e1000: Add enabled Jumbo frame support for 82573L
[linux-2.6/zen-sources.git] / drivers / net / e1000 / e1000_ethtool.c
blob70238e089f165f5c0eccc999a2c90ff9e9896578
1 /*******************************************************************************
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include "e1000.h"
33 #include <asm/uaccess.h>
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
48 struct e1000_stats {
49 char stat_string[ETH_GSTRING_LEN];
50 int sizeof_stat;
51 int stat_offset;
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55 offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57 { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58 { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59 { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60 { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61 { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62 { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
64 { "multicast", E1000_STAT(net_stats.multicast) },
65 { "collisions", E1000_STAT(net_stats.collisions) },
66 { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
67 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
68 { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
69 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
70 { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
71 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
72 { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
73 { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
74 { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
75 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
76 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
77 { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
78 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
79 { "tx_deferred_ok", E1000_STAT(stats.dc) },
80 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
81 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
82 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
83 { "rx_long_length_errors", E1000_STAT(stats.roc) },
84 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
85 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
86 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
87 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
88 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
89 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
90 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
91 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
92 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
93 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
94 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
95 { "rx_header_split", E1000_STAT(rx_hdr_split) },
96 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN \
101 sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
102 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
103 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
104 "Register test (offline)", "Eeprom test (offline)",
105 "Interrupt test (offline)", "Loopback test (offline)",
106 "Link test (on/offline)"
108 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
110 static int
111 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
113 struct e1000_adapter *adapter = netdev_priv(netdev);
114 struct e1000_hw *hw = &adapter->hw;
116 if (hw->media_type == e1000_media_type_copper) {
118 ecmd->supported = (SUPPORTED_10baseT_Half |
119 SUPPORTED_10baseT_Full |
120 SUPPORTED_100baseT_Half |
121 SUPPORTED_100baseT_Full |
122 SUPPORTED_1000baseT_Full|
123 SUPPORTED_Autoneg |
124 SUPPORTED_TP);
126 ecmd->advertising = ADVERTISED_TP;
128 if (hw->autoneg == 1) {
129 ecmd->advertising |= ADVERTISED_Autoneg;
131 /* the e1000 autoneg seems to match ethtool nicely */
133 ecmd->advertising |= hw->autoneg_advertised;
136 ecmd->port = PORT_TP;
137 ecmd->phy_address = hw->phy_addr;
139 if (hw->mac_type == e1000_82543)
140 ecmd->transceiver = XCVR_EXTERNAL;
141 else
142 ecmd->transceiver = XCVR_INTERNAL;
144 } else {
145 ecmd->supported = (SUPPORTED_1000baseT_Full |
146 SUPPORTED_FIBRE |
147 SUPPORTED_Autoneg);
149 ecmd->advertising = (ADVERTISED_1000baseT_Full |
150 ADVERTISED_FIBRE |
151 ADVERTISED_Autoneg);
153 ecmd->port = PORT_FIBRE;
155 if (hw->mac_type >= e1000_82545)
156 ecmd->transceiver = XCVR_INTERNAL;
157 else
158 ecmd->transceiver = XCVR_EXTERNAL;
161 if (netif_carrier_ok(adapter->netdev)) {
163 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
164 &adapter->link_duplex);
165 ecmd->speed = adapter->link_speed;
167 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
168 * and HALF_DUPLEX != DUPLEX_HALF */
170 if (adapter->link_duplex == FULL_DUPLEX)
171 ecmd->duplex = DUPLEX_FULL;
172 else
173 ecmd->duplex = DUPLEX_HALF;
174 } else {
175 ecmd->speed = -1;
176 ecmd->duplex = -1;
179 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
180 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
181 return 0;
184 static int
185 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
187 struct e1000_adapter *adapter = netdev_priv(netdev);
188 struct e1000_hw *hw = &adapter->hw;
190 /* When SoL/IDER sessions are active, autoneg/speed/duplex
191 * cannot be changed */
192 if (e1000_check_phy_reset_block(hw)) {
193 DPRINTK(DRV, ERR, "Cannot change link characteristics "
194 "when SoL/IDER is active.\n");
195 return -EINVAL;
198 if (ecmd->autoneg == AUTONEG_ENABLE) {
199 hw->autoneg = 1;
200 if (hw->media_type == e1000_media_type_fiber)
201 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
202 ADVERTISED_FIBRE |
203 ADVERTISED_Autoneg;
204 else
205 hw->autoneg_advertised = ADVERTISED_10baseT_Half |
206 ADVERTISED_10baseT_Full |
207 ADVERTISED_100baseT_Half |
208 ADVERTISED_100baseT_Full |
209 ADVERTISED_1000baseT_Full|
210 ADVERTISED_Autoneg |
211 ADVERTISED_TP;
212 ecmd->advertising = hw->autoneg_advertised;
213 } else
214 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
215 return -EINVAL;
217 /* reset the link */
219 if (netif_running(adapter->netdev)) {
220 e1000_down(adapter);
221 e1000_reset(adapter);
222 e1000_up(adapter);
223 } else
224 e1000_reset(adapter);
226 return 0;
229 static void
230 e1000_get_pauseparam(struct net_device *netdev,
231 struct ethtool_pauseparam *pause)
233 struct e1000_adapter *adapter = netdev_priv(netdev);
234 struct e1000_hw *hw = &adapter->hw;
236 pause->autoneg =
237 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
239 if (hw->fc == e1000_fc_rx_pause)
240 pause->rx_pause = 1;
241 else if (hw->fc == e1000_fc_tx_pause)
242 pause->tx_pause = 1;
243 else if (hw->fc == e1000_fc_full) {
244 pause->rx_pause = 1;
245 pause->tx_pause = 1;
249 static int
250 e1000_set_pauseparam(struct net_device *netdev,
251 struct ethtool_pauseparam *pause)
253 struct e1000_adapter *adapter = netdev_priv(netdev);
254 struct e1000_hw *hw = &adapter->hw;
256 adapter->fc_autoneg = pause->autoneg;
258 if (pause->rx_pause && pause->tx_pause)
259 hw->fc = e1000_fc_full;
260 else if (pause->rx_pause && !pause->tx_pause)
261 hw->fc = e1000_fc_rx_pause;
262 else if (!pause->rx_pause && pause->tx_pause)
263 hw->fc = e1000_fc_tx_pause;
264 else if (!pause->rx_pause && !pause->tx_pause)
265 hw->fc = e1000_fc_none;
267 hw->original_fc = hw->fc;
269 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
270 if (netif_running(adapter->netdev)) {
271 e1000_down(adapter);
272 e1000_up(adapter);
273 } else
274 e1000_reset(adapter);
275 } else
276 return ((hw->media_type == e1000_media_type_fiber) ?
277 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
279 return 0;
282 static uint32_t
283 e1000_get_rx_csum(struct net_device *netdev)
285 struct e1000_adapter *adapter = netdev_priv(netdev);
286 return adapter->rx_csum;
289 static int
290 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
292 struct e1000_adapter *adapter = netdev_priv(netdev);
293 adapter->rx_csum = data;
295 if (netif_running(netdev)) {
296 e1000_down(adapter);
297 e1000_up(adapter);
298 } else
299 e1000_reset(adapter);
300 return 0;
303 static uint32_t
304 e1000_get_tx_csum(struct net_device *netdev)
306 return (netdev->features & NETIF_F_HW_CSUM) != 0;
309 static int
310 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
312 struct e1000_adapter *adapter = netdev_priv(netdev);
314 if (adapter->hw.mac_type < e1000_82543) {
315 if (!data)
316 return -EINVAL;
317 return 0;
320 if (data)
321 netdev->features |= NETIF_F_HW_CSUM;
322 else
323 netdev->features &= ~NETIF_F_HW_CSUM;
325 return 0;
328 #ifdef NETIF_F_TSO
329 static int
330 e1000_set_tso(struct net_device *netdev, uint32_t data)
332 struct e1000_adapter *adapter = netdev_priv(netdev);
333 if ((adapter->hw.mac_type < e1000_82544) ||
334 (adapter->hw.mac_type == e1000_82547))
335 return data ? -EINVAL : 0;
337 if (data)
338 netdev->features |= NETIF_F_TSO;
339 else
340 netdev->features &= ~NETIF_F_TSO;
342 DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
343 adapter->tso_force = TRUE;
344 return 0;
346 #endif /* NETIF_F_TSO */
348 static uint32_t
349 e1000_get_msglevel(struct net_device *netdev)
351 struct e1000_adapter *adapter = netdev_priv(netdev);
352 return adapter->msg_enable;
355 static void
356 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
358 struct e1000_adapter *adapter = netdev_priv(netdev);
359 adapter->msg_enable = data;
362 static int
363 e1000_get_regs_len(struct net_device *netdev)
365 #define E1000_REGS_LEN 32
366 return E1000_REGS_LEN * sizeof(uint32_t);
369 static void
370 e1000_get_regs(struct net_device *netdev,
371 struct ethtool_regs *regs, void *p)
373 struct e1000_adapter *adapter = netdev_priv(netdev);
374 struct e1000_hw *hw = &adapter->hw;
375 uint32_t *regs_buff = p;
376 uint16_t phy_data;
378 memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
380 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
382 regs_buff[0] = E1000_READ_REG(hw, CTRL);
383 regs_buff[1] = E1000_READ_REG(hw, STATUS);
385 regs_buff[2] = E1000_READ_REG(hw, RCTL);
386 regs_buff[3] = E1000_READ_REG(hw, RDLEN);
387 regs_buff[4] = E1000_READ_REG(hw, RDH);
388 regs_buff[5] = E1000_READ_REG(hw, RDT);
389 regs_buff[6] = E1000_READ_REG(hw, RDTR);
391 regs_buff[7] = E1000_READ_REG(hw, TCTL);
392 regs_buff[8] = E1000_READ_REG(hw, TDLEN);
393 regs_buff[9] = E1000_READ_REG(hw, TDH);
394 regs_buff[10] = E1000_READ_REG(hw, TDT);
395 regs_buff[11] = E1000_READ_REG(hw, TIDV);
397 regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
398 if (hw->phy_type == e1000_phy_igp) {
399 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
400 IGP01E1000_PHY_AGC_A);
401 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
402 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
403 regs_buff[13] = (uint32_t)phy_data; /* cable length */
404 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
405 IGP01E1000_PHY_AGC_B);
406 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
407 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
408 regs_buff[14] = (uint32_t)phy_data; /* cable length */
409 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
410 IGP01E1000_PHY_AGC_C);
411 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
412 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
413 regs_buff[15] = (uint32_t)phy_data; /* cable length */
414 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
415 IGP01E1000_PHY_AGC_D);
416 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
417 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
418 regs_buff[16] = (uint32_t)phy_data; /* cable length */
419 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
420 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
421 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
422 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
423 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
424 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
425 IGP01E1000_PHY_PCS_INIT_REG);
426 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
427 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
428 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
429 regs_buff[20] = 0; /* polarity correction enabled (always) */
430 regs_buff[22] = 0; /* phy receive errors (unavailable) */
431 regs_buff[23] = regs_buff[18]; /* mdix mode */
432 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
433 } else {
434 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
435 regs_buff[13] = (uint32_t)phy_data; /* cable length */
436 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
437 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
438 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
439 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
440 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
441 regs_buff[18] = regs_buff[13]; /* cable polarity */
442 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
443 regs_buff[20] = regs_buff[17]; /* polarity correction */
444 /* phy receive errors */
445 regs_buff[22] = adapter->phy_stats.receive_errors;
446 regs_buff[23] = regs_buff[13]; /* mdix mode */
448 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
449 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
450 regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
451 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
452 if (hw->mac_type >= e1000_82540 &&
453 hw->media_type == e1000_media_type_copper) {
454 regs_buff[26] = E1000_READ_REG(hw, MANC);
458 static int
459 e1000_get_eeprom_len(struct net_device *netdev)
461 struct e1000_adapter *adapter = netdev_priv(netdev);
462 return adapter->hw.eeprom.word_size * 2;
465 static int
466 e1000_get_eeprom(struct net_device *netdev,
467 struct ethtool_eeprom *eeprom, uint8_t *bytes)
469 struct e1000_adapter *adapter = netdev_priv(netdev);
470 struct e1000_hw *hw = &adapter->hw;
471 uint16_t *eeprom_buff;
472 int first_word, last_word;
473 int ret_val = 0;
474 uint16_t i;
476 if (eeprom->len == 0)
477 return -EINVAL;
479 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
481 first_word = eeprom->offset >> 1;
482 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
484 eeprom_buff = kmalloc(sizeof(uint16_t) *
485 (last_word - first_word + 1), GFP_KERNEL);
486 if (!eeprom_buff)
487 return -ENOMEM;
489 if (hw->eeprom.type == e1000_eeprom_spi)
490 ret_val = e1000_read_eeprom(hw, first_word,
491 last_word - first_word + 1,
492 eeprom_buff);
493 else {
494 for (i = 0; i < last_word - first_word + 1; i++)
495 if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
496 &eeprom_buff[i])))
497 break;
500 /* Device's eeprom is always little-endian, word addressable */
501 for (i = 0; i < last_word - first_word + 1; i++)
502 le16_to_cpus(&eeprom_buff[i]);
504 memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
505 eeprom->len);
506 kfree(eeprom_buff);
508 return ret_val;
511 static int
512 e1000_set_eeprom(struct net_device *netdev,
513 struct ethtool_eeprom *eeprom, uint8_t *bytes)
515 struct e1000_adapter *adapter = netdev_priv(netdev);
516 struct e1000_hw *hw = &adapter->hw;
517 uint16_t *eeprom_buff;
518 void *ptr;
519 int max_len, first_word, last_word, ret_val = 0;
520 uint16_t i;
522 if (eeprom->len == 0)
523 return -EOPNOTSUPP;
525 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
526 return -EFAULT;
528 max_len = hw->eeprom.word_size * 2;
530 first_word = eeprom->offset >> 1;
531 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
532 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
533 if (!eeprom_buff)
534 return -ENOMEM;
536 ptr = (void *)eeprom_buff;
538 if (eeprom->offset & 1) {
539 /* need read/modify/write of first changed EEPROM word */
540 /* only the second byte of the word is being modified */
541 ret_val = e1000_read_eeprom(hw, first_word, 1,
542 &eeprom_buff[0]);
543 ptr++;
545 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
546 /* need read/modify/write of last changed EEPROM word */
547 /* only the first byte of the word is being modified */
548 ret_val = e1000_read_eeprom(hw, last_word, 1,
549 &eeprom_buff[last_word - first_word]);
552 /* Device's eeprom is always little-endian, word addressable */
553 for (i = 0; i < last_word - first_word + 1; i++)
554 le16_to_cpus(&eeprom_buff[i]);
556 memcpy(ptr, bytes, eeprom->len);
558 for (i = 0; i < last_word - first_word + 1; i++)
559 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
561 ret_val = e1000_write_eeprom(hw, first_word,
562 last_word - first_word + 1, eeprom_buff);
564 /* Update the checksum over the first part of the EEPROM if needed
565 * and flush shadow RAM for 82573 conrollers */
566 if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
567 (hw->mac_type == e1000_82573)))
568 e1000_update_eeprom_checksum(hw);
570 kfree(eeprom_buff);
571 return ret_val;
574 static void
575 e1000_get_drvinfo(struct net_device *netdev,
576 struct ethtool_drvinfo *drvinfo)
578 struct e1000_adapter *adapter = netdev_priv(netdev);
579 char firmware_version[32];
580 uint16_t eeprom_data;
582 strncpy(drvinfo->driver, e1000_driver_name, 32);
583 strncpy(drvinfo->version, e1000_driver_version, 32);
585 /* EEPROM image version # is reported as firmware version # for
586 * 8257{1|2|3} controllers */
587 e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
588 switch (adapter->hw.mac_type) {
589 case e1000_82571:
590 case e1000_82572:
591 case e1000_82573:
592 sprintf(firmware_version, "%d.%d-%d",
593 (eeprom_data & 0xF000) >> 12,
594 (eeprom_data & 0x0FF0) >> 4,
595 eeprom_data & 0x000F);
596 break;
597 default:
598 sprintf(firmware_version, "N/A");
601 strncpy(drvinfo->fw_version, firmware_version, 32);
602 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
603 drvinfo->n_stats = E1000_STATS_LEN;
604 drvinfo->testinfo_len = E1000_TEST_LEN;
605 drvinfo->regdump_len = e1000_get_regs_len(netdev);
606 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
609 static void
610 e1000_get_ringparam(struct net_device *netdev,
611 struct ethtool_ringparam *ring)
613 struct e1000_adapter *adapter = netdev_priv(netdev);
614 e1000_mac_type mac_type = adapter->hw.mac_type;
615 struct e1000_tx_ring *txdr = adapter->tx_ring;
616 struct e1000_rx_ring *rxdr = adapter->rx_ring;
618 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
619 E1000_MAX_82544_RXD;
620 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
621 E1000_MAX_82544_TXD;
622 ring->rx_mini_max_pending = 0;
623 ring->rx_jumbo_max_pending = 0;
624 ring->rx_pending = rxdr->count;
625 ring->tx_pending = txdr->count;
626 ring->rx_mini_pending = 0;
627 ring->rx_jumbo_pending = 0;
630 static int
631 e1000_set_ringparam(struct net_device *netdev,
632 struct ethtool_ringparam *ring)
634 struct e1000_adapter *adapter = netdev_priv(netdev);
635 e1000_mac_type mac_type = adapter->hw.mac_type;
636 struct e1000_tx_ring *txdr, *tx_old, *tx_new;
637 struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
638 int i, err, tx_ring_size, rx_ring_size;
640 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
641 return -EINVAL;
643 tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
644 rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
646 if (netif_running(adapter->netdev))
647 e1000_down(adapter);
649 tx_old = adapter->tx_ring;
650 rx_old = adapter->rx_ring;
652 adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
653 if (!adapter->tx_ring) {
654 err = -ENOMEM;
655 goto err_setup_rx;
657 memset(adapter->tx_ring, 0, tx_ring_size);
659 adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
660 if (!adapter->rx_ring) {
661 kfree(adapter->tx_ring);
662 err = -ENOMEM;
663 goto err_setup_rx;
665 memset(adapter->rx_ring, 0, rx_ring_size);
667 txdr = adapter->tx_ring;
668 rxdr = adapter->rx_ring;
670 rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
671 rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
672 E1000_MAX_RXD : E1000_MAX_82544_RXD));
673 E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
675 txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
676 txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
677 E1000_MAX_TXD : E1000_MAX_82544_TXD));
678 E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
680 for (i = 0; i < adapter->num_tx_queues; i++)
681 txdr[i].count = txdr->count;
682 for (i = 0; i < adapter->num_rx_queues; i++)
683 rxdr[i].count = rxdr->count;
685 if (netif_running(adapter->netdev)) {
686 /* Try to get new resources before deleting old */
687 if ((err = e1000_setup_all_rx_resources(adapter)))
688 goto err_setup_rx;
689 if ((err = e1000_setup_all_tx_resources(adapter)))
690 goto err_setup_tx;
692 /* save the new, restore the old in order to free it,
693 * then restore the new back again */
695 rx_new = adapter->rx_ring;
696 tx_new = adapter->tx_ring;
697 adapter->rx_ring = rx_old;
698 adapter->tx_ring = tx_old;
699 e1000_free_all_rx_resources(adapter);
700 e1000_free_all_tx_resources(adapter);
701 kfree(tx_old);
702 kfree(rx_old);
703 adapter->rx_ring = rx_new;
704 adapter->tx_ring = tx_new;
705 if ((err = e1000_up(adapter)))
706 return err;
709 return 0;
710 err_setup_tx:
711 e1000_free_all_rx_resources(adapter);
712 err_setup_rx:
713 adapter->rx_ring = rx_old;
714 adapter->tx_ring = tx_old;
715 e1000_up(adapter);
716 return err;
719 #define REG_PATTERN_TEST(R, M, W) \
721 uint32_t pat, value; \
722 uint32_t test[] = \
723 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
724 for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
725 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
726 value = E1000_READ_REG(&adapter->hw, R); \
727 if (value != (test[pat] & W & M)) { \
728 DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
729 "0x%08X expected 0x%08X\n", \
730 E1000_##R, value, (test[pat] & W & M)); \
731 *data = (adapter->hw.mac_type < e1000_82543) ? \
732 E1000_82542_##R : E1000_##R; \
733 return 1; \
738 #define REG_SET_AND_CHECK(R, M, W) \
740 uint32_t value; \
741 E1000_WRITE_REG(&adapter->hw, R, W & M); \
742 value = E1000_READ_REG(&adapter->hw, R); \
743 if ((W & M) != (value & M)) { \
744 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
745 "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
746 *data = (adapter->hw.mac_type < e1000_82543) ? \
747 E1000_82542_##R : E1000_##R; \
748 return 1; \
752 static int
753 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
755 uint32_t value, before, after;
756 uint32_t i, toggle;
758 /* The status register is Read Only, so a write should fail.
759 * Some bits that get toggled are ignored.
761 switch (adapter->hw.mac_type) {
762 /* there are several bits on newer hardware that are r/w */
763 case e1000_82571:
764 case e1000_82572:
765 toggle = 0x7FFFF3FF;
766 break;
767 case e1000_82573:
768 toggle = 0x7FFFF033;
769 break;
770 default:
771 toggle = 0xFFFFF833;
772 break;
775 before = E1000_READ_REG(&adapter->hw, STATUS);
776 value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
777 E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
778 after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
779 if (value != after) {
780 DPRINTK(DRV, ERR, "failed STATUS register test got: "
781 "0x%08X expected: 0x%08X\n", after, value);
782 *data = 1;
783 return 1;
785 /* restore previous status */
786 E1000_WRITE_REG(&adapter->hw, STATUS, before);
788 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
789 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
790 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
791 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
792 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
793 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
794 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
795 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
796 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
797 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
798 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
799 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
800 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
801 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
803 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
804 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
805 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
807 if (adapter->hw.mac_type >= e1000_82543) {
809 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
810 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
811 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
812 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
813 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
815 for (i = 0; i < E1000_RAR_ENTRIES; i++) {
816 REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
817 0xFFFFFFFF);
818 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
819 0xFFFFFFFF);
822 } else {
824 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
825 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
826 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
827 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
831 for (i = 0; i < E1000_MC_TBL_SIZE; i++)
832 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
834 *data = 0;
835 return 0;
838 static int
839 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
841 uint16_t temp;
842 uint16_t checksum = 0;
843 uint16_t i;
845 *data = 0;
846 /* Read and add up the contents of the EEPROM */
847 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
848 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
849 *data = 1;
850 break;
852 checksum += temp;
855 /* If Checksum is not Correct return error else test passed */
856 if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
857 *data = 2;
859 return *data;
862 static irqreturn_t
863 e1000_test_intr(int irq,
864 void *data,
865 struct pt_regs *regs)
867 struct net_device *netdev = (struct net_device *) data;
868 struct e1000_adapter *adapter = netdev_priv(netdev);
870 adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
872 return IRQ_HANDLED;
875 static int
876 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
878 struct net_device *netdev = adapter->netdev;
879 uint32_t mask, i=0, shared_int = TRUE;
880 uint32_t irq = adapter->pdev->irq;
882 *data = 0;
884 /* Hook up test interrupt handler just for this test */
885 if (!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
886 shared_int = FALSE;
887 } else if (request_irq(irq, &e1000_test_intr, SA_SHIRQ,
888 netdev->name, netdev)){
889 *data = 1;
890 return -1;
893 /* Disable all the interrupts */
894 E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
895 msec_delay(10);
897 /* Test each interrupt */
898 for (; i < 10; i++) {
900 /* Interrupt to test */
901 mask = 1 << i;
903 if (!shared_int) {
904 /* Disable the interrupt to be reported in
905 * the cause register and then force the same
906 * interrupt and see if one gets posted. If
907 * an interrupt was posted to the bus, the
908 * test failed.
910 adapter->test_icr = 0;
911 E1000_WRITE_REG(&adapter->hw, IMC, mask);
912 E1000_WRITE_REG(&adapter->hw, ICS, mask);
913 msec_delay(10);
915 if (adapter->test_icr & mask) {
916 *data = 3;
917 break;
921 /* Enable the interrupt to be reported in
922 * the cause register and then force the same
923 * interrupt and see if one gets posted. If
924 * an interrupt was not posted to the bus, the
925 * test failed.
927 adapter->test_icr = 0;
928 E1000_WRITE_REG(&adapter->hw, IMS, mask);
929 E1000_WRITE_REG(&adapter->hw, ICS, mask);
930 msec_delay(10);
932 if (!(adapter->test_icr & mask)) {
933 *data = 4;
934 break;
937 if (!shared_int) {
938 /* Disable the other interrupts to be reported in
939 * the cause register and then force the other
940 * interrupts and see if any get posted. If
941 * an interrupt was posted to the bus, the
942 * test failed.
944 adapter->test_icr = 0;
945 E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
946 E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
947 msec_delay(10);
949 if (adapter->test_icr) {
950 *data = 5;
951 break;
956 /* Disable all the interrupts */
957 E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
958 msec_delay(10);
960 /* Unhook test interrupt handler */
961 free_irq(irq, netdev);
963 return *data;
966 static void
967 e1000_free_desc_rings(struct e1000_adapter *adapter)
969 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
970 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
971 struct pci_dev *pdev = adapter->pdev;
972 int i;
974 if (txdr->desc && txdr->buffer_info) {
975 for (i = 0; i < txdr->count; i++) {
976 if (txdr->buffer_info[i].dma)
977 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
978 txdr->buffer_info[i].length,
979 PCI_DMA_TODEVICE);
980 if (txdr->buffer_info[i].skb)
981 dev_kfree_skb(txdr->buffer_info[i].skb);
985 if (rxdr->desc && rxdr->buffer_info) {
986 for (i = 0; i < rxdr->count; i++) {
987 if (rxdr->buffer_info[i].dma)
988 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
989 rxdr->buffer_info[i].length,
990 PCI_DMA_FROMDEVICE);
991 if (rxdr->buffer_info[i].skb)
992 dev_kfree_skb(rxdr->buffer_info[i].skb);
996 if (txdr->desc) {
997 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
998 txdr->desc = NULL;
1000 if (rxdr->desc) {
1001 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
1002 rxdr->desc = NULL;
1005 kfree(txdr->buffer_info);
1006 txdr->buffer_info = NULL;
1007 kfree(rxdr->buffer_info);
1008 rxdr->buffer_info = NULL;
1010 return;
1013 static int
1014 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1016 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1017 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1018 struct pci_dev *pdev = adapter->pdev;
1019 uint32_t rctl;
1020 int size, i, ret_val;
1022 /* Setup Tx descriptor ring and Tx buffers */
1024 if (!txdr->count)
1025 txdr->count = E1000_DEFAULT_TXD;
1027 size = txdr->count * sizeof(struct e1000_buffer);
1028 if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1029 ret_val = 1;
1030 goto err_nomem;
1032 memset(txdr->buffer_info, 0, size);
1034 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1035 E1000_ROUNDUP(txdr->size, 4096);
1036 if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1037 ret_val = 2;
1038 goto err_nomem;
1040 memset(txdr->desc, 0, txdr->size);
1041 txdr->next_to_use = txdr->next_to_clean = 0;
1043 E1000_WRITE_REG(&adapter->hw, TDBAL,
1044 ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1045 E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1046 E1000_WRITE_REG(&adapter->hw, TDLEN,
1047 txdr->count * sizeof(struct e1000_tx_desc));
1048 E1000_WRITE_REG(&adapter->hw, TDH, 0);
1049 E1000_WRITE_REG(&adapter->hw, TDT, 0);
1050 E1000_WRITE_REG(&adapter->hw, TCTL,
1051 E1000_TCTL_PSP | E1000_TCTL_EN |
1052 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1053 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1055 for (i = 0; i < txdr->count; i++) {
1056 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1057 struct sk_buff *skb;
1058 unsigned int size = 1024;
1060 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1061 ret_val = 3;
1062 goto err_nomem;
1064 skb_put(skb, size);
1065 txdr->buffer_info[i].skb = skb;
1066 txdr->buffer_info[i].length = skb->len;
1067 txdr->buffer_info[i].dma =
1068 pci_map_single(pdev, skb->data, skb->len,
1069 PCI_DMA_TODEVICE);
1070 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1071 tx_desc->lower.data = cpu_to_le32(skb->len);
1072 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1073 E1000_TXD_CMD_IFCS |
1074 E1000_TXD_CMD_RPS);
1075 tx_desc->upper.data = 0;
1078 /* Setup Rx descriptor ring and Rx buffers */
1080 if (!rxdr->count)
1081 rxdr->count = E1000_DEFAULT_RXD;
1083 size = rxdr->count * sizeof(struct e1000_buffer);
1084 if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1085 ret_val = 4;
1086 goto err_nomem;
1088 memset(rxdr->buffer_info, 0, size);
1090 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1091 if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1092 ret_val = 5;
1093 goto err_nomem;
1095 memset(rxdr->desc, 0, rxdr->size);
1096 rxdr->next_to_use = rxdr->next_to_clean = 0;
1098 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1099 E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1100 E1000_WRITE_REG(&adapter->hw, RDBAL,
1101 ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1102 E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1103 E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1104 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1105 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1106 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1107 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1108 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1109 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1111 for (i = 0; i < rxdr->count; i++) {
1112 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1113 struct sk_buff *skb;
1115 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1116 GFP_KERNEL))) {
1117 ret_val = 6;
1118 goto err_nomem;
1120 skb_reserve(skb, NET_IP_ALIGN);
1121 rxdr->buffer_info[i].skb = skb;
1122 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1123 rxdr->buffer_info[i].dma =
1124 pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1125 PCI_DMA_FROMDEVICE);
1126 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1127 memset(skb->data, 0x00, skb->len);
1130 return 0;
1132 err_nomem:
1133 e1000_free_desc_rings(adapter);
1134 return ret_val;
1137 static void
1138 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1140 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1141 e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1142 e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1143 e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1144 e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1147 static void
1148 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1150 uint16_t phy_reg;
1152 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1153 * Extended PHY Specific Control Register to 25MHz clock. This
1154 * value defaults back to a 2.5MHz clock when the PHY is reset.
1156 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1157 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1158 e1000_write_phy_reg(&adapter->hw,
1159 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1161 /* In addition, because of the s/w reset above, we need to enable
1162 * CRS on TX. This must be set for both full and half duplex
1163 * operation.
1165 e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1166 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1167 e1000_write_phy_reg(&adapter->hw,
1168 M88E1000_PHY_SPEC_CTRL, phy_reg);
1171 static int
1172 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1174 uint32_t ctrl_reg;
1175 uint16_t phy_reg;
1177 /* Setup the Device Control Register for PHY loopback test. */
1179 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1180 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1181 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1182 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1183 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1184 E1000_CTRL_FD); /* Force Duplex to FULL */
1186 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1188 /* Read the PHY Specific Control Register (0x10) */
1189 e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1191 /* Clear Auto-Crossover bits in PHY Specific Control Register
1192 * (bits 6:5).
1194 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1195 e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1197 /* Perform software reset on the PHY */
1198 e1000_phy_reset(&adapter->hw);
1200 /* Have to setup TX_CLK and TX_CRS after software reset */
1201 e1000_phy_reset_clk_and_crs(adapter);
1203 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1205 /* Wait for reset to complete. */
1206 udelay(500);
1208 /* Have to setup TX_CLK and TX_CRS after software reset */
1209 e1000_phy_reset_clk_and_crs(adapter);
1211 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1212 e1000_phy_disable_receiver(adapter);
1214 /* Set the loopback bit in the PHY control register. */
1215 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1216 phy_reg |= MII_CR_LOOPBACK;
1217 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1219 /* Setup TX_CLK and TX_CRS one more time. */
1220 e1000_phy_reset_clk_and_crs(adapter);
1222 /* Check Phy Configuration */
1223 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1224 if (phy_reg != 0x4100)
1225 return 9;
1227 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1228 if (phy_reg != 0x0070)
1229 return 10;
1231 e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1232 if (phy_reg != 0x001A)
1233 return 11;
1235 return 0;
1238 static int
1239 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1241 uint32_t ctrl_reg = 0;
1242 uint32_t stat_reg = 0;
1244 adapter->hw.autoneg = FALSE;
1246 if (adapter->hw.phy_type == e1000_phy_m88) {
1247 /* Auto-MDI/MDIX Off */
1248 e1000_write_phy_reg(&adapter->hw,
1249 M88E1000_PHY_SPEC_CTRL, 0x0808);
1250 /* reset to update Auto-MDI/MDIX */
1251 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1252 /* autoneg off */
1253 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1255 /* force 1000, set loopback */
1256 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1258 /* Now set up the MAC to the same speed/duplex as the PHY. */
1259 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1260 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1261 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1262 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1263 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1264 E1000_CTRL_FD); /* Force Duplex to FULL */
1266 if (adapter->hw.media_type == e1000_media_type_copper &&
1267 adapter->hw.phy_type == e1000_phy_m88) {
1268 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1269 } else {
1270 /* Set the ILOS bit on the fiber Nic is half
1271 * duplex link is detected. */
1272 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1273 if ((stat_reg & E1000_STATUS_FD) == 0)
1274 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1277 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1279 /* Disable the receiver on the PHY so when a cable is plugged in, the
1280 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1282 if (adapter->hw.phy_type == e1000_phy_m88)
1283 e1000_phy_disable_receiver(adapter);
1285 udelay(500);
1287 return 0;
1290 static int
1291 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1293 uint16_t phy_reg = 0;
1294 uint16_t count = 0;
1296 switch (adapter->hw.mac_type) {
1297 case e1000_82543:
1298 if (adapter->hw.media_type == e1000_media_type_copper) {
1299 /* Attempt to setup Loopback mode on Non-integrated PHY.
1300 * Some PHY registers get corrupted at random, so
1301 * attempt this 10 times.
1303 while (e1000_nonintegrated_phy_loopback(adapter) &&
1304 count++ < 10);
1305 if (count < 11)
1306 return 0;
1308 break;
1310 case e1000_82544:
1311 case e1000_82540:
1312 case e1000_82545:
1313 case e1000_82545_rev_3:
1314 case e1000_82546:
1315 case e1000_82546_rev_3:
1316 case e1000_82541:
1317 case e1000_82541_rev_2:
1318 case e1000_82547:
1319 case e1000_82547_rev_2:
1320 case e1000_82571:
1321 case e1000_82572:
1322 case e1000_82573:
1323 return e1000_integrated_phy_loopback(adapter);
1324 break;
1326 default:
1327 /* Default PHY loopback work is to read the MII
1328 * control register and assert bit 14 (loopback mode).
1330 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1331 phy_reg |= MII_CR_LOOPBACK;
1332 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1333 return 0;
1334 break;
1337 return 8;
1340 static int
1341 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1343 struct e1000_hw *hw = &adapter->hw;
1344 uint32_t rctl;
1346 if (hw->media_type == e1000_media_type_fiber ||
1347 hw->media_type == e1000_media_type_internal_serdes) {
1348 switch (hw->mac_type) {
1349 case e1000_82545:
1350 case e1000_82546:
1351 case e1000_82545_rev_3:
1352 case e1000_82546_rev_3:
1353 return e1000_set_phy_loopback(adapter);
1354 break;
1355 case e1000_82571:
1356 case e1000_82572:
1357 #define E1000_SERDES_LB_ON 0x410
1358 e1000_set_phy_loopback(adapter);
1359 E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1360 msec_delay(10);
1361 return 0;
1362 break;
1363 default:
1364 rctl = E1000_READ_REG(hw, RCTL);
1365 rctl |= E1000_RCTL_LBM_TCVR;
1366 E1000_WRITE_REG(hw, RCTL, rctl);
1367 return 0;
1369 } else if (hw->media_type == e1000_media_type_copper)
1370 return e1000_set_phy_loopback(adapter);
1372 return 7;
1375 static void
1376 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1378 struct e1000_hw *hw = &adapter->hw;
1379 uint32_t rctl;
1380 uint16_t phy_reg;
1382 rctl = E1000_READ_REG(hw, RCTL);
1383 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1384 E1000_WRITE_REG(hw, RCTL, rctl);
1386 switch (hw->mac_type) {
1387 case e1000_82571:
1388 case e1000_82572:
1389 if (hw->media_type == e1000_media_type_fiber ||
1390 hw->media_type == e1000_media_type_internal_serdes) {
1391 #define E1000_SERDES_LB_OFF 0x400
1392 E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1393 msec_delay(10);
1394 break;
1396 /* Fall Through */
1397 case e1000_82545:
1398 case e1000_82546:
1399 case e1000_82545_rev_3:
1400 case e1000_82546_rev_3:
1401 default:
1402 hw->autoneg = TRUE;
1403 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1404 if (phy_reg & MII_CR_LOOPBACK) {
1405 phy_reg &= ~MII_CR_LOOPBACK;
1406 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1407 e1000_phy_reset(hw);
1409 break;
1413 static void
1414 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1416 memset(skb->data, 0xFF, frame_size);
1417 frame_size &= ~1;
1418 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1419 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1420 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1423 static int
1424 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1426 frame_size &= ~1;
1427 if (*(skb->data + 3) == 0xFF) {
1428 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1429 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1430 return 0;
1433 return 13;
1436 static int
1437 e1000_run_loopback_test(struct e1000_adapter *adapter)
1439 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1440 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1441 struct pci_dev *pdev = adapter->pdev;
1442 int i, j, k, l, lc, good_cnt, ret_val=0;
1443 unsigned long time;
1445 E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1447 /* Calculate the loop count based on the largest descriptor ring
1448 * The idea is to wrap the largest ring a number of times using 64
1449 * send/receive pairs during each loop
1452 if (rxdr->count <= txdr->count)
1453 lc = ((txdr->count / 64) * 2) + 1;
1454 else
1455 lc = ((rxdr->count / 64) * 2) + 1;
1457 k = l = 0;
1458 for (j = 0; j <= lc; j++) { /* loop count loop */
1459 for (i = 0; i < 64; i++) { /* send the packets */
1460 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1461 1024);
1462 pci_dma_sync_single_for_device(pdev,
1463 txdr->buffer_info[k].dma,
1464 txdr->buffer_info[k].length,
1465 PCI_DMA_TODEVICE);
1466 if (unlikely(++k == txdr->count)) k = 0;
1468 E1000_WRITE_REG(&adapter->hw, TDT, k);
1469 msec_delay(200);
1470 time = jiffies; /* set the start time for the receive */
1471 good_cnt = 0;
1472 do { /* receive the sent packets */
1473 pci_dma_sync_single_for_cpu(pdev,
1474 rxdr->buffer_info[l].dma,
1475 rxdr->buffer_info[l].length,
1476 PCI_DMA_FROMDEVICE);
1478 ret_val = e1000_check_lbtest_frame(
1479 rxdr->buffer_info[l].skb,
1480 1024);
1481 if (!ret_val)
1482 good_cnt++;
1483 if (unlikely(++l == rxdr->count)) l = 0;
1484 /* time + 20 msecs (200 msecs on 2.4) is more than
1485 * enough time to complete the receives, if it's
1486 * exceeded, break and error off
1488 } while (good_cnt < 64 && jiffies < (time + 20));
1489 if (good_cnt != 64) {
1490 ret_val = 13; /* ret_val is the same as mis-compare */
1491 break;
1493 if (jiffies >= (time + 2)) {
1494 ret_val = 14; /* error code for time out error */
1495 break;
1497 } /* end loop count loop */
1498 return ret_val;
1501 static int
1502 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1504 /* PHY loopback cannot be performed if SoL/IDER
1505 * sessions are active */
1506 if (e1000_check_phy_reset_block(&adapter->hw)) {
1507 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1508 "when SoL/IDER is active.\n");
1509 *data = 0;
1510 goto out;
1513 if ((*data = e1000_setup_desc_rings(adapter)))
1514 goto out;
1515 if ((*data = e1000_setup_loopback_test(adapter)))
1516 goto err_loopback;
1517 *data = e1000_run_loopback_test(adapter);
1518 e1000_loopback_cleanup(adapter);
1520 err_loopback:
1521 e1000_free_desc_rings(adapter);
1522 out:
1523 return *data;
1526 static int
1527 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1529 *data = 0;
1530 if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1531 int i = 0;
1532 adapter->hw.serdes_link_down = TRUE;
1534 /* On some blade server designs, link establishment
1535 * could take as long as 2-3 minutes */
1536 do {
1537 e1000_check_for_link(&adapter->hw);
1538 if (adapter->hw.serdes_link_down == FALSE)
1539 return *data;
1540 msec_delay(20);
1541 } while (i++ < 3750);
1543 *data = 1;
1544 } else {
1545 e1000_check_for_link(&adapter->hw);
1546 if (adapter->hw.autoneg) /* if auto_neg is set wait for it */
1547 msec_delay(4000);
1549 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1550 *data = 1;
1553 return *data;
1556 static int
1557 e1000_diag_test_count(struct net_device *netdev)
1559 return E1000_TEST_LEN;
1562 static void
1563 e1000_diag_test(struct net_device *netdev,
1564 struct ethtool_test *eth_test, uint64_t *data)
1566 struct e1000_adapter *adapter = netdev_priv(netdev);
1567 boolean_t if_running = netif_running(netdev);
1569 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1570 /* Offline tests */
1572 /* save speed, duplex, autoneg settings */
1573 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1574 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1575 uint8_t autoneg = adapter->hw.autoneg;
1577 /* Link test performed before hardware reset so autoneg doesn't
1578 * interfere with test result */
1579 if (e1000_link_test(adapter, &data[4]))
1580 eth_test->flags |= ETH_TEST_FL_FAILED;
1582 if (if_running)
1583 e1000_down(adapter);
1584 else
1585 e1000_reset(adapter);
1587 if (e1000_reg_test(adapter, &data[0]))
1588 eth_test->flags |= ETH_TEST_FL_FAILED;
1590 e1000_reset(adapter);
1591 if (e1000_eeprom_test(adapter, &data[1]))
1592 eth_test->flags |= ETH_TEST_FL_FAILED;
1594 e1000_reset(adapter);
1595 if (e1000_intr_test(adapter, &data[2]))
1596 eth_test->flags |= ETH_TEST_FL_FAILED;
1598 e1000_reset(adapter);
1599 if (e1000_loopback_test(adapter, &data[3]))
1600 eth_test->flags |= ETH_TEST_FL_FAILED;
1602 /* restore speed, duplex, autoneg settings */
1603 adapter->hw.autoneg_advertised = autoneg_advertised;
1604 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1605 adapter->hw.autoneg = autoneg;
1607 e1000_reset(adapter);
1608 if (if_running)
1609 e1000_up(adapter);
1610 } else {
1611 /* Online tests */
1612 if (e1000_link_test(adapter, &data[4]))
1613 eth_test->flags |= ETH_TEST_FL_FAILED;
1615 /* Offline tests aren't run; pass by default */
1616 data[0] = 0;
1617 data[1] = 0;
1618 data[2] = 0;
1619 data[3] = 0;
1621 msleep_interruptible(4 * 1000);
1624 static void
1625 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1627 struct e1000_adapter *adapter = netdev_priv(netdev);
1628 struct e1000_hw *hw = &adapter->hw;
1630 switch (adapter->hw.device_id) {
1631 case E1000_DEV_ID_82542:
1632 case E1000_DEV_ID_82543GC_FIBER:
1633 case E1000_DEV_ID_82543GC_COPPER:
1634 case E1000_DEV_ID_82544EI_FIBER:
1635 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1636 case E1000_DEV_ID_82545EM_FIBER:
1637 case E1000_DEV_ID_82545EM_COPPER:
1638 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1639 wol->supported = 0;
1640 wol->wolopts = 0;
1641 return;
1643 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1644 /* device id 10B5 port-A supports wol */
1645 if (!adapter->ksp3_port_a) {
1646 wol->supported = 0;
1647 return;
1649 /* KSP3 does not suppport UCAST wake-ups for any interface */
1650 wol->supported = WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1652 if (adapter->wol & E1000_WUFC_EX)
1653 DPRINTK(DRV, ERR, "Interface does not support "
1654 "directed (unicast) frame wake-up packets\n");
1655 wol->wolopts = 0;
1656 goto do_defaults;
1658 case E1000_DEV_ID_82546EB_FIBER:
1659 case E1000_DEV_ID_82546GB_FIBER:
1660 case E1000_DEV_ID_82571EB_FIBER:
1661 /* Wake events only supported on port A for dual fiber */
1662 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1663 wol->supported = 0;
1664 wol->wolopts = 0;
1665 return;
1667 /* Fall Through */
1669 default:
1670 wol->supported = WAKE_UCAST | WAKE_MCAST |
1671 WAKE_BCAST | WAKE_MAGIC;
1672 wol->wolopts = 0;
1674 do_defaults:
1675 if (adapter->wol & E1000_WUFC_EX)
1676 wol->wolopts |= WAKE_UCAST;
1677 if (adapter->wol & E1000_WUFC_MC)
1678 wol->wolopts |= WAKE_MCAST;
1679 if (adapter->wol & E1000_WUFC_BC)
1680 wol->wolopts |= WAKE_BCAST;
1681 if (adapter->wol & E1000_WUFC_MAG)
1682 wol->wolopts |= WAKE_MAGIC;
1683 return;
1687 static int
1688 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1690 struct e1000_adapter *adapter = netdev_priv(netdev);
1691 struct e1000_hw *hw = &adapter->hw;
1693 switch (adapter->hw.device_id) {
1694 case E1000_DEV_ID_82542:
1695 case E1000_DEV_ID_82543GC_FIBER:
1696 case E1000_DEV_ID_82543GC_COPPER:
1697 case E1000_DEV_ID_82544EI_FIBER:
1698 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1699 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1700 case E1000_DEV_ID_82545EM_FIBER:
1701 case E1000_DEV_ID_82545EM_COPPER:
1702 return wol->wolopts ? -EOPNOTSUPP : 0;
1704 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1705 /* device id 10B5 port-A supports wol */
1706 if (!adapter->ksp3_port_a)
1707 return wol->wolopts ? -EOPNOTSUPP : 0;
1709 if (wol->wolopts & WAKE_UCAST) {
1710 DPRINTK(DRV, ERR, "Interface does not support "
1711 "directed (unicast) frame wake-up packets\n");
1712 return -EOPNOTSUPP;
1715 case E1000_DEV_ID_82546EB_FIBER:
1716 case E1000_DEV_ID_82546GB_FIBER:
1717 case E1000_DEV_ID_82571EB_FIBER:
1718 /* Wake events only supported on port A for dual fiber */
1719 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1720 return wol->wolopts ? -EOPNOTSUPP : 0;
1721 /* Fall Through */
1723 default:
1724 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1725 return -EOPNOTSUPP;
1727 adapter->wol = 0;
1729 if (wol->wolopts & WAKE_UCAST)
1730 adapter->wol |= E1000_WUFC_EX;
1731 if (wol->wolopts & WAKE_MCAST)
1732 adapter->wol |= E1000_WUFC_MC;
1733 if (wol->wolopts & WAKE_BCAST)
1734 adapter->wol |= E1000_WUFC_BC;
1735 if (wol->wolopts & WAKE_MAGIC)
1736 adapter->wol |= E1000_WUFC_MAG;
1739 return 0;
1742 /* toggle LED 4 times per second = 2 "blinks" per second */
1743 #define E1000_ID_INTERVAL (HZ/4)
1745 /* bit defines for adapter->led_status */
1746 #define E1000_LED_ON 0
1748 static void
1749 e1000_led_blink_callback(unsigned long data)
1751 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1753 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1754 e1000_led_off(&adapter->hw);
1755 else
1756 e1000_led_on(&adapter->hw);
1758 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1761 static int
1762 e1000_phys_id(struct net_device *netdev, uint32_t data)
1764 struct e1000_adapter *adapter = netdev_priv(netdev);
1766 if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1767 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1769 if (adapter->hw.mac_type < e1000_82571) {
1770 if (!adapter->blink_timer.function) {
1771 init_timer(&adapter->blink_timer);
1772 adapter->blink_timer.function = e1000_led_blink_callback;
1773 adapter->blink_timer.data = (unsigned long) adapter;
1775 e1000_setup_led(&adapter->hw);
1776 mod_timer(&adapter->blink_timer, jiffies);
1777 msleep_interruptible(data * 1000);
1778 del_timer_sync(&adapter->blink_timer);
1779 } else if (adapter->hw.mac_type < e1000_82573) {
1780 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1781 (E1000_LEDCTL_LED2_BLINK_RATE |
1782 E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
1783 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1784 (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
1785 (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
1786 msleep_interruptible(data * 1000);
1787 } else {
1788 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1789 (E1000_LEDCTL_LED2_BLINK_RATE |
1790 E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
1791 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1792 (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
1793 (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
1794 msleep_interruptible(data * 1000);
1797 e1000_led_off(&adapter->hw);
1798 clear_bit(E1000_LED_ON, &adapter->led_status);
1799 e1000_cleanup_led(&adapter->hw);
1801 return 0;
1804 static int
1805 e1000_nway_reset(struct net_device *netdev)
1807 struct e1000_adapter *adapter = netdev_priv(netdev);
1808 if (netif_running(netdev)) {
1809 e1000_down(adapter);
1810 e1000_up(adapter);
1812 return 0;
1815 static int
1816 e1000_get_stats_count(struct net_device *netdev)
1818 return E1000_STATS_LEN;
1821 static void
1822 e1000_get_ethtool_stats(struct net_device *netdev,
1823 struct ethtool_stats *stats, uint64_t *data)
1825 struct e1000_adapter *adapter = netdev_priv(netdev);
1826 int i;
1828 e1000_update_stats(adapter);
1829 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1830 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1831 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1832 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1834 /* BUG_ON(i != E1000_STATS_LEN); */
1837 static void
1838 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1840 uint8_t *p = data;
1841 int i;
1843 switch (stringset) {
1844 case ETH_SS_TEST:
1845 memcpy(data, *e1000_gstrings_test,
1846 E1000_TEST_LEN*ETH_GSTRING_LEN);
1847 break;
1848 case ETH_SS_STATS:
1849 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1850 memcpy(p, e1000_gstrings_stats[i].stat_string,
1851 ETH_GSTRING_LEN);
1852 p += ETH_GSTRING_LEN;
1854 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1855 break;
1859 static struct ethtool_ops e1000_ethtool_ops = {
1860 .get_settings = e1000_get_settings,
1861 .set_settings = e1000_set_settings,
1862 .get_drvinfo = e1000_get_drvinfo,
1863 .get_regs_len = e1000_get_regs_len,
1864 .get_regs = e1000_get_regs,
1865 .get_wol = e1000_get_wol,
1866 .set_wol = e1000_set_wol,
1867 .get_msglevel = e1000_get_msglevel,
1868 .set_msglevel = e1000_set_msglevel,
1869 .nway_reset = e1000_nway_reset,
1870 .get_link = ethtool_op_get_link,
1871 .get_eeprom_len = e1000_get_eeprom_len,
1872 .get_eeprom = e1000_get_eeprom,
1873 .set_eeprom = e1000_set_eeprom,
1874 .get_ringparam = e1000_get_ringparam,
1875 .set_ringparam = e1000_set_ringparam,
1876 .get_pauseparam = e1000_get_pauseparam,
1877 .set_pauseparam = e1000_set_pauseparam,
1878 .get_rx_csum = e1000_get_rx_csum,
1879 .set_rx_csum = e1000_set_rx_csum,
1880 .get_tx_csum = e1000_get_tx_csum,
1881 .set_tx_csum = e1000_set_tx_csum,
1882 .get_sg = ethtool_op_get_sg,
1883 .set_sg = ethtool_op_set_sg,
1884 #ifdef NETIF_F_TSO
1885 .get_tso = ethtool_op_get_tso,
1886 .set_tso = e1000_set_tso,
1887 #endif
1888 .self_test_count = e1000_diag_test_count,
1889 .self_test = e1000_diag_test,
1890 .get_strings = e1000_get_strings,
1891 .phys_id = e1000_phys_id,
1892 .get_stats_count = e1000_get_stats_count,
1893 .get_ethtool_stats = e1000_get_ethtool_stats,
1894 .get_perm_addr = ethtool_op_get_perm_addr,
1897 void e1000_set_ethtool_ops(struct net_device *netdev)
1899 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);