[PATCH] nbd: show nbd client pid in sysfs
[linux-2.6/zen-sources.git] / kernel / workqueue.c
blobc5257316f4b946e343498f96d32ff6e7b3e87dff
1 /*
2 * linux/kernel/workqueue.c
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
7 * Started by Ingo Molnar, Copyright (C) 2002
9 * Derived from the taskqueue/keventd code by:
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
37 * The per-CPU workqueue (if single thread, we always use the first
38 * possible cpu).
40 * The sequence counters are for flush_scheduled_work(). It wants to wait
41 * until all currently-scheduled works are completed, but it doesn't
42 * want to be livelocked by new, incoming ones. So it waits until
43 * remove_sequence is >= the insert_sequence which pertained when
44 * flush_scheduled_work() was called.
46 struct cpu_workqueue_struct {
48 spinlock_t lock;
50 long remove_sequence; /* Least-recently added (next to run) */
51 long insert_sequence; /* Next to add */
53 struct list_head worklist;
54 wait_queue_head_t more_work;
55 wait_queue_head_t work_done;
57 struct workqueue_struct *wq;
58 struct task_struct *thread;
60 int run_depth; /* Detect run_workqueue() recursion depth */
62 int freezeable; /* Freeze the thread during suspend */
63 } ____cacheline_aligned;
66 * The externally visible workqueue abstraction is an array of
67 * per-CPU workqueues:
69 struct workqueue_struct {
70 struct cpu_workqueue_struct *cpu_wq;
71 const char *name;
72 struct list_head list; /* Empty if single thread */
75 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
76 threads to each one as cpus come/go. */
77 static DEFINE_MUTEX(workqueue_mutex);
78 static LIST_HEAD(workqueues);
80 static int singlethread_cpu;
82 /* If it's single threaded, it isn't in the list of workqueues. */
83 static inline int is_single_threaded(struct workqueue_struct *wq)
85 return list_empty(&wq->list);
88 static inline void set_wq_data(struct work_struct *work, void *wq)
90 unsigned long new, old, res;
92 /* assume the pending flag is already set and that the task has already
93 * been queued on this workqueue */
94 new = (unsigned long) wq | (1UL << WORK_STRUCT_PENDING);
95 res = work->management;
96 if (res != new) {
97 do {
98 old = res;
99 new = (unsigned long) wq;
100 new |= (old & WORK_STRUCT_FLAG_MASK);
101 res = cmpxchg(&work->management, old, new);
102 } while (res != old);
106 static inline void *get_wq_data(struct work_struct *work)
108 return (void *) (work->management & WORK_STRUCT_WQ_DATA_MASK);
111 /* Preempt must be disabled. */
112 static void __queue_work(struct cpu_workqueue_struct *cwq,
113 struct work_struct *work)
115 unsigned long flags;
117 spin_lock_irqsave(&cwq->lock, flags);
118 set_wq_data(work, cwq);
119 list_add_tail(&work->entry, &cwq->worklist);
120 cwq->insert_sequence++;
121 wake_up(&cwq->more_work);
122 spin_unlock_irqrestore(&cwq->lock, flags);
126 * queue_work - queue work on a workqueue
127 * @wq: workqueue to use
128 * @work: work to queue
130 * Returns 0 if @work was already on a queue, non-zero otherwise.
132 * We queue the work to the CPU it was submitted, but there is no
133 * guarantee that it will be processed by that CPU.
135 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
137 int ret = 0, cpu = get_cpu();
139 if (!test_and_set_bit(WORK_STRUCT_PENDING, &work->management)) {
140 if (unlikely(is_single_threaded(wq)))
141 cpu = singlethread_cpu;
142 BUG_ON(!list_empty(&work->entry));
143 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
144 ret = 1;
146 put_cpu();
147 return ret;
149 EXPORT_SYMBOL_GPL(queue_work);
151 static void delayed_work_timer_fn(unsigned long __data)
153 struct delayed_work *dwork = (struct delayed_work *)__data;
154 struct workqueue_struct *wq = get_wq_data(&dwork->work);
155 int cpu = smp_processor_id();
157 if (unlikely(is_single_threaded(wq)))
158 cpu = singlethread_cpu;
160 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), &dwork->work);
164 * queue_delayed_work - queue work on a workqueue after delay
165 * @wq: workqueue to use
166 * @work: delayable work to queue
167 * @delay: number of jiffies to wait before queueing
169 * Returns 0 if @work was already on a queue, non-zero otherwise.
171 int fastcall queue_delayed_work(struct workqueue_struct *wq,
172 struct delayed_work *dwork, unsigned long delay)
174 int ret = 0;
175 struct timer_list *timer = &dwork->timer;
176 struct work_struct *work = &dwork->work;
178 if (delay == 0)
179 return queue_work(wq, work);
181 if (!test_and_set_bit(WORK_STRUCT_PENDING, &work->management)) {
182 BUG_ON(timer_pending(timer));
183 BUG_ON(!list_empty(&work->entry));
185 /* This stores wq for the moment, for the timer_fn */
186 set_wq_data(work, wq);
187 timer->expires = jiffies + delay;
188 timer->data = (unsigned long)dwork;
189 timer->function = delayed_work_timer_fn;
190 add_timer(timer);
191 ret = 1;
193 return ret;
195 EXPORT_SYMBOL_GPL(queue_delayed_work);
198 * queue_delayed_work_on - queue work on specific CPU after delay
199 * @cpu: CPU number to execute work on
200 * @wq: workqueue to use
201 * @work: work to queue
202 * @delay: number of jiffies to wait before queueing
204 * Returns 0 if @work was already on a queue, non-zero otherwise.
206 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
207 struct delayed_work *dwork, unsigned long delay)
209 int ret = 0;
210 struct timer_list *timer = &dwork->timer;
211 struct work_struct *work = &dwork->work;
213 if (!test_and_set_bit(WORK_STRUCT_PENDING, &work->management)) {
214 BUG_ON(timer_pending(timer));
215 BUG_ON(!list_empty(&work->entry));
217 /* This stores wq for the moment, for the timer_fn */
218 set_wq_data(work, wq);
219 timer->expires = jiffies + delay;
220 timer->data = (unsigned long)dwork;
221 timer->function = delayed_work_timer_fn;
222 add_timer_on(timer, cpu);
223 ret = 1;
225 return ret;
227 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
229 static void run_workqueue(struct cpu_workqueue_struct *cwq)
231 unsigned long flags;
234 * Keep taking off work from the queue until
235 * done.
237 spin_lock_irqsave(&cwq->lock, flags);
238 cwq->run_depth++;
239 if (cwq->run_depth > 3) {
240 /* morton gets to eat his hat */
241 printk("%s: recursion depth exceeded: %d\n",
242 __FUNCTION__, cwq->run_depth);
243 dump_stack();
245 while (!list_empty(&cwq->worklist)) {
246 struct work_struct *work = list_entry(cwq->worklist.next,
247 struct work_struct, entry);
248 work_func_t f = work->func;
250 list_del_init(cwq->worklist.next);
251 spin_unlock_irqrestore(&cwq->lock, flags);
253 BUG_ON(get_wq_data(work) != cwq);
254 if (!test_bit(WORK_STRUCT_NOAUTOREL, &work->management))
255 work_release(work);
256 f(work);
258 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
259 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
260 "%s/0x%08x/%d\n",
261 current->comm, preempt_count(),
262 current->pid);
263 printk(KERN_ERR " last function: ");
264 print_symbol("%s\n", (unsigned long)f);
265 debug_show_held_locks(current);
266 dump_stack();
269 spin_lock_irqsave(&cwq->lock, flags);
270 cwq->remove_sequence++;
271 wake_up(&cwq->work_done);
273 cwq->run_depth--;
274 spin_unlock_irqrestore(&cwq->lock, flags);
277 static int worker_thread(void *__cwq)
279 struct cpu_workqueue_struct *cwq = __cwq;
280 DECLARE_WAITQUEUE(wait, current);
281 struct k_sigaction sa;
282 sigset_t blocked;
284 if (!cwq->freezeable)
285 current->flags |= PF_NOFREEZE;
287 set_user_nice(current, -5);
289 /* Block and flush all signals */
290 sigfillset(&blocked);
291 sigprocmask(SIG_BLOCK, &blocked, NULL);
292 flush_signals(current);
295 * We inherited MPOL_INTERLEAVE from the booting kernel.
296 * Set MPOL_DEFAULT to insure node local allocations.
298 numa_default_policy();
300 /* SIG_IGN makes children autoreap: see do_notify_parent(). */
301 sa.sa.sa_handler = SIG_IGN;
302 sa.sa.sa_flags = 0;
303 siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
304 do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
306 set_current_state(TASK_INTERRUPTIBLE);
307 while (!kthread_should_stop()) {
308 if (cwq->freezeable)
309 try_to_freeze();
311 add_wait_queue(&cwq->more_work, &wait);
312 if (list_empty(&cwq->worklist))
313 schedule();
314 else
315 __set_current_state(TASK_RUNNING);
316 remove_wait_queue(&cwq->more_work, &wait);
318 if (!list_empty(&cwq->worklist))
319 run_workqueue(cwq);
320 set_current_state(TASK_INTERRUPTIBLE);
322 __set_current_state(TASK_RUNNING);
323 return 0;
326 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
328 if (cwq->thread == current) {
330 * Probably keventd trying to flush its own queue. So simply run
331 * it by hand rather than deadlocking.
333 run_workqueue(cwq);
334 } else {
335 DEFINE_WAIT(wait);
336 long sequence_needed;
338 spin_lock_irq(&cwq->lock);
339 sequence_needed = cwq->insert_sequence;
341 while (sequence_needed - cwq->remove_sequence > 0) {
342 prepare_to_wait(&cwq->work_done, &wait,
343 TASK_UNINTERRUPTIBLE);
344 spin_unlock_irq(&cwq->lock);
345 schedule();
346 spin_lock_irq(&cwq->lock);
348 finish_wait(&cwq->work_done, &wait);
349 spin_unlock_irq(&cwq->lock);
354 * flush_workqueue - ensure that any scheduled work has run to completion.
355 * @wq: workqueue to flush
357 * Forces execution of the workqueue and blocks until its completion.
358 * This is typically used in driver shutdown handlers.
360 * This function will sample each workqueue's current insert_sequence number and
361 * will sleep until the head sequence is greater than or equal to that. This
362 * means that we sleep until all works which were queued on entry have been
363 * handled, but we are not livelocked by new incoming ones.
365 * This function used to run the workqueues itself. Now we just wait for the
366 * helper threads to do it.
368 void fastcall flush_workqueue(struct workqueue_struct *wq)
370 might_sleep();
372 if (is_single_threaded(wq)) {
373 /* Always use first cpu's area. */
374 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));
375 } else {
376 int cpu;
378 mutex_lock(&workqueue_mutex);
379 for_each_online_cpu(cpu)
380 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
381 mutex_unlock(&workqueue_mutex);
384 EXPORT_SYMBOL_GPL(flush_workqueue);
386 static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
387 int cpu, int freezeable)
389 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
390 struct task_struct *p;
392 spin_lock_init(&cwq->lock);
393 cwq->wq = wq;
394 cwq->thread = NULL;
395 cwq->insert_sequence = 0;
396 cwq->remove_sequence = 0;
397 cwq->freezeable = freezeable;
398 INIT_LIST_HEAD(&cwq->worklist);
399 init_waitqueue_head(&cwq->more_work);
400 init_waitqueue_head(&cwq->work_done);
402 if (is_single_threaded(wq))
403 p = kthread_create(worker_thread, cwq, "%s", wq->name);
404 else
405 p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
406 if (IS_ERR(p))
407 return NULL;
408 cwq->thread = p;
409 return p;
412 struct workqueue_struct *__create_workqueue(const char *name,
413 int singlethread, int freezeable)
415 int cpu, destroy = 0;
416 struct workqueue_struct *wq;
417 struct task_struct *p;
419 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
420 if (!wq)
421 return NULL;
423 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
424 if (!wq->cpu_wq) {
425 kfree(wq);
426 return NULL;
429 wq->name = name;
430 mutex_lock(&workqueue_mutex);
431 if (singlethread) {
432 INIT_LIST_HEAD(&wq->list);
433 p = create_workqueue_thread(wq, singlethread_cpu, freezeable);
434 if (!p)
435 destroy = 1;
436 else
437 wake_up_process(p);
438 } else {
439 list_add(&wq->list, &workqueues);
440 for_each_online_cpu(cpu) {
441 p = create_workqueue_thread(wq, cpu, freezeable);
442 if (p) {
443 kthread_bind(p, cpu);
444 wake_up_process(p);
445 } else
446 destroy = 1;
449 mutex_unlock(&workqueue_mutex);
452 * Was there any error during startup? If yes then clean up:
454 if (destroy) {
455 destroy_workqueue(wq);
456 wq = NULL;
458 return wq;
460 EXPORT_SYMBOL_GPL(__create_workqueue);
462 static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
464 struct cpu_workqueue_struct *cwq;
465 unsigned long flags;
466 struct task_struct *p;
468 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
469 spin_lock_irqsave(&cwq->lock, flags);
470 p = cwq->thread;
471 cwq->thread = NULL;
472 spin_unlock_irqrestore(&cwq->lock, flags);
473 if (p)
474 kthread_stop(p);
478 * destroy_workqueue - safely terminate a workqueue
479 * @wq: target workqueue
481 * Safely destroy a workqueue. All work currently pending will be done first.
483 void destroy_workqueue(struct workqueue_struct *wq)
485 int cpu;
487 flush_workqueue(wq);
489 /* We don't need the distraction of CPUs appearing and vanishing. */
490 mutex_lock(&workqueue_mutex);
491 if (is_single_threaded(wq))
492 cleanup_workqueue_thread(wq, singlethread_cpu);
493 else {
494 for_each_online_cpu(cpu)
495 cleanup_workqueue_thread(wq, cpu);
496 list_del(&wq->list);
498 mutex_unlock(&workqueue_mutex);
499 free_percpu(wq->cpu_wq);
500 kfree(wq);
502 EXPORT_SYMBOL_GPL(destroy_workqueue);
504 static struct workqueue_struct *keventd_wq;
507 * schedule_work - put work task in global workqueue
508 * @work: job to be done
510 * This puts a job in the kernel-global workqueue.
512 int fastcall schedule_work(struct work_struct *work)
514 return queue_work(keventd_wq, work);
516 EXPORT_SYMBOL(schedule_work);
519 * schedule_delayed_work - put work task in global workqueue after delay
520 * @dwork: job to be done
521 * @delay: number of jiffies to wait or 0 for immediate execution
523 * After waiting for a given time this puts a job in the kernel-global
524 * workqueue.
526 int fastcall schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
528 return queue_delayed_work(keventd_wq, dwork, delay);
530 EXPORT_SYMBOL(schedule_delayed_work);
533 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
534 * @cpu: cpu to use
535 * @dwork: job to be done
536 * @delay: number of jiffies to wait
538 * After waiting for a given time this puts a job in the kernel-global
539 * workqueue on the specified CPU.
541 int schedule_delayed_work_on(int cpu,
542 struct delayed_work *dwork, unsigned long delay)
544 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
546 EXPORT_SYMBOL(schedule_delayed_work_on);
549 * schedule_on_each_cpu - call a function on each online CPU from keventd
550 * @func: the function to call
552 * Returns zero on success.
553 * Returns -ve errno on failure.
555 * Appears to be racy against CPU hotplug.
557 * schedule_on_each_cpu() is very slow.
559 int schedule_on_each_cpu(work_func_t func)
561 int cpu;
562 struct work_struct *works;
564 works = alloc_percpu(struct work_struct);
565 if (!works)
566 return -ENOMEM;
568 mutex_lock(&workqueue_mutex);
569 for_each_online_cpu(cpu) {
570 INIT_WORK(per_cpu_ptr(works, cpu), func);
571 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu),
572 per_cpu_ptr(works, cpu));
574 mutex_unlock(&workqueue_mutex);
575 flush_workqueue(keventd_wq);
576 free_percpu(works);
577 return 0;
580 void flush_scheduled_work(void)
582 flush_workqueue(keventd_wq);
584 EXPORT_SYMBOL(flush_scheduled_work);
587 * cancel_rearming_delayed_workqueue - reliably kill off a delayed
588 * work whose handler rearms the delayed work.
589 * @wq: the controlling workqueue structure
590 * @dwork: the delayed work struct
592 void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
593 struct delayed_work *dwork)
595 while (!cancel_delayed_work(dwork))
596 flush_workqueue(wq);
598 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
601 * cancel_rearming_delayed_work - reliably kill off a delayed keventd
602 * work whose handler rearms the delayed work.
603 * @dwork: the delayed work struct
605 void cancel_rearming_delayed_work(struct delayed_work *dwork)
607 cancel_rearming_delayed_workqueue(keventd_wq, dwork);
609 EXPORT_SYMBOL(cancel_rearming_delayed_work);
612 * execute_in_process_context - reliably execute the routine with user context
613 * @fn: the function to execute
614 * @ew: guaranteed storage for the execute work structure (must
615 * be available when the work executes)
617 * Executes the function immediately if process context is available,
618 * otherwise schedules the function for delayed execution.
620 * Returns: 0 - function was executed
621 * 1 - function was scheduled for execution
623 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
625 if (!in_interrupt()) {
626 fn(&ew->work);
627 return 0;
630 INIT_WORK(&ew->work, fn);
631 schedule_work(&ew->work);
633 return 1;
635 EXPORT_SYMBOL_GPL(execute_in_process_context);
637 int keventd_up(void)
639 return keventd_wq != NULL;
642 int current_is_keventd(void)
644 struct cpu_workqueue_struct *cwq;
645 int cpu = smp_processor_id(); /* preempt-safe: keventd is per-cpu */
646 int ret = 0;
648 BUG_ON(!keventd_wq);
650 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
651 if (current == cwq->thread)
652 ret = 1;
654 return ret;
658 /* Take the work from this (downed) CPU. */
659 static void take_over_work(struct workqueue_struct *wq, unsigned int cpu)
661 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
662 struct list_head list;
663 struct work_struct *work;
665 spin_lock_irq(&cwq->lock);
666 list_replace_init(&cwq->worklist, &list);
668 while (!list_empty(&list)) {
669 printk("Taking work for %s\n", wq->name);
670 work = list_entry(list.next,struct work_struct,entry);
671 list_del(&work->entry);
672 __queue_work(per_cpu_ptr(wq->cpu_wq, smp_processor_id()), work);
674 spin_unlock_irq(&cwq->lock);
677 /* We're holding the cpucontrol mutex here */
678 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
679 unsigned long action,
680 void *hcpu)
682 unsigned int hotcpu = (unsigned long)hcpu;
683 struct workqueue_struct *wq;
685 switch (action) {
686 case CPU_UP_PREPARE:
687 mutex_lock(&workqueue_mutex);
688 /* Create a new workqueue thread for it. */
689 list_for_each_entry(wq, &workqueues, list) {
690 if (!create_workqueue_thread(wq, hotcpu, 0)) {
691 printk("workqueue for %i failed\n", hotcpu);
692 return NOTIFY_BAD;
695 break;
697 case CPU_ONLINE:
698 /* Kick off worker threads. */
699 list_for_each_entry(wq, &workqueues, list) {
700 struct cpu_workqueue_struct *cwq;
702 cwq = per_cpu_ptr(wq->cpu_wq, hotcpu);
703 kthread_bind(cwq->thread, hotcpu);
704 wake_up_process(cwq->thread);
706 mutex_unlock(&workqueue_mutex);
707 break;
709 case CPU_UP_CANCELED:
710 list_for_each_entry(wq, &workqueues, list) {
711 if (!per_cpu_ptr(wq->cpu_wq, hotcpu)->thread)
712 continue;
713 /* Unbind so it can run. */
714 kthread_bind(per_cpu_ptr(wq->cpu_wq, hotcpu)->thread,
715 any_online_cpu(cpu_online_map));
716 cleanup_workqueue_thread(wq, hotcpu);
718 mutex_unlock(&workqueue_mutex);
719 break;
721 case CPU_DOWN_PREPARE:
722 mutex_lock(&workqueue_mutex);
723 break;
725 case CPU_DOWN_FAILED:
726 mutex_unlock(&workqueue_mutex);
727 break;
729 case CPU_DEAD:
730 list_for_each_entry(wq, &workqueues, list)
731 cleanup_workqueue_thread(wq, hotcpu);
732 list_for_each_entry(wq, &workqueues, list)
733 take_over_work(wq, hotcpu);
734 mutex_unlock(&workqueue_mutex);
735 break;
738 return NOTIFY_OK;
741 void init_workqueues(void)
743 singlethread_cpu = first_cpu(cpu_possible_map);
744 hotcpu_notifier(workqueue_cpu_callback, 0);
745 keventd_wq = create_workqueue("events");
746 BUG_ON(!keventd_wq);