2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * SGI UV architectural definitions
8 * Copyright (C) 2007 Silicon Graphics, Inc. All rights reserved.
11 #ifndef __ASM_X86_UV_HUB_H__
12 #define __ASM_X86_UV_HUB_H__
14 #include <linux/numa.h>
15 #include <linux/percpu.h>
16 #include <asm/types.h>
17 #include <asm/percpu.h>
21 * Addressing Terminology
23 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
24 * routers always have low bit of 1, C/MBricks have low bit
25 * equal to 0. Most addressing macros that target UV hub chips
26 * right shift the NASID by 1 to exclude the always-zero bit.
28 * SNASID - NASID right shifted by 1 bit.
31 * Memory/UV-HUB Processor Socket Address Format:
32 * +--------+---------------+---------------------+
33 * |00..0000| SNASID | NodeOffset |
34 * +--------+---------------+---------------------+
35 * <--- N bits --->|<--------M bits ----->
37 * M number of node offset bits (35 .. 40)
38 * N number of SNASID bits (0 .. 10)
40 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
41 * The actual values are configuration dependent and are set at
45 * NOTE!!!!!! This is the current format of the APICID. However, code
46 * should assume that this will change in the future. Use functions
47 * in this file for all APICID bit manipulations and conversion.
55 * l = socket number on board
58 * s = bits that are in the socket CSR
60 * Note: Processor only supports 12 bits in the APICID register. The ACPI
61 * tables hold all 16 bits. Software needs to be aware of this.
63 * Unless otherwise specified, all references to APICID refer to
64 * the FULL value contained in ACPI tables, not the subset in the
65 * processor APICID register.
70 * Maximum number of bricks in all partitions and in all coherency domains.
71 * This is the total number of bricks accessible in the numalink fabric. It
72 * includes all C & M bricks. Routers are NOT included.
74 * This value is also the value of the maximum number of non-router NASIDs
75 * in the numalink fabric.
77 * NOTE: a brick may be 1 or 2 OS nodes. Don't get these confused.
79 #define UV_MAX_NUMALINK_BLADES 16384
82 * Maximum number of C/Mbricks within a software SSI (hardware may support
85 #define UV_MAX_SSI_BLADES 256
88 * The largest possible NASID of a C or M brick (+ 2)
90 #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2)
93 * The following defines attributes of the HUB chip. These attributes are
94 * frequently referenced and are kept in the per-cpu data areas of each cpu.
95 * They are kept together in a struct to minimize cache misses.
97 struct uv_hub_info_s
{
98 unsigned long global_mmr_base
;
99 unsigned short local_nasid
;
100 unsigned short gnode_upper
;
101 unsigned short coherency_domain_number
;
102 unsigned short numa_blade_id
;
103 unsigned char blade_processor_id
;
107 DECLARE_PER_CPU(struct uv_hub_info_s
, __uv_hub_info
);
108 #define uv_hub_info (&__get_cpu_var(__uv_hub_info))
109 #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
112 * Local & Global MMR space macros.
113 * Note: macros are intended to be used ONLY by inline functions
114 * in this file - not by other kernel code.
116 #define UV_SNASID(n) ((n) >> 1)
117 #define UV_NASID(n) ((n) << 1)
119 #define UV_LOCAL_MMR_BASE 0xf4000000UL
120 #define UV_GLOBAL_MMR32_BASE 0xf8000000UL
121 #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
123 #define UV_GLOBAL_MMR32_SNASID_MASK 0x3ff
124 #define UV_GLOBAL_MMR32_SNASID_SHIFT 15
125 #define UV_GLOBAL_MMR64_SNASID_SHIFT 26
127 #define UV_GLOBAL_MMR32_NASID_BITS(n) \
128 (((UV_SNASID(n) & UV_GLOBAL_MMR32_SNASID_MASK)) << \
129 (UV_GLOBAL_MMR32_SNASID_SHIFT))
131 #define UV_GLOBAL_MMR64_NASID_BITS(n) \
132 ((unsigned long)UV_SNASID(n) << UV_GLOBAL_MMR64_SNASID_SHIFT)
134 #define UV_APIC_NASID_SHIFT 6
137 * Extract a NASID from an APICID (full apicid, not processor subset)
139 static inline int uv_apicid_to_nasid(int apicid
)
141 return (UV_NASID(apicid
>> UV_APIC_NASID_SHIFT
));
145 * Access global MMRs using the low memory MMR32 space. This region supports
146 * faster MMR access but not all MMRs are accessible in this space.
148 static inline unsigned long *uv_global_mmr32_address(int nasid
,
149 unsigned long offset
)
151 return __va(UV_GLOBAL_MMR32_BASE
|
152 UV_GLOBAL_MMR32_NASID_BITS(nasid
) | offset
);
155 static inline void uv_write_global_mmr32(int nasid
, unsigned long offset
,
158 *uv_global_mmr32_address(nasid
, offset
) = val
;
161 static inline unsigned long uv_read_global_mmr32(int nasid
,
162 unsigned long offset
)
164 return *uv_global_mmr32_address(nasid
, offset
);
168 * Access Global MMR space using the MMR space located at the top of physical
171 static inline unsigned long *uv_global_mmr64_address(int nasid
,
172 unsigned long offset
)
174 return __va(UV_GLOBAL_MMR64_BASE
|
175 UV_GLOBAL_MMR64_NASID_BITS(nasid
) | offset
);
178 static inline void uv_write_global_mmr64(int nasid
, unsigned long offset
,
181 *uv_global_mmr64_address(nasid
, offset
) = val
;
184 static inline unsigned long uv_read_global_mmr64(int nasid
,
185 unsigned long offset
)
187 return *uv_global_mmr64_address(nasid
, offset
);
191 * Access node local MMRs. Faster than using global space but only local MMRs
194 static inline unsigned long *uv_local_mmr_address(unsigned long offset
)
196 return __va(UV_LOCAL_MMR_BASE
| offset
);
199 static inline unsigned long uv_read_local_mmr(unsigned long offset
)
201 return *uv_local_mmr_address(offset
);
204 static inline void uv_write_local_mmr(unsigned long offset
, unsigned long val
)
206 *uv_local_mmr_address(offset
) = val
;
210 * Structures and definitions for converting between cpu, node, and blade
213 struct uv_blade_info
{
214 unsigned short nr_posible_cpus
;
215 unsigned short nr_online_cpus
;
216 unsigned short nasid
;
218 struct uv_blade_info
*uv_blade_info
;
219 extern short *uv_node_to_blade
;
220 extern short *uv_cpu_to_blade
;
221 extern short uv_possible_blades
;
223 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
224 static inline int uv_blade_processor_id(void)
226 return uv_hub_info
->blade_processor_id
;
229 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
230 static inline int uv_numa_blade_id(void)
232 return uv_hub_info
->numa_blade_id
;
235 /* Convert a cpu number to the the UV blade number */
236 static inline int uv_cpu_to_blade_id(int cpu
)
238 return uv_cpu_to_blade
[cpu
];
241 /* Convert linux node number to the UV blade number */
242 static inline int uv_node_to_blade_id(int nid
)
244 return uv_node_to_blade
[nid
];
247 /* Convert a blade id to the NASID of the blade */
248 static inline int uv_blade_to_nasid(int bid
)
250 return uv_blade_info
[bid
].nasid
;
253 /* Determine the number of possible cpus on a blade */
254 static inline int uv_blade_nr_possible_cpus(int bid
)
256 return uv_blade_info
[bid
].nr_posible_cpus
;
259 /* Determine the number of online cpus on a blade */
260 static inline int uv_blade_nr_online_cpus(int bid
)
262 return uv_blade_info
[bid
].nr_online_cpus
;
265 /* Convert a cpu id to the NASID of the blade containing the cpu */
266 static inline int uv_cpu_to_nasid(int cpu
)
268 return uv_blade_info
[uv_cpu_to_blade_id(cpu
)].nasid
;
271 /* Convert a node number to the NASID of the blade */
272 static inline int uv_node_to_nasid(int nid
)
274 return uv_blade_info
[uv_node_to_blade_id(nid
)].nasid
;
277 /* Maximum possible number of blades */
278 static inline int uv_num_possible_blades(void)
280 return uv_possible_blades
;
283 #endif /* __ASM_X86_UV_HUB__ */