_out_iounmap
;
2775 hp
->hm_revision
= of_getintprop_default(dp
, "hm-rev", 0xff);
2776 if (hp
->hm_revision
== 0xff)
2777 hp
->hm_revision
= 0xa0;
2779 /* Now enable the feature flags we can. */
2780 if (hp
->hm_revision
== 0x20 || hp
->hm_revision
== 0x21)
2781 hp
->happy_flags
= HFLAG_20_21
;
2782 else if (hp
->hm_revision
!= 0xa0)
2783 hp
->happy_flags
= HFLAG_NOT_A0
;
2786 hp
->happy_flags
|= HFLAG_QUATTRO
;
2788 /* Get the supported DVMA burst sizes from our Happy SBUS. */
2789 hp
->happy_bursts
= of_getintprop_default(sdev
->bus
->ofdev
.node
,
2790 "burst-sizes", 0x00);
2792 hp
->happy_block
= sbus_alloc_consistent(hp
->happy_dev
,
2796 if (!hp
->happy_block
) {
2797 printk(KERN_ERR
"happymeal: Cannot allocate descriptors.\n");
2798 goto err_out_iounmap
;
2801 /* Force check of the link first time we are brought up. */
2804 /* Force timer state to 'asleep' with count of zero. */
2805 hp
->timer_state
= asleep
;
2806 hp
->timer_ticks
= 0;
2808 init_timer(&hp
->happy_timer
);
2811 dev
->open
= &happy_meal_open
;
2812 dev
->stop
= &happy_meal_close
;
2813 dev
->hard_start_xmit
= &happy_meal_start_xmit
;
2814 dev
->get_stats
= &happy_meal_get_stats
;
2815 dev
->set_multicast_list
= &happy_meal_set_multicast
;
2816 dev
->tx_timeout
= &happy_meal_tx_timeout
;
2817 dev
->watchdog_timeo
= 5*HZ
;
2818 dev
->ethtool_ops
= &hme_ethtool_ops
;
2820 /* Happy Meal can do it all... */
2821 dev
->features
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
2823 dev
->irq
= sdev
->irqs
[0];
2825 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2826 /* Hook up PCI register/dma accessors. */
2827 hp
->read_desc32
= sbus_hme_read_desc32
;
2828 hp
->write_txd
= sbus_hme_write_txd
;
2829 hp
->write_rxd
= sbus_hme_write_rxd
;
2830 hp
->dma_map
= (u32 (*)(void *, void *, long, int))sbus_map_single
;
2831 hp
->dma_unmap
= (void (*)(void *, u32
, long, int))sbus_unmap_single
;
2832 hp
->dma_sync_for_cpu
= (void (*)(void *, u32
, long, int))
2833 sbus_dma_sync_single_for_cpu
;
2834 hp
->dma_sync_for_device
= (void (*)(void *, u32
, long, int))
2835 sbus_dma_sync_single_for_device
;
2836 hp
->read32
= sbus_hme_read32
;
2837 hp
->write32
= sbus_hme_write32
;
2840 /* Grrr, Happy Meal comes up by default not advertising
2841 * full duplex 100baseT capabilities, fix this.
2843 spin_lock_irq(&hp
->happy_lock
);
2844 happy_meal_set_initial_advertisement(hp
);
2845 spin_unlock_irq(&hp
->happy_lock
);
2847 if (register_netdev(hp
->dev
)) {
2848 printk(KERN_ERR
"happymeal: Cannot register net device, "
2850 goto err_out_free_consistent
;
2853 dev_set_drvdata(&sdev
->ofdev
.dev
, hp
);
2856 printk(KERN_INFO
"%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2857 dev
->name
, qfe_slot
);
2859 printk(KERN_INFO
"%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2862 printk("%s\n", print_mac(mac
, dev
->dev_addr
));
2866 err_out_free_consistent
:
2867 sbus_free_consistent(hp
->happy_dev
,
2874 sbus_iounmap(hp
->gregs
, GREG_REG_SIZE
);
2876 sbus_iounmap(hp
->etxregs
, ETX_REG_SIZE
);
2878 sbus_iounmap(hp
->erxregs
, ERX_REG_SIZE
);
2880 sbus_iounmap(hp
->bigmacregs
, BMAC_REG_SIZE
);
2882 sbus_iounmap(hp
->tcvregs
, TCVR_REG_SIZE
);
2884 err_out_free_netdev
:
2893 #ifndef CONFIG_SPARC
2894 static int is_quattro_p(struct pci_dev
*pdev
)
2896 struct pci_dev
*busdev
= pdev
->bus
->self
;
2897 struct list_head
*tmp
;
2900 if (busdev
== NULL
||
2901 busdev
->vendor
!= PCI_VENDOR_ID_DEC
||
2902 busdev
->device
!= PCI_DEVICE_ID_DEC_21153
)
2906 tmp
= pdev
->bus
->devices
.next
;
2907 while (tmp
!= &pdev
->bus
->devices
) {
2908 struct pci_dev
*this_pdev
= pci_dev_b(tmp
);
2910 if (this_pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
2911 this_pdev
->device
== PCI_DEVICE_ID_SUN_HAPPYMEAL
)
2923 /* Fetch MAC address from vital product data of PCI ROM. */
2924 static int find_eth_addr_in_vpd(void __iomem
*rom_base
, int len
, int index
, unsigned char *dev_addr
)
2928 for (this_offset
= 0x20; this_offset
< len
; this_offset
++) {
2929 void __iomem
*p
= rom_base
+ this_offset
;
2931 if (readb(p
+ 0) != 0x90 ||
2932 readb(p
+ 1) != 0x00 ||
2933 readb(p
+ 2) != 0x09 ||
2934 readb(p
+ 3) != 0x4e ||
2935 readb(p
+ 4) != 0x41 ||
2936 readb(p
+ 5) != 0x06)
2945 for (i
= 0; i
< 6; i
++)
2946 dev_addr
[i
] = readb(p
+ i
);
2954 static void get_hme_mac_nonsparc(struct pci_dev
*pdev
, unsigned char *dev_addr
)
2957 void __iomem
*p
= pci_map_rom(pdev
, &size
);
2963 if (is_quattro_p(pdev
))
2964 index
= PCI_SLOT(pdev
->devfn
);
2966 found
= readb(p
) == 0x55 &&
2967 readb(p
+ 1) == 0xaa &&
2968 find_eth_addr_in_vpd(p
, (64 * 1024), index
, dev_addr
);
2969 pci_unmap_rom(pdev
, p
);
2974 /* Sun MAC prefix then 3 random bytes. */
2978 get_random_bytes(&dev_addr
[3], 3);
2981 #endif /* !(CONFIG_SPARC) */
2983 static int __devinit
happy_meal_pci_probe(struct pci_dev
*pdev
,
2984 const struct pci_device_id
*ent
)
2986 struct quattro
*qp
= NULL
;
2988 struct device_node
*dp
;
2990 struct happy_meal
*hp
;
2991 struct net_device
*dev
;
2992 void __iomem
*hpreg_base
;
2993 unsigned long hpreg_res
;
2994 int i
, qfe_slot
= -1;
2997 DECLARE_MAC_BUF(mac
);
2999 /* Now make sure pci_dev cookie is there. */
3001 dp
= pci_device_to_OF_node(pdev
);
3002 strcpy(prom_name
, dp
->name
);
3004 if (is_quattro_p(pdev
))
3005 strcpy(prom_name
, "SUNW,qfe");
3007 strcpy(prom_name
, "SUNW,hme");
3012 if (pci_enable_device(pdev
))
3014 pci_set_master(pdev
);
3016 if (!strcmp(prom_name
, "SUNW,qfe") || !strcmp(prom_name
, "qfe")) {
3017 qp
= quattro_pci_find(pdev
);
3020 for (qfe_slot
= 0; qfe_slot
< 4; qfe_slot
++)
3021 if (qp
->happy_meals
[qfe_slot
] == NULL
)
3027 dev
= alloc_etherdev(sizeof(struct happy_meal
));
3031 SET_NETDEV_DEV(dev
, &pdev
->dev
);
3033 if (hme_version_printed
++ == 0)
3034 printk(KERN_INFO
"%s", version
);
3036 dev
->base_addr
= (long) pdev
;
3038 hp
= (struct happy_meal
*)dev
->priv
;
3039 memset(hp
, 0, sizeof(*hp
));
3041 hp
->happy_dev
= pdev
;
3043 spin_lock_init(&hp
->happy_lock
);
3046 hp
->qfe_parent
= qp
;
3047 hp
->qfe_ent
= qfe_slot
;
3048 qp
->happy_meals
[qfe_slot
] = dev
;
3051 hpreg_res
= pci_resource_start(pdev
, 0);
3053 if ((pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) != 0) {
3054 printk(KERN_ERR
"happymeal(PCI): Cannot find proper PCI device base address.\n");
3055 goto err_out_clear_quattro
;
3057 if (pci_request_regions(pdev
, DRV_NAME
)) {
3058 printk(KERN_ERR
"happymeal(PCI): Cannot obtain PCI resources, "
3060 goto err_out_clear_quattro
;
3063 if ((hpreg_base
= ioremap(hpreg_res
, 0x8000)) == NULL
) {
3064 printk(KERN_ERR
"happymeal(PCI): Unable to remap card memory.\n");
3065 goto err_out_free_res
;
3068 for (i
= 0; i
< 6; i
++) {
3069 if (macaddr
[i
] != 0)
3072 if (i
< 6) { /* a mac address was given */
3073 for (i
= 0; i
< 6; i
++)
3074 dev
->dev_addr
[i
] = macaddr
[i
];
3078 const unsigned char *addr
;
3081 if (qfe_slot
!= -1 &&
3082 (addr
= of_get_property(dp
,
3083 "local-mac-address", &len
)) != NULL
3085 memcpy(dev
->dev_addr
, addr
, 6);
3087 memcpy(dev
->dev_addr
, idprom
->id_ethaddr
, 6);
3090 get_hme_mac_nonsparc(pdev
, &dev
->dev_addr
[0]);
3094 /* Layout registers. */
3095 hp
->gregs
= (hpreg_base
+ 0x0000UL
);
3096 hp
->etxregs
= (hpreg_base
+ 0x2000UL
);
3097 hp
->erxregs
= (hpreg_base
+ 0x4000UL
);
3098 hp
->bigmacregs
= (hpreg_base
+ 0x6000UL
);
3099 hp
->tcvregs
= (hpreg_base
+ 0x7000UL
);
3102 hp
->hm_revision
= of_getintprop_default(dp
, "hm-rev", 0xff);
3103 if (hp
->hm_revision
== 0xff)
3104 hp
->hm_revision
= 0xc0 | (pdev
->revision
& 0x0f);
3106 /* works with this on non-sparc hosts */
3107 hp
->hm_revision
= 0x20;
3110 /* Now enable the feature flags we can. */
3111 if (hp
->hm_revision
== 0x20 || hp
->hm_revision
== 0x21)
3112 hp
->happy_flags
= HFLAG_20_21
;
3113 else if (hp
->hm_revision
!= 0xa0 && hp
->hm_revision
!= 0xc0)
3114 hp
->happy_flags
= HFLAG_NOT_A0
;
3117 hp
->happy_flags
|= HFLAG_QUATTRO
;
3119 /* And of course, indicate this is PCI. */
3120 hp
->happy_flags
|= HFLAG_PCI
;
3123 /* Assume PCI happy meals can handle all burst sizes. */
3124 hp
->happy_bursts
= DMA_BURSTBITS
;
3127 hp
->happy_block
= (struct hmeal_init_block
*)
3128 pci_alloc_consistent(pdev
, PAGE_SIZE
, &hp
->hblock_dvma
);
3131 if (!hp
->happy_block
) {
3132 printk(KERN_ERR
"happymeal(PCI): Cannot get hme init block.\n");
3133 goto err_out_iounmap
;
3137 hp
->timer_state
= asleep
;
3138 hp
->timer_ticks
= 0;
3140 init_timer(&hp
->happy_timer
);
3143 dev
->open
= &happy_meal_open
;
3144 dev
->stop
= &happy_meal_close
;
3145 dev
->hard_start_xmit
= &happy_meal_start_xmit
;
3146 dev
->get_stats
= &happy_meal_get_stats
;
3147 dev
->set_multicast_list
= &happy_meal_set_multicast
;
3148 dev
->tx_timeout
= &happy_meal_tx_timeout
;
3149 dev
->watchdog_timeo
= 5*HZ
;
3150 dev
->ethtool_ops
= &hme_ethtool_ops
;
3151 dev
->irq
= pdev
->irq
;
3154 /* Happy Meal can do it all... */
3155 dev
->features
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
3157 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3158 /* Hook up PCI register/dma accessors. */
3159 hp
->read_desc32
= pci_hme_read_desc32
;
3160 hp
->write_txd
= pci_hme_write_txd
;
3161 hp
->write_rxd
= pci_hme_write_rxd
;
3162 hp
->dma_map
= (u32 (*)(void *, void *, long, int))pci_map_single
;
3163 hp
->dma_unmap
= (void (*)(void *, u32
, long, int))pci_unmap_single
;
3164 hp
->dma_sync_for_cpu
= (void (*)(void *, u32
, long, int))
3165 pci_dma_sync_single_for_cpu
;
3166 hp
->dma_sync_for_device
= (void (*)(void *, u32
, long, int))
3167 pci_dma_sync_single_for_device
;
3168 hp
->read32
= pci_hme_read32
;
3169 hp
->write32
= pci_hme_write32
;
3172 /* Grrr, Happy Meal comes up by default not advertising
3173 * full duplex 100baseT capabilities, fix this.
3175 spin_lock_irq(&hp
->happy_lock
);
3176 happy_meal_set_initial_advertisement(hp
);
3177 spin_unlock_irq(&hp
->happy_lock
);
3179 if (register_netdev(hp
->dev
)) {
3180 printk(KERN_ERR
"happymeal(PCI): Cannot register net device, "
3182 goto err_out_iounmap
;
3185 dev_set_drvdata(&pdev
->dev
, hp
);
3188 struct pci_dev
*qpdev
= qp
->quattro_dev
;
3191 if (!strncmp(dev
->name
, "eth", 3)) {
3192 int i
= simple_strtoul(dev
->name
+ 3, NULL
, 10);
3193 sprintf(prom_name
, "-%d", i
+ 3);
3195 printk(KERN_INFO
"%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev
->name
, prom_name
);
3196 if (qpdev
->vendor
== PCI_VENDOR_ID_DEC
&&
3197 qpdev
->device
== PCI_DEVICE_ID_DEC_21153
)
3198 printk("DEC 21153 PCI Bridge\n");
3200 printk("unknown bridge %04x.%04x\n",
3201 qpdev
->vendor
, qpdev
->device
);
3205 printk(KERN_INFO
"%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3206 dev
->name
, qfe_slot
);
3208 printk(KERN_INFO
"%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3211 printk("%s\n", print_mac(mac
, dev
->dev_addr
));
3219 pci_release_regions(pdev
);
3221 err_out_clear_quattro
:
3223 qp
->happy_meals
[qfe_slot
] = NULL
;
3231 static void __devexit
happy_meal_pci_remove(struct pci_dev
*pdev
)
3233 struct happy_meal
*hp
= dev_get_drvdata(&pdev
->dev
);
3234 struct net_device
*net_dev
= hp
->dev
;
3236 unregister_netdev(net_dev
);
3238 pci_free_consistent(hp
->happy_dev
,
3243 pci_release_regions(hp
->happy_dev
);
3245 free_netdev(net_dev
);
3247 dev_set_drvdata(&pdev
->dev
, NULL
);
3250 static struct pci_device_id happymeal_pci_ids
[] = {
3251 { PCI_DEVICE(PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_HAPPYMEAL
) },
3252 { } /* Terminating entry */
3255 MODULE_DEVICE_TABLE(pci
, happymeal_pci_ids
);
3257 static struct pci_driver hme_pci_driver
= {
3259 .id_table
= happymeal_pci_ids
,
3260 .probe
= happy_meal_pci_probe
,
3261 .remove
= __devexit_p(happy_meal_pci_remove
),
3264 static int __init
happy_meal_pci_init(void)
3266 return pci_register_driver(&hme_pci_driver
);
3269 static void happy_meal_pci_exit(void)
3271 pci_unregister_driver(&hme_pci_driver
);
3273 while (qfe_pci_list
) {
3274 struct quattro
*qfe
= qfe_pci_list
;
3275 struct quattro
*next
= qfe
->next
;
3279 qfe_pci_list
= next
;
3286 static int __devinit
hme_sbus_probe(struct of_device
*dev
, const struct of_device_id
*match
)
3288 struct sbus_dev
*sdev
= to_sbus_device(&dev
->dev
);
3289 struct device_node
*dp
= dev
->node
;
3290 const char *model
= of_get_property(dp
, "model", NULL
);
3291 int is_qfe
= (match
->data
!= NULL
);
3293 if (!is_qfe
&& model
&& !strcmp(model
, "SUNW,sbus-qfe"))
3296 return happy_meal_sbus_probe_one(sdev
, is_qfe
);
3299 static int __devexit
hme_sbus_remove(struct of_device
*dev
)
3301 struct happy_meal
*hp
= dev_get_drvdata(&dev
->dev
);
3302 struct net_device
*net_dev
= hp
->dev
;
3304 unregister_netdev(net_dev
);
3306 /* XXX qfe parent interrupt... */
3308 sbus_iounmap(hp
->gregs
, GREG_REG_SIZE
);
3309 sbus_iounmap(hp
->etxregs
, ETX_REG_SIZE
);
3310 sbus_iounmap(hp
->erxregs
, ERX_REG_SIZE
);
3311 sbus_iounmap(hp
->bigmacregs
, BMAC_REG_SIZE
);
3312 sbus_iounmap(hp
->tcvregs
, TCVR_REG_SIZE
);
3313 sbus_free_consistent(hp
->happy_dev
,
3318 free_netdev(net_dev
);
3320 dev_set_drvdata(&dev
->dev
, NULL
);
3325 static struct of_device_id hme_sbus_match
[] = {
3340 MODULE_DEVICE_TABLE(of
, hme_sbus_match
);
3342 static struct of_platform_driver hme_sbus_driver
= {
3344 .match_table
= hme_sbus_match
,
3345 .probe
= hme_sbus_probe
,
3346 .remove
= __devexit_p(hme_sbus_remove
),
3349 static int __init
happy_meal_sbus_init(void)
3353 err
= of_register_driver(&hme_sbus_driver
, &sbus_bus_type
);
3355 quattro_sbus_register_irqs();
3360 static void happy_meal_sbus_exit(void)
3362 of_unregister_driver(&hme_sbus_driver
);
3363 quattro_sbus_free_irqs();
3365 while (qfe_sbus_list
) {
3366 struct quattro
*qfe
= qfe_sbus_list
;
3367 struct quattro
*next
= qfe
->next
;
3371 qfe_sbus_list
= next
;
3376 static int __init
happy_meal_probe(void)
3381 err
= happy_meal_sbus_init();
3385 err
= happy_meal_pci_init();
3388 happy_meal_sbus_exit();
3397 static void __exit
happy_meal_exit(void)
3400 happy_meal_sbus_exit();
3403 happy_meal_pci_exit();
3407 module_init(happy_meal_probe
);
3408 module_exit(happy_meal_exit
);