2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/config.h>
63 #include <linux/smp_lock.h>
64 #include <linux/socket.h>
65 #include <linux/file.h>
66 #include <linux/net.h>
67 #include <linux/interrupt.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/divert.h>
82 #include <linux/mount.h>
83 #include <linux/security.h>
84 #include <linux/syscalls.h>
85 #include <linux/compat.h>
86 #include <linux/kmod.h>
87 #include <linux/audit.h>
88 #include <linux/wireless.h>
90 #include <asm/uaccess.h>
91 #include <asm/unistd.h>
93 #include <net/compat.h>
96 #include <linux/netfilter.h>
98 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
99 static ssize_t
sock_aio_read(struct kiocb
*iocb
, char __user
*buf
,
100 size_t size
, loff_t pos
);
101 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const char __user
*buf
,
102 size_t size
, loff_t pos
);
103 static int sock_mmap(struct file
*file
, struct vm_area_struct
* vma
);
105 static int sock_close(struct inode
*inode
, struct file
*file
);
106 static unsigned int sock_poll(struct file
*file
,
107 struct poll_table_struct
*wait
);
108 static long sock_ioctl(struct file
*file
,
109 unsigned int cmd
, unsigned long arg
);
111 static long compat_sock_ioctl(struct file
*file
,
112 unsigned int cmd
, unsigned long arg
);
114 static int sock_fasync(int fd
, struct file
*filp
, int on
);
115 static ssize_t
sock_readv(struct file
*file
, const struct iovec
*vector
,
116 unsigned long count
, loff_t
*ppos
);
117 static ssize_t
sock_writev(struct file
*file
, const struct iovec
*vector
,
118 unsigned long count
, loff_t
*ppos
);
119 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
120 int offset
, size_t size
, loff_t
*ppos
, int more
);
122 extern ssize_t
generic_splice_sendpage(struct inode
*inode
, struct file
*out
,
123 size_t len
, unsigned int flags
);
127 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
128 * in the operation structures but are done directly via the socketcall() multiplexor.
131 static struct file_operations socket_file_ops
= {
132 .owner
= THIS_MODULE
,
134 .aio_read
= sock_aio_read
,
135 .aio_write
= sock_aio_write
,
137 .unlocked_ioctl
= sock_ioctl
,
139 .compat_ioctl
= compat_sock_ioctl
,
142 .open
= sock_no_open
, /* special open code to disallow open via /proc */
143 .release
= sock_close
,
144 .fasync
= sock_fasync
,
146 .writev
= sock_writev
,
147 .sendpage
= sock_sendpage
,
148 .splice_write
= generic_splice_sendpage
,
152 * The protocol list. Each protocol is registered in here.
155 static struct net_proto_family
*net_families
[NPROTO
];
157 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
158 static atomic_t net_family_lockct
= ATOMIC_INIT(0);
159 static DEFINE_SPINLOCK(net_family_lock
);
161 /* The strategy is: modifications net_family vector are short, do not
162 sleep and veeery rare, but read access should be free of any exclusive
166 static void net_family_write_lock(void)
168 spin_lock(&net_family_lock
);
169 while (atomic_read(&net_family_lockct
) != 0) {
170 spin_unlock(&net_family_lock
);
174 spin_lock(&net_family_lock
);
178 static __inline__
void net_family_write_unlock(void)
180 spin_unlock(&net_family_lock
);
183 static __inline__
void net_family_read_lock(void)
185 atomic_inc(&net_family_lockct
);
186 spin_unlock_wait(&net_family_lock
);
189 static __inline__
void net_family_read_unlock(void)
191 atomic_dec(&net_family_lockct
);
195 #define net_family_write_lock() do { } while(0)
196 #define net_family_write_unlock() do { } while(0)
197 #define net_family_read_lock() do { } while(0)
198 #define net_family_read_unlock() do { } while(0)
203 * Statistics counters of the socket lists
206 static DEFINE_PER_CPU(int, sockets_in_use
) = 0;
209 * Support routines. Move socket addresses back and forth across the kernel/user
210 * divide and look after the messy bits.
213 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
214 16 for IP, 16 for IPX,
217 must be at least one bigger than
218 the AF_UNIX size (see net/unix/af_unix.c
223 * move_addr_to_kernel - copy a socket address into kernel space
224 * @uaddr: Address in user space
225 * @kaddr: Address in kernel space
226 * @ulen: Length in user space
228 * The address is copied into kernel space. If the provided address is
229 * too long an error code of -EINVAL is returned. If the copy gives
230 * invalid addresses -EFAULT is returned. On a success 0 is returned.
233 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, void *kaddr
)
235 if(ulen
<0||ulen
>MAX_SOCK_ADDR
)
239 if(copy_from_user(kaddr
,uaddr
,ulen
))
241 return audit_sockaddr(ulen
, kaddr
);
245 * move_addr_to_user - copy an address to user space
246 * @kaddr: kernel space address
247 * @klen: length of address in kernel
248 * @uaddr: user space address
249 * @ulen: pointer to user length field
251 * The value pointed to by ulen on entry is the buffer length available.
252 * This is overwritten with the buffer space used. -EINVAL is returned
253 * if an overlong buffer is specified or a negative buffer size. -EFAULT
254 * is returned if either the buffer or the length field are not
256 * After copying the data up to the limit the user specifies, the true
257 * length of the data is written over the length limit the user
258 * specified. Zero is returned for a success.
261 int move_addr_to_user(void *kaddr
, int klen
, void __user
*uaddr
, int __user
*ulen
)
266 if((err
=get_user(len
, ulen
)))
270 if(len
<0 || len
> MAX_SOCK_ADDR
)
274 if(copy_to_user(uaddr
,kaddr
,len
))
278 * "fromlen shall refer to the value before truncation.."
281 return __put_user(klen
, ulen
);
284 #define SOCKFS_MAGIC 0x534F434B
286 static kmem_cache_t
* sock_inode_cachep __read_mostly
;
288 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
290 struct socket_alloc
*ei
;
291 ei
= (struct socket_alloc
*)kmem_cache_alloc(sock_inode_cachep
, SLAB_KERNEL
);
294 init_waitqueue_head(&ei
->socket
.wait
);
296 ei
->socket
.fasync_list
= NULL
;
297 ei
->socket
.state
= SS_UNCONNECTED
;
298 ei
->socket
.flags
= 0;
299 ei
->socket
.ops
= NULL
;
300 ei
->socket
.sk
= NULL
;
301 ei
->socket
.file
= NULL
;
302 ei
->socket
.flags
= 0;
304 return &ei
->vfs_inode
;
307 static void sock_destroy_inode(struct inode
*inode
)
309 kmem_cache_free(sock_inode_cachep
,
310 container_of(inode
, struct socket_alloc
, vfs_inode
));
313 static void init_once(void * foo
, kmem_cache_t
* cachep
, unsigned long flags
)
315 struct socket_alloc
*ei
= (struct socket_alloc
*) foo
;
317 if ((flags
& (SLAB_CTOR_VERIFY
|SLAB_CTOR_CONSTRUCTOR
)) ==
318 SLAB_CTOR_CONSTRUCTOR
)
319 inode_init_once(&ei
->vfs_inode
);
322 static int init_inodecache(void)
324 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
325 sizeof(struct socket_alloc
),
326 0, (SLAB_HWCACHE_ALIGN
|SLAB_RECLAIM_ACCOUNT
|
329 if (sock_inode_cachep
== NULL
)
334 static struct super_operations sockfs_ops
= {
335 .alloc_inode
= sock_alloc_inode
,
336 .destroy_inode
=sock_destroy_inode
,
337 .statfs
= simple_statfs
,
340 static struct super_block
*sockfs_get_sb(struct file_system_type
*fs_type
,
341 int flags
, const char *dev_name
, void *data
)
343 return get_sb_pseudo(fs_type
, "socket:", &sockfs_ops
, SOCKFS_MAGIC
);
346 static struct vfsmount
*sock_mnt __read_mostly
;
348 static struct file_system_type sock_fs_type
= {
350 .get_sb
= sockfs_get_sb
,
351 .kill_sb
= kill_anon_super
,
353 static int sockfs_delete_dentry(struct dentry
*dentry
)
357 static struct dentry_operations sockfs_dentry_operations
= {
358 .d_delete
= sockfs_delete_dentry
,
362 * Obtains the first available file descriptor and sets it up for use.
364 * These functions create file structures and maps them to fd space
365 * of the current process. On success it returns file descriptor
366 * and file struct implicitly stored in sock->file.
367 * Note that another thread may close file descriptor before we return
368 * from this function. We use the fact that now we do not refer
369 * to socket after mapping. If one day we will need it, this
370 * function will increment ref. count on file by 1.
372 * In any case returned fd MAY BE not valid!
373 * This race condition is unavoidable
374 * with shared fd spaces, we cannot solve it inside kernel,
375 * but we take care of internal coherence yet.
378 static int sock_alloc_fd(struct file
**filep
)
382 fd
= get_unused_fd();
383 if (likely(fd
>= 0)) {
384 struct file
*file
= get_empty_filp();
387 if (unlikely(!file
)) {
396 static int sock_attach_fd(struct socket
*sock
, struct file
*file
)
401 this.len
= sprintf(name
, "[%lu]", SOCK_INODE(sock
)->i_ino
);
403 this.hash
= SOCK_INODE(sock
)->i_ino
;
405 file
->f_dentry
= d_alloc(sock_mnt
->mnt_sb
->s_root
, &this);
406 if (unlikely(!file
->f_dentry
))
409 file
->f_dentry
->d_op
= &sockfs_dentry_operations
;
410 d_add(file
->f_dentry
, SOCK_INODE(sock
));
411 file
->f_vfsmnt
= mntget(sock_mnt
);
412 file
->f_mapping
= file
->f_dentry
->d_inode
->i_mapping
;
415 file
->f_op
= SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
416 file
->f_mode
= FMODE_READ
| FMODE_WRITE
;
417 file
->f_flags
= O_RDWR
;
419 file
->private_data
= sock
;
424 int sock_map_fd(struct socket
*sock
)
426 struct file
*newfile
;
427 int fd
= sock_alloc_fd(&newfile
);
429 if (likely(fd
>= 0)) {
430 int err
= sock_attach_fd(sock
, newfile
);
432 if (unlikely(err
< 0)) {
437 fd_install(fd
, newfile
);
442 static struct socket
*sock_from_file(struct file
*file
, int *err
)
447 if (file
->f_op
== &socket_file_ops
)
448 return file
->private_data
; /* set in sock_map_fd */
450 inode
= file
->f_dentry
->d_inode
;
451 if (!S_ISSOCK(inode
->i_mode
)) {
456 sock
= SOCKET_I(inode
);
457 if (sock
->file
!= file
) {
458 printk(KERN_ERR
"socki_lookup: socket file changed!\n");
465 * sockfd_lookup - Go from a file number to its socket slot
467 * @err: pointer to an error code return
469 * The file handle passed in is locked and the socket it is bound
470 * too is returned. If an error occurs the err pointer is overwritten
471 * with a negative errno code and NULL is returned. The function checks
472 * for both invalid handles and passing a handle which is not a socket.
474 * On a success the socket object pointer is returned.
477 struct socket
*sockfd_lookup(int fd
, int *err
)
482 if (!(file
= fget(fd
))) {
486 sock
= sock_from_file(file
, err
);
492 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
497 file
= fget_light(fd
, fput_needed
);
499 sock
= sock_from_file(file
, err
);
502 fput_light(file
, *fput_needed
);
508 * sock_alloc - allocate a socket
510 * Allocate a new inode and socket object. The two are bound together
511 * and initialised. The socket is then returned. If we are out of inodes
515 static struct socket
*sock_alloc(void)
517 struct inode
* inode
;
518 struct socket
* sock
;
520 inode
= new_inode(sock_mnt
->mnt_sb
);
524 sock
= SOCKET_I(inode
);
526 inode
->i_mode
= S_IFSOCK
|S_IRWXUGO
;
527 inode
->i_uid
= current
->fsuid
;
528 inode
->i_gid
= current
->fsgid
;
530 get_cpu_var(sockets_in_use
)++;
531 put_cpu_var(sockets_in_use
);
536 * In theory you can't get an open on this inode, but /proc provides
537 * a back door. Remember to keep it shut otherwise you'll let the
538 * creepy crawlies in.
541 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
546 const struct file_operations bad_sock_fops
= {
547 .owner
= THIS_MODULE
,
548 .open
= sock_no_open
,
552 * sock_release - close a socket
553 * @sock: socket to close
555 * The socket is released from the protocol stack if it has a release
556 * callback, and the inode is then released if the socket is bound to
557 * an inode not a file.
560 void sock_release(struct socket
*sock
)
563 struct module
*owner
= sock
->ops
->owner
;
565 sock
->ops
->release(sock
);
570 if (sock
->fasync_list
)
571 printk(KERN_ERR
"sock_release: fasync list not empty!\n");
573 get_cpu_var(sockets_in_use
)--;
574 put_cpu_var(sockets_in_use
);
576 iput(SOCK_INODE(sock
));
582 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
583 struct msghdr
*msg
, size_t size
)
585 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
593 err
= security_socket_sendmsg(sock
, msg
, size
);
597 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
600 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
603 struct sock_iocb siocb
;
606 init_sync_kiocb(&iocb
, NULL
);
607 iocb
.private = &siocb
;
608 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
609 if (-EIOCBQUEUED
== ret
)
610 ret
= wait_on_sync_kiocb(&iocb
);
614 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
615 struct kvec
*vec
, size_t num
, size_t size
)
617 mm_segment_t oldfs
= get_fs();
622 * the following is safe, since for compiler definitions of kvec and
623 * iovec are identical, yielding the same in-core layout and alignment
625 msg
->msg_iov
= (struct iovec
*)vec
,
626 msg
->msg_iovlen
= num
;
627 result
= sock_sendmsg(sock
, msg
, size
);
632 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
633 struct msghdr
*msg
, size_t size
, int flags
)
636 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
644 err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
648 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
651 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
652 size_t size
, int flags
)
655 struct sock_iocb siocb
;
658 init_sync_kiocb(&iocb
, NULL
);
659 iocb
.private = &siocb
;
660 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
661 if (-EIOCBQUEUED
== ret
)
662 ret
= wait_on_sync_kiocb(&iocb
);
666 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
667 struct kvec
*vec
, size_t num
,
668 size_t size
, int flags
)
670 mm_segment_t oldfs
= get_fs();
675 * the following is safe, since for compiler definitions of kvec and
676 * iovec are identical, yielding the same in-core layout and alignment
678 msg
->msg_iov
= (struct iovec
*)vec
,
679 msg
->msg_iovlen
= num
;
680 result
= sock_recvmsg(sock
, msg
, size
, flags
);
685 static void sock_aio_dtor(struct kiocb
*iocb
)
687 kfree(iocb
->private);
690 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
691 int offset
, size_t size
, loff_t
*ppos
, int more
)
696 sock
= file
->private_data
;
698 flags
= !(file
->f_flags
& O_NONBLOCK
) ? 0 : MSG_DONTWAIT
;
702 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
705 static struct sock_iocb
*alloc_sock_iocb(struct kiocb
*iocb
,
706 char __user
*ubuf
, size_t size
, struct sock_iocb
*siocb
)
708 if (!is_sync_kiocb(iocb
)) {
709 siocb
= kmalloc(sizeof(*siocb
), GFP_KERNEL
);
712 iocb
->ki_dtor
= sock_aio_dtor
;
716 siocb
->async_iov
.iov_base
= ubuf
;
717 siocb
->async_iov
.iov_len
= size
;
719 iocb
->private = siocb
;
723 static ssize_t
do_sock_read(struct msghdr
*msg
, struct kiocb
*iocb
,
724 struct file
*file
, struct iovec
*iov
, unsigned long nr_segs
)
726 struct socket
*sock
= file
->private_data
;
730 for (i
= 0 ; i
< nr_segs
; i
++)
731 size
+= iov
[i
].iov_len
;
733 msg
->msg_name
= NULL
;
734 msg
->msg_namelen
= 0;
735 msg
->msg_control
= NULL
;
736 msg
->msg_controllen
= 0;
737 msg
->msg_iov
= (struct iovec
*) iov
;
738 msg
->msg_iovlen
= nr_segs
;
739 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
741 return __sock_recvmsg(iocb
, sock
, msg
, size
, msg
->msg_flags
);
744 static ssize_t
sock_readv(struct file
*file
, const struct iovec
*iov
,
745 unsigned long nr_segs
, loff_t
*ppos
)
748 struct sock_iocb siocb
;
752 init_sync_kiocb(&iocb
, NULL
);
753 iocb
.private = &siocb
;
755 ret
= do_sock_read(&msg
, &iocb
, file
, (struct iovec
*)iov
, nr_segs
);
756 if (-EIOCBQUEUED
== ret
)
757 ret
= wait_on_sync_kiocb(&iocb
);
761 static ssize_t
sock_aio_read(struct kiocb
*iocb
, char __user
*ubuf
,
762 size_t count
, loff_t pos
)
764 struct sock_iocb siocb
, *x
;
768 if (count
== 0) /* Match SYS5 behaviour */
771 x
= alloc_sock_iocb(iocb
, ubuf
, count
, &siocb
);
774 return do_sock_read(&x
->async_msg
, iocb
, iocb
->ki_filp
,
778 static ssize_t
do_sock_write(struct msghdr
*msg
, struct kiocb
*iocb
,
779 struct file
*file
, struct iovec
*iov
, unsigned long nr_segs
)
781 struct socket
*sock
= file
->private_data
;
785 for (i
= 0 ; i
< nr_segs
; i
++)
786 size
+= iov
[i
].iov_len
;
788 msg
->msg_name
= NULL
;
789 msg
->msg_namelen
= 0;
790 msg
->msg_control
= NULL
;
791 msg
->msg_controllen
= 0;
792 msg
->msg_iov
= (struct iovec
*) iov
;
793 msg
->msg_iovlen
= nr_segs
;
794 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
795 if (sock
->type
== SOCK_SEQPACKET
)
796 msg
->msg_flags
|= MSG_EOR
;
798 return __sock_sendmsg(iocb
, sock
, msg
, size
);
801 static ssize_t
sock_writev(struct file
*file
, const struct iovec
*iov
,
802 unsigned long nr_segs
, loff_t
*ppos
)
806 struct sock_iocb siocb
;
809 init_sync_kiocb(&iocb
, NULL
);
810 iocb
.private = &siocb
;
812 ret
= do_sock_write(&msg
, &iocb
, file
, (struct iovec
*)iov
, nr_segs
);
813 if (-EIOCBQUEUED
== ret
)
814 ret
= wait_on_sync_kiocb(&iocb
);
818 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const char __user
*ubuf
,
819 size_t count
, loff_t pos
)
821 struct sock_iocb siocb
, *x
;
825 if (count
== 0) /* Match SYS5 behaviour */
828 x
= alloc_sock_iocb(iocb
, (void __user
*)ubuf
, count
, &siocb
);
832 return do_sock_write(&x
->async_msg
, iocb
, iocb
->ki_filp
,
838 * Atomic setting of ioctl hooks to avoid race
839 * with module unload.
842 static DEFINE_MUTEX(br_ioctl_mutex
);
843 static int (*br_ioctl_hook
)(unsigned int cmd
, void __user
*arg
) = NULL
;
845 void brioctl_set(int (*hook
)(unsigned int, void __user
*))
847 mutex_lock(&br_ioctl_mutex
);
848 br_ioctl_hook
= hook
;
849 mutex_unlock(&br_ioctl_mutex
);
851 EXPORT_SYMBOL(brioctl_set
);
853 static DEFINE_MUTEX(vlan_ioctl_mutex
);
854 static int (*vlan_ioctl_hook
)(void __user
*arg
);
856 void vlan_ioctl_set(int (*hook
)(void __user
*))
858 mutex_lock(&vlan_ioctl_mutex
);
859 vlan_ioctl_hook
= hook
;
860 mutex_unlock(&vlan_ioctl_mutex
);
862 EXPORT_SYMBOL(vlan_ioctl_set
);
864 static DEFINE_MUTEX(dlci_ioctl_mutex
);
865 static int (*dlci_ioctl_hook
)(unsigned int, void __user
*);
867 void dlci_ioctl_set(int (*hook
)(unsigned int, void __user
*))
869 mutex_lock(&dlci_ioctl_mutex
);
870 dlci_ioctl_hook
= hook
;
871 mutex_unlock(&dlci_ioctl_mutex
);
873 EXPORT_SYMBOL(dlci_ioctl_set
);
876 * With an ioctl, arg may well be a user mode pointer, but we don't know
877 * what to do with it - that's up to the protocol still.
880 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
883 void __user
*argp
= (void __user
*)arg
;
886 sock
= file
->private_data
;
887 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
888 err
= dev_ioctl(cmd
, argp
);
890 #ifdef CONFIG_WIRELESS_EXT
891 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
892 err
= dev_ioctl(cmd
, argp
);
894 #endif /* CONFIG_WIRELESS_EXT */
899 if (get_user(pid
, (int __user
*)argp
))
901 err
= f_setown(sock
->file
, pid
, 1);
905 err
= put_user(sock
->file
->f_owner
.pid
, (int __user
*)argp
);
913 request_module("bridge");
915 mutex_lock(&br_ioctl_mutex
);
917 err
= br_ioctl_hook(cmd
, argp
);
918 mutex_unlock(&br_ioctl_mutex
);
923 if (!vlan_ioctl_hook
)
924 request_module("8021q");
926 mutex_lock(&vlan_ioctl_mutex
);
928 err
= vlan_ioctl_hook(argp
);
929 mutex_unlock(&vlan_ioctl_mutex
);
933 /* Convert this to call through a hook */
934 err
= divert_ioctl(cmd
, argp
);
939 if (!dlci_ioctl_hook
)
940 request_module("dlci");
942 if (dlci_ioctl_hook
) {
943 mutex_lock(&dlci_ioctl_mutex
);
944 err
= dlci_ioctl_hook(cmd
, argp
);
945 mutex_unlock(&dlci_ioctl_mutex
);
949 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
952 * If this ioctl is unknown try to hand it down
955 if (err
== -ENOIOCTLCMD
)
956 err
= dev_ioctl(cmd
, argp
);
962 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
965 struct socket
*sock
= NULL
;
967 err
= security_socket_create(family
, type
, protocol
, 1);
977 security_socket_post_create(sock
, family
, type
, protocol
, 1);
984 /* No kernel lock held - perfect */
985 static unsigned int sock_poll(struct file
*file
, poll_table
* wait
)
990 * We can't return errors to poll, so it's either yes or no.
992 sock
= file
->private_data
;
993 return sock
->ops
->poll(file
, sock
, wait
);
996 static int sock_mmap(struct file
* file
, struct vm_area_struct
* vma
)
998 struct socket
*sock
= file
->private_data
;
1000 return sock
->ops
->mmap(file
, sock
, vma
);
1003 static int sock_close(struct inode
*inode
, struct file
*filp
)
1006 * It was possible the inode is NULL we were
1007 * closing an unfinished socket.
1012 printk(KERN_DEBUG
"sock_close: NULL inode\n");
1015 sock_fasync(-1, filp
, 0);
1016 sock_release(SOCKET_I(inode
));
1021 * Update the socket async list
1023 * Fasync_list locking strategy.
1025 * 1. fasync_list is modified only under process context socket lock
1026 * i.e. under semaphore.
1027 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1028 * or under socket lock.
1029 * 3. fasync_list can be used from softirq context, so that
1030 * modification under socket lock have to be enhanced with
1031 * write_lock_bh(&sk->sk_callback_lock).
1035 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1037 struct fasync_struct
*fa
, *fna
=NULL
, **prev
;
1038 struct socket
*sock
;
1043 fna
= kmalloc(sizeof(struct fasync_struct
), GFP_KERNEL
);
1048 sock
= filp
->private_data
;
1050 if ((sk
=sock
->sk
) == NULL
) {
1057 prev
=&(sock
->fasync_list
);
1059 for (fa
=*prev
; fa
!=NULL
; prev
=&fa
->fa_next
,fa
=*prev
)
1060 if (fa
->fa_file
==filp
)
1067 write_lock_bh(&sk
->sk_callback_lock
);
1069 write_unlock_bh(&sk
->sk_callback_lock
);
1076 fna
->magic
=FASYNC_MAGIC
;
1077 fna
->fa_next
=sock
->fasync_list
;
1078 write_lock_bh(&sk
->sk_callback_lock
);
1079 sock
->fasync_list
=fna
;
1080 write_unlock_bh(&sk
->sk_callback_lock
);
1086 write_lock_bh(&sk
->sk_callback_lock
);
1088 write_unlock_bh(&sk
->sk_callback_lock
);
1094 release_sock(sock
->sk
);
1098 /* This function may be called only under socket lock or callback_lock */
1100 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1102 if (!sock
|| !sock
->fasync_list
)
1108 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1112 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1117 __kill_fasync(sock
->fasync_list
, SIGIO
, band
);
1120 __kill_fasync(sock
->fasync_list
, SIGURG
, band
);
1125 static int __sock_create(int family
, int type
, int protocol
, struct socket
**res
, int kern
)
1128 struct socket
*sock
;
1131 * Check protocol is in range
1133 if (family
< 0 || family
>= NPROTO
)
1134 return -EAFNOSUPPORT
;
1135 if (type
< 0 || type
>= SOCK_MAX
)
1140 This uglymoron is moved from INET layer to here to avoid
1141 deadlock in module load.
1143 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1147 printk(KERN_INFO
"%s uses obsolete (PF_INET,SOCK_PACKET)\n", current
->comm
);
1152 err
= security_socket_create(family
, type
, protocol
, kern
);
1156 #if defined(CONFIG_KMOD)
1157 /* Attempt to load a protocol module if the find failed.
1159 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1160 * requested real, full-featured networking support upon configuration.
1161 * Otherwise module support will break!
1163 if (net_families
[family
]==NULL
)
1165 request_module("net-pf-%d",family
);
1169 net_family_read_lock();
1170 if (net_families
[family
] == NULL
) {
1171 err
= -EAFNOSUPPORT
;
1176 * Allocate the socket and allow the family to set things up. if
1177 * the protocol is 0, the family is instructed to select an appropriate
1181 if (!(sock
= sock_alloc())) {
1182 printk(KERN_WARNING
"socket: no more sockets\n");
1183 err
= -ENFILE
; /* Not exactly a match, but its the
1184 closest posix thing */
1191 * We will call the ->create function, that possibly is in a loadable
1192 * module, so we have to bump that loadable module refcnt first.
1194 err
= -EAFNOSUPPORT
;
1195 if (!try_module_get(net_families
[family
]->owner
))
1198 if ((err
= net_families
[family
]->create(sock
, protocol
)) < 0) {
1200 goto out_module_put
;
1204 * Now to bump the refcnt of the [loadable] module that owns this
1205 * socket at sock_release time we decrement its refcnt.
1207 if (!try_module_get(sock
->ops
->owner
)) {
1209 goto out_module_put
;
1212 * Now that we're done with the ->create function, the [loadable]
1213 * module can have its refcnt decremented
1215 module_put(net_families
[family
]->owner
);
1217 security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1220 net_family_read_unlock();
1223 module_put(net_families
[family
]->owner
);
1229 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1231 return __sock_create(family
, type
, protocol
, res
, 0);
1234 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1236 return __sock_create(family
, type
, protocol
, res
, 1);
1239 asmlinkage
long sys_socket(int family
, int type
, int protocol
)
1242 struct socket
*sock
;
1244 retval
= sock_create(family
, type
, protocol
, &sock
);
1248 retval
= sock_map_fd(sock
);
1253 /* It may be already another descriptor 8) Not kernel problem. */
1262 * Create a pair of connected sockets.
1265 asmlinkage
long sys_socketpair(int family
, int type
, int protocol
, int __user
*usockvec
)
1267 struct socket
*sock1
, *sock2
;
1271 * Obtain the first socket and check if the underlying protocol
1272 * supports the socketpair call.
1275 err
= sock_create(family
, type
, protocol
, &sock1
);
1279 err
= sock_create(family
, type
, protocol
, &sock2
);
1283 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1285 goto out_release_both
;
1289 err
= sock_map_fd(sock1
);
1291 goto out_release_both
;
1294 err
= sock_map_fd(sock2
);
1299 /* fd1 and fd2 may be already another descriptors.
1300 * Not kernel problem.
1303 err
= put_user(fd1
, &usockvec
[0]);
1305 err
= put_user(fd2
, &usockvec
[1]);
1314 sock_release(sock2
);
1319 sock_release(sock2
);
1321 sock_release(sock1
);
1328 * Bind a name to a socket. Nothing much to do here since it's
1329 * the protocol's responsibility to handle the local address.
1331 * We move the socket address to kernel space before we call
1332 * the protocol layer (having also checked the address is ok).
1335 asmlinkage
long sys_bind(int fd
, struct sockaddr __user
*umyaddr
, int addrlen
)
1337 struct socket
*sock
;
1338 char address
[MAX_SOCK_ADDR
];
1339 int err
, fput_needed
;
1341 if((sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
))!=NULL
)
1343 if((err
=move_addr_to_kernel(umyaddr
,addrlen
,address
))>=0) {
1344 err
= security_socket_bind(sock
, (struct sockaddr
*)address
, addrlen
);
1346 err
= sock
->ops
->bind(sock
,
1347 (struct sockaddr
*)address
, addrlen
);
1349 fput_light(sock
->file
, fput_needed
);
1356 * Perform a listen. Basically, we allow the protocol to do anything
1357 * necessary for a listen, and if that works, we mark the socket as
1358 * ready for listening.
1361 int sysctl_somaxconn
= SOMAXCONN
;
1363 asmlinkage
long sys_listen(int fd
, int backlog
)
1365 struct socket
*sock
;
1366 int err
, fput_needed
;
1368 if ((sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
)) != NULL
) {
1369 if ((unsigned) backlog
> sysctl_somaxconn
)
1370 backlog
= sysctl_somaxconn
;
1372 err
= security_socket_listen(sock
, backlog
);
1374 err
= sock
->ops
->listen(sock
, backlog
);
1376 fput_light(sock
->file
, fput_needed
);
1383 * For accept, we attempt to create a new socket, set up the link
1384 * with the client, wake up the client, then return the new
1385 * connected fd. We collect the address of the connector in kernel
1386 * space and move it to user at the very end. This is unclean because
1387 * we open the socket then return an error.
1389 * 1003.1g adds the ability to recvmsg() to query connection pending
1390 * status to recvmsg. We need to add that support in a way thats
1391 * clean when we restucture accept also.
1394 asmlinkage
long sys_accept(int fd
, struct sockaddr __user
*upeer_sockaddr
, int __user
*upeer_addrlen
)
1396 struct socket
*sock
, *newsock
;
1397 struct file
*newfile
;
1398 int err
, len
, newfd
, fput_needed
;
1399 char address
[MAX_SOCK_ADDR
];
1401 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1406 if (!(newsock
= sock_alloc()))
1409 newsock
->type
= sock
->type
;
1410 newsock
->ops
= sock
->ops
;
1413 * We don't need try_module_get here, as the listening socket (sock)
1414 * has the protocol module (sock->ops->owner) held.
1416 __module_get(newsock
->ops
->owner
);
1418 newfd
= sock_alloc_fd(&newfile
);
1419 if (unlikely(newfd
< 0)) {
1421 sock_release(newsock
);
1425 err
= sock_attach_fd(newsock
, newfile
);
1429 err
= security_socket_accept(sock
, newsock
);
1433 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1437 if (upeer_sockaddr
) {
1438 if(newsock
->ops
->getname(newsock
, (struct sockaddr
*)address
, &len
, 2)<0) {
1439 err
= -ECONNABORTED
;
1442 err
= move_addr_to_user(address
, len
, upeer_sockaddr
, upeer_addrlen
);
1447 /* File flags are not inherited via accept() unlike another OSes. */
1449 fd_install(newfd
, newfile
);
1452 security_socket_post_accept(sock
, newsock
);
1455 fput_light(sock
->file
, fput_needed
);
1460 put_unused_fd(newfd
);
1466 * Attempt to connect to a socket with the server address. The address
1467 * is in user space so we verify it is OK and move it to kernel space.
1469 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1472 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1473 * other SEQPACKET protocols that take time to connect() as it doesn't
1474 * include the -EINPROGRESS status for such sockets.
1477 asmlinkage
long sys_connect(int fd
, struct sockaddr __user
*uservaddr
, int addrlen
)
1479 struct socket
*sock
;
1480 char address
[MAX_SOCK_ADDR
];
1481 int err
, fput_needed
;
1483 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1486 err
= move_addr_to_kernel(uservaddr
, addrlen
, address
);
1490 err
= security_socket_connect(sock
, (struct sockaddr
*)address
, addrlen
);
1494 err
= sock
->ops
->connect(sock
, (struct sockaddr
*) address
, addrlen
,
1495 sock
->file
->f_flags
);
1497 fput_light(sock
->file
, fput_needed
);
1503 * Get the local address ('name') of a socket object. Move the obtained
1504 * name to user space.
1507 asmlinkage
long sys_getsockname(int fd
, struct sockaddr __user
*usockaddr
, int __user
*usockaddr_len
)
1509 struct socket
*sock
;
1510 char address
[MAX_SOCK_ADDR
];
1511 int len
, err
, fput_needed
;
1513 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1517 err
= security_socket_getsockname(sock
);
1521 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &len
, 0);
1524 err
= move_addr_to_user(address
, len
, usockaddr
, usockaddr_len
);
1527 fput_light(sock
->file
, fput_needed
);
1533 * Get the remote address ('name') of a socket object. Move the obtained
1534 * name to user space.
1537 asmlinkage
long sys_getpeername(int fd
, struct sockaddr __user
*usockaddr
, int __user
*usockaddr_len
)
1539 struct socket
*sock
;
1540 char address
[MAX_SOCK_ADDR
];
1541 int len
, err
, fput_needed
;
1543 if ((sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
)) != NULL
) {
1544 err
= security_socket_getpeername(sock
);
1546 fput_light(sock
->file
, fput_needed
);
1550 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &len
, 1);
1552 err
=move_addr_to_user(address
,len
, usockaddr
, usockaddr_len
);
1553 fput_light(sock
->file
, fput_needed
);
1559 * Send a datagram to a given address. We move the address into kernel
1560 * space and check the user space data area is readable before invoking
1564 asmlinkage
long sys_sendto(int fd
, void __user
* buff
, size_t len
, unsigned flags
,
1565 struct sockaddr __user
*addr
, int addr_len
)
1567 struct socket
*sock
;
1568 char address
[MAX_SOCK_ADDR
];
1573 struct file
*sock_file
;
1575 sock_file
= fget_light(fd
, &fput_needed
);
1579 sock
= sock_from_file(sock_file
, &err
);
1587 msg
.msg_control
=NULL
;
1588 msg
.msg_controllen
=0;
1591 err
= move_addr_to_kernel(addr
, addr_len
, address
);
1594 msg
.msg_name
=address
;
1595 msg
.msg_namelen
=addr_len
;
1597 if (sock
->file
->f_flags
& O_NONBLOCK
)
1598 flags
|= MSG_DONTWAIT
;
1599 msg
.msg_flags
= flags
;
1600 err
= sock_sendmsg(sock
, &msg
, len
);
1603 fput_light(sock_file
, fput_needed
);
1608 * Send a datagram down a socket.
1611 asmlinkage
long sys_send(int fd
, void __user
* buff
, size_t len
, unsigned flags
)
1613 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1617 * Receive a frame from the socket and optionally record the address of the
1618 * sender. We verify the buffers are writable and if needed move the
1619 * sender address from kernel to user space.
1622 asmlinkage
long sys_recvfrom(int fd
, void __user
* ubuf
, size_t size
, unsigned flags
,
1623 struct sockaddr __user
*addr
, int __user
*addr_len
)
1625 struct socket
*sock
;
1628 char address
[MAX_SOCK_ADDR
];
1630 struct file
*sock_file
;
1633 sock_file
= fget_light(fd
, &fput_needed
);
1637 sock
= sock_from_file(sock_file
, &err
);
1641 msg
.msg_control
=NULL
;
1642 msg
.msg_controllen
=0;
1647 msg
.msg_name
=address
;
1648 msg
.msg_namelen
=MAX_SOCK_ADDR
;
1649 if (sock
->file
->f_flags
& O_NONBLOCK
)
1650 flags
|= MSG_DONTWAIT
;
1651 err
=sock_recvmsg(sock
, &msg
, size
, flags
);
1653 if(err
>= 0 && addr
!= NULL
)
1655 err2
=move_addr_to_user(address
, msg
.msg_namelen
, addr
, addr_len
);
1660 fput_light(sock_file
, fput_needed
);
1665 * Receive a datagram from a socket.
1668 asmlinkage
long sys_recv(int fd
, void __user
* ubuf
, size_t size
, unsigned flags
)
1670 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1674 * Set a socket option. Because we don't know the option lengths we have
1675 * to pass the user mode parameter for the protocols to sort out.
1678 asmlinkage
long sys_setsockopt(int fd
, int level
, int optname
, char __user
*optval
, int optlen
)
1680 int err
, fput_needed
;
1681 struct socket
*sock
;
1686 if ((sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
)) != NULL
)
1688 err
= security_socket_setsockopt(sock
,level
,optname
);
1692 if (level
== SOL_SOCKET
)
1693 err
=sock_setsockopt(sock
,level
,optname
,optval
,optlen
);
1695 err
=sock
->ops
->setsockopt(sock
, level
, optname
, optval
, optlen
);
1697 fput_light(sock
->file
, fput_needed
);
1703 * Get a socket option. Because we don't know the option lengths we have
1704 * to pass a user mode parameter for the protocols to sort out.
1707 asmlinkage
long sys_getsockopt(int fd
, int level
, int optname
, char __user
*optval
, int __user
*optlen
)
1709 int err
, fput_needed
;
1710 struct socket
*sock
;
1712 if ((sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
)) != NULL
) {
1713 err
= security_socket_getsockopt(sock
, level
, optname
);
1717 if (level
== SOL_SOCKET
)
1718 err
=sock_getsockopt(sock
,level
,optname
,optval
,optlen
);
1720 err
=sock
->ops
->getsockopt(sock
, level
, optname
, optval
, optlen
);
1722 fput_light(sock
->file
, fput_needed
);
1729 * Shutdown a socket.
1732 asmlinkage
long sys_shutdown(int fd
, int how
)
1734 int err
, fput_needed
;
1735 struct socket
*sock
;
1737 if ((sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
))!=NULL
)
1739 err
= security_socket_shutdown(sock
, how
);
1741 err
= sock
->ops
->shutdown(sock
, how
);
1742 fput_light(sock
->file
, fput_needed
);
1747 /* A couple of helpful macros for getting the address of the 32/64 bit
1748 * fields which are the same type (int / unsigned) on our platforms.
1750 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1751 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1752 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1756 * BSD sendmsg interface
1759 asmlinkage
long sys_sendmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
1761 struct compat_msghdr __user
*msg_compat
= (struct compat_msghdr __user
*)msg
;
1762 struct socket
*sock
;
1763 char address
[MAX_SOCK_ADDR
];
1764 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1765 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1766 __attribute__ ((aligned (sizeof(__kernel_size_t
))));
1767 /* 20 is size of ipv6_pktinfo */
1768 unsigned char *ctl_buf
= ctl
;
1769 struct msghdr msg_sys
;
1770 int err
, ctl_len
, iov_size
, total_len
;
1774 if (MSG_CMSG_COMPAT
& flags
) {
1775 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1777 } else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
1780 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1784 /* do not move before msg_sys is valid */
1786 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1789 /* Check whether to allocate the iovec area*/
1791 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1792 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1793 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1798 /* This will also move the address data into kernel space */
1799 if (MSG_CMSG_COMPAT
& flags
) {
1800 err
= verify_compat_iovec(&msg_sys
, iov
, address
, VERIFY_READ
);
1802 err
= verify_iovec(&msg_sys
, iov
, address
, VERIFY_READ
);
1809 if (msg_sys
.msg_controllen
> INT_MAX
)
1811 ctl_len
= msg_sys
.msg_controllen
;
1812 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1813 err
= cmsghdr_from_user_compat_to_kern(&msg_sys
, sock
->sk
, ctl
, sizeof(ctl
));
1816 ctl_buf
= msg_sys
.msg_control
;
1817 ctl_len
= msg_sys
.msg_controllen
;
1818 } else if (ctl_len
) {
1819 if (ctl_len
> sizeof(ctl
))
1821 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1822 if (ctl_buf
== NULL
)
1827 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1828 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1829 * checking falls down on this.
1831 if (copy_from_user(ctl_buf
, (void __user
*) msg_sys
.msg_control
, ctl_len
))
1833 msg_sys
.msg_control
= ctl_buf
;
1835 msg_sys
.msg_flags
= flags
;
1837 if (sock
->file
->f_flags
& O_NONBLOCK
)
1838 msg_sys
.msg_flags
|= MSG_DONTWAIT
;
1839 err
= sock_sendmsg(sock
, &msg_sys
, total_len
);
1843 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
1845 if (iov
!= iovstack
)
1846 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1848 fput_light(sock
->file
, fput_needed
);
1854 * BSD recvmsg interface
1857 asmlinkage
long sys_recvmsg(int fd
, struct msghdr __user
*msg
, unsigned int flags
)
1859 struct compat_msghdr __user
*msg_compat
= (struct compat_msghdr __user
*)msg
;
1860 struct socket
*sock
;
1861 struct iovec iovstack
[UIO_FASTIOV
];
1862 struct iovec
*iov
=iovstack
;
1863 struct msghdr msg_sys
;
1864 unsigned long cmsg_ptr
;
1865 int err
, iov_size
, total_len
, len
;
1868 /* kernel mode address */
1869 char addr
[MAX_SOCK_ADDR
];
1871 /* user mode address pointers */
1872 struct sockaddr __user
*uaddr
;
1873 int __user
*uaddr_len
;
1875 if (MSG_CMSG_COMPAT
& flags
) {
1876 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1879 if (copy_from_user(&msg_sys
,msg
,sizeof(struct msghdr
)))
1882 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1887 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1890 /* Check whether to allocate the iovec area*/
1892 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1893 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1894 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1900 * Save the user-mode address (verify_iovec will change the
1901 * kernel msghdr to use the kernel address space)
1904 uaddr
= (void __user
*) msg_sys
.msg_name
;
1905 uaddr_len
= COMPAT_NAMELEN(msg
);
1906 if (MSG_CMSG_COMPAT
& flags
) {
1907 err
= verify_compat_iovec(&msg_sys
, iov
, addr
, VERIFY_WRITE
);
1909 err
= verify_iovec(&msg_sys
, iov
, addr
, VERIFY_WRITE
);
1914 cmsg_ptr
= (unsigned long)msg_sys
.msg_control
;
1915 msg_sys
.msg_flags
= 0;
1916 if (MSG_CMSG_COMPAT
& flags
)
1917 msg_sys
.msg_flags
= MSG_CMSG_COMPAT
;
1919 if (sock
->file
->f_flags
& O_NONBLOCK
)
1920 flags
|= MSG_DONTWAIT
;
1921 err
= sock_recvmsg(sock
, &msg_sys
, total_len
, flags
);
1926 if (uaddr
!= NULL
) {
1927 err
= move_addr_to_user(addr
, msg_sys
.msg_namelen
, uaddr
, uaddr_len
);
1931 err
= __put_user((msg_sys
.msg_flags
& ~MSG_CMSG_COMPAT
),
1935 if (MSG_CMSG_COMPAT
& flags
)
1936 err
= __put_user((unsigned long)msg_sys
.msg_control
-cmsg_ptr
,
1937 &msg_compat
->msg_controllen
);
1939 err
= __put_user((unsigned long)msg_sys
.msg_control
-cmsg_ptr
,
1940 &msg
->msg_controllen
);
1946 if (iov
!= iovstack
)
1947 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1949 fput_light(sock
->file
, fput_needed
);
1954 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1956 /* Argument list sizes for sys_socketcall */
1957 #define AL(x) ((x) * sizeof(unsigned long))
1958 static unsigned char nargs
[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1959 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1960 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
1964 * System call vectors.
1966 * Argument checking cleaned up. Saved 20% in size.
1967 * This function doesn't need to set the kernel lock because
1968 * it is set by the callees.
1971 asmlinkage
long sys_socketcall(int call
, unsigned long __user
*args
)
1974 unsigned long a0
,a1
;
1977 if(call
<1||call
>SYS_RECVMSG
)
1980 /* copy_from_user should be SMP safe. */
1981 if (copy_from_user(a
, args
, nargs
[call
]))
1984 err
= audit_socketcall(nargs
[call
]/sizeof(unsigned long), a
);
1994 err
= sys_socket(a0
,a1
,a
[2]);
1997 err
= sys_bind(a0
,(struct sockaddr __user
*)a1
, a
[2]);
2000 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2003 err
= sys_listen(a0
,a1
);
2006 err
= sys_accept(a0
,(struct sockaddr __user
*)a1
, (int __user
*)a
[2]);
2008 case SYS_GETSOCKNAME
:
2009 err
= sys_getsockname(a0
,(struct sockaddr __user
*)a1
, (int __user
*)a
[2]);
2011 case SYS_GETPEERNAME
:
2012 err
= sys_getpeername(a0
, (struct sockaddr __user
*)a1
, (int __user
*)a
[2]);
2014 case SYS_SOCKETPAIR
:
2015 err
= sys_socketpair(a0
,a1
, a
[2], (int __user
*)a
[3]);
2018 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2021 err
= sys_sendto(a0
,(void __user
*)a1
, a
[2], a
[3],
2022 (struct sockaddr __user
*)a
[4], a
[5]);
2025 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2028 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2029 (struct sockaddr __user
*)a
[4], (int __user
*)a
[5]);
2032 err
= sys_shutdown(a0
,a1
);
2034 case SYS_SETSOCKOPT
:
2035 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2037 case SYS_GETSOCKOPT
:
2038 err
= sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], (int __user
*)a
[4]);
2041 err
= sys_sendmsg(a0
, (struct msghdr __user
*) a1
, a
[2]);
2044 err
= sys_recvmsg(a0
, (struct msghdr __user
*) a1
, a
[2]);
2053 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2056 * This function is called by a protocol handler that wants to
2057 * advertise its address family, and have it linked into the
2061 int sock_register(struct net_proto_family
*ops
)
2065 if (ops
->family
>= NPROTO
) {
2066 printk(KERN_CRIT
"protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2069 net_family_write_lock();
2071 if (net_families
[ops
->family
] == NULL
) {
2072 net_families
[ops
->family
]=ops
;
2075 net_family_write_unlock();
2076 printk(KERN_INFO
"NET: Registered protocol family %d\n",
2082 * This function is called by a protocol handler that wants to
2083 * remove its address family, and have it unlinked from the
2087 int sock_unregister(int family
)
2089 if (family
< 0 || family
>= NPROTO
)
2092 net_family_write_lock();
2093 net_families
[family
]=NULL
;
2094 net_family_write_unlock();
2095 printk(KERN_INFO
"NET: Unregistered protocol family %d\n",
2100 static int __init
sock_init(void)
2103 * Initialize sock SLAB cache.
2109 * Initialize skbuff SLAB cache
2114 * Initialize the protocols module.
2118 register_filesystem(&sock_fs_type
);
2119 sock_mnt
= kern_mount(&sock_fs_type
);
2121 /* The real protocol initialization is performed in later initcalls.
2124 #ifdef CONFIG_NETFILTER
2131 core_initcall(sock_init
); /* early initcall */
2133 #ifdef CONFIG_PROC_FS
2134 void socket_seq_show(struct seq_file
*seq
)
2139 for_each_possible_cpu(cpu
)
2140 counter
+= per_cpu(sockets_in_use
, cpu
);
2142 /* It can be negative, by the way. 8) */
2146 seq_printf(seq
, "sockets: used %d\n", counter
);
2148 #endif /* CONFIG_PROC_FS */
2150 #ifdef CONFIG_COMPAT
2151 static long compat_sock_ioctl(struct file
*file
, unsigned cmd
,
2154 struct socket
*sock
= file
->private_data
;
2155 int ret
= -ENOIOCTLCMD
;
2157 if (sock
->ops
->compat_ioctl
)
2158 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
2164 /* ABI emulation layers need these two */
2165 EXPORT_SYMBOL(move_addr_to_kernel
);
2166 EXPORT_SYMBOL(move_addr_to_user
);
2167 EXPORT_SYMBOL(sock_create
);
2168 EXPORT_SYMBOL(sock_create_kern
);
2169 EXPORT_SYMBOL(sock_create_lite
);
2170 EXPORT_SYMBOL(sock_map_fd
);
2171 EXPORT_SYMBOL(sock_recvmsg
);
2172 EXPORT_SYMBOL(sock_register
);
2173 EXPORT_SYMBOL(sock_release
);
2174 EXPORT_SYMBOL(sock_sendmsg
);
2175 EXPORT_SYMBOL(sock_unregister
);
2176 EXPORT_SYMBOL(sock_wake_async
);
2177 EXPORT_SYMBOL(sockfd_lookup
);
2178 EXPORT_SYMBOL(kernel_sendmsg
);
2179 EXPORT_SYMBOL(kernel_recvmsg
);