[PATCH] libata: always use polling IDENTIFY
[linux-2.6/zen-sources.git] / drivers / ata / libata-core.c
blobf8ec3896b793e21c14e5352c0589a11f22fa0c7b
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
60 #include "libata.h"
62 /* debounce timing parameters in msecs { interval, duration, timeout } */
63 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
67 static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_device *dev);
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
75 struct workqueue_struct *ata_aux_wq;
77 int atapi_enabled = 1;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
81 int atapi_dmadir = 0;
82 module_param(atapi_dmadir, int, 0444);
83 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
85 int libata_fua = 0;
86 module_param_named(fua, libata_fua, int, 0444);
87 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
89 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90 module_param(ata_probe_timeout, int, 0444);
91 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
93 MODULE_AUTHOR("Jeff Garzik");
94 MODULE_DESCRIPTION("Library module for ATA devices");
95 MODULE_LICENSE("GPL");
96 MODULE_VERSION(DRV_VERSION);
99 /**
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
108 * LOCKING:
109 * Inherited from caller.
112 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
120 fis[4] = tf->lbal;
121 fis[5] = tf->lbam;
122 fis[6] = tf->lbah;
123 fis[7] = tf->device;
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
130 fis[12] = tf->nsect;
131 fis[13] = tf->hob_nsect;
132 fis[14] = 0;
133 fis[15] = tf->ctl;
135 fis[16] = 0;
136 fis[17] = 0;
137 fis[18] = 0;
138 fis[19] = 0;
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
148 * LOCKING:
149 * Inherited from caller.
152 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
157 tf->lbal = fis[4];
158 tf->lbam = fis[5];
159 tf->lbah = fis[6];
160 tf->device = fis[7];
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
166 tf->nsect = fis[12];
167 tf->hob_nsect = fis[13];
170 static const u8 ata_rw_cmds[] = {
171 /* pio multi */
172 ATA_CMD_READ_MULTI,
173 ATA_CMD_WRITE_MULTI,
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
180 /* pio */
181 ATA_CMD_PIO_READ,
182 ATA_CMD_PIO_WRITE,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
189 /* dma */
190 ATA_CMD_READ,
191 ATA_CMD_WRITE,
192 ATA_CMD_READ_EXT,
193 ATA_CMD_WRITE_EXT,
197 ATA_CMD_WRITE_FUA_EXT
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @tf: command to examine and configure
203 * @dev: device tf belongs to
205 * Examine the device configuration and tf->flags to calculate
206 * the proper read/write commands and protocol to use.
208 * LOCKING:
209 * caller.
211 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
213 u8 cmd;
215 int index, fua, lba48, write;
217 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
218 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
219 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
221 if (dev->flags & ATA_DFLAG_PIO) {
222 tf->protocol = ATA_PROT_PIO;
223 index = dev->multi_count ? 0 : 8;
224 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
225 /* Unable to use DMA due to host limitation */
226 tf->protocol = ATA_PROT_PIO;
227 index = dev->multi_count ? 0 : 8;
228 } else {
229 tf->protocol = ATA_PROT_DMA;
230 index = 16;
233 cmd = ata_rw_cmds[index + fua + lba48 + write];
234 if (cmd) {
235 tf->command = cmd;
236 return 0;
238 return -1;
242 * ata_tf_read_block - Read block address from ATA taskfile
243 * @tf: ATA taskfile of interest
244 * @dev: ATA device @tf belongs to
246 * LOCKING:
247 * None.
249 * Read block address from @tf. This function can handle all
250 * three address formats - LBA, LBA48 and CHS. tf->protocol and
251 * flags select the address format to use.
253 * RETURNS:
254 * Block address read from @tf.
256 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
258 u64 block = 0;
260 if (tf->flags & ATA_TFLAG_LBA) {
261 if (tf->flags & ATA_TFLAG_LBA48) {
262 block |= (u64)tf->hob_lbah << 40;
263 block |= (u64)tf->hob_lbam << 32;
264 block |= tf->hob_lbal << 24;
265 } else
266 block |= (tf->device & 0xf) << 24;
268 block |= tf->lbah << 16;
269 block |= tf->lbam << 8;
270 block |= tf->lbal;
271 } else {
272 u32 cyl, head, sect;
274 cyl = tf->lbam | (tf->lbah << 8);
275 head = tf->device & 0xf;
276 sect = tf->lbal;
278 block = (cyl * dev->heads + head) * dev->sectors + sect;
281 return block;
285 * ata_build_rw_tf - Build ATA taskfile for given read/write request
286 * @tf: Target ATA taskfile
287 * @dev: ATA device @tf belongs to
288 * @block: Block address
289 * @n_block: Number of blocks
290 * @tf_flags: RW/FUA etc...
291 * @tag: tag
293 * LOCKING:
294 * None.
296 * Build ATA taskfile @tf for read/write request described by
297 * @block, @n_block, @tf_flags and @tag on @dev.
299 * RETURNS:
301 * 0 on success, -ERANGE if the request is too large for @dev,
302 * -EINVAL if the request is invalid.
304 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
305 u64 block, u32 n_block, unsigned int tf_flags,
306 unsigned int tag)
308 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
309 tf->flags |= tf_flags;
311 if ((dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ_OFF |
312 ATA_DFLAG_NCQ)) == ATA_DFLAG_NCQ &&
313 likely(tag != ATA_TAG_INTERNAL)) {
314 /* yay, NCQ */
315 if (!lba_48_ok(block, n_block))
316 return -ERANGE;
318 tf->protocol = ATA_PROT_NCQ;
319 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
321 if (tf->flags & ATA_TFLAG_WRITE)
322 tf->command = ATA_CMD_FPDMA_WRITE;
323 else
324 tf->command = ATA_CMD_FPDMA_READ;
326 tf->nsect = tag << 3;
327 tf->hob_feature = (n_block >> 8) & 0xff;
328 tf->feature = n_block & 0xff;
330 tf->hob_lbah = (block >> 40) & 0xff;
331 tf->hob_lbam = (block >> 32) & 0xff;
332 tf->hob_lbal = (block >> 24) & 0xff;
333 tf->lbah = (block >> 16) & 0xff;
334 tf->lbam = (block >> 8) & 0xff;
335 tf->lbal = block & 0xff;
337 tf->device = 1 << 6;
338 if (tf->flags & ATA_TFLAG_FUA)
339 tf->device |= 1 << 7;
340 } else if (dev->flags & ATA_DFLAG_LBA) {
341 tf->flags |= ATA_TFLAG_LBA;
343 if (lba_28_ok(block, n_block)) {
344 /* use LBA28 */
345 tf->device |= (block >> 24) & 0xf;
346 } else if (lba_48_ok(block, n_block)) {
347 if (!(dev->flags & ATA_DFLAG_LBA48))
348 return -ERANGE;
350 /* use LBA48 */
351 tf->flags |= ATA_TFLAG_LBA48;
353 tf->hob_nsect = (n_block >> 8) & 0xff;
355 tf->hob_lbah = (block >> 40) & 0xff;
356 tf->hob_lbam = (block >> 32) & 0xff;
357 tf->hob_lbal = (block >> 24) & 0xff;
358 } else
359 /* request too large even for LBA48 */
360 return -ERANGE;
362 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
363 return -EINVAL;
365 tf->nsect = n_block & 0xff;
367 tf->lbah = (block >> 16) & 0xff;
368 tf->lbam = (block >> 8) & 0xff;
369 tf->lbal = block & 0xff;
371 tf->device |= ATA_LBA;
372 } else {
373 /* CHS */
374 u32 sect, head, cyl, track;
376 /* The request -may- be too large for CHS addressing. */
377 if (!lba_28_ok(block, n_block))
378 return -ERANGE;
380 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
381 return -EINVAL;
383 /* Convert LBA to CHS */
384 track = (u32)block / dev->sectors;
385 cyl = track / dev->heads;
386 head = track % dev->heads;
387 sect = (u32)block % dev->sectors + 1;
389 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
390 (u32)block, track, cyl, head, sect);
392 /* Check whether the converted CHS can fit.
393 Cylinder: 0-65535
394 Head: 0-15
395 Sector: 1-255*/
396 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
397 return -ERANGE;
399 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
400 tf->lbal = sect;
401 tf->lbam = cyl;
402 tf->lbah = cyl >> 8;
403 tf->device |= head;
406 return 0;
410 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
411 * @pio_mask: pio_mask
412 * @mwdma_mask: mwdma_mask
413 * @udma_mask: udma_mask
415 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
416 * unsigned int xfer_mask.
418 * LOCKING:
419 * None.
421 * RETURNS:
422 * Packed xfer_mask.
424 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
425 unsigned int mwdma_mask,
426 unsigned int udma_mask)
428 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
429 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
430 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
434 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
435 * @xfer_mask: xfer_mask to unpack
436 * @pio_mask: resulting pio_mask
437 * @mwdma_mask: resulting mwdma_mask
438 * @udma_mask: resulting udma_mask
440 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
441 * Any NULL distination masks will be ignored.
443 static void ata_unpack_xfermask(unsigned int xfer_mask,
444 unsigned int *pio_mask,
445 unsigned int *mwdma_mask,
446 unsigned int *udma_mask)
448 if (pio_mask)
449 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
450 if (mwdma_mask)
451 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
452 if (udma_mask)
453 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
456 static const struct ata_xfer_ent {
457 int shift, bits;
458 u8 base;
459 } ata_xfer_tbl[] = {
460 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
461 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
462 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
463 { -1, },
467 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
468 * @xfer_mask: xfer_mask of interest
470 * Return matching XFER_* value for @xfer_mask. Only the highest
471 * bit of @xfer_mask is considered.
473 * LOCKING:
474 * None.
476 * RETURNS:
477 * Matching XFER_* value, 0 if no match found.
479 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
481 int highbit = fls(xfer_mask) - 1;
482 const struct ata_xfer_ent *ent;
484 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
485 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
486 return ent->base + highbit - ent->shift;
487 return 0;
491 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
492 * @xfer_mode: XFER_* of interest
494 * Return matching xfer_mask for @xfer_mode.
496 * LOCKING:
497 * None.
499 * RETURNS:
500 * Matching xfer_mask, 0 if no match found.
502 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
504 const struct ata_xfer_ent *ent;
506 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
507 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
508 return 1 << (ent->shift + xfer_mode - ent->base);
509 return 0;
513 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
514 * @xfer_mode: XFER_* of interest
516 * Return matching xfer_shift for @xfer_mode.
518 * LOCKING:
519 * None.
521 * RETURNS:
522 * Matching xfer_shift, -1 if no match found.
524 static int ata_xfer_mode2shift(unsigned int xfer_mode)
526 const struct ata_xfer_ent *ent;
528 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
529 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
530 return ent->shift;
531 return -1;
535 * ata_mode_string - convert xfer_mask to string
536 * @xfer_mask: mask of bits supported; only highest bit counts.
538 * Determine string which represents the highest speed
539 * (highest bit in @modemask).
541 * LOCKING:
542 * None.
544 * RETURNS:
545 * Constant C string representing highest speed listed in
546 * @mode_mask, or the constant C string "<n/a>".
548 static const char *ata_mode_string(unsigned int xfer_mask)
550 static const char * const xfer_mode_str[] = {
551 "PIO0",
552 "PIO1",
553 "PIO2",
554 "PIO3",
555 "PIO4",
556 "PIO5",
557 "PIO6",
558 "MWDMA0",
559 "MWDMA1",
560 "MWDMA2",
561 "MWDMA3",
562 "MWDMA4",
563 "UDMA/16",
564 "UDMA/25",
565 "UDMA/33",
566 "UDMA/44",
567 "UDMA/66",
568 "UDMA/100",
569 "UDMA/133",
570 "UDMA7",
572 int highbit;
574 highbit = fls(xfer_mask) - 1;
575 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
576 return xfer_mode_str[highbit];
577 return "<n/a>";
580 static const char *sata_spd_string(unsigned int spd)
582 static const char * const spd_str[] = {
583 "1.5 Gbps",
584 "3.0 Gbps",
587 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
588 return "<unknown>";
589 return spd_str[spd - 1];
592 void ata_dev_disable(struct ata_device *dev)
594 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
595 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
596 dev->class++;
601 * ata_pio_devchk - PATA device presence detection
602 * @ap: ATA channel to examine
603 * @device: Device to examine (starting at zero)
605 * This technique was originally described in
606 * Hale Landis's ATADRVR (www.ata-atapi.com), and
607 * later found its way into the ATA/ATAPI spec.
609 * Write a pattern to the ATA shadow registers,
610 * and if a device is present, it will respond by
611 * correctly storing and echoing back the
612 * ATA shadow register contents.
614 * LOCKING:
615 * caller.
618 static unsigned int ata_pio_devchk(struct ata_port *ap,
619 unsigned int device)
621 struct ata_ioports *ioaddr = &ap->ioaddr;
622 u8 nsect, lbal;
624 ap->ops->dev_select(ap, device);
626 outb(0x55, ioaddr->nsect_addr);
627 outb(0xaa, ioaddr->lbal_addr);
629 outb(0xaa, ioaddr->nsect_addr);
630 outb(0x55, ioaddr->lbal_addr);
632 outb(0x55, ioaddr->nsect_addr);
633 outb(0xaa, ioaddr->lbal_addr);
635 nsect = inb(ioaddr->nsect_addr);
636 lbal = inb(ioaddr->lbal_addr);
638 if ((nsect == 0x55) && (lbal == 0xaa))
639 return 1; /* we found a device */
641 return 0; /* nothing found */
645 * ata_mmio_devchk - PATA device presence detection
646 * @ap: ATA channel to examine
647 * @device: Device to examine (starting at zero)
649 * This technique was originally described in
650 * Hale Landis's ATADRVR (www.ata-atapi.com), and
651 * later found its way into the ATA/ATAPI spec.
653 * Write a pattern to the ATA shadow registers,
654 * and if a device is present, it will respond by
655 * correctly storing and echoing back the
656 * ATA shadow register contents.
658 * LOCKING:
659 * caller.
662 static unsigned int ata_mmio_devchk(struct ata_port *ap,
663 unsigned int device)
665 struct ata_ioports *ioaddr = &ap->ioaddr;
666 u8 nsect, lbal;
668 ap->ops->dev_select(ap, device);
670 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
671 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
673 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
674 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
676 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
677 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
679 nsect = readb((void __iomem *) ioaddr->nsect_addr);
680 lbal = readb((void __iomem *) ioaddr->lbal_addr);
682 if ((nsect == 0x55) && (lbal == 0xaa))
683 return 1; /* we found a device */
685 return 0; /* nothing found */
689 * ata_devchk - PATA device presence detection
690 * @ap: ATA channel to examine
691 * @device: Device to examine (starting at zero)
693 * Dispatch ATA device presence detection, depending
694 * on whether we are using PIO or MMIO to talk to the
695 * ATA shadow registers.
697 * LOCKING:
698 * caller.
701 static unsigned int ata_devchk(struct ata_port *ap,
702 unsigned int device)
704 if (ap->flags & ATA_FLAG_MMIO)
705 return ata_mmio_devchk(ap, device);
706 return ata_pio_devchk(ap, device);
710 * ata_dev_classify - determine device type based on ATA-spec signature
711 * @tf: ATA taskfile register set for device to be identified
713 * Determine from taskfile register contents whether a device is
714 * ATA or ATAPI, as per "Signature and persistence" section
715 * of ATA/PI spec (volume 1, sect 5.14).
717 * LOCKING:
718 * None.
720 * RETURNS:
721 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
722 * the event of failure.
725 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
727 /* Apple's open source Darwin code hints that some devices only
728 * put a proper signature into the LBA mid/high registers,
729 * So, we only check those. It's sufficient for uniqueness.
732 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
733 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
734 DPRINTK("found ATA device by sig\n");
735 return ATA_DEV_ATA;
738 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
739 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
740 DPRINTK("found ATAPI device by sig\n");
741 return ATA_DEV_ATAPI;
744 DPRINTK("unknown device\n");
745 return ATA_DEV_UNKNOWN;
749 * ata_dev_try_classify - Parse returned ATA device signature
750 * @ap: ATA channel to examine
751 * @device: Device to examine (starting at zero)
752 * @r_err: Value of error register on completion
754 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
755 * an ATA/ATAPI-defined set of values is placed in the ATA
756 * shadow registers, indicating the results of device detection
757 * and diagnostics.
759 * Select the ATA device, and read the values from the ATA shadow
760 * registers. Then parse according to the Error register value,
761 * and the spec-defined values examined by ata_dev_classify().
763 * LOCKING:
764 * caller.
766 * RETURNS:
767 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
770 static unsigned int
771 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
773 struct ata_taskfile tf;
774 unsigned int class;
775 u8 err;
777 ap->ops->dev_select(ap, device);
779 memset(&tf, 0, sizeof(tf));
781 ap->ops->tf_read(ap, &tf);
782 err = tf.feature;
783 if (r_err)
784 *r_err = err;
786 /* see if device passed diags: if master then continue and warn later */
787 if (err == 0 && device == 0)
788 /* diagnostic fail : do nothing _YET_ */
789 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
790 else if (err == 1)
791 /* do nothing */ ;
792 else if ((device == 0) && (err == 0x81))
793 /* do nothing */ ;
794 else
795 return ATA_DEV_NONE;
797 /* determine if device is ATA or ATAPI */
798 class = ata_dev_classify(&tf);
800 if (class == ATA_DEV_UNKNOWN)
801 return ATA_DEV_NONE;
802 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
803 return ATA_DEV_NONE;
804 return class;
808 * ata_id_string - Convert IDENTIFY DEVICE page into string
809 * @id: IDENTIFY DEVICE results we will examine
810 * @s: string into which data is output
811 * @ofs: offset into identify device page
812 * @len: length of string to return. must be an even number.
814 * The strings in the IDENTIFY DEVICE page are broken up into
815 * 16-bit chunks. Run through the string, and output each
816 * 8-bit chunk linearly, regardless of platform.
818 * LOCKING:
819 * caller.
822 void ata_id_string(const u16 *id, unsigned char *s,
823 unsigned int ofs, unsigned int len)
825 unsigned int c;
827 while (len > 0) {
828 c = id[ofs] >> 8;
829 *s = c;
830 s++;
832 c = id[ofs] & 0xff;
833 *s = c;
834 s++;
836 ofs++;
837 len -= 2;
842 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
843 * @id: IDENTIFY DEVICE results we will examine
844 * @s: string into which data is output
845 * @ofs: offset into identify device page
846 * @len: length of string to return. must be an odd number.
848 * This function is identical to ata_id_string except that it
849 * trims trailing spaces and terminates the resulting string with
850 * null. @len must be actual maximum length (even number) + 1.
852 * LOCKING:
853 * caller.
855 void ata_id_c_string(const u16 *id, unsigned char *s,
856 unsigned int ofs, unsigned int len)
858 unsigned char *p;
860 WARN_ON(!(len & 1));
862 ata_id_string(id, s, ofs, len - 1);
864 p = s + strnlen(s, len - 1);
865 while (p > s && p[-1] == ' ')
866 p--;
867 *p = '\0';
870 static u64 ata_id_n_sectors(const u16 *id)
872 if (ata_id_has_lba(id)) {
873 if (ata_id_has_lba48(id))
874 return ata_id_u64(id, 100);
875 else
876 return ata_id_u32(id, 60);
877 } else {
878 if (ata_id_current_chs_valid(id))
879 return ata_id_u32(id, 57);
880 else
881 return id[1] * id[3] * id[6];
886 * ata_noop_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
890 * This function performs no actual function.
892 * May be used as the dev_select() entry in ata_port_operations.
894 * LOCKING:
895 * caller.
897 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
903 * ata_std_dev_select - Select device 0/1 on ATA bus
904 * @ap: ATA channel to manipulate
905 * @device: ATA device (numbered from zero) to select
907 * Use the method defined in the ATA specification to
908 * make either device 0, or device 1, active on the
909 * ATA channel. Works with both PIO and MMIO.
911 * May be used as the dev_select() entry in ata_port_operations.
913 * LOCKING:
914 * caller.
917 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
919 u8 tmp;
921 if (device == 0)
922 tmp = ATA_DEVICE_OBS;
923 else
924 tmp = ATA_DEVICE_OBS | ATA_DEV1;
926 if (ap->flags & ATA_FLAG_MMIO) {
927 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
928 } else {
929 outb(tmp, ap->ioaddr.device_addr);
931 ata_pause(ap); /* needed; also flushes, for mmio */
935 * ata_dev_select - Select device 0/1 on ATA bus
936 * @ap: ATA channel to manipulate
937 * @device: ATA device (numbered from zero) to select
938 * @wait: non-zero to wait for Status register BSY bit to clear
939 * @can_sleep: non-zero if context allows sleeping
941 * Use the method defined in the ATA specification to
942 * make either device 0, or device 1, active on the
943 * ATA channel.
945 * This is a high-level version of ata_std_dev_select(),
946 * which additionally provides the services of inserting
947 * the proper pauses and status polling, where needed.
949 * LOCKING:
950 * caller.
953 void ata_dev_select(struct ata_port *ap, unsigned int device,
954 unsigned int wait, unsigned int can_sleep)
956 if (ata_msg_probe(ap))
957 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
958 "device %u, wait %u\n", ap->id, device, wait);
960 if (wait)
961 ata_wait_idle(ap);
963 ap->ops->dev_select(ap, device);
965 if (wait) {
966 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
967 msleep(150);
968 ata_wait_idle(ap);
973 * ata_dump_id - IDENTIFY DEVICE info debugging output
974 * @id: IDENTIFY DEVICE page to dump
976 * Dump selected 16-bit words from the given IDENTIFY DEVICE
977 * page.
979 * LOCKING:
980 * caller.
983 static inline void ata_dump_id(const u16 *id)
985 DPRINTK("49==0x%04x "
986 "53==0x%04x "
987 "63==0x%04x "
988 "64==0x%04x "
989 "75==0x%04x \n",
990 id[49],
991 id[53],
992 id[63],
993 id[64],
994 id[75]);
995 DPRINTK("80==0x%04x "
996 "81==0x%04x "
997 "82==0x%04x "
998 "83==0x%04x "
999 "84==0x%04x \n",
1000 id[80],
1001 id[81],
1002 id[82],
1003 id[83],
1004 id[84]);
1005 DPRINTK("88==0x%04x "
1006 "93==0x%04x\n",
1007 id[88],
1008 id[93]);
1012 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1013 * @id: IDENTIFY data to compute xfer mask from
1015 * Compute the xfermask for this device. This is not as trivial
1016 * as it seems if we must consider early devices correctly.
1018 * FIXME: pre IDE drive timing (do we care ?).
1020 * LOCKING:
1021 * None.
1023 * RETURNS:
1024 * Computed xfermask
1026 static unsigned int ata_id_xfermask(const u16 *id)
1028 unsigned int pio_mask, mwdma_mask, udma_mask;
1030 /* Usual case. Word 53 indicates word 64 is valid */
1031 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1032 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1033 pio_mask <<= 3;
1034 pio_mask |= 0x7;
1035 } else {
1036 /* If word 64 isn't valid then Word 51 high byte holds
1037 * the PIO timing number for the maximum. Turn it into
1038 * a mask.
1040 u8 mode = id[ATA_ID_OLD_PIO_MODES] & 0xFF;
1041 if (mode < 5) /* Valid PIO range */
1042 pio_mask = (2 << mode) - 1;
1043 else
1044 pio_mask = 1;
1046 /* But wait.. there's more. Design your standards by
1047 * committee and you too can get a free iordy field to
1048 * process. However its the speeds not the modes that
1049 * are supported... Note drivers using the timing API
1050 * will get this right anyway
1054 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1056 if (ata_id_is_cfa(id)) {
1058 * Process compact flash extended modes
1060 int pio = id[163] & 0x7;
1061 int dma = (id[163] >> 3) & 7;
1063 if (pio)
1064 pio_mask |= (1 << 5);
1065 if (pio > 1)
1066 pio_mask |= (1 << 6);
1067 if (dma)
1068 mwdma_mask |= (1 << 3);
1069 if (dma > 1)
1070 mwdma_mask |= (1 << 4);
1073 udma_mask = 0;
1074 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1075 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1077 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1081 * ata_port_queue_task - Queue port_task
1082 * @ap: The ata_port to queue port_task for
1083 * @fn: workqueue function to be scheduled
1084 * @data: data value to pass to workqueue function
1085 * @delay: delay time for workqueue function
1087 * Schedule @fn(@data) for execution after @delay jiffies using
1088 * port_task. There is one port_task per port and it's the
1089 * user(low level driver)'s responsibility to make sure that only
1090 * one task is active at any given time.
1092 * libata core layer takes care of synchronization between
1093 * port_task and EH. ata_port_queue_task() may be ignored for EH
1094 * synchronization.
1096 * LOCKING:
1097 * Inherited from caller.
1099 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
1100 unsigned long delay)
1102 int rc;
1104 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1105 return;
1107 PREPARE_WORK(&ap->port_task, fn, data);
1109 if (!delay)
1110 rc = queue_work(ata_wq, &ap->port_task);
1111 else
1112 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1114 /* rc == 0 means that another user is using port task */
1115 WARN_ON(rc == 0);
1119 * ata_port_flush_task - Flush port_task
1120 * @ap: The ata_port to flush port_task for
1122 * After this function completes, port_task is guranteed not to
1123 * be running or scheduled.
1125 * LOCKING:
1126 * Kernel thread context (may sleep)
1128 void ata_port_flush_task(struct ata_port *ap)
1130 unsigned long flags;
1132 DPRINTK("ENTER\n");
1134 spin_lock_irqsave(ap->lock, flags);
1135 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1136 spin_unlock_irqrestore(ap->lock, flags);
1138 DPRINTK("flush #1\n");
1139 flush_workqueue(ata_wq);
1142 * At this point, if a task is running, it's guaranteed to see
1143 * the FLUSH flag; thus, it will never queue pio tasks again.
1144 * Cancel and flush.
1146 if (!cancel_delayed_work(&ap->port_task)) {
1147 if (ata_msg_ctl(ap))
1148 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1149 __FUNCTION__);
1150 flush_workqueue(ata_wq);
1153 spin_lock_irqsave(ap->lock, flags);
1154 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1155 spin_unlock_irqrestore(ap->lock, flags);
1157 if (ata_msg_ctl(ap))
1158 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1161 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1163 struct completion *waiting = qc->private_data;
1165 complete(waiting);
1169 * ata_exec_internal_sg - execute libata internal command
1170 * @dev: Device to which the command is sent
1171 * @tf: Taskfile registers for the command and the result
1172 * @cdb: CDB for packet command
1173 * @dma_dir: Data tranfer direction of the command
1174 * @sg: sg list for the data buffer of the command
1175 * @n_elem: Number of sg entries
1177 * Executes libata internal command with timeout. @tf contains
1178 * command on entry and result on return. Timeout and error
1179 * conditions are reported via return value. No recovery action
1180 * is taken after a command times out. It's caller's duty to
1181 * clean up after timeout.
1183 * LOCKING:
1184 * None. Should be called with kernel context, might sleep.
1186 * RETURNS:
1187 * Zero on success, AC_ERR_* mask on failure
1189 unsigned ata_exec_internal_sg(struct ata_device *dev,
1190 struct ata_taskfile *tf, const u8 *cdb,
1191 int dma_dir, struct scatterlist *sg,
1192 unsigned int n_elem)
1194 struct ata_port *ap = dev->ap;
1195 u8 command = tf->command;
1196 struct ata_queued_cmd *qc;
1197 unsigned int tag, preempted_tag;
1198 u32 preempted_sactive, preempted_qc_active;
1199 DECLARE_COMPLETION_ONSTACK(wait);
1200 unsigned long flags;
1201 unsigned int err_mask;
1202 int rc;
1204 spin_lock_irqsave(ap->lock, flags);
1206 /* no internal command while frozen */
1207 if (ap->pflags & ATA_PFLAG_FROZEN) {
1208 spin_unlock_irqrestore(ap->lock, flags);
1209 return AC_ERR_SYSTEM;
1212 /* initialize internal qc */
1214 /* XXX: Tag 0 is used for drivers with legacy EH as some
1215 * drivers choke if any other tag is given. This breaks
1216 * ata_tag_internal() test for those drivers. Don't use new
1217 * EH stuff without converting to it.
1219 if (ap->ops->error_handler)
1220 tag = ATA_TAG_INTERNAL;
1221 else
1222 tag = 0;
1224 if (test_and_set_bit(tag, &ap->qc_allocated))
1225 BUG();
1226 qc = __ata_qc_from_tag(ap, tag);
1228 qc->tag = tag;
1229 qc->scsicmd = NULL;
1230 qc->ap = ap;
1231 qc->dev = dev;
1232 ata_qc_reinit(qc);
1234 preempted_tag = ap->active_tag;
1235 preempted_sactive = ap->sactive;
1236 preempted_qc_active = ap->qc_active;
1237 ap->active_tag = ATA_TAG_POISON;
1238 ap->sactive = 0;
1239 ap->qc_active = 0;
1241 /* prepare & issue qc */
1242 qc->tf = *tf;
1243 if (cdb)
1244 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1245 qc->flags |= ATA_QCFLAG_RESULT_TF;
1246 qc->dma_dir = dma_dir;
1247 if (dma_dir != DMA_NONE) {
1248 unsigned int i, buflen = 0;
1250 for (i = 0; i < n_elem; i++)
1251 buflen += sg[i].length;
1253 ata_sg_init(qc, sg, n_elem);
1254 qc->nsect = buflen / ATA_SECT_SIZE;
1257 qc->private_data = &wait;
1258 qc->complete_fn = ata_qc_complete_internal;
1260 ata_qc_issue(qc);
1262 spin_unlock_irqrestore(ap->lock, flags);
1264 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1266 ata_port_flush_task(ap);
1268 if (!rc) {
1269 spin_lock_irqsave(ap->lock, flags);
1271 /* We're racing with irq here. If we lose, the
1272 * following test prevents us from completing the qc
1273 * twice. If we win, the port is frozen and will be
1274 * cleaned up by ->post_internal_cmd().
1276 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1277 qc->err_mask |= AC_ERR_TIMEOUT;
1279 if (ap->ops->error_handler)
1280 ata_port_freeze(ap);
1281 else
1282 ata_qc_complete(qc);
1284 if (ata_msg_warn(ap))
1285 ata_dev_printk(dev, KERN_WARNING,
1286 "qc timeout (cmd 0x%x)\n", command);
1289 spin_unlock_irqrestore(ap->lock, flags);
1292 /* do post_internal_cmd */
1293 if (ap->ops->post_internal_cmd)
1294 ap->ops->post_internal_cmd(qc);
1296 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1297 if (ata_msg_warn(ap))
1298 ata_dev_printk(dev, KERN_WARNING,
1299 "zero err_mask for failed "
1300 "internal command, assuming AC_ERR_OTHER\n");
1301 qc->err_mask |= AC_ERR_OTHER;
1304 /* finish up */
1305 spin_lock_irqsave(ap->lock, flags);
1307 *tf = qc->result_tf;
1308 err_mask = qc->err_mask;
1310 ata_qc_free(qc);
1311 ap->active_tag = preempted_tag;
1312 ap->sactive = preempted_sactive;
1313 ap->qc_active = preempted_qc_active;
1315 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1316 * Until those drivers are fixed, we detect the condition
1317 * here, fail the command with AC_ERR_SYSTEM and reenable the
1318 * port.
1320 * Note that this doesn't change any behavior as internal
1321 * command failure results in disabling the device in the
1322 * higher layer for LLDDs without new reset/EH callbacks.
1324 * Kill the following code as soon as those drivers are fixed.
1326 if (ap->flags & ATA_FLAG_DISABLED) {
1327 err_mask |= AC_ERR_SYSTEM;
1328 ata_port_probe(ap);
1331 spin_unlock_irqrestore(ap->lock, flags);
1333 return err_mask;
1337 * ata_exec_internal_sg - execute libata internal command
1338 * @dev: Device to which the command is sent
1339 * @tf: Taskfile registers for the command and the result
1340 * @cdb: CDB for packet command
1341 * @dma_dir: Data tranfer direction of the command
1342 * @buf: Data buffer of the command
1343 * @buflen: Length of data buffer
1345 * Wrapper around ata_exec_internal_sg() which takes simple
1346 * buffer instead of sg list.
1348 * LOCKING:
1349 * None. Should be called with kernel context, might sleep.
1351 * RETURNS:
1352 * Zero on success, AC_ERR_* mask on failure
1354 unsigned ata_exec_internal(struct ata_device *dev,
1355 struct ata_taskfile *tf, const u8 *cdb,
1356 int dma_dir, void *buf, unsigned int buflen)
1358 struct scatterlist sg;
1360 sg_init_one(&sg, buf, buflen);
1362 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, &sg, 1);
1366 * ata_do_simple_cmd - execute simple internal command
1367 * @dev: Device to which the command is sent
1368 * @cmd: Opcode to execute
1370 * Execute a 'simple' command, that only consists of the opcode
1371 * 'cmd' itself, without filling any other registers
1373 * LOCKING:
1374 * Kernel thread context (may sleep).
1376 * RETURNS:
1377 * Zero on success, AC_ERR_* mask on failure
1379 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1381 struct ata_taskfile tf;
1383 ata_tf_init(dev, &tf);
1385 tf.command = cmd;
1386 tf.flags |= ATA_TFLAG_DEVICE;
1387 tf.protocol = ATA_PROT_NODATA;
1389 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1393 * ata_pio_need_iordy - check if iordy needed
1394 * @adev: ATA device
1396 * Check if the current speed of the device requires IORDY. Used
1397 * by various controllers for chip configuration.
1400 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1402 int pio;
1403 int speed = adev->pio_mode - XFER_PIO_0;
1405 if (speed < 2)
1406 return 0;
1407 if (speed > 2)
1408 return 1;
1410 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1412 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1413 pio = adev->id[ATA_ID_EIDE_PIO];
1414 /* Is the speed faster than the drive allows non IORDY ? */
1415 if (pio) {
1416 /* This is cycle times not frequency - watch the logic! */
1417 if (pio > 240) /* PIO2 is 240nS per cycle */
1418 return 1;
1419 return 0;
1422 return 0;
1426 * ata_dev_read_id - Read ID data from the specified device
1427 * @dev: target device
1428 * @p_class: pointer to class of the target device (may be changed)
1429 * @flags: ATA_READID_* flags
1430 * @id: buffer to read IDENTIFY data into
1432 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1433 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1434 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1435 * for pre-ATA4 drives.
1437 * LOCKING:
1438 * Kernel thread context (may sleep)
1440 * RETURNS:
1441 * 0 on success, -errno otherwise.
1443 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1444 unsigned int flags, u16 *id)
1446 struct ata_port *ap = dev->ap;
1447 unsigned int class = *p_class;
1448 struct ata_taskfile tf;
1449 unsigned int err_mask = 0;
1450 const char *reason;
1451 int rc;
1453 if (ata_msg_ctl(ap))
1454 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1455 __FUNCTION__, ap->id, dev->devno);
1457 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1459 retry:
1460 ata_tf_init(dev, &tf);
1462 switch (class) {
1463 case ATA_DEV_ATA:
1464 tf.command = ATA_CMD_ID_ATA;
1465 break;
1466 case ATA_DEV_ATAPI:
1467 tf.command = ATA_CMD_ID_ATAPI;
1468 break;
1469 default:
1470 rc = -ENODEV;
1471 reason = "unsupported class";
1472 goto err_out;
1475 tf.protocol = ATA_PROT_PIO;
1476 tf.flags |= ATA_TFLAG_POLLING; /* for polling presence detection */
1478 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1479 id, sizeof(id[0]) * ATA_ID_WORDS);
1480 if (err_mask) {
1481 if (err_mask & AC_ERR_NODEV_HINT) {
1482 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1483 ap->id, dev->devno);
1484 return -ENOENT;
1487 rc = -EIO;
1488 reason = "I/O error";
1489 goto err_out;
1492 swap_buf_le16(id, ATA_ID_WORDS);
1494 /* sanity check */
1495 rc = -EINVAL;
1496 reason = "device reports illegal type";
1498 if (class == ATA_DEV_ATA) {
1499 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1500 goto err_out;
1501 } else {
1502 if (ata_id_is_ata(id))
1503 goto err_out;
1506 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1508 * The exact sequence expected by certain pre-ATA4 drives is:
1509 * SRST RESET
1510 * IDENTIFY
1511 * INITIALIZE DEVICE PARAMETERS
1512 * anything else..
1513 * Some drives were very specific about that exact sequence.
1515 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1516 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1517 if (err_mask) {
1518 rc = -EIO;
1519 reason = "INIT_DEV_PARAMS failed";
1520 goto err_out;
1523 /* current CHS translation info (id[53-58]) might be
1524 * changed. reread the identify device info.
1526 flags &= ~ATA_READID_POSTRESET;
1527 goto retry;
1531 *p_class = class;
1533 return 0;
1535 err_out:
1536 if (ata_msg_warn(ap))
1537 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1538 "(%s, err_mask=0x%x)\n", reason, err_mask);
1539 return rc;
1542 static inline u8 ata_dev_knobble(struct ata_device *dev)
1544 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1547 static void ata_dev_config_ncq(struct ata_device *dev,
1548 char *desc, size_t desc_sz)
1550 struct ata_port *ap = dev->ap;
1551 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1553 if (!ata_id_has_ncq(dev->id)) {
1554 desc[0] = '\0';
1555 return;
1557 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1558 snprintf(desc, desc_sz, "NCQ (not used)");
1559 return;
1561 if (ap->flags & ATA_FLAG_NCQ) {
1562 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1563 dev->flags |= ATA_DFLAG_NCQ;
1566 if (hdepth >= ddepth)
1567 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1568 else
1569 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1572 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1574 int i;
1576 if (ap->scsi_host) {
1577 unsigned int len = 0;
1579 for (i = 0; i < ATA_MAX_DEVICES; i++)
1580 len = max(len, ap->device[i].cdb_len);
1582 ap->scsi_host->max_cmd_len = len;
1587 * ata_dev_configure - Configure the specified ATA/ATAPI device
1588 * @dev: Target device to configure
1590 * Configure @dev according to @dev->id. Generic and low-level
1591 * driver specific fixups are also applied.
1593 * LOCKING:
1594 * Kernel thread context (may sleep)
1596 * RETURNS:
1597 * 0 on success, -errno otherwise
1599 int ata_dev_configure(struct ata_device *dev)
1601 struct ata_port *ap = dev->ap;
1602 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1603 const u16 *id = dev->id;
1604 unsigned int xfer_mask;
1605 char revbuf[7]; /* XYZ-99\0 */
1606 int rc;
1608 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1609 ata_dev_printk(dev, KERN_INFO,
1610 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1611 __FUNCTION__, ap->id, dev->devno);
1612 return 0;
1615 if (ata_msg_probe(ap))
1616 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1617 __FUNCTION__, ap->id, dev->devno);
1619 /* print device capabilities */
1620 if (ata_msg_probe(ap))
1621 ata_dev_printk(dev, KERN_DEBUG,
1622 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1623 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1624 __FUNCTION__,
1625 id[49], id[82], id[83], id[84],
1626 id[85], id[86], id[87], id[88]);
1628 /* initialize to-be-configured parameters */
1629 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1630 dev->max_sectors = 0;
1631 dev->cdb_len = 0;
1632 dev->n_sectors = 0;
1633 dev->cylinders = 0;
1634 dev->heads = 0;
1635 dev->sectors = 0;
1638 * common ATA, ATAPI feature tests
1641 /* find max transfer mode; for printk only */
1642 xfer_mask = ata_id_xfermask(id);
1644 if (ata_msg_probe(ap))
1645 ata_dump_id(id);
1647 /* ATA-specific feature tests */
1648 if (dev->class == ATA_DEV_ATA) {
1649 if (ata_id_is_cfa(id)) {
1650 if (id[162] & 1) /* CPRM may make this media unusable */
1651 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1652 ap->id, dev->devno);
1653 snprintf(revbuf, 7, "CFA");
1655 else
1656 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1658 dev->n_sectors = ata_id_n_sectors(id);
1660 if (ata_id_has_lba(id)) {
1661 const char *lba_desc;
1662 char ncq_desc[20];
1664 lba_desc = "LBA";
1665 dev->flags |= ATA_DFLAG_LBA;
1666 if (ata_id_has_lba48(id)) {
1667 dev->flags |= ATA_DFLAG_LBA48;
1668 lba_desc = "LBA48";
1670 if (dev->n_sectors >= (1UL << 28) &&
1671 ata_id_has_flush_ext(id))
1672 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1675 /* config NCQ */
1676 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1678 /* print device info to dmesg */
1679 if (ata_msg_drv(ap) && print_info)
1680 ata_dev_printk(dev, KERN_INFO, "%s, "
1681 "max %s, %Lu sectors: %s %s\n",
1682 revbuf,
1683 ata_mode_string(xfer_mask),
1684 (unsigned long long)dev->n_sectors,
1685 lba_desc, ncq_desc);
1686 } else {
1687 /* CHS */
1689 /* Default translation */
1690 dev->cylinders = id[1];
1691 dev->heads = id[3];
1692 dev->sectors = id[6];
1694 if (ata_id_current_chs_valid(id)) {
1695 /* Current CHS translation is valid. */
1696 dev->cylinders = id[54];
1697 dev->heads = id[55];
1698 dev->sectors = id[56];
1701 /* print device info to dmesg */
1702 if (ata_msg_drv(ap) && print_info)
1703 ata_dev_printk(dev, KERN_INFO, "%s, "
1704 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1705 revbuf,
1706 ata_mode_string(xfer_mask),
1707 (unsigned long long)dev->n_sectors,
1708 dev->cylinders, dev->heads,
1709 dev->sectors);
1712 if (dev->id[59] & 0x100) {
1713 dev->multi_count = dev->id[59] & 0xff;
1714 if (ata_msg_drv(ap) && print_info)
1715 ata_dev_printk(dev, KERN_INFO,
1716 "ata%u: dev %u multi count %u\n",
1717 ap->id, dev->devno, dev->multi_count);
1720 dev->cdb_len = 16;
1723 /* ATAPI-specific feature tests */
1724 else if (dev->class == ATA_DEV_ATAPI) {
1725 char *cdb_intr_string = "";
1727 rc = atapi_cdb_len(id);
1728 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1729 if (ata_msg_warn(ap))
1730 ata_dev_printk(dev, KERN_WARNING,
1731 "unsupported CDB len\n");
1732 rc = -EINVAL;
1733 goto err_out_nosup;
1735 dev->cdb_len = (unsigned int) rc;
1737 if (ata_id_cdb_intr(dev->id)) {
1738 dev->flags |= ATA_DFLAG_CDB_INTR;
1739 cdb_intr_string = ", CDB intr";
1742 /* print device info to dmesg */
1743 if (ata_msg_drv(ap) && print_info)
1744 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1745 ata_mode_string(xfer_mask),
1746 cdb_intr_string);
1749 /* determine max_sectors */
1750 dev->max_sectors = ATA_MAX_SECTORS;
1751 if (dev->flags & ATA_DFLAG_LBA48)
1752 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1754 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1755 /* Let the user know. We don't want to disallow opens for
1756 rescue purposes, or in case the vendor is just a blithering
1757 idiot */
1758 if (print_info) {
1759 ata_dev_printk(dev, KERN_WARNING,
1760 "Drive reports diagnostics failure. This may indicate a drive\n");
1761 ata_dev_printk(dev, KERN_WARNING,
1762 "fault or invalid emulation. Contact drive vendor for information.\n");
1766 ata_set_port_max_cmd_len(ap);
1768 /* limit bridge transfers to udma5, 200 sectors */
1769 if (ata_dev_knobble(dev)) {
1770 if (ata_msg_drv(ap) && print_info)
1771 ata_dev_printk(dev, KERN_INFO,
1772 "applying bridge limits\n");
1773 dev->udma_mask &= ATA_UDMA5;
1774 dev->max_sectors = ATA_MAX_SECTORS;
1777 if (ap->ops->dev_config)
1778 ap->ops->dev_config(ap, dev);
1780 if (ata_msg_probe(ap))
1781 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1782 __FUNCTION__, ata_chk_status(ap));
1783 return 0;
1785 err_out_nosup:
1786 if (ata_msg_probe(ap))
1787 ata_dev_printk(dev, KERN_DEBUG,
1788 "%s: EXIT, err\n", __FUNCTION__);
1789 return rc;
1793 * ata_bus_probe - Reset and probe ATA bus
1794 * @ap: Bus to probe
1796 * Master ATA bus probing function. Initiates a hardware-dependent
1797 * bus reset, then attempts to identify any devices found on
1798 * the bus.
1800 * LOCKING:
1801 * PCI/etc. bus probe sem.
1803 * RETURNS:
1804 * Zero on success, negative errno otherwise.
1807 int ata_bus_probe(struct ata_port *ap)
1809 unsigned int classes[ATA_MAX_DEVICES];
1810 int tries[ATA_MAX_DEVICES];
1811 int i, rc, down_xfermask;
1812 struct ata_device *dev;
1814 ata_port_probe(ap);
1816 for (i = 0; i < ATA_MAX_DEVICES; i++)
1817 tries[i] = ATA_PROBE_MAX_TRIES;
1819 retry:
1820 down_xfermask = 0;
1822 /* reset and determine device classes */
1823 ap->ops->phy_reset(ap);
1825 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1826 dev = &ap->device[i];
1828 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1829 dev->class != ATA_DEV_UNKNOWN)
1830 classes[dev->devno] = dev->class;
1831 else
1832 classes[dev->devno] = ATA_DEV_NONE;
1834 dev->class = ATA_DEV_UNKNOWN;
1837 ata_port_probe(ap);
1839 /* after the reset the device state is PIO 0 and the controller
1840 state is undefined. Record the mode */
1842 for (i = 0; i < ATA_MAX_DEVICES; i++)
1843 ap->device[i].pio_mode = XFER_PIO_0;
1845 /* read IDENTIFY page and configure devices */
1846 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1847 dev = &ap->device[i];
1849 if (tries[i])
1850 dev->class = classes[i];
1852 if (!ata_dev_enabled(dev))
1853 continue;
1855 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1856 dev->id);
1857 if (rc)
1858 goto fail;
1860 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1861 rc = ata_dev_configure(dev);
1862 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1863 if (rc)
1864 goto fail;
1867 /* configure transfer mode */
1868 rc = ata_set_mode(ap, &dev);
1869 if (rc) {
1870 down_xfermask = 1;
1871 goto fail;
1874 for (i = 0; i < ATA_MAX_DEVICES; i++)
1875 if (ata_dev_enabled(&ap->device[i]))
1876 return 0;
1878 /* no device present, disable port */
1879 ata_port_disable(ap);
1880 ap->ops->port_disable(ap);
1881 return -ENODEV;
1883 fail:
1884 switch (rc) {
1885 case -EINVAL:
1886 case -ENODEV:
1887 tries[dev->devno] = 0;
1888 break;
1889 case -EIO:
1890 sata_down_spd_limit(ap);
1891 /* fall through */
1892 default:
1893 tries[dev->devno]--;
1894 if (down_xfermask &&
1895 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1896 tries[dev->devno] = 0;
1899 if (!tries[dev->devno]) {
1900 ata_down_xfermask_limit(dev, 1);
1901 ata_dev_disable(dev);
1904 goto retry;
1908 * ata_port_probe - Mark port as enabled
1909 * @ap: Port for which we indicate enablement
1911 * Modify @ap data structure such that the system
1912 * thinks that the entire port is enabled.
1914 * LOCKING: host lock, or some other form of
1915 * serialization.
1918 void ata_port_probe(struct ata_port *ap)
1920 ap->flags &= ~ATA_FLAG_DISABLED;
1924 * sata_print_link_status - Print SATA link status
1925 * @ap: SATA port to printk link status about
1927 * This function prints link speed and status of a SATA link.
1929 * LOCKING:
1930 * None.
1932 static void sata_print_link_status(struct ata_port *ap)
1934 u32 sstatus, scontrol, tmp;
1936 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1937 return;
1938 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1940 if (ata_port_online(ap)) {
1941 tmp = (sstatus >> 4) & 0xf;
1942 ata_port_printk(ap, KERN_INFO,
1943 "SATA link up %s (SStatus %X SControl %X)\n",
1944 sata_spd_string(tmp), sstatus, scontrol);
1945 } else {
1946 ata_port_printk(ap, KERN_INFO,
1947 "SATA link down (SStatus %X SControl %X)\n",
1948 sstatus, scontrol);
1953 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1954 * @ap: SATA port associated with target SATA PHY.
1956 * This function issues commands to standard SATA Sxxx
1957 * PHY registers, to wake up the phy (and device), and
1958 * clear any reset condition.
1960 * LOCKING:
1961 * PCI/etc. bus probe sem.
1964 void __sata_phy_reset(struct ata_port *ap)
1966 u32 sstatus;
1967 unsigned long timeout = jiffies + (HZ * 5);
1969 if (ap->flags & ATA_FLAG_SATA_RESET) {
1970 /* issue phy wake/reset */
1971 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1972 /* Couldn't find anything in SATA I/II specs, but
1973 * AHCI-1.1 10.4.2 says at least 1 ms. */
1974 mdelay(1);
1976 /* phy wake/clear reset */
1977 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1979 /* wait for phy to become ready, if necessary */
1980 do {
1981 msleep(200);
1982 sata_scr_read(ap, SCR_STATUS, &sstatus);
1983 if ((sstatus & 0xf) != 1)
1984 break;
1985 } while (time_before(jiffies, timeout));
1987 /* print link status */
1988 sata_print_link_status(ap);
1990 /* TODO: phy layer with polling, timeouts, etc. */
1991 if (!ata_port_offline(ap))
1992 ata_port_probe(ap);
1993 else
1994 ata_port_disable(ap);
1996 if (ap->flags & ATA_FLAG_DISABLED)
1997 return;
1999 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2000 ata_port_disable(ap);
2001 return;
2004 ap->cbl = ATA_CBL_SATA;
2008 * sata_phy_reset - Reset SATA bus.
2009 * @ap: SATA port associated with target SATA PHY.
2011 * This function resets the SATA bus, and then probes
2012 * the bus for devices.
2014 * LOCKING:
2015 * PCI/etc. bus probe sem.
2018 void sata_phy_reset(struct ata_port *ap)
2020 __sata_phy_reset(ap);
2021 if (ap->flags & ATA_FLAG_DISABLED)
2022 return;
2023 ata_bus_reset(ap);
2027 * ata_dev_pair - return other device on cable
2028 * @adev: device
2030 * Obtain the other device on the same cable, or if none is
2031 * present NULL is returned
2034 struct ata_device *ata_dev_pair(struct ata_device *adev)
2036 struct ata_port *ap = adev->ap;
2037 struct ata_device *pair = &ap->device[1 - adev->devno];
2038 if (!ata_dev_enabled(pair))
2039 return NULL;
2040 return pair;
2044 * ata_port_disable - Disable port.
2045 * @ap: Port to be disabled.
2047 * Modify @ap data structure such that the system
2048 * thinks that the entire port is disabled, and should
2049 * never attempt to probe or communicate with devices
2050 * on this port.
2052 * LOCKING: host lock, or some other form of
2053 * serialization.
2056 void ata_port_disable(struct ata_port *ap)
2058 ap->device[0].class = ATA_DEV_NONE;
2059 ap->device[1].class = ATA_DEV_NONE;
2060 ap->flags |= ATA_FLAG_DISABLED;
2064 * sata_down_spd_limit - adjust SATA spd limit downward
2065 * @ap: Port to adjust SATA spd limit for
2067 * Adjust SATA spd limit of @ap downward. Note that this
2068 * function only adjusts the limit. The change must be applied
2069 * using sata_set_spd().
2071 * LOCKING:
2072 * Inherited from caller.
2074 * RETURNS:
2075 * 0 on success, negative errno on failure
2077 int sata_down_spd_limit(struct ata_port *ap)
2079 u32 sstatus, spd, mask;
2080 int rc, highbit;
2082 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2083 if (rc)
2084 return rc;
2086 mask = ap->sata_spd_limit;
2087 if (mask <= 1)
2088 return -EINVAL;
2089 highbit = fls(mask) - 1;
2090 mask &= ~(1 << highbit);
2092 spd = (sstatus >> 4) & 0xf;
2093 if (spd <= 1)
2094 return -EINVAL;
2095 spd--;
2096 mask &= (1 << spd) - 1;
2097 if (!mask)
2098 return -EINVAL;
2100 ap->sata_spd_limit = mask;
2102 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2103 sata_spd_string(fls(mask)));
2105 return 0;
2108 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2110 u32 spd, limit;
2112 if (ap->sata_spd_limit == UINT_MAX)
2113 limit = 0;
2114 else
2115 limit = fls(ap->sata_spd_limit);
2117 spd = (*scontrol >> 4) & 0xf;
2118 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2120 return spd != limit;
2124 * sata_set_spd_needed - is SATA spd configuration needed
2125 * @ap: Port in question
2127 * Test whether the spd limit in SControl matches
2128 * @ap->sata_spd_limit. This function is used to determine
2129 * whether hardreset is necessary to apply SATA spd
2130 * configuration.
2132 * LOCKING:
2133 * Inherited from caller.
2135 * RETURNS:
2136 * 1 if SATA spd configuration is needed, 0 otherwise.
2138 int sata_set_spd_needed(struct ata_port *ap)
2140 u32 scontrol;
2142 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2143 return 0;
2145 return __sata_set_spd_needed(ap, &scontrol);
2149 * sata_set_spd - set SATA spd according to spd limit
2150 * @ap: Port to set SATA spd for
2152 * Set SATA spd of @ap according to sata_spd_limit.
2154 * LOCKING:
2155 * Inherited from caller.
2157 * RETURNS:
2158 * 0 if spd doesn't need to be changed, 1 if spd has been
2159 * changed. Negative errno if SCR registers are inaccessible.
2161 int sata_set_spd(struct ata_port *ap)
2163 u32 scontrol;
2164 int rc;
2166 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2167 return rc;
2169 if (!__sata_set_spd_needed(ap, &scontrol))
2170 return 0;
2172 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2173 return rc;
2175 return 1;
2179 * This mode timing computation functionality is ported over from
2180 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2183 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2184 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2185 * for UDMA6, which is currently supported only by Maxtor drives.
2187 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2190 static const struct ata_timing ata_timing[] = {
2192 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2193 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2194 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2195 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2197 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2198 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2199 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2200 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2201 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2203 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2205 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2206 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2207 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2209 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2210 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2211 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2213 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2214 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2215 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2216 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2218 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2219 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2220 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2222 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2224 { 0xFF }
2227 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2228 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2230 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2232 q->setup = EZ(t->setup * 1000, T);
2233 q->act8b = EZ(t->act8b * 1000, T);
2234 q->rec8b = EZ(t->rec8b * 1000, T);
2235 q->cyc8b = EZ(t->cyc8b * 1000, T);
2236 q->active = EZ(t->active * 1000, T);
2237 q->recover = EZ(t->recover * 1000, T);
2238 q->cycle = EZ(t->cycle * 1000, T);
2239 q->udma = EZ(t->udma * 1000, UT);
2242 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2243 struct ata_timing *m, unsigned int what)
2245 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2246 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2247 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2248 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2249 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2250 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2251 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2252 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2255 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2257 const struct ata_timing *t;
2259 for (t = ata_timing; t->mode != speed; t++)
2260 if (t->mode == 0xFF)
2261 return NULL;
2262 return t;
2265 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2266 struct ata_timing *t, int T, int UT)
2268 const struct ata_timing *s;
2269 struct ata_timing p;
2272 * Find the mode.
2275 if (!(s = ata_timing_find_mode(speed)))
2276 return -EINVAL;
2278 memcpy(t, s, sizeof(*s));
2281 * If the drive is an EIDE drive, it can tell us it needs extended
2282 * PIO/MW_DMA cycle timing.
2285 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2286 memset(&p, 0, sizeof(p));
2287 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2288 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2289 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2290 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2291 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2293 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2297 * Convert the timing to bus clock counts.
2300 ata_timing_quantize(t, t, T, UT);
2303 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2304 * S.M.A.R.T * and some other commands. We have to ensure that the
2305 * DMA cycle timing is slower/equal than the fastest PIO timing.
2308 if (speed > XFER_PIO_4) {
2309 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2310 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2314 * Lengthen active & recovery time so that cycle time is correct.
2317 if (t->act8b + t->rec8b < t->cyc8b) {
2318 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2319 t->rec8b = t->cyc8b - t->act8b;
2322 if (t->active + t->recover < t->cycle) {
2323 t->active += (t->cycle - (t->active + t->recover)) / 2;
2324 t->recover = t->cycle - t->active;
2327 return 0;
2331 * ata_down_xfermask_limit - adjust dev xfer masks downward
2332 * @dev: Device to adjust xfer masks
2333 * @force_pio0: Force PIO0
2335 * Adjust xfer masks of @dev downward. Note that this function
2336 * does not apply the change. Invoking ata_set_mode() afterwards
2337 * will apply the limit.
2339 * LOCKING:
2340 * Inherited from caller.
2342 * RETURNS:
2343 * 0 on success, negative errno on failure
2345 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2347 unsigned long xfer_mask;
2348 int highbit;
2350 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2351 dev->udma_mask);
2353 if (!xfer_mask)
2354 goto fail;
2355 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2356 if (xfer_mask & ATA_MASK_UDMA)
2357 xfer_mask &= ~ATA_MASK_MWDMA;
2359 highbit = fls(xfer_mask) - 1;
2360 xfer_mask &= ~(1 << highbit);
2361 if (force_pio0)
2362 xfer_mask &= 1 << ATA_SHIFT_PIO;
2363 if (!xfer_mask)
2364 goto fail;
2366 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2367 &dev->udma_mask);
2369 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2370 ata_mode_string(xfer_mask));
2372 return 0;
2374 fail:
2375 return -EINVAL;
2378 static int ata_dev_set_mode(struct ata_device *dev)
2380 struct ata_eh_context *ehc = &dev->ap->eh_context;
2381 unsigned int err_mask;
2382 int rc;
2384 dev->flags &= ~ATA_DFLAG_PIO;
2385 if (dev->xfer_shift == ATA_SHIFT_PIO)
2386 dev->flags |= ATA_DFLAG_PIO;
2388 err_mask = ata_dev_set_xfermode(dev);
2389 if (err_mask) {
2390 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2391 "(err_mask=0x%x)\n", err_mask);
2392 return -EIO;
2395 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2396 rc = ata_dev_revalidate(dev, 0);
2397 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2398 if (rc)
2399 return rc;
2401 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2402 dev->xfer_shift, (int)dev->xfer_mode);
2404 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2405 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2406 return 0;
2410 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2411 * @ap: port on which timings will be programmed
2412 * @r_failed_dev: out paramter for failed device
2414 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2415 * ata_set_mode() fails, pointer to the failing device is
2416 * returned in @r_failed_dev.
2418 * LOCKING:
2419 * PCI/etc. bus probe sem.
2421 * RETURNS:
2422 * 0 on success, negative errno otherwise
2424 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2426 struct ata_device *dev;
2427 int i, rc = 0, used_dma = 0, found = 0;
2429 /* has private set_mode? */
2430 if (ap->ops->set_mode) {
2431 /* FIXME: make ->set_mode handle no device case and
2432 * return error code and failing device on failure.
2434 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2435 if (ata_dev_ready(&ap->device[i])) {
2436 ap->ops->set_mode(ap);
2437 break;
2440 return 0;
2443 /* step 1: calculate xfer_mask */
2444 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2445 unsigned int pio_mask, dma_mask;
2447 dev = &ap->device[i];
2449 if (!ata_dev_enabled(dev))
2450 continue;
2452 ata_dev_xfermask(dev);
2454 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2455 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2456 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2457 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2459 found = 1;
2460 if (dev->dma_mode)
2461 used_dma = 1;
2463 if (!found)
2464 goto out;
2466 /* step 2: always set host PIO timings */
2467 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2468 dev = &ap->device[i];
2469 if (!ata_dev_enabled(dev))
2470 continue;
2472 if (!dev->pio_mode) {
2473 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2474 rc = -EINVAL;
2475 goto out;
2478 dev->xfer_mode = dev->pio_mode;
2479 dev->xfer_shift = ATA_SHIFT_PIO;
2480 if (ap->ops->set_piomode)
2481 ap->ops->set_piomode(ap, dev);
2484 /* step 3: set host DMA timings */
2485 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2486 dev = &ap->device[i];
2488 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2489 continue;
2491 dev->xfer_mode = dev->dma_mode;
2492 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2493 if (ap->ops->set_dmamode)
2494 ap->ops->set_dmamode(ap, dev);
2497 /* step 4: update devices' xfer mode */
2498 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2499 dev = &ap->device[i];
2501 /* don't udpate suspended devices' xfer mode */
2502 if (!ata_dev_ready(dev))
2503 continue;
2505 rc = ata_dev_set_mode(dev);
2506 if (rc)
2507 goto out;
2510 /* Record simplex status. If we selected DMA then the other
2511 * host channels are not permitted to do so.
2513 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2514 ap->host->simplex_claimed = 1;
2516 /* step5: chip specific finalisation */
2517 if (ap->ops->post_set_mode)
2518 ap->ops->post_set_mode(ap);
2520 out:
2521 if (rc)
2522 *r_failed_dev = dev;
2523 return rc;
2527 * ata_tf_to_host - issue ATA taskfile to host controller
2528 * @ap: port to which command is being issued
2529 * @tf: ATA taskfile register set
2531 * Issues ATA taskfile register set to ATA host controller,
2532 * with proper synchronization with interrupt handler and
2533 * other threads.
2535 * LOCKING:
2536 * spin_lock_irqsave(host lock)
2539 static inline void ata_tf_to_host(struct ata_port *ap,
2540 const struct ata_taskfile *tf)
2542 ap->ops->tf_load(ap, tf);
2543 ap->ops->exec_command(ap, tf);
2547 * ata_busy_sleep - sleep until BSY clears, or timeout
2548 * @ap: port containing status register to be polled
2549 * @tmout_pat: impatience timeout
2550 * @tmout: overall timeout
2552 * Sleep until ATA Status register bit BSY clears,
2553 * or a timeout occurs.
2555 * LOCKING:
2556 * Kernel thread context (may sleep).
2558 * RETURNS:
2559 * 0 on success, -errno otherwise.
2561 int ata_busy_sleep(struct ata_port *ap,
2562 unsigned long tmout_pat, unsigned long tmout)
2564 unsigned long timer_start, timeout;
2565 u8 status;
2567 status = ata_busy_wait(ap, ATA_BUSY, 300);
2568 timer_start = jiffies;
2569 timeout = timer_start + tmout_pat;
2570 while (status != 0xff && (status & ATA_BUSY) &&
2571 time_before(jiffies, timeout)) {
2572 msleep(50);
2573 status = ata_busy_wait(ap, ATA_BUSY, 3);
2576 if (status != 0xff && (status & ATA_BUSY))
2577 ata_port_printk(ap, KERN_WARNING,
2578 "port is slow to respond, please be patient "
2579 "(Status 0x%x)\n", status);
2581 timeout = timer_start + tmout;
2582 while (status != 0xff && (status & ATA_BUSY) &&
2583 time_before(jiffies, timeout)) {
2584 msleep(50);
2585 status = ata_chk_status(ap);
2588 if (status == 0xff)
2589 return -ENODEV;
2591 if (status & ATA_BUSY) {
2592 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2593 "(%lu secs, Status 0x%x)\n",
2594 tmout / HZ, status);
2595 return -EBUSY;
2598 return 0;
2601 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2603 struct ata_ioports *ioaddr = &ap->ioaddr;
2604 unsigned int dev0 = devmask & (1 << 0);
2605 unsigned int dev1 = devmask & (1 << 1);
2606 unsigned long timeout;
2608 /* if device 0 was found in ata_devchk, wait for its
2609 * BSY bit to clear
2611 if (dev0)
2612 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2614 /* if device 1 was found in ata_devchk, wait for
2615 * register access, then wait for BSY to clear
2617 timeout = jiffies + ATA_TMOUT_BOOT;
2618 while (dev1) {
2619 u8 nsect, lbal;
2621 ap->ops->dev_select(ap, 1);
2622 if (ap->flags & ATA_FLAG_MMIO) {
2623 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2624 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2625 } else {
2626 nsect = inb(ioaddr->nsect_addr);
2627 lbal = inb(ioaddr->lbal_addr);
2629 if ((nsect == 1) && (lbal == 1))
2630 break;
2631 if (time_after(jiffies, timeout)) {
2632 dev1 = 0;
2633 break;
2635 msleep(50); /* give drive a breather */
2637 if (dev1)
2638 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2640 /* is all this really necessary? */
2641 ap->ops->dev_select(ap, 0);
2642 if (dev1)
2643 ap->ops->dev_select(ap, 1);
2644 if (dev0)
2645 ap->ops->dev_select(ap, 0);
2648 static unsigned int ata_bus_softreset(struct ata_port *ap,
2649 unsigned int devmask)
2651 struct ata_ioports *ioaddr = &ap->ioaddr;
2653 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2655 /* software reset. causes dev0 to be selected */
2656 if (ap->flags & ATA_FLAG_MMIO) {
2657 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2658 udelay(20); /* FIXME: flush */
2659 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2660 udelay(20); /* FIXME: flush */
2661 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2662 } else {
2663 outb(ap->ctl, ioaddr->ctl_addr);
2664 udelay(10);
2665 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2666 udelay(10);
2667 outb(ap->ctl, ioaddr->ctl_addr);
2670 /* spec mandates ">= 2ms" before checking status.
2671 * We wait 150ms, because that was the magic delay used for
2672 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2673 * between when the ATA command register is written, and then
2674 * status is checked. Because waiting for "a while" before
2675 * checking status is fine, post SRST, we perform this magic
2676 * delay here as well.
2678 * Old drivers/ide uses the 2mS rule and then waits for ready
2680 msleep(150);
2682 /* Before we perform post reset processing we want to see if
2683 * the bus shows 0xFF because the odd clown forgets the D7
2684 * pulldown resistor.
2686 if (ata_check_status(ap) == 0xFF)
2687 return 0;
2689 ata_bus_post_reset(ap, devmask);
2691 return 0;
2695 * ata_bus_reset - reset host port and associated ATA channel
2696 * @ap: port to reset
2698 * This is typically the first time we actually start issuing
2699 * commands to the ATA channel. We wait for BSY to clear, then
2700 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2701 * result. Determine what devices, if any, are on the channel
2702 * by looking at the device 0/1 error register. Look at the signature
2703 * stored in each device's taskfile registers, to determine if
2704 * the device is ATA or ATAPI.
2706 * LOCKING:
2707 * PCI/etc. bus probe sem.
2708 * Obtains host lock.
2710 * SIDE EFFECTS:
2711 * Sets ATA_FLAG_DISABLED if bus reset fails.
2714 void ata_bus_reset(struct ata_port *ap)
2716 struct ata_ioports *ioaddr = &ap->ioaddr;
2717 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2718 u8 err;
2719 unsigned int dev0, dev1 = 0, devmask = 0;
2721 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2723 /* determine if device 0/1 are present */
2724 if (ap->flags & ATA_FLAG_SATA_RESET)
2725 dev0 = 1;
2726 else {
2727 dev0 = ata_devchk(ap, 0);
2728 if (slave_possible)
2729 dev1 = ata_devchk(ap, 1);
2732 if (dev0)
2733 devmask |= (1 << 0);
2734 if (dev1)
2735 devmask |= (1 << 1);
2737 /* select device 0 again */
2738 ap->ops->dev_select(ap, 0);
2740 /* issue bus reset */
2741 if (ap->flags & ATA_FLAG_SRST)
2742 if (ata_bus_softreset(ap, devmask))
2743 goto err_out;
2746 * determine by signature whether we have ATA or ATAPI devices
2748 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2749 if ((slave_possible) && (err != 0x81))
2750 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2752 /* re-enable interrupts */
2753 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2754 ata_irq_on(ap);
2756 /* is double-select really necessary? */
2757 if (ap->device[1].class != ATA_DEV_NONE)
2758 ap->ops->dev_select(ap, 1);
2759 if (ap->device[0].class != ATA_DEV_NONE)
2760 ap->ops->dev_select(ap, 0);
2762 /* if no devices were detected, disable this port */
2763 if ((ap->device[0].class == ATA_DEV_NONE) &&
2764 (ap->device[1].class == ATA_DEV_NONE))
2765 goto err_out;
2767 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2768 /* set up device control for ATA_FLAG_SATA_RESET */
2769 if (ap->flags & ATA_FLAG_MMIO)
2770 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2771 else
2772 outb(ap->ctl, ioaddr->ctl_addr);
2775 DPRINTK("EXIT\n");
2776 return;
2778 err_out:
2779 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2780 ap->ops->port_disable(ap);
2782 DPRINTK("EXIT\n");
2786 * sata_phy_debounce - debounce SATA phy status
2787 * @ap: ATA port to debounce SATA phy status for
2788 * @params: timing parameters { interval, duratinon, timeout } in msec
2790 * Make sure SStatus of @ap reaches stable state, determined by
2791 * holding the same value where DET is not 1 for @duration polled
2792 * every @interval, before @timeout. Timeout constraints the
2793 * beginning of the stable state. Because, after hot unplugging,
2794 * DET gets stuck at 1 on some controllers, this functions waits
2795 * until timeout then returns 0 if DET is stable at 1.
2797 * LOCKING:
2798 * Kernel thread context (may sleep)
2800 * RETURNS:
2801 * 0 on success, -errno on failure.
2803 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2805 unsigned long interval_msec = params[0];
2806 unsigned long duration = params[1] * HZ / 1000;
2807 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2808 unsigned long last_jiffies;
2809 u32 last, cur;
2810 int rc;
2812 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2813 return rc;
2814 cur &= 0xf;
2816 last = cur;
2817 last_jiffies = jiffies;
2819 while (1) {
2820 msleep(interval_msec);
2821 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2822 return rc;
2823 cur &= 0xf;
2825 /* DET stable? */
2826 if (cur == last) {
2827 if (cur == 1 && time_before(jiffies, timeout))
2828 continue;
2829 if (time_after(jiffies, last_jiffies + duration))
2830 return 0;
2831 continue;
2834 /* unstable, start over */
2835 last = cur;
2836 last_jiffies = jiffies;
2838 /* check timeout */
2839 if (time_after(jiffies, timeout))
2840 return -EBUSY;
2845 * sata_phy_resume - resume SATA phy
2846 * @ap: ATA port to resume SATA phy for
2847 * @params: timing parameters { interval, duratinon, timeout } in msec
2849 * Resume SATA phy of @ap and debounce it.
2851 * LOCKING:
2852 * Kernel thread context (may sleep)
2854 * RETURNS:
2855 * 0 on success, -errno on failure.
2857 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2859 u32 scontrol;
2860 int rc;
2862 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2863 return rc;
2865 scontrol = (scontrol & 0x0f0) | 0x300;
2867 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2868 return rc;
2870 /* Some PHYs react badly if SStatus is pounded immediately
2871 * after resuming. Delay 200ms before debouncing.
2873 msleep(200);
2875 return sata_phy_debounce(ap, params);
2878 static void ata_wait_spinup(struct ata_port *ap)
2880 struct ata_eh_context *ehc = &ap->eh_context;
2881 unsigned long end, secs;
2882 int rc;
2884 /* first, debounce phy if SATA */
2885 if (ap->cbl == ATA_CBL_SATA) {
2886 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2888 /* if debounced successfully and offline, no need to wait */
2889 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2890 return;
2893 /* okay, let's give the drive time to spin up */
2894 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2895 secs = ((end - jiffies) + HZ - 1) / HZ;
2897 if (time_after(jiffies, end))
2898 return;
2900 if (secs > 5)
2901 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2902 "(%lu secs)\n", secs);
2904 schedule_timeout_uninterruptible(end - jiffies);
2908 * ata_std_prereset - prepare for reset
2909 * @ap: ATA port to be reset
2911 * @ap is about to be reset. Initialize it.
2913 * LOCKING:
2914 * Kernel thread context (may sleep)
2916 * RETURNS:
2917 * 0 on success, -errno otherwise.
2919 int ata_std_prereset(struct ata_port *ap)
2921 struct ata_eh_context *ehc = &ap->eh_context;
2922 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2923 int rc;
2925 /* handle link resume & hotplug spinup */
2926 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2927 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2928 ehc->i.action |= ATA_EH_HARDRESET;
2930 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2931 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2932 ata_wait_spinup(ap);
2934 /* if we're about to do hardreset, nothing more to do */
2935 if (ehc->i.action & ATA_EH_HARDRESET)
2936 return 0;
2938 /* if SATA, resume phy */
2939 if (ap->cbl == ATA_CBL_SATA) {
2940 rc = sata_phy_resume(ap, timing);
2941 if (rc && rc != -EOPNOTSUPP) {
2942 /* phy resume failed */
2943 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2944 "link for reset (errno=%d)\n", rc);
2945 return rc;
2949 /* Wait for !BSY if the controller can wait for the first D2H
2950 * Reg FIS and we don't know that no device is attached.
2952 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2953 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2955 return 0;
2959 * ata_std_softreset - reset host port via ATA SRST
2960 * @ap: port to reset
2961 * @classes: resulting classes of attached devices
2963 * Reset host port using ATA SRST.
2965 * LOCKING:
2966 * Kernel thread context (may sleep)
2968 * RETURNS:
2969 * 0 on success, -errno otherwise.
2971 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2973 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2974 unsigned int devmask = 0, err_mask;
2975 u8 err;
2977 DPRINTK("ENTER\n");
2979 if (ata_port_offline(ap)) {
2980 classes[0] = ATA_DEV_NONE;
2981 goto out;
2984 /* determine if device 0/1 are present */
2985 if (ata_devchk(ap, 0))
2986 devmask |= (1 << 0);
2987 if (slave_possible && ata_devchk(ap, 1))
2988 devmask |= (1 << 1);
2990 /* select device 0 again */
2991 ap->ops->dev_select(ap, 0);
2993 /* issue bus reset */
2994 DPRINTK("about to softreset, devmask=%x\n", devmask);
2995 err_mask = ata_bus_softreset(ap, devmask);
2996 if (err_mask) {
2997 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2998 err_mask);
2999 return -EIO;
3002 /* determine by signature whether we have ATA or ATAPI devices */
3003 classes[0] = ata_dev_try_classify(ap, 0, &err);
3004 if (slave_possible && err != 0x81)
3005 classes[1] = ata_dev_try_classify(ap, 1, &err);
3007 out:
3008 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3009 return 0;
3013 * sata_port_hardreset - reset port via SATA phy reset
3014 * @ap: port to reset
3015 * @timing: timing parameters { interval, duratinon, timeout } in msec
3017 * SATA phy-reset host port using DET bits of SControl register.
3019 * LOCKING:
3020 * Kernel thread context (may sleep)
3022 * RETURNS:
3023 * 0 on success, -errno otherwise.
3025 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
3027 u32 scontrol;
3028 int rc;
3030 DPRINTK("ENTER\n");
3032 if (sata_set_spd_needed(ap)) {
3033 /* SATA spec says nothing about how to reconfigure
3034 * spd. To be on the safe side, turn off phy during
3035 * reconfiguration. This works for at least ICH7 AHCI
3036 * and Sil3124.
3038 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3039 goto out;
3041 scontrol = (scontrol & 0x0f0) | 0x304;
3043 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3044 goto out;
3046 sata_set_spd(ap);
3049 /* issue phy wake/reset */
3050 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3051 goto out;
3053 scontrol = (scontrol & 0x0f0) | 0x301;
3055 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3056 goto out;
3058 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3059 * 10.4.2 says at least 1 ms.
3061 msleep(1);
3063 /* bring phy back */
3064 rc = sata_phy_resume(ap, timing);
3065 out:
3066 DPRINTK("EXIT, rc=%d\n", rc);
3067 return rc;
3071 * sata_std_hardreset - reset host port via SATA phy reset
3072 * @ap: port to reset
3073 * @class: resulting class of attached device
3075 * SATA phy-reset host port using DET bits of SControl register,
3076 * wait for !BSY and classify the attached device.
3078 * LOCKING:
3079 * Kernel thread context (may sleep)
3081 * RETURNS:
3082 * 0 on success, -errno otherwise.
3084 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3086 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3087 int rc;
3089 DPRINTK("ENTER\n");
3091 /* do hardreset */
3092 rc = sata_port_hardreset(ap, timing);
3093 if (rc) {
3094 ata_port_printk(ap, KERN_ERR,
3095 "COMRESET failed (errno=%d)\n", rc);
3096 return rc;
3099 /* TODO: phy layer with polling, timeouts, etc. */
3100 if (ata_port_offline(ap)) {
3101 *class = ATA_DEV_NONE;
3102 DPRINTK("EXIT, link offline\n");
3103 return 0;
3106 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3107 ata_port_printk(ap, KERN_ERR,
3108 "COMRESET failed (device not ready)\n");
3109 return -EIO;
3112 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3114 *class = ata_dev_try_classify(ap, 0, NULL);
3116 DPRINTK("EXIT, class=%u\n", *class);
3117 return 0;
3121 * ata_std_postreset - standard postreset callback
3122 * @ap: the target ata_port
3123 * @classes: classes of attached devices
3125 * This function is invoked after a successful reset. Note that
3126 * the device might have been reset more than once using
3127 * different reset methods before postreset is invoked.
3129 * LOCKING:
3130 * Kernel thread context (may sleep)
3132 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3134 u32 serror;
3136 DPRINTK("ENTER\n");
3138 /* print link status */
3139 sata_print_link_status(ap);
3141 /* clear SError */
3142 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3143 sata_scr_write(ap, SCR_ERROR, serror);
3145 /* re-enable interrupts */
3146 if (!ap->ops->error_handler) {
3147 /* FIXME: hack. create a hook instead */
3148 if (ap->ioaddr.ctl_addr)
3149 ata_irq_on(ap);
3152 /* is double-select really necessary? */
3153 if (classes[0] != ATA_DEV_NONE)
3154 ap->ops->dev_select(ap, 1);
3155 if (classes[1] != ATA_DEV_NONE)
3156 ap->ops->dev_select(ap, 0);
3158 /* bail out if no device is present */
3159 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3160 DPRINTK("EXIT, no device\n");
3161 return;
3164 /* set up device control */
3165 if (ap->ioaddr.ctl_addr) {
3166 if (ap->flags & ATA_FLAG_MMIO)
3167 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
3168 else
3169 outb(ap->ctl, ap->ioaddr.ctl_addr);
3172 DPRINTK("EXIT\n");
3176 * ata_dev_same_device - Determine whether new ID matches configured device
3177 * @dev: device to compare against
3178 * @new_class: class of the new device
3179 * @new_id: IDENTIFY page of the new device
3181 * Compare @new_class and @new_id against @dev and determine
3182 * whether @dev is the device indicated by @new_class and
3183 * @new_id.
3185 * LOCKING:
3186 * None.
3188 * RETURNS:
3189 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3191 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3192 const u16 *new_id)
3194 const u16 *old_id = dev->id;
3195 unsigned char model[2][41], serial[2][21];
3196 u64 new_n_sectors;
3198 if (dev->class != new_class) {
3199 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3200 dev->class, new_class);
3201 return 0;
3204 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
3205 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
3206 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
3207 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
3208 new_n_sectors = ata_id_n_sectors(new_id);
3210 if (strcmp(model[0], model[1])) {
3211 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3212 "'%s' != '%s'\n", model[0], model[1]);
3213 return 0;
3216 if (strcmp(serial[0], serial[1])) {
3217 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3218 "'%s' != '%s'\n", serial[0], serial[1]);
3219 return 0;
3222 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3223 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3224 "%llu != %llu\n",
3225 (unsigned long long)dev->n_sectors,
3226 (unsigned long long)new_n_sectors);
3227 return 0;
3230 return 1;
3234 * ata_dev_revalidate - Revalidate ATA device
3235 * @dev: device to revalidate
3236 * @readid_flags: read ID flags
3238 * Re-read IDENTIFY page and make sure @dev is still attached to
3239 * the port.
3241 * LOCKING:
3242 * Kernel thread context (may sleep)
3244 * RETURNS:
3245 * 0 on success, negative errno otherwise
3247 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3249 unsigned int class = dev->class;
3250 u16 *id = (void *)dev->ap->sector_buf;
3251 int rc;
3253 if (!ata_dev_enabled(dev)) {
3254 rc = -ENODEV;
3255 goto fail;
3258 /* read ID data */
3259 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3260 if (rc)
3261 goto fail;
3263 /* is the device still there? */
3264 if (!ata_dev_same_device(dev, class, id)) {
3265 rc = -ENODEV;
3266 goto fail;
3269 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3271 /* configure device according to the new ID */
3272 rc = ata_dev_configure(dev);
3273 if (rc == 0)
3274 return 0;
3276 fail:
3277 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3278 return rc;
3281 struct ata_blacklist_entry {
3282 const char *model_num;
3283 const char *model_rev;
3284 unsigned long horkage;
3287 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3288 /* Devices with DMA related problems under Linux */
3289 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3290 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3291 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3292 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3293 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3294 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3295 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3296 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3297 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3298 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3299 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3300 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3301 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3302 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3303 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3304 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3305 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3306 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3307 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3308 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3309 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3310 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3311 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3312 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3313 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3314 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3315 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3316 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3317 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3318 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3320 /* Devices we expect to fail diagnostics */
3322 /* Devices where NCQ should be avoided */
3323 /* NCQ is slow */
3324 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3326 /* Devices with NCQ limits */
3328 /* End Marker */
3332 static int ata_strim(char *s, size_t len)
3334 len = strnlen(s, len);
3336 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3337 while ((len > 0) && (s[len - 1] == ' ')) {
3338 len--;
3339 s[len] = 0;
3341 return len;
3344 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3346 unsigned char model_num[40];
3347 unsigned char model_rev[16];
3348 unsigned int nlen, rlen;
3349 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3351 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3352 sizeof(model_num));
3353 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3354 sizeof(model_rev));
3355 nlen = ata_strim(model_num, sizeof(model_num));
3356 rlen = ata_strim(model_rev, sizeof(model_rev));
3358 while (ad->model_num) {
3359 if (!strncmp(ad->model_num, model_num, nlen)) {
3360 if (ad->model_rev == NULL)
3361 return ad->horkage;
3362 if (!strncmp(ad->model_rev, model_rev, rlen))
3363 return ad->horkage;
3365 ad++;
3367 return 0;
3370 static int ata_dma_blacklisted(const struct ata_device *dev)
3372 /* We don't support polling DMA.
3373 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3374 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3376 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3377 (dev->flags & ATA_DFLAG_CDB_INTR))
3378 return 1;
3379 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3383 * ata_dev_xfermask - Compute supported xfermask of the given device
3384 * @dev: Device to compute xfermask for
3386 * Compute supported xfermask of @dev and store it in
3387 * dev->*_mask. This function is responsible for applying all
3388 * known limits including host controller limits, device
3389 * blacklist, etc...
3391 * LOCKING:
3392 * None.
3394 static void ata_dev_xfermask(struct ata_device *dev)
3396 struct ata_port *ap = dev->ap;
3397 struct ata_host *host = ap->host;
3398 unsigned long xfer_mask;
3400 /* controller modes available */
3401 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3402 ap->mwdma_mask, ap->udma_mask);
3404 /* Apply cable rule here. Don't apply it early because when
3405 * we handle hot plug the cable type can itself change.
3407 if (ap->cbl == ATA_CBL_PATA40)
3408 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3409 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3410 * host side are checked drive side as well. Cases where we know a
3411 * 40wire cable is used safely for 80 are not checked here.
3413 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3414 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3417 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3418 dev->mwdma_mask, dev->udma_mask);
3419 xfer_mask &= ata_id_xfermask(dev->id);
3422 * CFA Advanced TrueIDE timings are not allowed on a shared
3423 * cable
3425 if (ata_dev_pair(dev)) {
3426 /* No PIO5 or PIO6 */
3427 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3428 /* No MWDMA3 or MWDMA 4 */
3429 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3432 if (ata_dma_blacklisted(dev)) {
3433 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3434 ata_dev_printk(dev, KERN_WARNING,
3435 "device is on DMA blacklist, disabling DMA\n");
3438 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
3439 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3440 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3441 "other device, disabling DMA\n");
3444 if (ap->ops->mode_filter)
3445 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3447 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3448 &dev->mwdma_mask, &dev->udma_mask);
3452 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3453 * @dev: Device to which command will be sent
3455 * Issue SET FEATURES - XFER MODE command to device @dev
3456 * on port @ap.
3458 * LOCKING:
3459 * PCI/etc. bus probe sem.
3461 * RETURNS:
3462 * 0 on success, AC_ERR_* mask otherwise.
3465 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3467 struct ata_taskfile tf;
3468 unsigned int err_mask;
3470 /* set up set-features taskfile */
3471 DPRINTK("set features - xfer mode\n");
3473 ata_tf_init(dev, &tf);
3474 tf.command = ATA_CMD_SET_FEATURES;
3475 tf.feature = SETFEATURES_XFER;
3476 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3477 tf.protocol = ATA_PROT_NODATA;
3478 tf.nsect = dev->xfer_mode;
3480 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3482 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3483 return err_mask;
3487 * ata_dev_init_params - Issue INIT DEV PARAMS command
3488 * @dev: Device to which command will be sent
3489 * @heads: Number of heads (taskfile parameter)
3490 * @sectors: Number of sectors (taskfile parameter)
3492 * LOCKING:
3493 * Kernel thread context (may sleep)
3495 * RETURNS:
3496 * 0 on success, AC_ERR_* mask otherwise.
3498 static unsigned int ata_dev_init_params(struct ata_device *dev,
3499 u16 heads, u16 sectors)
3501 struct ata_taskfile tf;
3502 unsigned int err_mask;
3504 /* Number of sectors per track 1-255. Number of heads 1-16 */
3505 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3506 return AC_ERR_INVALID;
3508 /* set up init dev params taskfile */
3509 DPRINTK("init dev params \n");
3511 ata_tf_init(dev, &tf);
3512 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3513 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3514 tf.protocol = ATA_PROT_NODATA;
3515 tf.nsect = sectors;
3516 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3518 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3520 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3521 return err_mask;
3525 * ata_sg_clean - Unmap DMA memory associated with command
3526 * @qc: Command containing DMA memory to be released
3528 * Unmap all mapped DMA memory associated with this command.
3530 * LOCKING:
3531 * spin_lock_irqsave(host lock)
3533 void ata_sg_clean(struct ata_queued_cmd *qc)
3535 struct ata_port *ap = qc->ap;
3536 struct scatterlist *sg = qc->__sg;
3537 int dir = qc->dma_dir;
3538 void *pad_buf = NULL;
3540 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3541 WARN_ON(sg == NULL);
3543 if (qc->flags & ATA_QCFLAG_SINGLE)
3544 WARN_ON(qc->n_elem > 1);
3546 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3548 /* if we padded the buffer out to 32-bit bound, and data
3549 * xfer direction is from-device, we must copy from the
3550 * pad buffer back into the supplied buffer
3552 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3553 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3555 if (qc->flags & ATA_QCFLAG_SG) {
3556 if (qc->n_elem)
3557 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3558 /* restore last sg */
3559 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3560 if (pad_buf) {
3561 struct scatterlist *psg = &qc->pad_sgent;
3562 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3563 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3564 kunmap_atomic(addr, KM_IRQ0);
3566 } else {
3567 if (qc->n_elem)
3568 dma_unmap_single(ap->dev,
3569 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3570 dir);
3571 /* restore sg */
3572 sg->length += qc->pad_len;
3573 if (pad_buf)
3574 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3575 pad_buf, qc->pad_len);
3578 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3579 qc->__sg = NULL;
3583 * ata_fill_sg - Fill PCI IDE PRD table
3584 * @qc: Metadata associated with taskfile to be transferred
3586 * Fill PCI IDE PRD (scatter-gather) table with segments
3587 * associated with the current disk command.
3589 * LOCKING:
3590 * spin_lock_irqsave(host lock)
3593 static void ata_fill_sg(struct ata_queued_cmd *qc)
3595 struct ata_port *ap = qc->ap;
3596 struct scatterlist *sg;
3597 unsigned int idx;
3599 WARN_ON(qc->__sg == NULL);
3600 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3602 idx = 0;
3603 ata_for_each_sg(sg, qc) {
3604 u32 addr, offset;
3605 u32 sg_len, len;
3607 /* determine if physical DMA addr spans 64K boundary.
3608 * Note h/w doesn't support 64-bit, so we unconditionally
3609 * truncate dma_addr_t to u32.
3611 addr = (u32) sg_dma_address(sg);
3612 sg_len = sg_dma_len(sg);
3614 while (sg_len) {
3615 offset = addr & 0xffff;
3616 len = sg_len;
3617 if ((offset + sg_len) > 0x10000)
3618 len = 0x10000 - offset;
3620 ap->prd[idx].addr = cpu_to_le32(addr);
3621 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3622 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3624 idx++;
3625 sg_len -= len;
3626 addr += len;
3630 if (idx)
3631 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3634 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3635 * @qc: Metadata associated with taskfile to check
3637 * Allow low-level driver to filter ATA PACKET commands, returning
3638 * a status indicating whether or not it is OK to use DMA for the
3639 * supplied PACKET command.
3641 * LOCKING:
3642 * spin_lock_irqsave(host lock)
3644 * RETURNS: 0 when ATAPI DMA can be used
3645 * nonzero otherwise
3647 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3649 struct ata_port *ap = qc->ap;
3650 int rc = 0; /* Assume ATAPI DMA is OK by default */
3652 if (ap->ops->check_atapi_dma)
3653 rc = ap->ops->check_atapi_dma(qc);
3655 return rc;
3658 * ata_qc_prep - Prepare taskfile for submission
3659 * @qc: Metadata associated with taskfile to be prepared
3661 * Prepare ATA taskfile for submission.
3663 * LOCKING:
3664 * spin_lock_irqsave(host lock)
3666 void ata_qc_prep(struct ata_queued_cmd *qc)
3668 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3669 return;
3671 ata_fill_sg(qc);
3674 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3677 * ata_sg_init_one - Associate command with memory buffer
3678 * @qc: Command to be associated
3679 * @buf: Memory buffer
3680 * @buflen: Length of memory buffer, in bytes.
3682 * Initialize the data-related elements of queued_cmd @qc
3683 * to point to a single memory buffer, @buf of byte length @buflen.
3685 * LOCKING:
3686 * spin_lock_irqsave(host lock)
3689 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3691 qc->flags |= ATA_QCFLAG_SINGLE;
3693 qc->__sg = &qc->sgent;
3694 qc->n_elem = 1;
3695 qc->orig_n_elem = 1;
3696 qc->buf_virt = buf;
3697 qc->nbytes = buflen;
3699 sg_init_one(&qc->sgent, buf, buflen);
3703 * ata_sg_init - Associate command with scatter-gather table.
3704 * @qc: Command to be associated
3705 * @sg: Scatter-gather table.
3706 * @n_elem: Number of elements in s/g table.
3708 * Initialize the data-related elements of queued_cmd @qc
3709 * to point to a scatter-gather table @sg, containing @n_elem
3710 * elements.
3712 * LOCKING:
3713 * spin_lock_irqsave(host lock)
3716 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3717 unsigned int n_elem)
3719 qc->flags |= ATA_QCFLAG_SG;
3720 qc->__sg = sg;
3721 qc->n_elem = n_elem;
3722 qc->orig_n_elem = n_elem;
3726 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3727 * @qc: Command with memory buffer to be mapped.
3729 * DMA-map the memory buffer associated with queued_cmd @qc.
3731 * LOCKING:
3732 * spin_lock_irqsave(host lock)
3734 * RETURNS:
3735 * Zero on success, negative on error.
3738 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3740 struct ata_port *ap = qc->ap;
3741 int dir = qc->dma_dir;
3742 struct scatterlist *sg = qc->__sg;
3743 dma_addr_t dma_address;
3744 int trim_sg = 0;
3746 /* we must lengthen transfers to end on a 32-bit boundary */
3747 qc->pad_len = sg->length & 3;
3748 if (qc->pad_len) {
3749 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3750 struct scatterlist *psg = &qc->pad_sgent;
3752 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3754 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3756 if (qc->tf.flags & ATA_TFLAG_WRITE)
3757 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3758 qc->pad_len);
3760 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3761 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3762 /* trim sg */
3763 sg->length -= qc->pad_len;
3764 if (sg->length == 0)
3765 trim_sg = 1;
3767 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3768 sg->length, qc->pad_len);
3771 if (trim_sg) {
3772 qc->n_elem--;
3773 goto skip_map;
3776 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3777 sg->length, dir);
3778 if (dma_mapping_error(dma_address)) {
3779 /* restore sg */
3780 sg->length += qc->pad_len;
3781 return -1;
3784 sg_dma_address(sg) = dma_address;
3785 sg_dma_len(sg) = sg->length;
3787 skip_map:
3788 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3789 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3791 return 0;
3795 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3796 * @qc: Command with scatter-gather table to be mapped.
3798 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3800 * LOCKING:
3801 * spin_lock_irqsave(host lock)
3803 * RETURNS:
3804 * Zero on success, negative on error.
3808 static int ata_sg_setup(struct ata_queued_cmd *qc)
3810 struct ata_port *ap = qc->ap;
3811 struct scatterlist *sg = qc->__sg;
3812 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3813 int n_elem, pre_n_elem, dir, trim_sg = 0;
3815 VPRINTK("ENTER, ata%u\n", ap->id);
3816 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3818 /* we must lengthen transfers to end on a 32-bit boundary */
3819 qc->pad_len = lsg->length & 3;
3820 if (qc->pad_len) {
3821 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3822 struct scatterlist *psg = &qc->pad_sgent;
3823 unsigned int offset;
3825 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3827 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3830 * psg->page/offset are used to copy to-be-written
3831 * data in this function or read data in ata_sg_clean.
3833 offset = lsg->offset + lsg->length - qc->pad_len;
3834 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3835 psg->offset = offset_in_page(offset);
3837 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3838 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3839 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3840 kunmap_atomic(addr, KM_IRQ0);
3843 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3844 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3845 /* trim last sg */
3846 lsg->length -= qc->pad_len;
3847 if (lsg->length == 0)
3848 trim_sg = 1;
3850 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3851 qc->n_elem - 1, lsg->length, qc->pad_len);
3854 pre_n_elem = qc->n_elem;
3855 if (trim_sg && pre_n_elem)
3856 pre_n_elem--;
3858 if (!pre_n_elem) {
3859 n_elem = 0;
3860 goto skip_map;
3863 dir = qc->dma_dir;
3864 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3865 if (n_elem < 1) {
3866 /* restore last sg */
3867 lsg->length += qc->pad_len;
3868 return -1;
3871 DPRINTK("%d sg elements mapped\n", n_elem);
3873 skip_map:
3874 qc->n_elem = n_elem;
3876 return 0;
3880 * swap_buf_le16 - swap halves of 16-bit words in place
3881 * @buf: Buffer to swap
3882 * @buf_words: Number of 16-bit words in buffer.
3884 * Swap halves of 16-bit words if needed to convert from
3885 * little-endian byte order to native cpu byte order, or
3886 * vice-versa.
3888 * LOCKING:
3889 * Inherited from caller.
3891 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3893 #ifdef __BIG_ENDIAN
3894 unsigned int i;
3896 for (i = 0; i < buf_words; i++)
3897 buf[i] = le16_to_cpu(buf[i]);
3898 #endif /* __BIG_ENDIAN */
3902 * ata_mmio_data_xfer - Transfer data by MMIO
3903 * @adev: device for this I/O
3904 * @buf: data buffer
3905 * @buflen: buffer length
3906 * @write_data: read/write
3908 * Transfer data from/to the device data register by MMIO.
3910 * LOCKING:
3911 * Inherited from caller.
3914 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3915 unsigned int buflen, int write_data)
3917 struct ata_port *ap = adev->ap;
3918 unsigned int i;
3919 unsigned int words = buflen >> 1;
3920 u16 *buf16 = (u16 *) buf;
3921 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3923 /* Transfer multiple of 2 bytes */
3924 if (write_data) {
3925 for (i = 0; i < words; i++)
3926 writew(le16_to_cpu(buf16[i]), mmio);
3927 } else {
3928 for (i = 0; i < words; i++)
3929 buf16[i] = cpu_to_le16(readw(mmio));
3932 /* Transfer trailing 1 byte, if any. */
3933 if (unlikely(buflen & 0x01)) {
3934 u16 align_buf[1] = { 0 };
3935 unsigned char *trailing_buf = buf + buflen - 1;
3937 if (write_data) {
3938 memcpy(align_buf, trailing_buf, 1);
3939 writew(le16_to_cpu(align_buf[0]), mmio);
3940 } else {
3941 align_buf[0] = cpu_to_le16(readw(mmio));
3942 memcpy(trailing_buf, align_buf, 1);
3948 * ata_pio_data_xfer - Transfer data by PIO
3949 * @adev: device to target
3950 * @buf: data buffer
3951 * @buflen: buffer length
3952 * @write_data: read/write
3954 * Transfer data from/to the device data register by PIO.
3956 * LOCKING:
3957 * Inherited from caller.
3960 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3961 unsigned int buflen, int write_data)
3963 struct ata_port *ap = adev->ap;
3964 unsigned int words = buflen >> 1;
3966 /* Transfer multiple of 2 bytes */
3967 if (write_data)
3968 outsw(ap->ioaddr.data_addr, buf, words);
3969 else
3970 insw(ap->ioaddr.data_addr, buf, words);
3972 /* Transfer trailing 1 byte, if any. */
3973 if (unlikely(buflen & 0x01)) {
3974 u16 align_buf[1] = { 0 };
3975 unsigned char *trailing_buf = buf + buflen - 1;
3977 if (write_data) {
3978 memcpy(align_buf, trailing_buf, 1);
3979 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3980 } else {
3981 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3982 memcpy(trailing_buf, align_buf, 1);
3988 * ata_pio_data_xfer_noirq - Transfer data by PIO
3989 * @adev: device to target
3990 * @buf: data buffer
3991 * @buflen: buffer length
3992 * @write_data: read/write
3994 * Transfer data from/to the device data register by PIO. Do the
3995 * transfer with interrupts disabled.
3997 * LOCKING:
3998 * Inherited from caller.
4001 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4002 unsigned int buflen, int write_data)
4004 unsigned long flags;
4005 local_irq_save(flags);
4006 ata_pio_data_xfer(adev, buf, buflen, write_data);
4007 local_irq_restore(flags);
4012 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
4013 * @qc: Command on going
4015 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
4017 * LOCKING:
4018 * Inherited from caller.
4021 static void ata_pio_sector(struct ata_queued_cmd *qc)
4023 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4024 struct scatterlist *sg = qc->__sg;
4025 struct ata_port *ap = qc->ap;
4026 struct page *page;
4027 unsigned int offset;
4028 unsigned char *buf;
4030 if (qc->cursect == (qc->nsect - 1))
4031 ap->hsm_task_state = HSM_ST_LAST;
4033 page = sg[qc->cursg].page;
4034 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
4036 /* get the current page and offset */
4037 page = nth_page(page, (offset >> PAGE_SHIFT));
4038 offset %= PAGE_SIZE;
4040 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4042 if (PageHighMem(page)) {
4043 unsigned long flags;
4045 /* FIXME: use a bounce buffer */
4046 local_irq_save(flags);
4047 buf = kmap_atomic(page, KM_IRQ0);
4049 /* do the actual data transfer */
4050 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4052 kunmap_atomic(buf, KM_IRQ0);
4053 local_irq_restore(flags);
4054 } else {
4055 buf = page_address(page);
4056 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4059 qc->cursect++;
4060 qc->cursg_ofs++;
4062 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
4063 qc->cursg++;
4064 qc->cursg_ofs = 0;
4069 * ata_pio_sectors - Transfer one or many 512-byte sectors.
4070 * @qc: Command on going
4072 * Transfer one or many ATA_SECT_SIZE of data from/to the
4073 * ATA device for the DRQ request.
4075 * LOCKING:
4076 * Inherited from caller.
4079 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4081 if (is_multi_taskfile(&qc->tf)) {
4082 /* READ/WRITE MULTIPLE */
4083 unsigned int nsect;
4085 WARN_ON(qc->dev->multi_count == 0);
4087 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
4088 while (nsect--)
4089 ata_pio_sector(qc);
4090 } else
4091 ata_pio_sector(qc);
4095 * atapi_send_cdb - Write CDB bytes to hardware
4096 * @ap: Port to which ATAPI device is attached.
4097 * @qc: Taskfile currently active
4099 * When device has indicated its readiness to accept
4100 * a CDB, this function is called. Send the CDB.
4102 * LOCKING:
4103 * caller.
4106 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4108 /* send SCSI cdb */
4109 DPRINTK("send cdb\n");
4110 WARN_ON(qc->dev->cdb_len < 12);
4112 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4113 ata_altstatus(ap); /* flush */
4115 switch (qc->tf.protocol) {
4116 case ATA_PROT_ATAPI:
4117 ap->hsm_task_state = HSM_ST;
4118 break;
4119 case ATA_PROT_ATAPI_NODATA:
4120 ap->hsm_task_state = HSM_ST_LAST;
4121 break;
4122 case ATA_PROT_ATAPI_DMA:
4123 ap->hsm_task_state = HSM_ST_LAST;
4124 /* initiate bmdma */
4125 ap->ops->bmdma_start(qc);
4126 break;
4131 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4132 * @qc: Command on going
4133 * @bytes: number of bytes
4135 * Transfer Transfer data from/to the ATAPI device.
4137 * LOCKING:
4138 * Inherited from caller.
4142 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4144 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4145 struct scatterlist *sg = qc->__sg;
4146 struct ata_port *ap = qc->ap;
4147 struct page *page;
4148 unsigned char *buf;
4149 unsigned int offset, count;
4151 if (qc->curbytes + bytes >= qc->nbytes)
4152 ap->hsm_task_state = HSM_ST_LAST;
4154 next_sg:
4155 if (unlikely(qc->cursg >= qc->n_elem)) {
4157 * The end of qc->sg is reached and the device expects
4158 * more data to transfer. In order not to overrun qc->sg
4159 * and fulfill length specified in the byte count register,
4160 * - for read case, discard trailing data from the device
4161 * - for write case, padding zero data to the device
4163 u16 pad_buf[1] = { 0 };
4164 unsigned int words = bytes >> 1;
4165 unsigned int i;
4167 if (words) /* warning if bytes > 1 */
4168 ata_dev_printk(qc->dev, KERN_WARNING,
4169 "%u bytes trailing data\n", bytes);
4171 for (i = 0; i < words; i++)
4172 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4174 ap->hsm_task_state = HSM_ST_LAST;
4175 return;
4178 sg = &qc->__sg[qc->cursg];
4180 page = sg->page;
4181 offset = sg->offset + qc->cursg_ofs;
4183 /* get the current page and offset */
4184 page = nth_page(page, (offset >> PAGE_SHIFT));
4185 offset %= PAGE_SIZE;
4187 /* don't overrun current sg */
4188 count = min(sg->length - qc->cursg_ofs, bytes);
4190 /* don't cross page boundaries */
4191 count = min(count, (unsigned int)PAGE_SIZE - offset);
4193 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4195 if (PageHighMem(page)) {
4196 unsigned long flags;
4198 /* FIXME: use bounce buffer */
4199 local_irq_save(flags);
4200 buf = kmap_atomic(page, KM_IRQ0);
4202 /* do the actual data transfer */
4203 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4205 kunmap_atomic(buf, KM_IRQ0);
4206 local_irq_restore(flags);
4207 } else {
4208 buf = page_address(page);
4209 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4212 bytes -= count;
4213 qc->curbytes += count;
4214 qc->cursg_ofs += count;
4216 if (qc->cursg_ofs == sg->length) {
4217 qc->cursg++;
4218 qc->cursg_ofs = 0;
4221 if (bytes)
4222 goto next_sg;
4226 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4227 * @qc: Command on going
4229 * Transfer Transfer data from/to the ATAPI device.
4231 * LOCKING:
4232 * Inherited from caller.
4235 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4237 struct ata_port *ap = qc->ap;
4238 struct ata_device *dev = qc->dev;
4239 unsigned int ireason, bc_lo, bc_hi, bytes;
4240 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4242 /* Abuse qc->result_tf for temp storage of intermediate TF
4243 * here to save some kernel stack usage.
4244 * For normal completion, qc->result_tf is not relevant. For
4245 * error, qc->result_tf is later overwritten by ata_qc_complete().
4246 * So, the correctness of qc->result_tf is not affected.
4248 ap->ops->tf_read(ap, &qc->result_tf);
4249 ireason = qc->result_tf.nsect;
4250 bc_lo = qc->result_tf.lbam;
4251 bc_hi = qc->result_tf.lbah;
4252 bytes = (bc_hi << 8) | bc_lo;
4254 /* shall be cleared to zero, indicating xfer of data */
4255 if (ireason & (1 << 0))
4256 goto err_out;
4258 /* make sure transfer direction matches expected */
4259 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4260 if (do_write != i_write)
4261 goto err_out;
4263 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4265 __atapi_pio_bytes(qc, bytes);
4267 return;
4269 err_out:
4270 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4271 qc->err_mask |= AC_ERR_HSM;
4272 ap->hsm_task_state = HSM_ST_ERR;
4276 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4277 * @ap: the target ata_port
4278 * @qc: qc on going
4280 * RETURNS:
4281 * 1 if ok in workqueue, 0 otherwise.
4284 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4286 if (qc->tf.flags & ATA_TFLAG_POLLING)
4287 return 1;
4289 if (ap->hsm_task_state == HSM_ST_FIRST) {
4290 if (qc->tf.protocol == ATA_PROT_PIO &&
4291 (qc->tf.flags & ATA_TFLAG_WRITE))
4292 return 1;
4294 if (is_atapi_taskfile(&qc->tf) &&
4295 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4296 return 1;
4299 return 0;
4303 * ata_hsm_qc_complete - finish a qc running on standard HSM
4304 * @qc: Command to complete
4305 * @in_wq: 1 if called from workqueue, 0 otherwise
4307 * Finish @qc which is running on standard HSM.
4309 * LOCKING:
4310 * If @in_wq is zero, spin_lock_irqsave(host lock).
4311 * Otherwise, none on entry and grabs host lock.
4313 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4315 struct ata_port *ap = qc->ap;
4316 unsigned long flags;
4318 if (ap->ops->error_handler) {
4319 if (in_wq) {
4320 spin_lock_irqsave(ap->lock, flags);
4322 /* EH might have kicked in while host lock is
4323 * released.
4325 qc = ata_qc_from_tag(ap, qc->tag);
4326 if (qc) {
4327 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4328 ata_irq_on(ap);
4329 ata_qc_complete(qc);
4330 } else
4331 ata_port_freeze(ap);
4334 spin_unlock_irqrestore(ap->lock, flags);
4335 } else {
4336 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4337 ata_qc_complete(qc);
4338 else
4339 ata_port_freeze(ap);
4341 } else {
4342 if (in_wq) {
4343 spin_lock_irqsave(ap->lock, flags);
4344 ata_irq_on(ap);
4345 ata_qc_complete(qc);
4346 spin_unlock_irqrestore(ap->lock, flags);
4347 } else
4348 ata_qc_complete(qc);
4351 ata_altstatus(ap); /* flush */
4355 * ata_hsm_move - move the HSM to the next state.
4356 * @ap: the target ata_port
4357 * @qc: qc on going
4358 * @status: current device status
4359 * @in_wq: 1 if called from workqueue, 0 otherwise
4361 * RETURNS:
4362 * 1 when poll next status needed, 0 otherwise.
4364 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4365 u8 status, int in_wq)
4367 unsigned long flags = 0;
4368 int poll_next;
4370 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4372 /* Make sure ata_qc_issue_prot() does not throw things
4373 * like DMA polling into the workqueue. Notice that
4374 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4376 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4378 fsm_start:
4379 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4380 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4382 switch (ap->hsm_task_state) {
4383 case HSM_ST_FIRST:
4384 /* Send first data block or PACKET CDB */
4386 /* If polling, we will stay in the work queue after
4387 * sending the data. Otherwise, interrupt handler
4388 * takes over after sending the data.
4390 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4392 /* check device status */
4393 if (unlikely((status & ATA_DRQ) == 0)) {
4394 /* handle BSY=0, DRQ=0 as error */
4395 if (likely(status & (ATA_ERR | ATA_DF)))
4396 /* device stops HSM for abort/error */
4397 qc->err_mask |= AC_ERR_DEV;
4398 else
4399 /* HSM violation. Let EH handle this */
4400 qc->err_mask |= AC_ERR_HSM;
4402 ap->hsm_task_state = HSM_ST_ERR;
4403 goto fsm_start;
4406 /* Device should not ask for data transfer (DRQ=1)
4407 * when it finds something wrong.
4408 * We ignore DRQ here and stop the HSM by
4409 * changing hsm_task_state to HSM_ST_ERR and
4410 * let the EH abort the command or reset the device.
4412 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4413 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4414 ap->id, status);
4415 qc->err_mask |= AC_ERR_HSM;
4416 ap->hsm_task_state = HSM_ST_ERR;
4417 goto fsm_start;
4420 /* Send the CDB (atapi) or the first data block (ata pio out).
4421 * During the state transition, interrupt handler shouldn't
4422 * be invoked before the data transfer is complete and
4423 * hsm_task_state is changed. Hence, the following locking.
4425 if (in_wq)
4426 spin_lock_irqsave(ap->lock, flags);
4428 if (qc->tf.protocol == ATA_PROT_PIO) {
4429 /* PIO data out protocol.
4430 * send first data block.
4433 /* ata_pio_sectors() might change the state
4434 * to HSM_ST_LAST. so, the state is changed here
4435 * before ata_pio_sectors().
4437 ap->hsm_task_state = HSM_ST;
4438 ata_pio_sectors(qc);
4439 ata_altstatus(ap); /* flush */
4440 } else
4441 /* send CDB */
4442 atapi_send_cdb(ap, qc);
4444 if (in_wq)
4445 spin_unlock_irqrestore(ap->lock, flags);
4447 /* if polling, ata_pio_task() handles the rest.
4448 * otherwise, interrupt handler takes over from here.
4450 break;
4452 case HSM_ST:
4453 /* complete command or read/write the data register */
4454 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4455 /* ATAPI PIO protocol */
4456 if ((status & ATA_DRQ) == 0) {
4457 /* No more data to transfer or device error.
4458 * Device error will be tagged in HSM_ST_LAST.
4460 ap->hsm_task_state = HSM_ST_LAST;
4461 goto fsm_start;
4464 /* Device should not ask for data transfer (DRQ=1)
4465 * when it finds something wrong.
4466 * We ignore DRQ here and stop the HSM by
4467 * changing hsm_task_state to HSM_ST_ERR and
4468 * let the EH abort the command or reset the device.
4470 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4471 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4472 ap->id, status);
4473 qc->err_mask |= AC_ERR_HSM;
4474 ap->hsm_task_state = HSM_ST_ERR;
4475 goto fsm_start;
4478 atapi_pio_bytes(qc);
4480 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4481 /* bad ireason reported by device */
4482 goto fsm_start;
4484 } else {
4485 /* ATA PIO protocol */
4486 if (unlikely((status & ATA_DRQ) == 0)) {
4487 /* handle BSY=0, DRQ=0 as error */
4488 if (likely(status & (ATA_ERR | ATA_DF)))
4489 /* device stops HSM for abort/error */
4490 qc->err_mask |= AC_ERR_DEV;
4491 else
4492 /* HSM violation. Let EH handle this.
4493 * Phantom devices also trigger this
4494 * condition. Mark hint.
4496 qc->err_mask |= AC_ERR_HSM |
4497 AC_ERR_NODEV_HINT;
4499 ap->hsm_task_state = HSM_ST_ERR;
4500 goto fsm_start;
4503 /* For PIO reads, some devices may ask for
4504 * data transfer (DRQ=1) alone with ERR=1.
4505 * We respect DRQ here and transfer one
4506 * block of junk data before changing the
4507 * hsm_task_state to HSM_ST_ERR.
4509 * For PIO writes, ERR=1 DRQ=1 doesn't make
4510 * sense since the data block has been
4511 * transferred to the device.
4513 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4514 /* data might be corrputed */
4515 qc->err_mask |= AC_ERR_DEV;
4517 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4518 ata_pio_sectors(qc);
4519 ata_altstatus(ap);
4520 status = ata_wait_idle(ap);
4523 if (status & (ATA_BUSY | ATA_DRQ))
4524 qc->err_mask |= AC_ERR_HSM;
4526 /* ata_pio_sectors() might change the
4527 * state to HSM_ST_LAST. so, the state
4528 * is changed after ata_pio_sectors().
4530 ap->hsm_task_state = HSM_ST_ERR;
4531 goto fsm_start;
4534 ata_pio_sectors(qc);
4536 if (ap->hsm_task_state == HSM_ST_LAST &&
4537 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4538 /* all data read */
4539 ata_altstatus(ap);
4540 status = ata_wait_idle(ap);
4541 goto fsm_start;
4545 ata_altstatus(ap); /* flush */
4546 poll_next = 1;
4547 break;
4549 case HSM_ST_LAST:
4550 if (unlikely(!ata_ok(status))) {
4551 qc->err_mask |= __ac_err_mask(status);
4552 ap->hsm_task_state = HSM_ST_ERR;
4553 goto fsm_start;
4556 /* no more data to transfer */
4557 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4558 ap->id, qc->dev->devno, status);
4560 WARN_ON(qc->err_mask);
4562 ap->hsm_task_state = HSM_ST_IDLE;
4564 /* complete taskfile transaction */
4565 ata_hsm_qc_complete(qc, in_wq);
4567 poll_next = 0;
4568 break;
4570 case HSM_ST_ERR:
4571 /* make sure qc->err_mask is available to
4572 * know what's wrong and recover
4574 WARN_ON(qc->err_mask == 0);
4576 ap->hsm_task_state = HSM_ST_IDLE;
4578 /* complete taskfile transaction */
4579 ata_hsm_qc_complete(qc, in_wq);
4581 poll_next = 0;
4582 break;
4583 default:
4584 poll_next = 0;
4585 BUG();
4588 return poll_next;
4591 static void ata_pio_task(void *_data)
4593 struct ata_queued_cmd *qc = _data;
4594 struct ata_port *ap = qc->ap;
4595 u8 status;
4596 int poll_next;
4598 fsm_start:
4599 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4602 * This is purely heuristic. This is a fast path.
4603 * Sometimes when we enter, BSY will be cleared in
4604 * a chk-status or two. If not, the drive is probably seeking
4605 * or something. Snooze for a couple msecs, then
4606 * chk-status again. If still busy, queue delayed work.
4608 status = ata_busy_wait(ap, ATA_BUSY, 5);
4609 if (status & ATA_BUSY) {
4610 msleep(2);
4611 status = ata_busy_wait(ap, ATA_BUSY, 10);
4612 if (status & ATA_BUSY) {
4613 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4614 return;
4618 /* move the HSM */
4619 poll_next = ata_hsm_move(ap, qc, status, 1);
4621 /* another command or interrupt handler
4622 * may be running at this point.
4624 if (poll_next)
4625 goto fsm_start;
4629 * ata_qc_new - Request an available ATA command, for queueing
4630 * @ap: Port associated with device @dev
4631 * @dev: Device from whom we request an available command structure
4633 * LOCKING:
4634 * None.
4637 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4639 struct ata_queued_cmd *qc = NULL;
4640 unsigned int i;
4642 /* no command while frozen */
4643 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4644 return NULL;
4646 /* the last tag is reserved for internal command. */
4647 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4648 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4649 qc = __ata_qc_from_tag(ap, i);
4650 break;
4653 if (qc)
4654 qc->tag = i;
4656 return qc;
4660 * ata_qc_new_init - Request an available ATA command, and initialize it
4661 * @dev: Device from whom we request an available command structure
4663 * LOCKING:
4664 * None.
4667 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4669 struct ata_port *ap = dev->ap;
4670 struct ata_queued_cmd *qc;
4672 qc = ata_qc_new(ap);
4673 if (qc) {
4674 qc->scsicmd = NULL;
4675 qc->ap = ap;
4676 qc->dev = dev;
4678 ata_qc_reinit(qc);
4681 return qc;
4685 * ata_qc_free - free unused ata_queued_cmd
4686 * @qc: Command to complete
4688 * Designed to free unused ata_queued_cmd object
4689 * in case something prevents using it.
4691 * LOCKING:
4692 * spin_lock_irqsave(host lock)
4694 void ata_qc_free(struct ata_queued_cmd *qc)
4696 struct ata_port *ap = qc->ap;
4697 unsigned int tag;
4699 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4701 qc->flags = 0;
4702 tag = qc->tag;
4703 if (likely(ata_tag_valid(tag))) {
4704 qc->tag = ATA_TAG_POISON;
4705 clear_bit(tag, &ap->qc_allocated);
4709 void __ata_qc_complete(struct ata_queued_cmd *qc)
4711 struct ata_port *ap = qc->ap;
4713 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4714 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4716 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4717 ata_sg_clean(qc);
4719 /* command should be marked inactive atomically with qc completion */
4720 if (qc->tf.protocol == ATA_PROT_NCQ)
4721 ap->sactive &= ~(1 << qc->tag);
4722 else
4723 ap->active_tag = ATA_TAG_POISON;
4725 /* atapi: mark qc as inactive to prevent the interrupt handler
4726 * from completing the command twice later, before the error handler
4727 * is called. (when rc != 0 and atapi request sense is needed)
4729 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4730 ap->qc_active &= ~(1 << qc->tag);
4732 /* call completion callback */
4733 qc->complete_fn(qc);
4736 static void fill_result_tf(struct ata_queued_cmd *qc)
4738 struct ata_port *ap = qc->ap;
4740 ap->ops->tf_read(ap, &qc->result_tf);
4741 qc->result_tf.flags = qc->tf.flags;
4745 * ata_qc_complete - Complete an active ATA command
4746 * @qc: Command to complete
4747 * @err_mask: ATA Status register contents
4749 * Indicate to the mid and upper layers that an ATA
4750 * command has completed, with either an ok or not-ok status.
4752 * LOCKING:
4753 * spin_lock_irqsave(host lock)
4755 void ata_qc_complete(struct ata_queued_cmd *qc)
4757 struct ata_port *ap = qc->ap;
4759 /* XXX: New EH and old EH use different mechanisms to
4760 * synchronize EH with regular execution path.
4762 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4763 * Normal execution path is responsible for not accessing a
4764 * failed qc. libata core enforces the rule by returning NULL
4765 * from ata_qc_from_tag() for failed qcs.
4767 * Old EH depends on ata_qc_complete() nullifying completion
4768 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4769 * not synchronize with interrupt handler. Only PIO task is
4770 * taken care of.
4772 if (ap->ops->error_handler) {
4773 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4775 if (unlikely(qc->err_mask))
4776 qc->flags |= ATA_QCFLAG_FAILED;
4778 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4779 if (!ata_tag_internal(qc->tag)) {
4780 /* always fill result TF for failed qc */
4781 fill_result_tf(qc);
4782 ata_qc_schedule_eh(qc);
4783 return;
4787 /* read result TF if requested */
4788 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4789 fill_result_tf(qc);
4791 __ata_qc_complete(qc);
4792 } else {
4793 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4794 return;
4796 /* read result TF if failed or requested */
4797 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4798 fill_result_tf(qc);
4800 __ata_qc_complete(qc);
4805 * ata_qc_complete_multiple - Complete multiple qcs successfully
4806 * @ap: port in question
4807 * @qc_active: new qc_active mask
4808 * @finish_qc: LLDD callback invoked before completing a qc
4810 * Complete in-flight commands. This functions is meant to be
4811 * called from low-level driver's interrupt routine to complete
4812 * requests normally. ap->qc_active and @qc_active is compared
4813 * and commands are completed accordingly.
4815 * LOCKING:
4816 * spin_lock_irqsave(host lock)
4818 * RETURNS:
4819 * Number of completed commands on success, -errno otherwise.
4821 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4822 void (*finish_qc)(struct ata_queued_cmd *))
4824 int nr_done = 0;
4825 u32 done_mask;
4826 int i;
4828 done_mask = ap->qc_active ^ qc_active;
4830 if (unlikely(done_mask & qc_active)) {
4831 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4832 "(%08x->%08x)\n", ap->qc_active, qc_active);
4833 return -EINVAL;
4836 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4837 struct ata_queued_cmd *qc;
4839 if (!(done_mask & (1 << i)))
4840 continue;
4842 if ((qc = ata_qc_from_tag(ap, i))) {
4843 if (finish_qc)
4844 finish_qc(qc);
4845 ata_qc_complete(qc);
4846 nr_done++;
4850 return nr_done;
4853 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4855 struct ata_port *ap = qc->ap;
4857 switch (qc->tf.protocol) {
4858 case ATA_PROT_NCQ:
4859 case ATA_PROT_DMA:
4860 case ATA_PROT_ATAPI_DMA:
4861 return 1;
4863 case ATA_PROT_ATAPI:
4864 case ATA_PROT_PIO:
4865 if (ap->flags & ATA_FLAG_PIO_DMA)
4866 return 1;
4868 /* fall through */
4870 default:
4871 return 0;
4874 /* never reached */
4878 * ata_qc_issue - issue taskfile to device
4879 * @qc: command to issue to device
4881 * Prepare an ATA command to submission to device.
4882 * This includes mapping the data into a DMA-able
4883 * area, filling in the S/G table, and finally
4884 * writing the taskfile to hardware, starting the command.
4886 * LOCKING:
4887 * spin_lock_irqsave(host lock)
4889 void ata_qc_issue(struct ata_queued_cmd *qc)
4891 struct ata_port *ap = qc->ap;
4893 /* Make sure only one non-NCQ command is outstanding. The
4894 * check is skipped for old EH because it reuses active qc to
4895 * request ATAPI sense.
4897 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4899 if (qc->tf.protocol == ATA_PROT_NCQ) {
4900 WARN_ON(ap->sactive & (1 << qc->tag));
4901 ap->sactive |= 1 << qc->tag;
4902 } else {
4903 WARN_ON(ap->sactive);
4904 ap->active_tag = qc->tag;
4907 qc->flags |= ATA_QCFLAG_ACTIVE;
4908 ap->qc_active |= 1 << qc->tag;
4910 if (ata_should_dma_map(qc)) {
4911 if (qc->flags & ATA_QCFLAG_SG) {
4912 if (ata_sg_setup(qc))
4913 goto sg_err;
4914 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4915 if (ata_sg_setup_one(qc))
4916 goto sg_err;
4918 } else {
4919 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4922 ap->ops->qc_prep(qc);
4924 qc->err_mask |= ap->ops->qc_issue(qc);
4925 if (unlikely(qc->err_mask))
4926 goto err;
4927 return;
4929 sg_err:
4930 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4931 qc->err_mask |= AC_ERR_SYSTEM;
4932 err:
4933 ata_qc_complete(qc);
4937 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4938 * @qc: command to issue to device
4940 * Using various libata functions and hooks, this function
4941 * starts an ATA command. ATA commands are grouped into
4942 * classes called "protocols", and issuing each type of protocol
4943 * is slightly different.
4945 * May be used as the qc_issue() entry in ata_port_operations.
4947 * LOCKING:
4948 * spin_lock_irqsave(host lock)
4950 * RETURNS:
4951 * Zero on success, AC_ERR_* mask on failure
4954 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4956 struct ata_port *ap = qc->ap;
4958 /* Use polling pio if the LLD doesn't handle
4959 * interrupt driven pio and atapi CDB interrupt.
4961 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4962 switch (qc->tf.protocol) {
4963 case ATA_PROT_PIO:
4964 case ATA_PROT_ATAPI:
4965 case ATA_PROT_ATAPI_NODATA:
4966 qc->tf.flags |= ATA_TFLAG_POLLING;
4967 break;
4968 case ATA_PROT_ATAPI_DMA:
4969 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4970 /* see ata_dma_blacklisted() */
4971 BUG();
4972 break;
4973 default:
4974 break;
4978 /* Some controllers show flaky interrupt behavior after
4979 * setting xfer mode. Use polling instead.
4981 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4982 qc->tf.feature == SETFEATURES_XFER) &&
4983 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4984 qc->tf.flags |= ATA_TFLAG_POLLING;
4986 /* select the device */
4987 ata_dev_select(ap, qc->dev->devno, 1, 0);
4989 /* start the command */
4990 switch (qc->tf.protocol) {
4991 case ATA_PROT_NODATA:
4992 if (qc->tf.flags & ATA_TFLAG_POLLING)
4993 ata_qc_set_polling(qc);
4995 ata_tf_to_host(ap, &qc->tf);
4996 ap->hsm_task_state = HSM_ST_LAST;
4998 if (qc->tf.flags & ATA_TFLAG_POLLING)
4999 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5001 break;
5003 case ATA_PROT_DMA:
5004 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5006 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5007 ap->ops->bmdma_setup(qc); /* set up bmdma */
5008 ap->ops->bmdma_start(qc); /* initiate bmdma */
5009 ap->hsm_task_state = HSM_ST_LAST;
5010 break;
5012 case ATA_PROT_PIO:
5013 if (qc->tf.flags & ATA_TFLAG_POLLING)
5014 ata_qc_set_polling(qc);
5016 ata_tf_to_host(ap, &qc->tf);
5018 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5019 /* PIO data out protocol */
5020 ap->hsm_task_state = HSM_ST_FIRST;
5021 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5023 /* always send first data block using
5024 * the ata_pio_task() codepath.
5026 } else {
5027 /* PIO data in protocol */
5028 ap->hsm_task_state = HSM_ST;
5030 if (qc->tf.flags & ATA_TFLAG_POLLING)
5031 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5033 /* if polling, ata_pio_task() handles the rest.
5034 * otherwise, interrupt handler takes over from here.
5038 break;
5040 case ATA_PROT_ATAPI:
5041 case ATA_PROT_ATAPI_NODATA:
5042 if (qc->tf.flags & ATA_TFLAG_POLLING)
5043 ata_qc_set_polling(qc);
5045 ata_tf_to_host(ap, &qc->tf);
5047 ap->hsm_task_state = HSM_ST_FIRST;
5049 /* send cdb by polling if no cdb interrupt */
5050 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5051 (qc->tf.flags & ATA_TFLAG_POLLING))
5052 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5053 break;
5055 case ATA_PROT_ATAPI_DMA:
5056 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5058 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5059 ap->ops->bmdma_setup(qc); /* set up bmdma */
5060 ap->hsm_task_state = HSM_ST_FIRST;
5062 /* send cdb by polling if no cdb interrupt */
5063 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5064 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5065 break;
5067 default:
5068 WARN_ON(1);
5069 return AC_ERR_SYSTEM;
5072 return 0;
5076 * ata_host_intr - Handle host interrupt for given (port, task)
5077 * @ap: Port on which interrupt arrived (possibly...)
5078 * @qc: Taskfile currently active in engine
5080 * Handle host interrupt for given queued command. Currently,
5081 * only DMA interrupts are handled. All other commands are
5082 * handled via polling with interrupts disabled (nIEN bit).
5084 * LOCKING:
5085 * spin_lock_irqsave(host lock)
5087 * RETURNS:
5088 * One if interrupt was handled, zero if not (shared irq).
5091 inline unsigned int ata_host_intr (struct ata_port *ap,
5092 struct ata_queued_cmd *qc)
5094 struct ata_eh_info *ehi = &ap->eh_info;
5095 u8 status, host_stat = 0;
5097 VPRINTK("ata%u: protocol %d task_state %d\n",
5098 ap->id, qc->tf.protocol, ap->hsm_task_state);
5100 /* Check whether we are expecting interrupt in this state */
5101 switch (ap->hsm_task_state) {
5102 case HSM_ST_FIRST:
5103 /* Some pre-ATAPI-4 devices assert INTRQ
5104 * at this state when ready to receive CDB.
5107 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5108 * The flag was turned on only for atapi devices.
5109 * No need to check is_atapi_taskfile(&qc->tf) again.
5111 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5112 goto idle_irq;
5113 break;
5114 case HSM_ST_LAST:
5115 if (qc->tf.protocol == ATA_PROT_DMA ||
5116 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5117 /* check status of DMA engine */
5118 host_stat = ap->ops->bmdma_status(ap);
5119 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
5121 /* if it's not our irq... */
5122 if (!(host_stat & ATA_DMA_INTR))
5123 goto idle_irq;
5125 /* before we do anything else, clear DMA-Start bit */
5126 ap->ops->bmdma_stop(qc);
5128 if (unlikely(host_stat & ATA_DMA_ERR)) {
5129 /* error when transfering data to/from memory */
5130 qc->err_mask |= AC_ERR_HOST_BUS;
5131 ap->hsm_task_state = HSM_ST_ERR;
5134 break;
5135 case HSM_ST:
5136 break;
5137 default:
5138 goto idle_irq;
5141 /* check altstatus */
5142 status = ata_altstatus(ap);
5143 if (status & ATA_BUSY)
5144 goto idle_irq;
5146 /* check main status, clearing INTRQ */
5147 status = ata_chk_status(ap);
5148 if (unlikely(status & ATA_BUSY))
5149 goto idle_irq;
5151 /* ack bmdma irq events */
5152 ap->ops->irq_clear(ap);
5154 ata_hsm_move(ap, qc, status, 0);
5156 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5157 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5158 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5160 return 1; /* irq handled */
5162 idle_irq:
5163 ap->stats.idle_irq++;
5165 #ifdef ATA_IRQ_TRAP
5166 if ((ap->stats.idle_irq % 1000) == 0) {
5167 ata_irq_ack(ap, 0); /* debug trap */
5168 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5169 return 1;
5171 #endif
5172 return 0; /* irq not handled */
5176 * ata_interrupt - Default ATA host interrupt handler
5177 * @irq: irq line (unused)
5178 * @dev_instance: pointer to our ata_host information structure
5180 * Default interrupt handler for PCI IDE devices. Calls
5181 * ata_host_intr() for each port that is not disabled.
5183 * LOCKING:
5184 * Obtains host lock during operation.
5186 * RETURNS:
5187 * IRQ_NONE or IRQ_HANDLED.
5190 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5192 struct ata_host *host = dev_instance;
5193 unsigned int i;
5194 unsigned int handled = 0;
5195 unsigned long flags;
5197 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5198 spin_lock_irqsave(&host->lock, flags);
5200 for (i = 0; i < host->n_ports; i++) {
5201 struct ata_port *ap;
5203 ap = host->ports[i];
5204 if (ap &&
5205 !(ap->flags & ATA_FLAG_DISABLED)) {
5206 struct ata_queued_cmd *qc;
5208 qc = ata_qc_from_tag(ap, ap->active_tag);
5209 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5210 (qc->flags & ATA_QCFLAG_ACTIVE))
5211 handled |= ata_host_intr(ap, qc);
5215 spin_unlock_irqrestore(&host->lock, flags);
5217 return IRQ_RETVAL(handled);
5221 * sata_scr_valid - test whether SCRs are accessible
5222 * @ap: ATA port to test SCR accessibility for
5224 * Test whether SCRs are accessible for @ap.
5226 * LOCKING:
5227 * None.
5229 * RETURNS:
5230 * 1 if SCRs are accessible, 0 otherwise.
5232 int sata_scr_valid(struct ata_port *ap)
5234 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5238 * sata_scr_read - read SCR register of the specified port
5239 * @ap: ATA port to read SCR for
5240 * @reg: SCR to read
5241 * @val: Place to store read value
5243 * Read SCR register @reg of @ap into *@val. This function is
5244 * guaranteed to succeed if the cable type of the port is SATA
5245 * and the port implements ->scr_read.
5247 * LOCKING:
5248 * None.
5250 * RETURNS:
5251 * 0 on success, negative errno on failure.
5253 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5255 if (sata_scr_valid(ap)) {
5256 *val = ap->ops->scr_read(ap, reg);
5257 return 0;
5259 return -EOPNOTSUPP;
5263 * sata_scr_write - write SCR register of the specified port
5264 * @ap: ATA port to write SCR for
5265 * @reg: SCR to write
5266 * @val: value to write
5268 * Write @val to SCR register @reg of @ap. This function is
5269 * guaranteed to succeed if the cable type of the port is SATA
5270 * and the port implements ->scr_read.
5272 * LOCKING:
5273 * None.
5275 * RETURNS:
5276 * 0 on success, negative errno on failure.
5278 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5280 if (sata_scr_valid(ap)) {
5281 ap->ops->scr_write(ap, reg, val);
5282 return 0;
5284 return -EOPNOTSUPP;
5288 * sata_scr_write_flush - write SCR register of the specified port and flush
5289 * @ap: ATA port to write SCR for
5290 * @reg: SCR to write
5291 * @val: value to write
5293 * This function is identical to sata_scr_write() except that this
5294 * function performs flush after writing to the register.
5296 * LOCKING:
5297 * None.
5299 * RETURNS:
5300 * 0 on success, negative errno on failure.
5302 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5304 if (sata_scr_valid(ap)) {
5305 ap->ops->scr_write(ap, reg, val);
5306 ap->ops->scr_read(ap, reg);
5307 return 0;
5309 return -EOPNOTSUPP;
5313 * ata_port_online - test whether the given port is online
5314 * @ap: ATA port to test
5316 * Test whether @ap is online. Note that this function returns 0
5317 * if online status of @ap cannot be obtained, so
5318 * ata_port_online(ap) != !ata_port_offline(ap).
5320 * LOCKING:
5321 * None.
5323 * RETURNS:
5324 * 1 if the port online status is available and online.
5326 int ata_port_online(struct ata_port *ap)
5328 u32 sstatus;
5330 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5331 return 1;
5332 return 0;
5336 * ata_port_offline - test whether the given port is offline
5337 * @ap: ATA port to test
5339 * Test whether @ap is offline. Note that this function returns
5340 * 0 if offline status of @ap cannot be obtained, so
5341 * ata_port_online(ap) != !ata_port_offline(ap).
5343 * LOCKING:
5344 * None.
5346 * RETURNS:
5347 * 1 if the port offline status is available and offline.
5349 int ata_port_offline(struct ata_port *ap)
5351 u32 sstatus;
5353 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5354 return 1;
5355 return 0;
5358 int ata_flush_cache(struct ata_device *dev)
5360 unsigned int err_mask;
5361 u8 cmd;
5363 if (!ata_try_flush_cache(dev))
5364 return 0;
5366 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5367 cmd = ATA_CMD_FLUSH_EXT;
5368 else
5369 cmd = ATA_CMD_FLUSH;
5371 err_mask = ata_do_simple_cmd(dev, cmd);
5372 if (err_mask) {
5373 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5374 return -EIO;
5377 return 0;
5380 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5381 unsigned int action, unsigned int ehi_flags,
5382 int wait)
5384 unsigned long flags;
5385 int i, rc;
5387 for (i = 0; i < host->n_ports; i++) {
5388 struct ata_port *ap = host->ports[i];
5390 /* Previous resume operation might still be in
5391 * progress. Wait for PM_PENDING to clear.
5393 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5394 ata_port_wait_eh(ap);
5395 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5398 /* request PM ops to EH */
5399 spin_lock_irqsave(ap->lock, flags);
5401 ap->pm_mesg = mesg;
5402 if (wait) {
5403 rc = 0;
5404 ap->pm_result = &rc;
5407 ap->pflags |= ATA_PFLAG_PM_PENDING;
5408 ap->eh_info.action |= action;
5409 ap->eh_info.flags |= ehi_flags;
5411 ata_port_schedule_eh(ap);
5413 spin_unlock_irqrestore(ap->lock, flags);
5415 /* wait and check result */
5416 if (wait) {
5417 ata_port_wait_eh(ap);
5418 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5419 if (rc)
5420 return rc;
5424 return 0;
5428 * ata_host_suspend - suspend host
5429 * @host: host to suspend
5430 * @mesg: PM message
5432 * Suspend @host. Actual operation is performed by EH. This
5433 * function requests EH to perform PM operations and waits for EH
5434 * to finish.
5436 * LOCKING:
5437 * Kernel thread context (may sleep).
5439 * RETURNS:
5440 * 0 on success, -errno on failure.
5442 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5444 int i, j, rc;
5446 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5447 if (rc)
5448 goto fail;
5450 /* EH is quiescent now. Fail if we have any ready device.
5451 * This happens if hotplug occurs between completion of device
5452 * suspension and here.
5454 for (i = 0; i < host->n_ports; i++) {
5455 struct ata_port *ap = host->ports[i];
5457 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5458 struct ata_device *dev = &ap->device[j];
5460 if (ata_dev_ready(dev)) {
5461 ata_port_printk(ap, KERN_WARNING,
5462 "suspend failed, device %d "
5463 "still active\n", dev->devno);
5464 rc = -EBUSY;
5465 goto fail;
5470 host->dev->power.power_state = mesg;
5471 return 0;
5473 fail:
5474 ata_host_resume(host);
5475 return rc;
5479 * ata_host_resume - resume host
5480 * @host: host to resume
5482 * Resume @host. Actual operation is performed by EH. This
5483 * function requests EH to perform PM operations and returns.
5484 * Note that all resume operations are performed parallely.
5486 * LOCKING:
5487 * Kernel thread context (may sleep).
5489 void ata_host_resume(struct ata_host *host)
5491 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5492 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5493 host->dev->power.power_state = PMSG_ON;
5497 * ata_port_start - Set port up for dma.
5498 * @ap: Port to initialize
5500 * Called just after data structures for each port are
5501 * initialized. Allocates space for PRD table.
5503 * May be used as the port_start() entry in ata_port_operations.
5505 * LOCKING:
5506 * Inherited from caller.
5509 int ata_port_start (struct ata_port *ap)
5511 struct device *dev = ap->dev;
5512 int rc;
5514 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5515 if (!ap->prd)
5516 return -ENOMEM;
5518 rc = ata_pad_alloc(ap, dev);
5519 if (rc) {
5520 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5521 return rc;
5524 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5526 return 0;
5531 * ata_port_stop - Undo ata_port_start()
5532 * @ap: Port to shut down
5534 * Frees the PRD table.
5536 * May be used as the port_stop() entry in ata_port_operations.
5538 * LOCKING:
5539 * Inherited from caller.
5542 void ata_port_stop (struct ata_port *ap)
5544 struct device *dev = ap->dev;
5546 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5547 ata_pad_free(ap, dev);
5550 void ata_host_stop (struct ata_host *host)
5552 if (host->mmio_base)
5553 iounmap(host->mmio_base);
5557 * ata_dev_init - Initialize an ata_device structure
5558 * @dev: Device structure to initialize
5560 * Initialize @dev in preparation for probing.
5562 * LOCKING:
5563 * Inherited from caller.
5565 void ata_dev_init(struct ata_device *dev)
5567 struct ata_port *ap = dev->ap;
5568 unsigned long flags;
5570 /* SATA spd limit is bound to the first device */
5571 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5573 /* High bits of dev->flags are used to record warm plug
5574 * requests which occur asynchronously. Synchronize using
5575 * host lock.
5577 spin_lock_irqsave(ap->lock, flags);
5578 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5579 spin_unlock_irqrestore(ap->lock, flags);
5581 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5582 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5583 dev->pio_mask = UINT_MAX;
5584 dev->mwdma_mask = UINT_MAX;
5585 dev->udma_mask = UINT_MAX;
5589 * ata_port_init - Initialize an ata_port structure
5590 * @ap: Structure to initialize
5591 * @host: Collection of hosts to which @ap belongs
5592 * @ent: Probe information provided by low-level driver
5593 * @port_no: Port number associated with this ata_port
5595 * Initialize a new ata_port structure.
5597 * LOCKING:
5598 * Inherited from caller.
5600 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5601 const struct ata_probe_ent *ent, unsigned int port_no)
5603 unsigned int i;
5605 ap->lock = &host->lock;
5606 ap->flags = ATA_FLAG_DISABLED;
5607 ap->id = ata_unique_id++;
5608 ap->ctl = ATA_DEVCTL_OBS;
5609 ap->host = host;
5610 ap->dev = ent->dev;
5611 ap->port_no = port_no;
5612 if (port_no == 1 && ent->pinfo2) {
5613 ap->pio_mask = ent->pinfo2->pio_mask;
5614 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5615 ap->udma_mask = ent->pinfo2->udma_mask;
5616 ap->flags |= ent->pinfo2->flags;
5617 ap->ops = ent->pinfo2->port_ops;
5618 } else {
5619 ap->pio_mask = ent->pio_mask;
5620 ap->mwdma_mask = ent->mwdma_mask;
5621 ap->udma_mask = ent->udma_mask;
5622 ap->flags |= ent->port_flags;
5623 ap->ops = ent->port_ops;
5625 ap->hw_sata_spd_limit = UINT_MAX;
5626 ap->active_tag = ATA_TAG_POISON;
5627 ap->last_ctl = 0xFF;
5629 #if defined(ATA_VERBOSE_DEBUG)
5630 /* turn on all debugging levels */
5631 ap->msg_enable = 0x00FF;
5632 #elif defined(ATA_DEBUG)
5633 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5634 #else
5635 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5636 #endif
5638 INIT_WORK(&ap->port_task, NULL, NULL);
5639 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5640 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
5641 INIT_LIST_HEAD(&ap->eh_done_q);
5642 init_waitqueue_head(&ap->eh_wait_q);
5644 /* set cable type */
5645 ap->cbl = ATA_CBL_NONE;
5646 if (ap->flags & ATA_FLAG_SATA)
5647 ap->cbl = ATA_CBL_SATA;
5649 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5650 struct ata_device *dev = &ap->device[i];
5651 dev->ap = ap;
5652 dev->devno = i;
5653 ata_dev_init(dev);
5656 #ifdef ATA_IRQ_TRAP
5657 ap->stats.unhandled_irq = 1;
5658 ap->stats.idle_irq = 1;
5659 #endif
5661 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5665 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5666 * @ap: ATA port to initialize SCSI host for
5667 * @shost: SCSI host associated with @ap
5669 * Initialize SCSI host @shost associated with ATA port @ap.
5671 * LOCKING:
5672 * Inherited from caller.
5674 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5676 ap->scsi_host = shost;
5678 shost->unique_id = ap->id;
5679 shost->max_id = 16;
5680 shost->max_lun = 1;
5681 shost->max_channel = 1;
5682 shost->max_cmd_len = 12;
5686 * ata_port_add - Attach low-level ATA driver to system
5687 * @ent: Information provided by low-level driver
5688 * @host: Collections of ports to which we add
5689 * @port_no: Port number associated with this host
5691 * Attach low-level ATA driver to system.
5693 * LOCKING:
5694 * PCI/etc. bus probe sem.
5696 * RETURNS:
5697 * New ata_port on success, for NULL on error.
5699 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5700 struct ata_host *host,
5701 unsigned int port_no)
5703 struct Scsi_Host *shost;
5704 struct ata_port *ap;
5706 DPRINTK("ENTER\n");
5708 if (!ent->port_ops->error_handler &&
5709 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5710 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5711 port_no);
5712 return NULL;
5715 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5716 if (!shost)
5717 return NULL;
5719 shost->transportt = &ata_scsi_transport_template;
5721 ap = ata_shost_to_port(shost);
5723 ata_port_init(ap, host, ent, port_no);
5724 ata_port_init_shost(ap, shost);
5726 return ap;
5730 * ata_sas_host_init - Initialize a host struct
5731 * @host: host to initialize
5732 * @dev: device host is attached to
5733 * @flags: host flags
5734 * @ops: port_ops
5736 * LOCKING:
5737 * PCI/etc. bus probe sem.
5741 void ata_host_init(struct ata_host *host, struct device *dev,
5742 unsigned long flags, const struct ata_port_operations *ops)
5744 spin_lock_init(&host->lock);
5745 host->dev = dev;
5746 host->flags = flags;
5747 host->ops = ops;
5751 * ata_device_add - Register hardware device with ATA and SCSI layers
5752 * @ent: Probe information describing hardware device to be registered
5754 * This function processes the information provided in the probe
5755 * information struct @ent, allocates the necessary ATA and SCSI
5756 * host information structures, initializes them, and registers
5757 * everything with requisite kernel subsystems.
5759 * This function requests irqs, probes the ATA bus, and probes
5760 * the SCSI bus.
5762 * LOCKING:
5763 * PCI/etc. bus probe sem.
5765 * RETURNS:
5766 * Number of ports registered. Zero on error (no ports registered).
5768 int ata_device_add(const struct ata_probe_ent *ent)
5770 unsigned int i;
5771 struct device *dev = ent->dev;
5772 struct ata_host *host;
5773 int rc;
5775 DPRINTK("ENTER\n");
5777 if (ent->irq == 0) {
5778 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5779 return 0;
5781 /* alloc a container for our list of ATA ports (buses) */
5782 host = kzalloc(sizeof(struct ata_host) +
5783 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5784 if (!host)
5785 return 0;
5787 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5788 host->n_ports = ent->n_ports;
5789 host->irq = ent->irq;
5790 host->irq2 = ent->irq2;
5791 host->mmio_base = ent->mmio_base;
5792 host->private_data = ent->private_data;
5794 /* register each port bound to this device */
5795 for (i = 0; i < host->n_ports; i++) {
5796 struct ata_port *ap;
5797 unsigned long xfer_mode_mask;
5798 int irq_line = ent->irq;
5800 ap = ata_port_add(ent, host, i);
5801 host->ports[i] = ap;
5802 if (!ap)
5803 goto err_out;
5805 /* dummy? */
5806 if (ent->dummy_port_mask & (1 << i)) {
5807 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5808 ap->ops = &ata_dummy_port_ops;
5809 continue;
5812 /* start port */
5813 rc = ap->ops->port_start(ap);
5814 if (rc) {
5815 host->ports[i] = NULL;
5816 scsi_host_put(ap->scsi_host);
5817 goto err_out;
5820 /* Report the secondary IRQ for second channel legacy */
5821 if (i == 1 && ent->irq2)
5822 irq_line = ent->irq2;
5824 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5825 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5826 (ap->pio_mask << ATA_SHIFT_PIO);
5828 /* print per-port info to dmesg */
5829 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5830 "ctl 0x%lX bmdma 0x%lX irq %d\n",
5831 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5832 ata_mode_string(xfer_mode_mask),
5833 ap->ioaddr.cmd_addr,
5834 ap->ioaddr.ctl_addr,
5835 ap->ioaddr.bmdma_addr,
5836 irq_line);
5838 /* freeze port before requesting IRQ */
5839 ata_eh_freeze_port(ap);
5842 /* obtain irq, that may be shared between channels */
5843 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5844 DRV_NAME, host);
5845 if (rc) {
5846 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5847 ent->irq, rc);
5848 goto err_out;
5851 /* do we have a second IRQ for the other channel, eg legacy mode */
5852 if (ent->irq2) {
5853 /* We will get weird core code crashes later if this is true
5854 so trap it now */
5855 BUG_ON(ent->irq == ent->irq2);
5857 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
5858 DRV_NAME, host);
5859 if (rc) {
5860 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5861 ent->irq2, rc);
5862 goto err_out_free_irq;
5866 /* perform each probe synchronously */
5867 DPRINTK("probe begin\n");
5868 for (i = 0; i < host->n_ports; i++) {
5869 struct ata_port *ap = host->ports[i];
5870 u32 scontrol;
5871 int rc;
5873 /* init sata_spd_limit to the current value */
5874 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5875 int spd = (scontrol >> 4) & 0xf;
5876 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5878 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5880 rc = scsi_add_host(ap->scsi_host, dev);
5881 if (rc) {
5882 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5883 /* FIXME: do something useful here */
5884 /* FIXME: handle unconditional calls to
5885 * scsi_scan_host and ata_host_remove, below,
5886 * at the very least
5890 if (ap->ops->error_handler) {
5891 struct ata_eh_info *ehi = &ap->eh_info;
5892 unsigned long flags;
5894 ata_port_probe(ap);
5896 /* kick EH for boot probing */
5897 spin_lock_irqsave(ap->lock, flags);
5899 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5900 ehi->action |= ATA_EH_SOFTRESET;
5901 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5903 ap->pflags |= ATA_PFLAG_LOADING;
5904 ata_port_schedule_eh(ap);
5906 spin_unlock_irqrestore(ap->lock, flags);
5908 /* wait for EH to finish */
5909 ata_port_wait_eh(ap);
5910 } else {
5911 DPRINTK("ata%u: bus probe begin\n", ap->id);
5912 rc = ata_bus_probe(ap);
5913 DPRINTK("ata%u: bus probe end\n", ap->id);
5915 if (rc) {
5916 /* FIXME: do something useful here?
5917 * Current libata behavior will
5918 * tear down everything when
5919 * the module is removed
5920 * or the h/w is unplugged.
5926 /* probes are done, now scan each port's disk(s) */
5927 DPRINTK("host probe begin\n");
5928 for (i = 0; i < host->n_ports; i++) {
5929 struct ata_port *ap = host->ports[i];
5931 ata_scsi_scan_host(ap);
5934 dev_set_drvdata(dev, host);
5936 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5937 return ent->n_ports; /* success */
5939 err_out_free_irq:
5940 free_irq(ent->irq, host);
5941 err_out:
5942 for (i = 0; i < host->n_ports; i++) {
5943 struct ata_port *ap = host->ports[i];
5944 if (ap) {
5945 ap->ops->port_stop(ap);
5946 scsi_host_put(ap->scsi_host);
5950 kfree(host);
5951 VPRINTK("EXIT, returning 0\n");
5952 return 0;
5956 * ata_port_detach - Detach ATA port in prepration of device removal
5957 * @ap: ATA port to be detached
5959 * Detach all ATA devices and the associated SCSI devices of @ap;
5960 * then, remove the associated SCSI host. @ap is guaranteed to
5961 * be quiescent on return from this function.
5963 * LOCKING:
5964 * Kernel thread context (may sleep).
5966 void ata_port_detach(struct ata_port *ap)
5968 unsigned long flags;
5969 int i;
5971 if (!ap->ops->error_handler)
5972 goto skip_eh;
5974 /* tell EH we're leaving & flush EH */
5975 spin_lock_irqsave(ap->lock, flags);
5976 ap->pflags |= ATA_PFLAG_UNLOADING;
5977 spin_unlock_irqrestore(ap->lock, flags);
5979 ata_port_wait_eh(ap);
5981 /* EH is now guaranteed to see UNLOADING, so no new device
5982 * will be attached. Disable all existing devices.
5984 spin_lock_irqsave(ap->lock, flags);
5986 for (i = 0; i < ATA_MAX_DEVICES; i++)
5987 ata_dev_disable(&ap->device[i]);
5989 spin_unlock_irqrestore(ap->lock, flags);
5991 /* Final freeze & EH. All in-flight commands are aborted. EH
5992 * will be skipped and retrials will be terminated with bad
5993 * target.
5995 spin_lock_irqsave(ap->lock, flags);
5996 ata_port_freeze(ap); /* won't be thawed */
5997 spin_unlock_irqrestore(ap->lock, flags);
5999 ata_port_wait_eh(ap);
6001 /* Flush hotplug task. The sequence is similar to
6002 * ata_port_flush_task().
6004 flush_workqueue(ata_aux_wq);
6005 cancel_delayed_work(&ap->hotplug_task);
6006 flush_workqueue(ata_aux_wq);
6008 skip_eh:
6009 /* remove the associated SCSI host */
6010 scsi_remove_host(ap->scsi_host);
6014 * ata_host_remove - PCI layer callback for device removal
6015 * @host: ATA host set that was removed
6017 * Unregister all objects associated with this host set. Free those
6018 * objects.
6020 * LOCKING:
6021 * Inherited from calling layer (may sleep).
6024 void ata_host_remove(struct ata_host *host)
6026 unsigned int i;
6028 for (i = 0; i < host->n_ports; i++)
6029 ata_port_detach(host->ports[i]);
6031 free_irq(host->irq, host);
6032 if (host->irq2)
6033 free_irq(host->irq2, host);
6035 for (i = 0; i < host->n_ports; i++) {
6036 struct ata_port *ap = host->ports[i];
6038 ata_scsi_release(ap->scsi_host);
6040 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
6041 struct ata_ioports *ioaddr = &ap->ioaddr;
6043 /* FIXME: Add -ac IDE pci mods to remove these special cases */
6044 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
6045 release_region(ATA_PRIMARY_CMD, 8);
6046 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
6047 release_region(ATA_SECONDARY_CMD, 8);
6050 scsi_host_put(ap->scsi_host);
6053 if (host->ops->host_stop)
6054 host->ops->host_stop(host);
6056 kfree(host);
6060 * ata_scsi_release - SCSI layer callback hook for host unload
6061 * @shost: libata host to be unloaded
6063 * Performs all duties necessary to shut down a libata port...
6064 * Kill port kthread, disable port, and release resources.
6066 * LOCKING:
6067 * Inherited from SCSI layer.
6069 * RETURNS:
6070 * One.
6073 int ata_scsi_release(struct Scsi_Host *shost)
6075 struct ata_port *ap = ata_shost_to_port(shost);
6077 DPRINTK("ENTER\n");
6079 ap->ops->port_disable(ap);
6080 ap->ops->port_stop(ap);
6082 DPRINTK("EXIT\n");
6083 return 1;
6086 struct ata_probe_ent *
6087 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
6089 struct ata_probe_ent *probe_ent;
6091 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
6092 if (!probe_ent) {
6093 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
6094 kobject_name(&(dev->kobj)));
6095 return NULL;
6098 INIT_LIST_HEAD(&probe_ent->node);
6099 probe_ent->dev = dev;
6101 probe_ent->sht = port->sht;
6102 probe_ent->port_flags = port->flags;
6103 probe_ent->pio_mask = port->pio_mask;
6104 probe_ent->mwdma_mask = port->mwdma_mask;
6105 probe_ent->udma_mask = port->udma_mask;
6106 probe_ent->port_ops = port->port_ops;
6107 probe_ent->private_data = port->private_data;
6109 return probe_ent;
6113 * ata_std_ports - initialize ioaddr with standard port offsets.
6114 * @ioaddr: IO address structure to be initialized
6116 * Utility function which initializes data_addr, error_addr,
6117 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6118 * device_addr, status_addr, and command_addr to standard offsets
6119 * relative to cmd_addr.
6121 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6124 void ata_std_ports(struct ata_ioports *ioaddr)
6126 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6127 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6128 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6129 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6130 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6131 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6132 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6133 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6134 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6135 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6139 #ifdef CONFIG_PCI
6141 void ata_pci_host_stop (struct ata_host *host)
6143 struct pci_dev *pdev = to_pci_dev(host->dev);
6145 pci_iounmap(pdev, host->mmio_base);
6149 * ata_pci_remove_one - PCI layer callback for device removal
6150 * @pdev: PCI device that was removed
6152 * PCI layer indicates to libata via this hook that
6153 * hot-unplug or module unload event has occurred.
6154 * Handle this by unregistering all objects associated
6155 * with this PCI device. Free those objects. Then finally
6156 * release PCI resources and disable device.
6158 * LOCKING:
6159 * Inherited from PCI layer (may sleep).
6162 void ata_pci_remove_one (struct pci_dev *pdev)
6164 struct device *dev = pci_dev_to_dev(pdev);
6165 struct ata_host *host = dev_get_drvdata(dev);
6167 ata_host_remove(host);
6169 pci_release_regions(pdev);
6170 pci_disable_device(pdev);
6171 dev_set_drvdata(dev, NULL);
6174 /* move to PCI subsystem */
6175 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6177 unsigned long tmp = 0;
6179 switch (bits->width) {
6180 case 1: {
6181 u8 tmp8 = 0;
6182 pci_read_config_byte(pdev, bits->reg, &tmp8);
6183 tmp = tmp8;
6184 break;
6186 case 2: {
6187 u16 tmp16 = 0;
6188 pci_read_config_word(pdev, bits->reg, &tmp16);
6189 tmp = tmp16;
6190 break;
6192 case 4: {
6193 u32 tmp32 = 0;
6194 pci_read_config_dword(pdev, bits->reg, &tmp32);
6195 tmp = tmp32;
6196 break;
6199 default:
6200 return -EINVAL;
6203 tmp &= bits->mask;
6205 return (tmp == bits->val) ? 1 : 0;
6208 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6210 pci_save_state(pdev);
6212 if (mesg.event == PM_EVENT_SUSPEND) {
6213 pci_disable_device(pdev);
6214 pci_set_power_state(pdev, PCI_D3hot);
6218 void ata_pci_device_do_resume(struct pci_dev *pdev)
6220 pci_set_power_state(pdev, PCI_D0);
6221 pci_restore_state(pdev);
6222 pci_enable_device(pdev);
6223 pci_set_master(pdev);
6226 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6228 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6229 int rc = 0;
6231 rc = ata_host_suspend(host, mesg);
6232 if (rc)
6233 return rc;
6235 ata_pci_device_do_suspend(pdev, mesg);
6237 return 0;
6240 int ata_pci_device_resume(struct pci_dev *pdev)
6242 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6244 ata_pci_device_do_resume(pdev);
6245 ata_host_resume(host);
6246 return 0;
6248 #endif /* CONFIG_PCI */
6251 static int __init ata_init(void)
6253 ata_probe_timeout *= HZ;
6254 ata_wq = create_workqueue("ata");
6255 if (!ata_wq)
6256 return -ENOMEM;
6258 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6259 if (!ata_aux_wq) {
6260 destroy_workqueue(ata_wq);
6261 return -ENOMEM;
6264 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6265 return 0;
6268 static void __exit ata_exit(void)
6270 destroy_workqueue(ata_wq);
6271 destroy_workqueue(ata_aux_wq);
6274 subsys_initcall(ata_init);
6275 module_exit(ata_exit);
6277 static unsigned long ratelimit_time;
6278 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6280 int ata_ratelimit(void)
6282 int rc;
6283 unsigned long flags;
6285 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6287 if (time_after(jiffies, ratelimit_time)) {
6288 rc = 1;
6289 ratelimit_time = jiffies + (HZ/5);
6290 } else
6291 rc = 0;
6293 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6295 return rc;
6299 * ata_wait_register - wait until register value changes
6300 * @reg: IO-mapped register
6301 * @mask: Mask to apply to read register value
6302 * @val: Wait condition
6303 * @interval_msec: polling interval in milliseconds
6304 * @timeout_msec: timeout in milliseconds
6306 * Waiting for some bits of register to change is a common
6307 * operation for ATA controllers. This function reads 32bit LE
6308 * IO-mapped register @reg and tests for the following condition.
6310 * (*@reg & mask) != val
6312 * If the condition is met, it returns; otherwise, the process is
6313 * repeated after @interval_msec until timeout.
6315 * LOCKING:
6316 * Kernel thread context (may sleep)
6318 * RETURNS:
6319 * The final register value.
6321 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6322 unsigned long interval_msec,
6323 unsigned long timeout_msec)
6325 unsigned long timeout;
6326 u32 tmp;
6328 tmp = ioread32(reg);
6330 /* Calculate timeout _after_ the first read to make sure
6331 * preceding writes reach the controller before starting to
6332 * eat away the timeout.
6334 timeout = jiffies + (timeout_msec * HZ) / 1000;
6336 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6337 msleep(interval_msec);
6338 tmp = ioread32(reg);
6341 return tmp;
6345 * Dummy port_ops
6347 static void ata_dummy_noret(struct ata_port *ap) { }
6348 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6349 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6351 static u8 ata_dummy_check_status(struct ata_port *ap)
6353 return ATA_DRDY;
6356 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6358 return AC_ERR_SYSTEM;
6361 const struct ata_port_operations ata_dummy_port_ops = {
6362 .port_disable = ata_port_disable,
6363 .check_status = ata_dummy_check_status,
6364 .check_altstatus = ata_dummy_check_status,
6365 .dev_select = ata_noop_dev_select,
6366 .qc_prep = ata_noop_qc_prep,
6367 .qc_issue = ata_dummy_qc_issue,
6368 .freeze = ata_dummy_noret,
6369 .thaw = ata_dummy_noret,
6370 .error_handler = ata_dummy_noret,
6371 .post_internal_cmd = ata_dummy_qc_noret,
6372 .irq_clear = ata_dummy_noret,
6373 .port_start = ata_dummy_ret0,
6374 .port_stop = ata_dummy_noret,
6378 * libata is essentially a library of internal helper functions for
6379 * low-level ATA host controller drivers. As such, the API/ABI is
6380 * likely to change as new drivers are added and updated.
6381 * Do not depend on ABI/API stability.
6384 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6385 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6386 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6387 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6388 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6389 EXPORT_SYMBOL_GPL(ata_std_ports);
6390 EXPORT_SYMBOL_GPL(ata_host_init);
6391 EXPORT_SYMBOL_GPL(ata_device_add);
6392 EXPORT_SYMBOL_GPL(ata_port_detach);
6393 EXPORT_SYMBOL_GPL(ata_host_remove);
6394 EXPORT_SYMBOL_GPL(ata_sg_init);
6395 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6396 EXPORT_SYMBOL_GPL(ata_hsm_move);
6397 EXPORT_SYMBOL_GPL(ata_qc_complete);
6398 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6399 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6400 EXPORT_SYMBOL_GPL(ata_tf_load);
6401 EXPORT_SYMBOL_GPL(ata_tf_read);
6402 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6403 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6404 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6405 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6406 EXPORT_SYMBOL_GPL(ata_check_status);
6407 EXPORT_SYMBOL_GPL(ata_altstatus);
6408 EXPORT_SYMBOL_GPL(ata_exec_command);
6409 EXPORT_SYMBOL_GPL(ata_port_start);
6410 EXPORT_SYMBOL_GPL(ata_port_stop);
6411 EXPORT_SYMBOL_GPL(ata_host_stop);
6412 EXPORT_SYMBOL_GPL(ata_interrupt);
6413 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6414 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
6415 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
6416 EXPORT_SYMBOL_GPL(ata_qc_prep);
6417 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6418 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6419 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6420 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6421 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6422 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6423 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6424 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6425 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6426 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6427 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6428 EXPORT_SYMBOL_GPL(ata_port_probe);
6429 EXPORT_SYMBOL_GPL(sata_set_spd);
6430 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6431 EXPORT_SYMBOL_GPL(sata_phy_resume);
6432 EXPORT_SYMBOL_GPL(sata_phy_reset);
6433 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6434 EXPORT_SYMBOL_GPL(ata_bus_reset);
6435 EXPORT_SYMBOL_GPL(ata_std_prereset);
6436 EXPORT_SYMBOL_GPL(ata_std_softreset);
6437 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6438 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6439 EXPORT_SYMBOL_GPL(ata_std_postreset);
6440 EXPORT_SYMBOL_GPL(ata_dev_classify);
6441 EXPORT_SYMBOL_GPL(ata_dev_pair);
6442 EXPORT_SYMBOL_GPL(ata_port_disable);
6443 EXPORT_SYMBOL_GPL(ata_ratelimit);
6444 EXPORT_SYMBOL_GPL(ata_wait_register);
6445 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6446 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6447 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6448 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6449 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6450 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6451 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6452 EXPORT_SYMBOL_GPL(ata_scsi_release);
6453 EXPORT_SYMBOL_GPL(ata_host_intr);
6454 EXPORT_SYMBOL_GPL(sata_scr_valid);
6455 EXPORT_SYMBOL_GPL(sata_scr_read);
6456 EXPORT_SYMBOL_GPL(sata_scr_write);
6457 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6458 EXPORT_SYMBOL_GPL(ata_port_online);
6459 EXPORT_SYMBOL_GPL(ata_port_offline);
6460 EXPORT_SYMBOL_GPL(ata_host_suspend);
6461 EXPORT_SYMBOL_GPL(ata_host_resume);
6462 EXPORT_SYMBOL_GPL(ata_id_string);
6463 EXPORT_SYMBOL_GPL(ata_id_c_string);
6464 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6465 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6467 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6468 EXPORT_SYMBOL_GPL(ata_timing_compute);
6469 EXPORT_SYMBOL_GPL(ata_timing_merge);
6471 #ifdef CONFIG_PCI
6472 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6473 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
6474 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6475 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6476 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6477 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6478 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6479 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6480 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6481 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6482 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6483 #endif /* CONFIG_PCI */
6485 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6486 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6488 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6489 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6490 EXPORT_SYMBOL_GPL(ata_port_abort);
6491 EXPORT_SYMBOL_GPL(ata_port_freeze);
6492 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6493 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6494 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6495 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6496 EXPORT_SYMBOL_GPL(ata_do_eh);