1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
30 #define MLOG_MASK_PREFIX ML_FILE_IO
31 #include <cluster/masklog.h>
38 #include "extent_map.h"
46 #include "buffer_head_io.h"
48 static int ocfs2_symlink_get_block(struct inode
*inode
, sector_t iblock
,
49 struct buffer_head
*bh_result
, int create
)
53 struct ocfs2_dinode
*fe
= NULL
;
54 struct buffer_head
*bh
= NULL
;
55 struct buffer_head
*buffer_cache_bh
= NULL
;
56 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
59 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode
,
60 (unsigned long long)iblock
, bh_result
, create
);
62 BUG_ON(ocfs2_inode_is_fast_symlink(inode
));
64 if ((iblock
<< inode
->i_sb
->s_blocksize_bits
) > PATH_MAX
+ 1) {
65 mlog(ML_ERROR
, "block offset > PATH_MAX: %llu",
66 (unsigned long long)iblock
);
70 status
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
71 OCFS2_I(inode
)->ip_blkno
,
72 &bh
, OCFS2_BH_CACHED
, inode
);
77 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
79 if (!OCFS2_IS_VALID_DINODE(fe
)) {
80 mlog(ML_ERROR
, "Invalid dinode #%llu: signature = %.*s\n",
81 (unsigned long long)fe
->i_blkno
, 7, fe
->i_signature
);
85 if ((u64
)iblock
>= ocfs2_clusters_to_blocks(inode
->i_sb
,
86 le32_to_cpu(fe
->i_clusters
))) {
87 mlog(ML_ERROR
, "block offset is outside the allocated size: "
88 "%llu\n", (unsigned long long)iblock
);
92 /* We don't use the page cache to create symlink data, so if
93 * need be, copy it over from the buffer cache. */
94 if (!buffer_uptodate(bh_result
) && ocfs2_inode_is_new(inode
)) {
95 u64 blkno
= le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) +
97 buffer_cache_bh
= sb_getblk(osb
->sb
, blkno
);
98 if (!buffer_cache_bh
) {
99 mlog(ML_ERROR
, "couldn't getblock for symlink!\n");
103 /* we haven't locked out transactions, so a commit
104 * could've happened. Since we've got a reference on
105 * the bh, even if it commits while we're doing the
106 * copy, the data is still good. */
107 if (buffer_jbd(buffer_cache_bh
)
108 && ocfs2_inode_is_new(inode
)) {
109 kaddr
= kmap_atomic(bh_result
->b_page
, KM_USER0
);
111 mlog(ML_ERROR
, "couldn't kmap!\n");
114 memcpy(kaddr
+ (bh_result
->b_size
* iblock
),
115 buffer_cache_bh
->b_data
,
117 kunmap_atomic(kaddr
, KM_USER0
);
118 set_buffer_uptodate(bh_result
);
120 brelse(buffer_cache_bh
);
123 map_bh(bh_result
, inode
->i_sb
,
124 le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) + iblock
);
136 static int ocfs2_get_block(struct inode
*inode
, sector_t iblock
,
137 struct buffer_head
*bh_result
, int create
)
140 unsigned int ext_flags
;
141 u64 p_blkno
, past_eof
;
142 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
144 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode
,
145 (unsigned long long)iblock
, bh_result
, create
);
147 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
)
148 mlog(ML_NOTICE
, "get_block on system inode 0x%p (%lu)\n",
149 inode
, inode
->i_ino
);
151 if (S_ISLNK(inode
->i_mode
)) {
152 /* this always does I/O for some reason. */
153 err
= ocfs2_symlink_get_block(inode
, iblock
, bh_result
, create
);
157 err
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
, NULL
,
160 mlog(ML_ERROR
, "Error %d from get_blocks(0x%p, %llu, 1, "
161 "%llu, NULL)\n", err
, inode
, (unsigned long long)iblock
,
162 (unsigned long long)p_blkno
);
167 * ocfs2 never allocates in this function - the only time we
168 * need to use BH_New is when we're extending i_size on a file
169 * system which doesn't support holes, in which case BH_New
170 * allows block_prepare_write() to zero.
172 mlog_bug_on_msg(create
&& p_blkno
== 0 && ocfs2_sparse_alloc(osb
),
173 "ino %lu, iblock %llu\n", inode
->i_ino
,
174 (unsigned long long)iblock
);
176 /* Treat the unwritten extent as a hole for zeroing purposes. */
177 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
178 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
180 if (!ocfs2_sparse_alloc(osb
)) {
184 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
185 (unsigned long long)iblock
,
186 (unsigned long long)p_blkno
,
187 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
188 mlog(ML_ERROR
, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode
), OCFS2_I(inode
)->ip_clusters
);
192 past_eof
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
193 mlog(0, "Inode %lu, past_eof = %llu\n", inode
->i_ino
,
194 (unsigned long long)past_eof
);
196 if (create
&& (iblock
>= past_eof
))
197 set_buffer_new(bh_result
);
208 static int ocfs2_readpage(struct file
*file
, struct page
*page
)
210 struct inode
*inode
= page
->mapping
->host
;
211 loff_t start
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
214 mlog_entry("(0x%p, %lu)\n", file
, (page
? page
->index
: 0));
216 ret
= ocfs2_meta_lock_with_page(inode
, NULL
, 0, page
);
218 if (ret
== AOP_TRUNCATED_PAGE
)
224 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
227 * i_size might have just been updated as we grabed the meta lock. We
228 * might now be discovering a truncate that hit on another node.
229 * block_read_full_page->get_block freaks out if it is asked to read
230 * beyond the end of a file, so we check here. Callers
231 * (generic_file_read, fault->nopage) are clever enough to check i_size
232 * and notice that the page they just read isn't needed.
234 * XXX sys_readahead() seems to get that wrong?
236 if (start
>= i_size_read(inode
)) {
237 char *addr
= kmap(page
);
238 memset(addr
, 0, PAGE_SIZE
);
239 flush_dcache_page(page
);
241 SetPageUptodate(page
);
246 ret
= ocfs2_data_lock_with_page(inode
, 0, page
);
248 if (ret
== AOP_TRUNCATED_PAGE
)
254 ret
= block_read_full_page(page
, ocfs2_get_block
);
257 ocfs2_data_unlock(inode
, 0);
259 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
260 ocfs2_meta_unlock(inode
, 0);
268 /* Note: Because we don't support holes, our allocation has
269 * already happened (allocation writes zeros to the file data)
270 * so we don't have to worry about ordered writes in
273 * ->writepage is called during the process of invalidating the page cache
274 * during blocked lock processing. It can't block on any cluster locks
275 * to during block mapping. It's relying on the fact that the block
276 * mapping can't have disappeared under the dirty pages that it is
277 * being asked to write back.
279 static int ocfs2_writepage(struct page
*page
, struct writeback_control
*wbc
)
283 mlog_entry("(0x%p)\n", page
);
285 ret
= block_write_full_page(page
, ocfs2_get_block
, wbc
);
293 * This is called from ocfs2_write_zero_page() which has handled it's
294 * own cluster locking and has ensured allocation exists for those
295 * blocks to be written.
297 int ocfs2_prepare_write_nolock(struct inode
*inode
, struct page
*page
,
298 unsigned from
, unsigned to
)
302 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
304 ret
= block_prepare_write(page
, from
, to
, ocfs2_get_block
);
306 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
311 /* Taken from ext3. We don't necessarily need the full blown
312 * functionality yet, but IMHO it's better to cut and paste the whole
313 * thing so we can avoid introducing our own bugs (and easily pick up
314 * their fixes when they happen) --Mark */
315 int walk_page_buffers( handle_t
*handle
,
316 struct buffer_head
*head
,
320 int (*fn
)( handle_t
*handle
,
321 struct buffer_head
*bh
))
323 struct buffer_head
*bh
;
324 unsigned block_start
, block_end
;
325 unsigned blocksize
= head
->b_size
;
327 struct buffer_head
*next
;
329 for ( bh
= head
, block_start
= 0;
330 ret
== 0 && (bh
!= head
|| !block_start
);
331 block_start
= block_end
, bh
= next
)
333 next
= bh
->b_this_page
;
334 block_end
= block_start
+ blocksize
;
335 if (block_end
<= from
|| block_start
>= to
) {
336 if (partial
&& !buffer_uptodate(bh
))
340 err
= (*fn
)(handle
, bh
);
347 handle_t
*ocfs2_start_walk_page_trans(struct inode
*inode
,
352 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
353 handle_t
*handle
= NULL
;
356 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
363 if (ocfs2_should_order_data(inode
)) {
364 ret
= walk_page_buffers(handle
,
367 ocfs2_journal_dirty_data
);
374 ocfs2_commit_trans(osb
, handle
);
375 handle
= ERR_PTR(ret
);
380 static sector_t
ocfs2_bmap(struct address_space
*mapping
, sector_t block
)
385 struct inode
*inode
= mapping
->host
;
387 mlog_entry("(block = %llu)\n", (unsigned long long)block
);
389 /* We don't need to lock journal system files, since they aren't
390 * accessed concurrently from multiple nodes.
392 if (!INODE_JOURNAL(inode
)) {
393 err
= ocfs2_meta_lock(inode
, NULL
, 0);
399 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
402 err
= ocfs2_extent_map_get_blocks(inode
, block
, &p_blkno
, NULL
, NULL
);
404 if (!INODE_JOURNAL(inode
)) {
405 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
406 ocfs2_meta_unlock(inode
, 0);
410 mlog(ML_ERROR
, "get_blocks() failed, block = %llu\n",
411 (unsigned long long)block
);
418 status
= err
? 0 : p_blkno
;
420 mlog_exit((int)status
);
426 * TODO: Make this into a generic get_blocks function.
428 * From do_direct_io in direct-io.c:
429 * "So what we do is to permit the ->get_blocks function to populate
430 * bh.b_size with the size of IO which is permitted at this offset and
433 * This function is called directly from get_more_blocks in direct-io.c.
435 * called like this: dio->get_blocks(dio->inode, fs_startblk,
436 * fs_count, map_bh, dio->rw == WRITE);
438 static int ocfs2_direct_IO_get_blocks(struct inode
*inode
, sector_t iblock
,
439 struct buffer_head
*bh_result
, int create
)
442 u64 p_blkno
, inode_blocks
, contig_blocks
;
443 unsigned int ext_flags
;
444 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
445 unsigned long max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
447 /* This function won't even be called if the request isn't all
448 * nicely aligned and of the right size, so there's no need
449 * for us to check any of that. */
451 inode_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
454 * Any write past EOF is not allowed because we'd be extending.
456 if (create
&& (iblock
+ max_blocks
) > inode_blocks
) {
461 /* This figures out the size of the next contiguous block, and
462 * our logical offset */
463 ret
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
,
464 &contig_blocks
, &ext_flags
);
466 mlog(ML_ERROR
, "get_blocks() failed iblock=%llu\n",
467 (unsigned long long)iblock
);
472 if (!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)) && !p_blkno
) {
473 ocfs2_error(inode
->i_sb
,
474 "Inode %llu has a hole at block %llu\n",
475 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
476 (unsigned long long)iblock
);
482 * get_more_blocks() expects us to describe a hole by clearing
483 * the mapped bit on bh_result().
485 * Consider an unwritten extent as a hole.
487 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
488 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
491 * ocfs2_prepare_inode_for_write() should have caught
492 * the case where we'd be filling a hole and triggered
493 * a buffered write instead.
501 clear_buffer_mapped(bh_result
);
504 /* make sure we don't map more than max_blocks blocks here as
505 that's all the kernel will handle at this point. */
506 if (max_blocks
< contig_blocks
)
507 contig_blocks
= max_blocks
;
508 bh_result
->b_size
= contig_blocks
<< blocksize_bits
;
514 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
515 * particularly interested in the aio/dio case. Like the core uses
516 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
517 * truncation on another.
519 static void ocfs2_dio_end_io(struct kiocb
*iocb
,
524 struct inode
*inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
527 /* this io's submitter should not have unlocked this before we could */
528 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb
));
530 ocfs2_iocb_clear_rw_locked(iocb
);
532 level
= ocfs2_iocb_rw_locked_level(iocb
);
534 up_read(&inode
->i_alloc_sem
);
535 ocfs2_rw_unlock(inode
, level
);
539 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
540 * from ext3. PageChecked() bits have been removed as OCFS2 does not
541 * do journalled data.
543 static void ocfs2_invalidatepage(struct page
*page
, unsigned long offset
)
545 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
547 journal_invalidatepage(journal
, page
, offset
);
550 static int ocfs2_releasepage(struct page
*page
, gfp_t wait
)
552 journal_t
*journal
= OCFS2_SB(page
->mapping
->host
->i_sb
)->journal
->j_journal
;
554 if (!page_has_buffers(page
))
556 return journal_try_to_free_buffers(journal
, page
, wait
);
559 static ssize_t
ocfs2_direct_IO(int rw
,
561 const struct iovec
*iov
,
563 unsigned long nr_segs
)
565 struct file
*file
= iocb
->ki_filp
;
566 struct inode
*inode
= file
->f_path
.dentry
->d_inode
->i_mapping
->host
;
571 if (!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
))) {
573 * We get PR data locks even for O_DIRECT. This
574 * allows concurrent O_DIRECT I/O but doesn't let
575 * O_DIRECT with extending and buffered zeroing writes
576 * race. If they did race then the buffered zeroing
577 * could be written back after the O_DIRECT I/O. It's
578 * one thing to tell people not to mix buffered and
579 * O_DIRECT writes, but expecting them to understand
580 * that file extension is also an implicit buffered
581 * write is too much. By getting the PR we force
582 * writeback of the buffered zeroing before
585 ret
= ocfs2_data_lock(inode
, 0);
590 ocfs2_data_unlock(inode
, 0);
593 ret
= blockdev_direct_IO_no_locking(rw
, iocb
, inode
,
594 inode
->i_sb
->s_bdev
, iov
, offset
,
596 ocfs2_direct_IO_get_blocks
,
603 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super
*osb
,
608 unsigned int cluster_start
= 0, cluster_end
= PAGE_CACHE_SIZE
;
610 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
)) {
613 cpp
= 1 << (PAGE_CACHE_SHIFT
- osb
->s_clustersize_bits
);
615 cluster_start
= cpos
% cpp
;
616 cluster_start
= cluster_start
<< osb
->s_clustersize_bits
;
618 cluster_end
= cluster_start
+ osb
->s_clustersize
;
621 BUG_ON(cluster_start
> PAGE_SIZE
);
622 BUG_ON(cluster_end
> PAGE_SIZE
);
625 *start
= cluster_start
;
631 * 'from' and 'to' are the region in the page to avoid zeroing.
633 * If pagesize > clustersize, this function will avoid zeroing outside
634 * of the cluster boundary.
636 * from == to == 0 is code for "zero the entire cluster region"
638 static void ocfs2_clear_page_regions(struct page
*page
,
639 struct ocfs2_super
*osb
, u32 cpos
,
640 unsigned from
, unsigned to
)
643 unsigned int cluster_start
, cluster_end
;
645 ocfs2_figure_cluster_boundaries(osb
, cpos
, &cluster_start
, &cluster_end
);
647 kaddr
= kmap_atomic(page
, KM_USER0
);
650 if (from
> cluster_start
)
651 memset(kaddr
+ cluster_start
, 0, from
- cluster_start
);
652 if (to
< cluster_end
)
653 memset(kaddr
+ to
, 0, cluster_end
- to
);
655 memset(kaddr
+ cluster_start
, 0, cluster_end
- cluster_start
);
658 kunmap_atomic(kaddr
, KM_USER0
);
662 * Some of this taken from block_prepare_write(). We already have our
663 * mapping by now though, and the entire write will be allocating or
664 * it won't, so not much need to use BH_New.
666 * This will also skip zeroing, which is handled externally.
668 int ocfs2_map_page_blocks(struct page
*page
, u64
*p_blkno
,
669 struct inode
*inode
, unsigned int from
,
670 unsigned int to
, int new)
673 struct buffer_head
*head
, *bh
, *wait
[2], **wait_bh
= wait
;
674 unsigned int block_end
, block_start
;
675 unsigned int bsize
= 1 << inode
->i_blkbits
;
677 if (!page_has_buffers(page
))
678 create_empty_buffers(page
, bsize
, 0);
680 head
= page_buffers(page
);
681 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
682 bh
= bh
->b_this_page
, block_start
+= bsize
) {
683 block_end
= block_start
+ bsize
;
686 * Ignore blocks outside of our i/o range -
687 * they may belong to unallocated clusters.
689 if (block_start
>= to
|| block_end
<= from
) {
690 if (PageUptodate(page
))
691 set_buffer_uptodate(bh
);
696 * For an allocating write with cluster size >= page
697 * size, we always write the entire page.
701 clear_buffer_new(bh
);
703 if (!buffer_mapped(bh
)) {
704 map_bh(bh
, inode
->i_sb
, *p_blkno
);
705 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
708 if (PageUptodate(page
)) {
709 if (!buffer_uptodate(bh
))
710 set_buffer_uptodate(bh
);
711 } else if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
712 (block_start
< from
|| block_end
> to
)) {
713 ll_rw_block(READ
, 1, &bh
);
717 *p_blkno
= *p_blkno
+ 1;
721 * If we issued read requests - let them complete.
723 while(wait_bh
> wait
) {
724 wait_on_buffer(*--wait_bh
);
725 if (!buffer_uptodate(*wait_bh
))
729 if (ret
== 0 || !new)
733 * If we get -EIO above, zero out any newly allocated blocks
734 * to avoid exposing stale data.
741 block_end
= block_start
+ bsize
;
742 if (block_end
<= from
)
744 if (block_start
>= to
)
747 kaddr
= kmap_atomic(page
, KM_USER0
);
748 memset(kaddr
+block_start
, 0, bh
->b_size
);
749 flush_dcache_page(page
);
750 kunmap_atomic(kaddr
, KM_USER0
);
751 set_buffer_uptodate(bh
);
752 mark_buffer_dirty(bh
);
755 block_start
= block_end
;
756 bh
= bh
->b_this_page
;
757 } while (bh
!= head
);
763 * This will copy user data from the buffer page in the splice
766 * For now, we ignore SPLICE_F_MOVE as that would require some extra
767 * communication out all the way to ocfs2_write().
769 int ocfs2_map_and_write_splice_data(struct inode
*inode
,
770 struct ocfs2_write_ctxt
*wc
, u64
*p_blkno
,
771 unsigned int *ret_from
, unsigned int *ret_to
)
774 unsigned int to
, from
, cluster_start
, cluster_end
;
776 struct ocfs2_splice_write_priv
*sp
= wc
->w_private
;
777 struct pipe_buffer
*buf
= sp
->s_buf
;
778 unsigned long bytes
, src_from
;
779 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
781 ocfs2_figure_cluster_boundaries(osb
, wc
->w_cpos
, &cluster_start
,
785 src_from
= sp
->s_buf_offset
;
788 if (wc
->w_large_pages
) {
790 * For cluster size < page size, we have to
791 * calculate pos within the cluster and obey
792 * the rightmost boundary.
794 bytes
= min(bytes
, (unsigned long)(osb
->s_clustersize
795 - (wc
->w_pos
& (osb
->s_clustersize
- 1))));
799 if (wc
->w_this_page_new
)
800 ret
= ocfs2_map_page_blocks(wc
->w_this_page
, p_blkno
, inode
,
801 cluster_start
, cluster_end
, 1);
803 ret
= ocfs2_map_page_blocks(wc
->w_this_page
, p_blkno
, inode
,
810 BUG_ON(from
> PAGE_CACHE_SIZE
);
811 BUG_ON(to
> PAGE_CACHE_SIZE
);
812 BUG_ON(from
> osb
->s_clustersize
);
813 BUG_ON(to
> osb
->s_clustersize
);
815 src
= buf
->ops
->map(sp
->s_pipe
, buf
, 1);
816 dst
= kmap_atomic(wc
->w_this_page
, KM_USER1
);
817 memcpy(dst
+ from
, src
+ src_from
, bytes
);
818 kunmap_atomic(wc
->w_this_page
, KM_USER1
);
819 buf
->ops
->unmap(sp
->s_pipe
, buf
, src
);
821 wc
->w_finished_copy
= 1;
827 return bytes
? (unsigned int)bytes
: ret
;
831 * This will copy user data from the iovec in the buffered write
834 int ocfs2_map_and_write_user_data(struct inode
*inode
,
835 struct ocfs2_write_ctxt
*wc
, u64
*p_blkno
,
836 unsigned int *ret_from
, unsigned int *ret_to
)
839 unsigned int to
, from
, cluster_start
, cluster_end
;
840 unsigned long bytes
, src_from
;
842 struct ocfs2_buffered_write_priv
*bp
= wc
->w_private
;
843 const struct iovec
*cur_iov
= bp
->b_cur_iov
;
845 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
847 ocfs2_figure_cluster_boundaries(osb
, wc
->w_cpos
, &cluster_start
,
850 buf
= cur_iov
->iov_base
+ bp
->b_cur_off
;
851 src_from
= (unsigned long)buf
& ~PAGE_CACHE_MASK
;
853 from
= wc
->w_pos
& (PAGE_CACHE_SIZE
- 1);
856 * This is a lot of comparisons, but it reads quite
857 * easily, which is important here.
859 /* Stay within the src page */
860 bytes
= PAGE_SIZE
- src_from
;
861 /* Stay within the vector */
863 (unsigned long)(cur_iov
->iov_len
- bp
->b_cur_off
));
864 /* Stay within count */
865 bytes
= min(bytes
, (unsigned long)wc
->w_count
);
867 * For clustersize > page size, just stay within
868 * target page, otherwise we have to calculate pos
869 * within the cluster and obey the rightmost
872 if (wc
->w_large_pages
) {
874 * For cluster size < page size, we have to
875 * calculate pos within the cluster and obey
876 * the rightmost boundary.
878 bytes
= min(bytes
, (unsigned long)(osb
->s_clustersize
879 - (wc
->w_pos
& (osb
->s_clustersize
- 1))));
882 * cluster size > page size is the most common
883 * case - we just stay within the target page
886 bytes
= min(bytes
, PAGE_CACHE_SIZE
- from
);
891 if (wc
->w_this_page_new
)
892 ret
= ocfs2_map_page_blocks(wc
->w_this_page
, p_blkno
, inode
,
893 cluster_start
, cluster_end
, 1);
895 ret
= ocfs2_map_page_blocks(wc
->w_this_page
, p_blkno
, inode
,
902 BUG_ON(from
> PAGE_CACHE_SIZE
);
903 BUG_ON(to
> PAGE_CACHE_SIZE
);
904 BUG_ON(from
> osb
->s_clustersize
);
905 BUG_ON(to
> osb
->s_clustersize
);
907 dst
= kmap(wc
->w_this_page
);
908 memcpy(dst
+ from
, bp
->b_src_buf
+ src_from
, bytes
);
909 kunmap(wc
->w_this_page
);
912 * XXX: This is slow, but simple. The caller of
913 * ocfs2_buffered_write_cluster() is responsible for
914 * passing through the iovecs, so it's difficult to
915 * predict what our next step is in here after our
916 * initial write. A future version should be pushing
917 * that iovec manipulation further down.
919 * By setting this, we indicate that a copy from user
920 * data was done, and subsequent calls for this
921 * cluster will skip copying more data.
923 wc
->w_finished_copy
= 1;
929 return bytes
? (unsigned int)bytes
: ret
;
933 * Map, fill and write a page to disk.
935 * The work of copying data is done via callback. Newly allocated
936 * pages which don't take user data will be zero'd (set 'new' to
937 * indicate an allocating write)
939 * Returns a negative error code or the number of bytes copied into
942 static int ocfs2_write_data_page(struct inode
*inode
, handle_t
*handle
,
943 u64
*p_blkno
, struct page
*page
,
944 struct ocfs2_write_ctxt
*wc
, int new)
947 unsigned int from
= 0, to
= 0;
948 unsigned int cluster_start
, cluster_end
;
949 unsigned int zero_from
= 0, zero_to
= 0;
951 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode
->i_sb
), wc
->w_cpos
,
952 &cluster_start
, &cluster_end
);
954 if ((wc
->w_pos
>> PAGE_CACHE_SHIFT
) == page
->index
955 && !wc
->w_finished_copy
) {
957 wc
->w_this_page
= page
;
958 wc
->w_this_page_new
= new;
959 ret
= wc
->w_write_data_page(inode
, wc
, p_blkno
, &from
, &to
);
970 from
= cluster_start
;
975 * If we haven't allocated the new page yet, we
976 * shouldn't be writing it out without copying user
977 * data. This is likely a math error from the caller.
981 from
= cluster_start
;
984 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
985 cluster_start
, cluster_end
, 1);
993 * Parts of newly allocated pages need to be zero'd.
995 * Above, we have also rewritten 'to' and 'from' - as far as
996 * the rest of the function is concerned, the entire cluster
997 * range inside of a page needs to be written.
999 * We can skip this if the page is up to date - it's already
1000 * been zero'd from being read in as a hole.
1002 if (new && !PageUptodate(page
))
1003 ocfs2_clear_page_regions(page
, OCFS2_SB(inode
->i_sb
),
1004 wc
->w_cpos
, zero_from
, zero_to
);
1006 flush_dcache_page(page
);
1008 if (ocfs2_should_order_data(inode
)) {
1009 ret
= walk_page_buffers(handle
,
1012 ocfs2_journal_dirty_data
);
1018 * We don't use generic_commit_write() because we need to
1019 * handle our own i_size update.
1021 ret
= block_commit_write(page
, from
, to
);
1026 return copied
? copied
: ret
;
1030 * Do the actual write of some data into an inode. Optionally allocate
1031 * in order to fulfill the write.
1033 * cpos is the logical cluster offset within the file to write at
1035 * 'phys' is the physical mapping of that offset. a 'phys' value of
1036 * zero indicates that allocation is required. In this case, data_ac
1037 * and meta_ac should be valid (meta_ac can be null if metadata
1038 * allocation isn't required).
1040 static ssize_t
ocfs2_write(struct file
*file
, u32 phys
, handle_t
*handle
,
1041 struct buffer_head
*di_bh
,
1042 struct ocfs2_alloc_context
*data_ac
,
1043 struct ocfs2_alloc_context
*meta_ac
,
1044 struct ocfs2_write_ctxt
*wc
)
1046 int ret
, i
, numpages
= 1, new;
1047 unsigned int copied
= 0;
1049 u64 v_blkno
, p_blkno
;
1050 struct address_space
*mapping
= file
->f_mapping
;
1051 struct inode
*inode
= mapping
->host
;
1052 unsigned long index
, start
;
1053 struct page
**cpages
;
1055 new = phys
== 0 ? 1 : 0;
1058 * Figure out how many pages we'll be manipulating here. For
1059 * non allocating write, we just change the one
1060 * page. Otherwise, we'll need a whole clusters worth.
1063 numpages
= ocfs2_pages_per_cluster(inode
->i_sb
);
1065 cpages
= kzalloc(sizeof(*cpages
) * numpages
, GFP_NOFS
);
1073 * Fill our page array first. That way we've grabbed enough so
1074 * that we can zero and flush if we error after adding the
1078 start
= ocfs2_align_clusters_to_page_index(inode
->i_sb
,
1080 v_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, wc
->w_cpos
);
1082 start
= wc
->w_pos
>> PAGE_CACHE_SHIFT
;
1083 v_blkno
= wc
->w_pos
>> inode
->i_sb
->s_blocksize_bits
;
1086 for(i
= 0; i
< numpages
; i
++) {
1089 cpages
[i
] = grab_cache_page(mapping
, index
);
1099 * This is safe to call with the page locks - it won't take
1100 * any additional semaphores or cluster locks.
1102 tmp_pos
= wc
->w_cpos
;
1103 ret
= ocfs2_do_extend_allocation(OCFS2_SB(inode
->i_sb
), inode
,
1104 &tmp_pos
, 1, di_bh
, handle
,
1105 data_ac
, meta_ac
, NULL
);
1107 * This shouldn't happen because we must have already
1108 * calculated the correct meta data allocation required. The
1109 * internal tree allocation code should know how to increase
1110 * transaction credits itself.
1112 * If need be, we could handle -EAGAIN for a
1113 * RESTART_TRANS here.
1115 mlog_bug_on_msg(ret
== -EAGAIN
,
1116 "Inode %llu: EAGAIN return during allocation.\n",
1117 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1124 ret
= ocfs2_extent_map_get_blocks(inode
, v_blkno
, &p_blkno
, NULL
,
1129 * XXX: Should we go readonly here?
1136 BUG_ON(p_blkno
== 0);
1138 for(i
= 0; i
< numpages
; i
++) {
1139 ret
= ocfs2_write_data_page(inode
, handle
, &p_blkno
, cpages
[i
],
1150 for(i
= 0; i
< numpages
; i
++) {
1151 unlock_page(cpages
[i
]);
1152 mark_page_accessed(cpages
[i
]);
1153 page_cache_release(cpages
[i
]);
1157 return copied
? copied
: ret
;
1160 static void ocfs2_write_ctxt_init(struct ocfs2_write_ctxt
*wc
,
1161 struct ocfs2_super
*osb
, loff_t pos
,
1162 size_t count
, ocfs2_page_writer
*cb
,
1165 wc
->w_count
= count
;
1167 wc
->w_cpos
= wc
->w_pos
>> osb
->s_clustersize_bits
;
1168 wc
->w_finished_copy
= 0;
1170 if (unlikely(PAGE_CACHE_SHIFT
> osb
->s_clustersize_bits
))
1171 wc
->w_large_pages
= 1;
1173 wc
->w_large_pages
= 0;
1175 wc
->w_write_data_page
= cb
;
1176 wc
->w_private
= cb_priv
;
1180 * Write a cluster to an inode. The cluster may not be allocated yet,
1181 * in which case it will be. This only exists for buffered writes -
1182 * O_DIRECT takes a more "traditional" path through the kernel.
1184 * The caller is responsible for incrementing pos, written counts, etc
1186 * For file systems that don't support sparse files, pre-allocation
1187 * and page zeroing up until cpos should be done prior to this
1190 * Callers should be holding i_sem, and the rw cluster lock.
1192 * Returns the number of user bytes written, or less than zero for
1195 ssize_t
ocfs2_buffered_write_cluster(struct file
*file
, loff_t pos
,
1196 size_t count
, ocfs2_page_writer
*actor
,
1199 int ret
, credits
= OCFS2_INODE_UPDATE_CREDITS
;
1200 ssize_t written
= 0;
1202 struct inode
*inode
= file
->f_mapping
->host
;
1203 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1204 struct buffer_head
*di_bh
= NULL
;
1205 struct ocfs2_dinode
*di
;
1206 struct ocfs2_alloc_context
*data_ac
= NULL
;
1207 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1209 struct ocfs2_write_ctxt wc
;
1211 ocfs2_write_ctxt_init(&wc
, osb
, pos
, count
, actor
, priv
);
1213 ret
= ocfs2_meta_lock(inode
, &di_bh
, 1);
1218 di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1221 * Take alloc sem here to prevent concurrent lookups. That way
1222 * the mapping, zeroing and tree manipulation within
1223 * ocfs2_write() will be safe against ->readpage(). This
1224 * should also serve to lock out allocation from a shared
1227 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1229 ret
= ocfs2_get_clusters(inode
, wc
.w_cpos
, &phys
, NULL
, NULL
);
1235 /* phys == 0 means that allocation is required. */
1237 ret
= ocfs2_lock_allocators(inode
, di
, 1, &data_ac
, &meta_ac
);
1243 credits
= ocfs2_calc_extend_credits(inode
->i_sb
, di
, 1);
1246 ret
= ocfs2_data_lock(inode
, 1);
1252 handle
= ocfs2_start_trans(osb
, credits
);
1253 if (IS_ERR(handle
)) {
1254 ret
= PTR_ERR(handle
);
1259 written
= ocfs2_write(file
, phys
, handle
, di_bh
, data_ac
,
1267 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
1268 OCFS2_JOURNAL_ACCESS_WRITE
);
1275 if (pos
> inode
->i_size
) {
1276 i_size_write(inode
, pos
);
1277 mark_inode_dirty(inode
);
1279 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
1280 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
1281 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1282 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
1283 di
->i_mtime_nsec
= di
->i_ctime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
1285 ret
= ocfs2_journal_dirty(handle
, di_bh
);
1290 ocfs2_commit_trans(osb
, handle
);
1293 ocfs2_data_unlock(inode
, 1);
1296 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1297 ocfs2_meta_unlock(inode
, 1);
1302 ocfs2_free_alloc_context(data_ac
);
1304 ocfs2_free_alloc_context(meta_ac
);
1306 return written
? written
: ret
;
1309 const struct address_space_operations ocfs2_aops
= {
1310 .readpage
= ocfs2_readpage
,
1311 .writepage
= ocfs2_writepage
,
1313 .sync_page
= block_sync_page
,
1314 .direct_IO
= ocfs2_direct_IO
,
1315 .invalidatepage
= ocfs2_invalidatepage
,
1316 .releasepage
= ocfs2_releasepage
,
1317 .migratepage
= buffer_migrate_page
,