2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/irq.h>
36 #include <linux/module.h>
37 #include <linux/percpu.h>
38 #include <linux/hrtimer.h>
39 #include <linux/notifier.h>
40 #include <linux/syscalls.h>
41 #include <linux/kallsyms.h>
42 #include <linux/interrupt.h>
43 #include <linux/tick.h>
44 #include <linux/seq_file.h>
45 #include <linux/err.h>
47 #include <asm/uaccess.h>
50 * ktime_get - get the monotonic time in ktime_t format
52 * returns the time in ktime_t format
54 ktime_t
ktime_get(void)
60 return timespec_to_ktime(now
);
64 * ktime_get_real - get the real (wall-) time in ktime_t format
66 * returns the time in ktime_t format
68 ktime_t
ktime_get_real(void)
74 return timespec_to_ktime(now
);
77 EXPORT_SYMBOL_GPL(ktime_get_real
);
82 * Note: If we want to add new timer bases, we have to skip the two
83 * clock ids captured by the cpu-timers. We do this by holding empty
84 * entries rather than doing math adjustment of the clock ids.
85 * This ensures that we capture erroneous accesses to these clock ids
86 * rather than moving them into the range of valid clock id's.
88 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
94 .index
= CLOCK_REALTIME
,
95 .get_time
= &ktime_get_real
,
96 .resolution
= KTIME_LOW_RES
,
99 .index
= CLOCK_MONOTONIC
,
100 .get_time
= &ktime_get
,
101 .resolution
= KTIME_LOW_RES
,
107 * ktime_get_ts - get the monotonic clock in timespec format
108 * @ts: pointer to timespec variable
110 * The function calculates the monotonic clock from the realtime
111 * clock and the wall_to_monotonic offset and stores the result
112 * in normalized timespec format in the variable pointed to by @ts.
114 void ktime_get_ts(struct timespec
*ts
)
116 struct timespec tomono
;
120 seq
= read_seqbegin(&xtime_lock
);
122 tomono
= wall_to_monotonic
;
124 } while (read_seqretry(&xtime_lock
, seq
));
126 set_normalized_timespec(ts
, ts
->tv_sec
+ tomono
.tv_sec
,
127 ts
->tv_nsec
+ tomono
.tv_nsec
);
129 EXPORT_SYMBOL_GPL(ktime_get_ts
);
132 * Get the coarse grained time at the softirq based on xtime and
135 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
137 ktime_t xtim
, tomono
;
138 struct timespec xts
, tom
;
142 seq
= read_seqbegin(&xtime_lock
);
144 getnstimeofday(&xts
);
148 tom
= wall_to_monotonic
;
149 } while (read_seqretry(&xtime_lock
, seq
));
151 xtim
= timespec_to_ktime(xts
);
152 tomono
= timespec_to_ktime(tom
);
153 base
->clock_base
[CLOCK_REALTIME
].softirq_time
= xtim
;
154 base
->clock_base
[CLOCK_MONOTONIC
].softirq_time
=
155 ktime_add(xtim
, tomono
);
159 * Helper function to check, whether the timer is running the callback
162 static inline int hrtimer_callback_running(struct hrtimer
*timer
)
164 return timer
->state
& HRTIMER_STATE_CALLBACK
;
168 * Functions and macros which are different for UP/SMP systems are kept in a
174 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
175 * means that all timers which are tied to this base via timer->base are
176 * locked, and the base itself is locked too.
178 * So __run_timers/migrate_timers can safely modify all timers which could
179 * be found on the lists/queues.
181 * When the timer's base is locked, and the timer removed from list, it is
182 * possible to set timer->base = NULL and drop the lock: the timer remains
186 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
187 unsigned long *flags
)
189 struct hrtimer_clock_base
*base
;
193 if (likely(base
!= NULL
)) {
194 spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
195 if (likely(base
== timer
->base
))
197 /* The timer has migrated to another CPU: */
198 spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
205 * Switch the timer base to the current CPU when possible.
207 static inline struct hrtimer_clock_base
*
208 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
210 struct hrtimer_clock_base
*new_base
;
211 struct hrtimer_cpu_base
*new_cpu_base
;
213 new_cpu_base
= &__get_cpu_var(hrtimer_bases
);
214 new_base
= &new_cpu_base
->clock_base
[base
->index
];
216 if (base
!= new_base
) {
218 * We are trying to schedule the timer on the local CPU.
219 * However we can't change timer's base while it is running,
220 * so we keep it on the same CPU. No hassle vs. reprogramming
221 * the event source in the high resolution case. The softirq
222 * code will take care of this when the timer function has
223 * completed. There is no conflict as we hold the lock until
224 * the timer is enqueued.
226 if (unlikely(hrtimer_callback_running(timer
)))
229 /* See the comment in lock_timer_base() */
231 spin_unlock(&base
->cpu_base
->lock
);
232 spin_lock(&new_base
->cpu_base
->lock
);
233 timer
->base
= new_base
;
238 #else /* CONFIG_SMP */
240 static inline struct hrtimer_clock_base
*
241 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
243 struct hrtimer_clock_base
*base
= timer
->base
;
245 spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
250 # define switch_hrtimer_base(t, b) (b)
252 #endif /* !CONFIG_SMP */
255 * Functions for the union type storage format of ktime_t which are
256 * too large for inlining:
258 #if BITS_PER_LONG < 64
259 # ifndef CONFIG_KTIME_SCALAR
261 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
263 * @nsec: the scalar nsec value to add
265 * Returns the sum of kt and nsec in ktime_t format
267 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
271 if (likely(nsec
< NSEC_PER_SEC
)) {
274 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
276 tmp
= ktime_set((long)nsec
, rem
);
279 return ktime_add(kt
, tmp
);
281 # endif /* !CONFIG_KTIME_SCALAR */
284 * Divide a ktime value by a nanosecond value
286 unsigned long ktime_divns(const ktime_t kt
, s64 div
)
291 dclc
= dns
= ktime_to_ns(kt
);
293 /* Make sure the divisor is less than 2^32: */
299 do_div(dclc
, (unsigned long) div
);
301 return (unsigned long) dclc
;
303 #endif /* BITS_PER_LONG >= 64 */
305 /* High resolution timer related functions */
306 #ifdef CONFIG_HIGH_RES_TIMERS
309 * High resolution timer enabled ?
311 static int hrtimer_hres_enabled __read_mostly
= 1;
314 * Enable / Disable high resolution mode
316 static int __init
setup_hrtimer_hres(char *str
)
318 if (!strcmp(str
, "off"))
319 hrtimer_hres_enabled
= 0;
320 else if (!strcmp(str
, "on"))
321 hrtimer_hres_enabled
= 1;
327 __setup("highres=", setup_hrtimer_hres
);
330 * hrtimer_high_res_enabled - query, if the highres mode is enabled
332 static inline int hrtimer_is_hres_enabled(void)
334 return hrtimer_hres_enabled
;
338 * Is the high resolution mode active ?
340 static inline int hrtimer_hres_active(void)
342 return __get_cpu_var(hrtimer_bases
).hres_active
;
346 * Reprogram the event source with checking both queues for the
348 * Called with interrupts disabled and base->lock held
350 static void hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
)
353 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
356 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
358 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
359 struct hrtimer
*timer
;
363 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
364 expires
= ktime_sub(timer
->expires
, base
->offset
);
365 if (expires
.tv64
< cpu_base
->expires_next
.tv64
)
366 cpu_base
->expires_next
= expires
;
369 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
370 tick_program_event(cpu_base
->expires_next
, 1);
374 * Shared reprogramming for clock_realtime and clock_monotonic
376 * When a timer is enqueued and expires earlier than the already enqueued
377 * timers, we have to check, whether it expires earlier than the timer for
378 * which the clock event device was armed.
380 * Called with interrupts disabled and base->cpu_base.lock held
382 static int hrtimer_reprogram(struct hrtimer
*timer
,
383 struct hrtimer_clock_base
*base
)
385 ktime_t
*expires_next
= &__get_cpu_var(hrtimer_bases
).expires_next
;
386 ktime_t expires
= ktime_sub(timer
->expires
, base
->offset
);
390 * When the callback is running, we do not reprogram the clock event
391 * device. The timer callback is either running on a different CPU or
392 * the callback is executed in the hrtimer_interupt context. The
393 * reprogramming is handled either by the softirq, which called the
394 * callback or at the end of the hrtimer_interrupt.
396 if (hrtimer_callback_running(timer
))
399 if (expires
.tv64
>= expires_next
->tv64
)
403 * Clockevents returns -ETIME, when the event was in the past.
405 res
= tick_program_event(expires
, 0);
406 if (!IS_ERR_VALUE(res
))
407 *expires_next
= expires
;
413 * Retrigger next event is called after clock was set
415 * Called with interrupts disabled via on_each_cpu()
417 static void retrigger_next_event(void *arg
)
419 struct hrtimer_cpu_base
*base
;
420 struct timespec realtime_offset
;
423 if (!hrtimer_hres_active())
427 seq
= read_seqbegin(&xtime_lock
);
428 set_normalized_timespec(&realtime_offset
,
429 -wall_to_monotonic
.tv_sec
,
430 -wall_to_monotonic
.tv_nsec
);
431 } while (read_seqretry(&xtime_lock
, seq
));
433 base
= &__get_cpu_var(hrtimer_bases
);
435 /* Adjust CLOCK_REALTIME offset */
436 spin_lock(&base
->lock
);
437 base
->clock_base
[CLOCK_REALTIME
].offset
=
438 timespec_to_ktime(realtime_offset
);
440 hrtimer_force_reprogram(base
);
441 spin_unlock(&base
->lock
);
445 * Clock realtime was set
447 * Change the offset of the realtime clock vs. the monotonic
450 * We might have to reprogram the high resolution timer interrupt. On
451 * SMP we call the architecture specific code to retrigger _all_ high
452 * resolution timer interrupts. On UP we just disable interrupts and
453 * call the high resolution interrupt code.
455 void clock_was_set(void)
457 /* Retrigger the CPU local events everywhere */
458 on_each_cpu(retrigger_next_event
, NULL
, 0, 1);
462 * During resume we might have to reprogram the high resolution timer
463 * interrupt (on the local CPU):
465 void hres_timers_resume(void)
467 WARN_ON_ONCE(num_online_cpus() > 1);
469 /* Retrigger the CPU local events: */
470 retrigger_next_event(NULL
);
474 * Check, whether the timer is on the callback pending list
476 static inline int hrtimer_cb_pending(const struct hrtimer
*timer
)
478 return timer
->state
& HRTIMER_STATE_PENDING
;
482 * Remove a timer from the callback pending list
484 static inline void hrtimer_remove_cb_pending(struct hrtimer
*timer
)
486 list_del_init(&timer
->cb_entry
);
490 * Initialize the high resolution related parts of cpu_base
492 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
494 base
->expires_next
.tv64
= KTIME_MAX
;
495 base
->hres_active
= 0;
496 INIT_LIST_HEAD(&base
->cb_pending
);
500 * Initialize the high resolution related parts of a hrtimer
502 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
)
504 INIT_LIST_HEAD(&timer
->cb_entry
);
508 * When High resolution timers are active, try to reprogram. Note, that in case
509 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
510 * check happens. The timer gets enqueued into the rbtree. The reprogramming
511 * and expiry check is done in the hrtimer_interrupt or in the softirq.
513 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
514 struct hrtimer_clock_base
*base
)
516 if (base
->cpu_base
->hres_active
&& hrtimer_reprogram(timer
, base
)) {
518 /* Timer is expired, act upon the callback mode */
519 switch(timer
->cb_mode
) {
520 case HRTIMER_CB_IRQSAFE_NO_RESTART
:
522 * We can call the callback from here. No restart
523 * happens, so no danger of recursion
525 BUG_ON(timer
->function(timer
) != HRTIMER_NORESTART
);
527 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
:
529 * This is solely for the sched tick emulation with
530 * dynamic tick support to ensure that we do not
531 * restart the tick right on the edge and end up with
532 * the tick timer in the softirq ! The calling site
533 * takes care of this.
536 case HRTIMER_CB_IRQSAFE
:
537 case HRTIMER_CB_SOFTIRQ
:
539 * Move everything else into the softirq pending list !
541 list_add_tail(&timer
->cb_entry
,
542 &base
->cpu_base
->cb_pending
);
543 timer
->state
= HRTIMER_STATE_PENDING
;
544 raise_softirq(HRTIMER_SOFTIRQ
);
554 * Switch to high resolution mode
556 static int hrtimer_switch_to_hres(void)
558 struct hrtimer_cpu_base
*base
= &__get_cpu_var(hrtimer_bases
);
561 if (base
->hres_active
)
564 local_irq_save(flags
);
566 if (tick_init_highres()) {
567 local_irq_restore(flags
);
570 base
->hres_active
= 1;
571 base
->clock_base
[CLOCK_REALTIME
].resolution
= KTIME_HIGH_RES
;
572 base
->clock_base
[CLOCK_MONOTONIC
].resolution
= KTIME_HIGH_RES
;
574 tick_setup_sched_timer();
576 /* "Retrigger" the interrupt to get things going */
577 retrigger_next_event(NULL
);
578 local_irq_restore(flags
);
579 printk(KERN_INFO
"Switched to high resolution mode on CPU %d\n",
586 static inline int hrtimer_hres_active(void) { return 0; }
587 static inline int hrtimer_is_hres_enabled(void) { return 0; }
588 static inline int hrtimer_switch_to_hres(void) { return 0; }
589 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
) { }
590 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
591 struct hrtimer_clock_base
*base
)
595 static inline int hrtimer_cb_pending(struct hrtimer
*timer
) { return 0; }
596 static inline void hrtimer_remove_cb_pending(struct hrtimer
*timer
) { }
597 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
598 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
) { }
600 #endif /* CONFIG_HIGH_RES_TIMERS */
602 #ifdef CONFIG_TIMER_STATS
603 void __timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
, void *addr
)
605 if (timer
->start_site
)
608 timer
->start_site
= addr
;
609 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
610 timer
->start_pid
= current
->pid
;
615 * Counterpart to lock_timer_base above:
618 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
620 spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
624 * hrtimer_forward - forward the timer expiry
625 * @timer: hrtimer to forward
626 * @now: forward past this time
627 * @interval: the interval to forward
629 * Forward the timer expiry so it will expire in the future.
630 * Returns the number of overruns.
633 hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
635 unsigned long orun
= 1;
638 delta
= ktime_sub(now
, timer
->expires
);
643 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
644 interval
.tv64
= timer
->base
->resolution
.tv64
;
646 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
647 s64 incr
= ktime_to_ns(interval
);
649 orun
= ktime_divns(delta
, incr
);
650 timer
->expires
= ktime_add_ns(timer
->expires
, incr
* orun
);
651 if (timer
->expires
.tv64
> now
.tv64
)
654 * This (and the ktime_add() below) is the
655 * correction for exact:
659 timer
->expires
= ktime_add(timer
->expires
, interval
);
661 * Make sure, that the result did not wrap with a very large
664 if (timer
->expires
.tv64
< 0)
665 timer
->expires
= ktime_set(KTIME_SEC_MAX
, 0);
671 * enqueue_hrtimer - internal function to (re)start a timer
673 * The timer is inserted in expiry order. Insertion into the
674 * red black tree is O(log(n)). Must hold the base lock.
676 static void enqueue_hrtimer(struct hrtimer
*timer
,
677 struct hrtimer_clock_base
*base
, int reprogram
)
679 struct rb_node
**link
= &base
->active
.rb_node
;
680 struct rb_node
*parent
= NULL
;
681 struct hrtimer
*entry
;
684 * Find the right place in the rbtree:
688 entry
= rb_entry(parent
, struct hrtimer
, node
);
690 * We dont care about collisions. Nodes with
691 * the same expiry time stay together.
693 if (timer
->expires
.tv64
< entry
->expires
.tv64
)
694 link
= &(*link
)->rb_left
;
696 link
= &(*link
)->rb_right
;
700 * Insert the timer to the rbtree and check whether it
701 * replaces the first pending timer
703 if (!base
->first
|| timer
->expires
.tv64
<
704 rb_entry(base
->first
, struct hrtimer
, node
)->expires
.tv64
) {
706 * Reprogram the clock event device. When the timer is already
707 * expired hrtimer_enqueue_reprogram has either called the
708 * callback or added it to the pending list and raised the
711 * This is a NOP for !HIGHRES
713 if (reprogram
&& hrtimer_enqueue_reprogram(timer
, base
))
716 base
->first
= &timer
->node
;
719 rb_link_node(&timer
->node
, parent
, link
);
720 rb_insert_color(&timer
->node
, &base
->active
);
722 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
723 * state of a possibly running callback.
725 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
729 * __remove_hrtimer - internal function to remove a timer
731 * Caller must hold the base lock.
733 * High resolution timer mode reprograms the clock event device when the
734 * timer is the one which expires next. The caller can disable this by setting
735 * reprogram to zero. This is useful, when the context does a reprogramming
736 * anyway (e.g. timer interrupt)
738 static void __remove_hrtimer(struct hrtimer
*timer
,
739 struct hrtimer_clock_base
*base
,
740 unsigned long newstate
, int reprogram
)
742 /* High res. callback list. NOP for !HIGHRES */
743 if (hrtimer_cb_pending(timer
))
744 hrtimer_remove_cb_pending(timer
);
747 * Remove the timer from the rbtree and replace the
748 * first entry pointer if necessary.
750 if (base
->first
== &timer
->node
) {
751 base
->first
= rb_next(&timer
->node
);
752 /* Reprogram the clock event device. if enabled */
753 if (reprogram
&& hrtimer_hres_active())
754 hrtimer_force_reprogram(base
->cpu_base
);
756 rb_erase(&timer
->node
, &base
->active
);
758 timer
->state
= newstate
;
762 * remove hrtimer, called with base lock held
765 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
767 if (hrtimer_is_queued(timer
)) {
771 * Remove the timer and force reprogramming when high
772 * resolution mode is active and the timer is on the current
773 * CPU. If we remove a timer on another CPU, reprogramming is
774 * skipped. The interrupt event on this CPU is fired and
775 * reprogramming happens in the interrupt handler. This is a
776 * rare case and less expensive than a smp call.
778 timer_stats_hrtimer_clear_start_info(timer
);
779 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
780 __remove_hrtimer(timer
, base
, HRTIMER_STATE_INACTIVE
,
788 * hrtimer_start - (re)start an relative timer on the current CPU
789 * @timer: the timer to be added
791 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
795 * 1 when the timer was active
798 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
800 struct hrtimer_clock_base
*base
, *new_base
;
804 base
= lock_hrtimer_base(timer
, &flags
);
806 /* Remove an active timer from the queue: */
807 ret
= remove_hrtimer(timer
, base
);
809 /* Switch the timer base, if necessary: */
810 new_base
= switch_hrtimer_base(timer
, base
);
812 if (mode
== HRTIMER_MODE_REL
) {
813 tim
= ktime_add(tim
, new_base
->get_time());
815 * CONFIG_TIME_LOW_RES is a temporary way for architectures
816 * to signal that they simply return xtime in
817 * do_gettimeoffset(). In this case we want to round up by
818 * resolution when starting a relative timer, to avoid short
819 * timeouts. This will go away with the GTOD framework.
821 #ifdef CONFIG_TIME_LOW_RES
822 tim
= ktime_add(tim
, base
->resolution
);
825 timer
->expires
= tim
;
827 timer_stats_hrtimer_set_start_info(timer
);
830 * Only allow reprogramming if the new base is on this CPU.
831 * (it might still be on another CPU if the timer was pending)
833 enqueue_hrtimer(timer
, new_base
,
834 new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
));
836 unlock_hrtimer_base(timer
, &flags
);
840 EXPORT_SYMBOL_GPL(hrtimer_start
);
843 * hrtimer_try_to_cancel - try to deactivate a timer
844 * @timer: hrtimer to stop
847 * 0 when the timer was not active
848 * 1 when the timer was active
849 * -1 when the timer is currently excuting the callback function and
852 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
854 struct hrtimer_clock_base
*base
;
858 base
= lock_hrtimer_base(timer
, &flags
);
860 if (!hrtimer_callback_running(timer
))
861 ret
= remove_hrtimer(timer
, base
);
863 unlock_hrtimer_base(timer
, &flags
);
868 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
871 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
872 * @timer: the timer to be cancelled
875 * 0 when the timer was not active
876 * 1 when the timer was active
878 int hrtimer_cancel(struct hrtimer
*timer
)
881 int ret
= hrtimer_try_to_cancel(timer
);
888 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
891 * hrtimer_get_remaining - get remaining time for the timer
892 * @timer: the timer to read
894 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
896 struct hrtimer_clock_base
*base
;
900 base
= lock_hrtimer_base(timer
, &flags
);
901 rem
= ktime_sub(timer
->expires
, base
->get_time());
902 unlock_hrtimer_base(timer
, &flags
);
906 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
908 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
910 * hrtimer_get_next_event - get the time until next expiry event
912 * Returns the delta to the next expiry event or KTIME_MAX if no timer
915 ktime_t
hrtimer_get_next_event(void)
917 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
918 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
919 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
923 spin_lock_irqsave(&cpu_base
->lock
, flags
);
925 if (!hrtimer_hres_active()) {
926 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
927 struct hrtimer
*timer
;
932 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
933 delta
.tv64
= timer
->expires
.tv64
;
934 delta
= ktime_sub(delta
, base
->get_time());
935 if (delta
.tv64
< mindelta
.tv64
)
936 mindelta
.tv64
= delta
.tv64
;
940 spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
942 if (mindelta
.tv64
< 0)
949 * hrtimer_init - initialize a timer to the given clock
950 * @timer: the timer to be initialized
951 * @clock_id: the clock to be used
952 * @mode: timer mode abs/rel
954 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
955 enum hrtimer_mode mode
)
957 struct hrtimer_cpu_base
*cpu_base
;
959 memset(timer
, 0, sizeof(struct hrtimer
));
961 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
963 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
964 clock_id
= CLOCK_MONOTONIC
;
966 timer
->base
= &cpu_base
->clock_base
[clock_id
];
967 hrtimer_init_timer_hres(timer
);
969 #ifdef CONFIG_TIMER_STATS
970 timer
->start_site
= NULL
;
971 timer
->start_pid
= -1;
972 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
975 EXPORT_SYMBOL_GPL(hrtimer_init
);
978 * hrtimer_get_res - get the timer resolution for a clock
979 * @which_clock: which clock to query
980 * @tp: pointer to timespec variable to store the resolution
982 * Store the resolution of the clock selected by @which_clock in the
983 * variable pointed to by @tp.
985 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
987 struct hrtimer_cpu_base
*cpu_base
;
989 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
990 *tp
= ktime_to_timespec(cpu_base
->clock_base
[which_clock
].resolution
);
994 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
996 #ifdef CONFIG_HIGH_RES_TIMERS
999 * High resolution timer interrupt
1000 * Called with interrupts disabled
1002 void hrtimer_interrupt(struct clock_event_device
*dev
)
1004 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1005 struct hrtimer_clock_base
*base
;
1006 ktime_t expires_next
, now
;
1009 BUG_ON(!cpu_base
->hres_active
);
1010 cpu_base
->nr_events
++;
1011 dev
->next_event
.tv64
= KTIME_MAX
;
1016 expires_next
.tv64
= KTIME_MAX
;
1018 base
= cpu_base
->clock_base
;
1020 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1022 struct rb_node
*node
;
1024 spin_lock(&cpu_base
->lock
);
1026 basenow
= ktime_add(now
, base
->offset
);
1028 while ((node
= base
->first
)) {
1029 struct hrtimer
*timer
;
1031 timer
= rb_entry(node
, struct hrtimer
, node
);
1033 if (basenow
.tv64
< timer
->expires
.tv64
) {
1036 expires
= ktime_sub(timer
->expires
,
1038 if (expires
.tv64
< expires_next
.tv64
)
1039 expires_next
= expires
;
1043 /* Move softirq callbacks to the pending list */
1044 if (timer
->cb_mode
== HRTIMER_CB_SOFTIRQ
) {
1045 __remove_hrtimer(timer
, base
,
1046 HRTIMER_STATE_PENDING
, 0);
1047 list_add_tail(&timer
->cb_entry
,
1048 &base
->cpu_base
->cb_pending
);
1053 __remove_hrtimer(timer
, base
,
1054 HRTIMER_STATE_CALLBACK
, 0);
1055 timer_stats_account_hrtimer(timer
);
1058 * Note: We clear the CALLBACK bit after
1059 * enqueue_hrtimer to avoid reprogramming of
1060 * the event hardware. This happens at the end
1061 * of this function anyway.
1063 if (timer
->function(timer
) != HRTIMER_NORESTART
) {
1064 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1065 enqueue_hrtimer(timer
, base
, 0);
1067 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1069 spin_unlock(&cpu_base
->lock
);
1073 cpu_base
->expires_next
= expires_next
;
1075 /* Reprogramming necessary ? */
1076 if (expires_next
.tv64
!= KTIME_MAX
) {
1077 if (tick_program_event(expires_next
, 0))
1081 /* Raise softirq ? */
1083 raise_softirq(HRTIMER_SOFTIRQ
);
1086 static void run_hrtimer_softirq(struct softirq_action
*h
)
1088 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1090 spin_lock_irq(&cpu_base
->lock
);
1092 while (!list_empty(&cpu_base
->cb_pending
)) {
1093 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1094 struct hrtimer
*timer
;
1097 timer
= list_entry(cpu_base
->cb_pending
.next
,
1098 struct hrtimer
, cb_entry
);
1100 timer_stats_account_hrtimer(timer
);
1102 fn
= timer
->function
;
1103 __remove_hrtimer(timer
, timer
->base
, HRTIMER_STATE_CALLBACK
, 0);
1104 spin_unlock_irq(&cpu_base
->lock
);
1106 restart
= fn(timer
);
1108 spin_lock_irq(&cpu_base
->lock
);
1110 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1111 if (restart
== HRTIMER_RESTART
) {
1112 BUG_ON(hrtimer_active(timer
));
1114 * Enqueue the timer, allow reprogramming of the event
1117 enqueue_hrtimer(timer
, timer
->base
, 1);
1118 } else if (hrtimer_active(timer
)) {
1120 * If the timer was rearmed on another CPU, reprogram
1123 if (timer
->base
->first
== &timer
->node
)
1124 hrtimer_reprogram(timer
, timer
->base
);
1127 spin_unlock_irq(&cpu_base
->lock
);
1130 #endif /* CONFIG_HIGH_RES_TIMERS */
1133 * Expire the per base hrtimer-queue:
1135 static inline void run_hrtimer_queue(struct hrtimer_cpu_base
*cpu_base
,
1138 struct rb_node
*node
;
1139 struct hrtimer_clock_base
*base
= &cpu_base
->clock_base
[index
];
1144 if (base
->get_softirq_time
)
1145 base
->softirq_time
= base
->get_softirq_time();
1147 spin_lock_irq(&cpu_base
->lock
);
1149 while ((node
= base
->first
)) {
1150 struct hrtimer
*timer
;
1151 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1154 timer
= rb_entry(node
, struct hrtimer
, node
);
1155 if (base
->softirq_time
.tv64
<= timer
->expires
.tv64
)
1158 #ifdef CONFIG_HIGH_RES_TIMERS
1159 WARN_ON_ONCE(timer
->cb_mode
== HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
);
1161 timer_stats_account_hrtimer(timer
);
1163 fn
= timer
->function
;
1164 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1165 spin_unlock_irq(&cpu_base
->lock
);
1167 restart
= fn(timer
);
1169 spin_lock_irq(&cpu_base
->lock
);
1171 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1172 if (restart
!= HRTIMER_NORESTART
) {
1173 BUG_ON(hrtimer_active(timer
));
1174 enqueue_hrtimer(timer
, base
, 0);
1177 spin_unlock_irq(&cpu_base
->lock
);
1181 * Called from timer softirq every jiffy, expire hrtimers:
1183 * For HRT its the fall back code to run the softirq in the timer
1184 * softirq context in case the hrtimer initialization failed or has
1185 * not been done yet.
1187 void hrtimer_run_queues(void)
1189 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1192 if (hrtimer_hres_active())
1196 * This _is_ ugly: We have to check in the softirq context,
1197 * whether we can switch to highres and / or nohz mode. The
1198 * clocksource switch happens in the timer interrupt with
1199 * xtime_lock held. Notification from there only sets the
1200 * check bit in the tick_oneshot code, otherwise we might
1201 * deadlock vs. xtime_lock.
1203 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1204 if (hrtimer_switch_to_hres())
1207 hrtimer_get_softirq_time(cpu_base
);
1209 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
1210 run_hrtimer_queue(cpu_base
, i
);
1214 * Sleep related functions:
1216 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1218 struct hrtimer_sleeper
*t
=
1219 container_of(timer
, struct hrtimer_sleeper
, timer
);
1220 struct task_struct
*task
= t
->task
;
1224 wake_up_process(task
);
1226 return HRTIMER_NORESTART
;
1229 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1231 sl
->timer
.function
= hrtimer_wakeup
;
1233 #ifdef CONFIG_HIGH_RES_TIMERS
1234 sl
->timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_RESTART
;
1238 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1240 hrtimer_init_sleeper(t
, current
);
1243 set_current_state(TASK_INTERRUPTIBLE
);
1244 hrtimer_start(&t
->timer
, t
->timer
.expires
, mode
);
1246 if (likely(t
->task
))
1249 hrtimer_cancel(&t
->timer
);
1250 mode
= HRTIMER_MODE_ABS
;
1252 } while (t
->task
&& !signal_pending(current
));
1254 return t
->task
== NULL
;
1257 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1259 struct hrtimer_sleeper t
;
1260 struct timespec __user
*rmtp
;
1264 restart
->fn
= do_no_restart_syscall
;
1266 hrtimer_init(&t
.timer
, restart
->arg0
, HRTIMER_MODE_ABS
);
1267 t
.timer
.expires
.tv64
= ((u64
)restart
->arg3
<< 32) | (u64
) restart
->arg2
;
1269 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1272 rmtp
= (struct timespec __user
*) restart
->arg1
;
1274 time
= ktime_sub(t
.timer
.expires
, t
.timer
.base
->get_time());
1277 tu
= ktime_to_timespec(time
);
1278 if (copy_to_user(rmtp
, &tu
, sizeof(tu
)))
1282 restart
->fn
= hrtimer_nanosleep_restart
;
1284 /* The other values in restart are already filled in */
1285 return -ERESTART_RESTARTBLOCK
;
1288 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1289 const enum hrtimer_mode mode
, const clockid_t clockid
)
1291 struct restart_block
*restart
;
1292 struct hrtimer_sleeper t
;
1296 hrtimer_init(&t
.timer
, clockid
, mode
);
1297 t
.timer
.expires
= timespec_to_ktime(*rqtp
);
1298 if (do_nanosleep(&t
, mode
))
1301 /* Absolute timers do not update the rmtp value and restart: */
1302 if (mode
== HRTIMER_MODE_ABS
)
1303 return -ERESTARTNOHAND
;
1306 rem
= ktime_sub(t
.timer
.expires
, t
.timer
.base
->get_time());
1309 tu
= ktime_to_timespec(rem
);
1310 if (copy_to_user(rmtp
, &tu
, sizeof(tu
)))
1314 restart
= ¤t_thread_info()->restart_block
;
1315 restart
->fn
= hrtimer_nanosleep_restart
;
1316 restart
->arg0
= (unsigned long) t
.timer
.base
->index
;
1317 restart
->arg1
= (unsigned long) rmtp
;
1318 restart
->arg2
= t
.timer
.expires
.tv64
& 0xFFFFFFFF;
1319 restart
->arg3
= t
.timer
.expires
.tv64
>> 32;
1321 return -ERESTART_RESTARTBLOCK
;
1325 sys_nanosleep(struct timespec __user
*rqtp
, struct timespec __user
*rmtp
)
1329 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1332 if (!timespec_valid(&tu
))
1335 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1339 * Functions related to boot-time initialization:
1341 static void __devinit
init_hrtimers_cpu(int cpu
)
1343 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1346 spin_lock_init(&cpu_base
->lock
);
1347 lockdep_set_class(&cpu_base
->lock
, &cpu_base
->lock_key
);
1349 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
1350 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1352 hrtimer_init_hres(cpu_base
);
1355 #ifdef CONFIG_HOTPLUG_CPU
1357 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1358 struct hrtimer_clock_base
*new_base
)
1360 struct hrtimer
*timer
;
1361 struct rb_node
*node
;
1363 while ((node
= rb_first(&old_base
->active
))) {
1364 timer
= rb_entry(node
, struct hrtimer
, node
);
1365 BUG_ON(hrtimer_callback_running(timer
));
1366 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_INACTIVE
, 0);
1367 timer
->base
= new_base
;
1369 * Enqueue the timer. Allow reprogramming of the event device
1371 enqueue_hrtimer(timer
, new_base
, 1);
1375 static void migrate_hrtimers(int cpu
)
1377 struct hrtimer_cpu_base
*old_base
, *new_base
;
1380 BUG_ON(cpu_online(cpu
));
1381 old_base
= &per_cpu(hrtimer_bases
, cpu
);
1382 new_base
= &get_cpu_var(hrtimer_bases
);
1384 tick_cancel_sched_timer(cpu
);
1386 local_irq_disable();
1387 double_spin_lock(&new_base
->lock
, &old_base
->lock
,
1388 smp_processor_id() < cpu
);
1390 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1391 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1392 &new_base
->clock_base
[i
]);
1395 double_spin_unlock(&new_base
->lock
, &old_base
->lock
,
1396 smp_processor_id() < cpu
);
1398 put_cpu_var(hrtimer_bases
);
1400 #endif /* CONFIG_HOTPLUG_CPU */
1402 static int __cpuinit
hrtimer_cpu_notify(struct notifier_block
*self
,
1403 unsigned long action
, void *hcpu
)
1405 long cpu
= (long)hcpu
;
1409 case CPU_UP_PREPARE
:
1410 init_hrtimers_cpu(cpu
);
1413 #ifdef CONFIG_HOTPLUG_CPU
1415 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &cpu
);
1416 migrate_hrtimers(cpu
);
1427 static struct notifier_block __cpuinitdata hrtimers_nb
= {
1428 .notifier_call
= hrtimer_cpu_notify
,
1431 void __init
hrtimers_init(void)
1433 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1434 (void *)(long)smp_processor_id());
1435 register_cpu_notifier(&hrtimers_nb
);
1436 #ifdef CONFIG_HIGH_RES_TIMERS
1437 open_softirq(HRTIMER_SOFTIRQ
, run_hrtimer_softirq
, NULL
);