2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
18 static const int cfq_quantum
= 4; /* max queue in one round of service */
19 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
20 static const int cfq_back_max
= 16 * 1024; /* maximum backwards seek, in KiB */
21 static const int cfq_back_penalty
= 2; /* penalty of a backwards seek */
23 static const int cfq_slice_sync
= HZ
/ 10;
24 static int cfq_slice_async
= HZ
/ 25;
25 static const int cfq_slice_async_rq
= 2;
26 static int cfq_slice_idle
= HZ
/ 125;
29 * grace period before allowing idle class to get disk access
31 #define CFQ_IDLE_GRACE (HZ / 10)
34 * below this threshold, we consider thinktime immediate
36 #define CFQ_MIN_TT (2)
38 #define CFQ_SLICE_SCALE (5)
40 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
41 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
43 static struct kmem_cache
*cfq_pool
;
44 static struct kmem_cache
*cfq_ioc_pool
;
46 static DEFINE_PER_CPU(unsigned long, ioc_count
);
47 static struct completion
*ioc_gone
;
49 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
50 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
51 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
56 #define sample_valid(samples) ((samples) > 80)
59 * Most of our rbtree usage is for sorting with min extraction, so
60 * if we cache the leftmost node we don't have to walk down the tree
61 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
62 * move this into the elevator for the rq sorting as well.
68 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
71 * Per block device queue structure
74 request_queue_t
*queue
;
77 * rr list of queues with requests and the count of them
79 struct cfq_rb_root service_tree
;
80 unsigned int busy_queues
;
87 * idle window management
89 struct timer_list idle_slice_timer
;
90 struct work_struct unplug_work
;
92 struct cfq_queue
*active_queue
;
93 struct cfq_io_context
*active_cic
;
95 struct timer_list idle_class_timer
;
97 sector_t last_position
;
98 unsigned long last_end_request
;
101 * tunables, see top of file
103 unsigned int cfq_quantum
;
104 unsigned int cfq_fifo_expire
[2];
105 unsigned int cfq_back_penalty
;
106 unsigned int cfq_back_max
;
107 unsigned int cfq_slice
[2];
108 unsigned int cfq_slice_async_rq
;
109 unsigned int cfq_slice_idle
;
111 struct list_head cic_list
;
113 sector_t new_seek_mean
;
118 * Per process-grouping structure
121 /* reference count */
123 /* parent cfq_data */
124 struct cfq_data
*cfqd
;
125 /* service_tree member */
126 struct rb_node rb_node
;
127 /* service_tree key */
128 unsigned long rb_key
;
129 /* sorted list of pending requests */
130 struct rb_root sort_list
;
131 /* if fifo isn't expired, next request to serve */
132 struct request
*next_rq
;
133 /* requests queued in sort_list */
135 /* currently allocated requests */
137 /* pending metadata requests */
139 /* fifo list of requests in sort_list */
140 struct list_head fifo
;
142 unsigned long slice_end
;
145 /* number of requests that are on the dispatch list or inside driver */
148 /* io prio of this group */
149 unsigned short ioprio
, org_ioprio
;
150 unsigned short ioprio_class
, org_ioprio_class
;
152 /* various state flags, see below */
155 sector_t last_request_pos
;
158 enum cfqq_state_flags
{
159 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
160 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
161 CFQ_CFQQ_FLAG_must_alloc
, /* must be allowed rq alloc */
162 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
163 CFQ_CFQQ_FLAG_must_dispatch
, /* must dispatch, even if expired */
164 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
165 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
166 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
167 CFQ_CFQQ_FLAG_queue_new
, /* queue never been serviced */
168 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
169 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
172 #define CFQ_CFQQ_FNS(name) \
173 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
175 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
177 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
179 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
181 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
183 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
187 CFQ_CFQQ_FNS(wait_request
);
188 CFQ_CFQQ_FNS(must_alloc
);
189 CFQ_CFQQ_FNS(must_alloc_slice
);
190 CFQ_CFQQ_FNS(must_dispatch
);
191 CFQ_CFQQ_FNS(fifo_expire
);
192 CFQ_CFQQ_FNS(idle_window
);
193 CFQ_CFQQ_FNS(prio_changed
);
194 CFQ_CFQQ_FNS(queue_new
);
195 CFQ_CFQQ_FNS(slice_new
);
199 static void cfq_dispatch_insert(request_queue_t
*, struct request
*);
200 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, int,
201 struct task_struct
*, gfp_t
);
202 static struct cfq_io_context
*cfq_cic_rb_lookup(struct cfq_data
*,
203 struct io_context
*);
205 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
208 return cic
->cfqq
[!!is_sync
];
211 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
212 struct cfq_queue
*cfqq
, int is_sync
)
214 cic
->cfqq
[!!is_sync
] = cfqq
;
218 * We regard a request as SYNC, if it's either a read or has the SYNC bit
219 * set (in which case it could also be direct WRITE).
221 static inline int cfq_bio_sync(struct bio
*bio
)
223 if (bio_data_dir(bio
) == READ
|| bio_sync(bio
))
230 * scheduler run of queue, if there are requests pending and no one in the
231 * driver that will restart queueing
233 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
235 if (cfqd
->busy_queues
)
236 kblockd_schedule_work(&cfqd
->unplug_work
);
239 static int cfq_queue_empty(request_queue_t
*q
)
241 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
243 return !cfqd
->busy_queues
;
247 * Scale schedule slice based on io priority. Use the sync time slice only
248 * if a queue is marked sync and has sync io queued. A sync queue with async
249 * io only, should not get full sync slice length.
251 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, int sync
,
254 const int base_slice
= cfqd
->cfq_slice
[sync
];
256 WARN_ON(prio
>= IOPRIO_BE_NR
);
258 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
262 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
264 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
268 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
270 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
274 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
275 * isn't valid until the first request from the dispatch is activated
276 * and the slice time set.
278 static inline int cfq_slice_used(struct cfq_queue
*cfqq
)
280 if (cfq_cfqq_slice_new(cfqq
))
282 if (time_before(jiffies
, cfqq
->slice_end
))
289 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
290 * We choose the request that is closest to the head right now. Distance
291 * behind the head is penalized and only allowed to a certain extent.
293 static struct request
*
294 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
)
296 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
297 unsigned long back_max
;
298 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
299 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
300 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
302 if (rq1
== NULL
|| rq1
== rq2
)
307 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
309 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
311 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
313 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
319 last
= cfqd
->last_position
;
322 * by definition, 1KiB is 2 sectors
324 back_max
= cfqd
->cfq_back_max
* 2;
327 * Strict one way elevator _except_ in the case where we allow
328 * short backward seeks which are biased as twice the cost of a
329 * similar forward seek.
333 else if (s1
+ back_max
>= last
)
334 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
336 wrap
|= CFQ_RQ1_WRAP
;
340 else if (s2
+ back_max
>= last
)
341 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
343 wrap
|= CFQ_RQ2_WRAP
;
345 /* Found required data */
348 * By doing switch() on the bit mask "wrap" we avoid having to
349 * check two variables for all permutations: --> faster!
352 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
368 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
371 * Since both rqs are wrapped,
372 * start with the one that's further behind head
373 * (--> only *one* back seek required),
374 * since back seek takes more time than forward.
384 * The below is leftmost cache rbtree addon
386 static struct rb_node
*cfq_rb_first(struct cfq_rb_root
*root
)
389 root
->left
= rb_first(&root
->rb
);
394 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
399 rb_erase(n
, &root
->rb
);
404 * would be nice to take fifo expire time into account as well
406 static struct request
*
407 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
408 struct request
*last
)
410 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
411 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
412 struct request
*next
= NULL
, *prev
= NULL
;
414 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
417 prev
= rb_entry_rq(rbprev
);
420 next
= rb_entry_rq(rbnext
);
422 rbnext
= rb_first(&cfqq
->sort_list
);
423 if (rbnext
&& rbnext
!= &last
->rb_node
)
424 next
= rb_entry_rq(rbnext
);
427 return cfq_choose_req(cfqd
, next
, prev
);
430 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
431 struct cfq_queue
*cfqq
)
434 * just an approximation, should be ok.
436 return (cfqd
->busy_queues
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
437 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
441 * The cfqd->service_tree holds all pending cfq_queue's that have
442 * requests waiting to be processed. It is sorted in the order that
443 * we will service the queues.
445 static void cfq_service_tree_add(struct cfq_data
*cfqd
,
446 struct cfq_queue
*cfqq
, int add_front
)
448 struct rb_node
**p
= &cfqd
->service_tree
.rb
.rb_node
;
449 struct rb_node
*parent
= NULL
;
450 unsigned long rb_key
;
454 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
455 rb_key
+= cfqq
->slice_resid
;
456 cfqq
->slice_resid
= 0;
460 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
462 * same position, nothing more to do
464 if (rb_key
== cfqq
->rb_key
)
467 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
472 struct cfq_queue
*__cfqq
;
476 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
479 * sort RT queues first, we always want to give
480 * preference to them. IDLE queues goes to the back.
481 * after that, sort on the next service time.
483 if (cfq_class_rt(cfqq
) > cfq_class_rt(__cfqq
))
485 else if (cfq_class_rt(cfqq
) < cfq_class_rt(__cfqq
))
487 else if (cfq_class_idle(cfqq
) < cfq_class_idle(__cfqq
))
489 else if (cfq_class_idle(cfqq
) > cfq_class_idle(__cfqq
))
491 else if (rb_key
< __cfqq
->rb_key
)
496 if (n
== &(*p
)->rb_right
)
503 cfqd
->service_tree
.left
= &cfqq
->rb_node
;
505 cfqq
->rb_key
= rb_key
;
506 rb_link_node(&cfqq
->rb_node
, parent
, p
);
507 rb_insert_color(&cfqq
->rb_node
, &cfqd
->service_tree
.rb
);
511 * Update cfqq's position in the service tree.
513 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
516 * Resorting requires the cfqq to be on the RR list already.
518 if (cfq_cfqq_on_rr(cfqq
))
519 cfq_service_tree_add(cfqd
, cfqq
, 0);
523 * add to busy list of queues for service, trying to be fair in ordering
524 * the pending list according to last request service
527 cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
529 BUG_ON(cfq_cfqq_on_rr(cfqq
));
530 cfq_mark_cfqq_on_rr(cfqq
);
533 cfq_resort_rr_list(cfqd
, cfqq
);
537 * Called when the cfqq no longer has requests pending, remove it from
541 cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
543 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
544 cfq_clear_cfqq_on_rr(cfqq
);
546 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
547 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
549 BUG_ON(!cfqd
->busy_queues
);
554 * rb tree support functions
556 static inline void cfq_del_rq_rb(struct request
*rq
)
558 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
559 struct cfq_data
*cfqd
= cfqq
->cfqd
;
560 const int sync
= rq_is_sync(rq
);
562 BUG_ON(!cfqq
->queued
[sync
]);
563 cfqq
->queued
[sync
]--;
565 elv_rb_del(&cfqq
->sort_list
, rq
);
567 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
568 cfq_del_cfqq_rr(cfqd
, cfqq
);
571 static void cfq_add_rq_rb(struct request
*rq
)
573 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
574 struct cfq_data
*cfqd
= cfqq
->cfqd
;
575 struct request
*__alias
;
577 cfqq
->queued
[rq_is_sync(rq
)]++;
580 * looks a little odd, but the first insert might return an alias.
581 * if that happens, put the alias on the dispatch list
583 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
584 cfq_dispatch_insert(cfqd
->queue
, __alias
);
586 if (!cfq_cfqq_on_rr(cfqq
))
587 cfq_add_cfqq_rr(cfqd
, cfqq
);
590 * check if this request is a better next-serve candidate
592 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
);
593 BUG_ON(!cfqq
->next_rq
);
597 cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
599 elv_rb_del(&cfqq
->sort_list
, rq
);
600 cfqq
->queued
[rq_is_sync(rq
)]--;
604 static struct request
*
605 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
607 struct task_struct
*tsk
= current
;
608 struct cfq_io_context
*cic
;
609 struct cfq_queue
*cfqq
;
611 cic
= cfq_cic_rb_lookup(cfqd
, tsk
->io_context
);
615 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
617 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
619 return elv_rb_find(&cfqq
->sort_list
, sector
);
625 static void cfq_activate_request(request_queue_t
*q
, struct request
*rq
)
627 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
629 cfqd
->rq_in_driver
++;
632 * If the depth is larger 1, it really could be queueing. But lets
633 * make the mark a little higher - idling could still be good for
634 * low queueing, and a low queueing number could also just indicate
635 * a SCSI mid layer like behaviour where limit+1 is often seen.
637 if (!cfqd
->hw_tag
&& cfqd
->rq_in_driver
> 4)
640 cfqd
->last_position
= rq
->hard_sector
+ rq
->hard_nr_sectors
;
643 static void cfq_deactivate_request(request_queue_t
*q
, struct request
*rq
)
645 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
647 WARN_ON(!cfqd
->rq_in_driver
);
648 cfqd
->rq_in_driver
--;
651 static void cfq_remove_request(struct request
*rq
)
653 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
655 if (cfqq
->next_rq
== rq
)
656 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
658 list_del_init(&rq
->queuelist
);
661 if (rq_is_meta(rq
)) {
662 WARN_ON(!cfqq
->meta_pending
);
663 cfqq
->meta_pending
--;
667 static int cfq_merge(request_queue_t
*q
, struct request
**req
, struct bio
*bio
)
669 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
670 struct request
*__rq
;
672 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
673 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
675 return ELEVATOR_FRONT_MERGE
;
678 return ELEVATOR_NO_MERGE
;
681 static void cfq_merged_request(request_queue_t
*q
, struct request
*req
,
684 if (type
== ELEVATOR_FRONT_MERGE
) {
685 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
687 cfq_reposition_rq_rb(cfqq
, req
);
692 cfq_merged_requests(request_queue_t
*q
, struct request
*rq
,
693 struct request
*next
)
696 * reposition in fifo if next is older than rq
698 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
699 time_before(next
->start_time
, rq
->start_time
))
700 list_move(&rq
->queuelist
, &next
->queuelist
);
702 cfq_remove_request(next
);
705 static int cfq_allow_merge(request_queue_t
*q
, struct request
*rq
,
708 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
709 struct cfq_io_context
*cic
;
710 struct cfq_queue
*cfqq
;
713 * Disallow merge of a sync bio into an async request.
715 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
719 * Lookup the cfqq that this bio will be queued with. Allow
720 * merge only if rq is queued there.
722 cic
= cfq_cic_rb_lookup(cfqd
, current
->io_context
);
726 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
727 if (cfqq
== RQ_CFQQ(rq
))
734 __cfq_set_active_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
738 * stop potential idle class queues waiting service
740 del_timer(&cfqd
->idle_class_timer
);
743 cfq_clear_cfqq_must_alloc_slice(cfqq
);
744 cfq_clear_cfqq_fifo_expire(cfqq
);
745 cfq_mark_cfqq_slice_new(cfqq
);
746 cfq_clear_cfqq_queue_new(cfqq
);
749 cfqd
->active_queue
= cfqq
;
753 * current cfqq expired its slice (or was too idle), select new one
756 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
759 if (cfq_cfqq_wait_request(cfqq
))
760 del_timer(&cfqd
->idle_slice_timer
);
762 cfq_clear_cfqq_must_dispatch(cfqq
);
763 cfq_clear_cfqq_wait_request(cfqq
);
766 * store what was left of this slice, if the queue idled/timed out
768 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
))
769 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
771 cfq_resort_rr_list(cfqd
, cfqq
);
773 if (cfqq
== cfqd
->active_queue
)
774 cfqd
->active_queue
= NULL
;
776 if (cfqd
->active_cic
) {
777 put_io_context(cfqd
->active_cic
->ioc
);
778 cfqd
->active_cic
= NULL
;
782 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, int timed_out
)
784 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
787 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
791 * Get next queue for service. Unless we have a queue preemption,
792 * we'll simply select the first cfqq in the service tree.
794 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
796 struct cfq_queue
*cfqq
;
799 if (RB_EMPTY_ROOT(&cfqd
->service_tree
.rb
))
802 n
= cfq_rb_first(&cfqd
->service_tree
);
803 cfqq
= rb_entry(n
, struct cfq_queue
, rb_node
);
805 if (cfq_class_idle(cfqq
)) {
809 * if we have idle queues and no rt or be queues had
810 * pending requests, either allow immediate service if
811 * the grace period has passed or arm the idle grace
814 end
= cfqd
->last_end_request
+ CFQ_IDLE_GRACE
;
815 if (time_before(jiffies
, end
)) {
816 mod_timer(&cfqd
->idle_class_timer
, end
);
825 * Get and set a new active queue for service.
827 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
)
829 struct cfq_queue
*cfqq
;
831 cfqq
= cfq_get_next_queue(cfqd
);
832 __cfq_set_active_queue(cfqd
, cfqq
);
836 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
839 if (rq
->sector
>= cfqd
->last_position
)
840 return rq
->sector
- cfqd
->last_position
;
842 return cfqd
->last_position
- rq
->sector
;
845 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct request
*rq
)
847 struct cfq_io_context
*cic
= cfqd
->active_cic
;
849 if (!sample_valid(cic
->seek_samples
))
852 return cfq_dist_from_last(cfqd
, rq
) <= cic
->seek_mean
;
855 static int cfq_close_cooperator(struct cfq_data
*cfq_data
,
856 struct cfq_queue
*cfqq
)
859 * We should notice if some of the queues are cooperating, eg
860 * working closely on the same area of the disk. In that case,
861 * we can group them together and don't waste time idling.
866 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
868 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
870 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
871 struct cfq_io_context
*cic
;
874 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
875 WARN_ON(cfq_cfqq_slice_new(cfqq
));
878 * idle is disabled, either manually or by past process history
880 if (!cfqd
->cfq_slice_idle
|| !cfq_cfqq_idle_window(cfqq
))
884 * task has exited, don't wait
886 cic
= cfqd
->active_cic
;
887 if (!cic
|| !cic
->ioc
->task
)
891 * See if this prio level has a good candidate
893 if (cfq_close_cooperator(cfqd
, cfqq
) &&
894 (sample_valid(cic
->ttime_samples
) && cic
->ttime_mean
> 2))
897 cfq_mark_cfqq_must_dispatch(cfqq
);
898 cfq_mark_cfqq_wait_request(cfqq
);
901 * we don't want to idle for seeks, but we do want to allow
902 * fair distribution of slice time for a process doing back-to-back
903 * seeks. so allow a little bit of time for him to submit a new rq
905 sl
= cfqd
->cfq_slice_idle
;
906 if (sample_valid(cic
->seek_samples
) && CIC_SEEKY(cic
))
907 sl
= min(sl
, msecs_to_jiffies(CFQ_MIN_TT
));
909 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
913 * Move request from internal lists to the request queue dispatch list.
915 static void cfq_dispatch_insert(request_queue_t
*q
, struct request
*rq
)
917 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
918 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
920 cfq_remove_request(rq
);
922 elv_dispatch_sort(q
, rq
);
924 if (cfq_cfqq_sync(cfqq
))
929 * return expired entry, or NULL to just start from scratch in rbtree
931 static inline struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
933 struct cfq_data
*cfqd
= cfqq
->cfqd
;
937 if (cfq_cfqq_fifo_expire(cfqq
))
940 cfq_mark_cfqq_fifo_expire(cfqq
);
942 if (list_empty(&cfqq
->fifo
))
945 fifo
= cfq_cfqq_sync(cfqq
);
946 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
948 if (time_before(jiffies
, rq
->start_time
+ cfqd
->cfq_fifo_expire
[fifo
]))
955 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
957 const int base_rq
= cfqd
->cfq_slice_async_rq
;
959 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
961 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
965 * Select a queue for service. If we have a current active queue,
966 * check whether to continue servicing it, or retrieve and set a new one.
968 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
970 struct cfq_queue
*cfqq
;
972 cfqq
= cfqd
->active_queue
;
977 * The active queue has run out of time, expire it and select new.
979 if (cfq_slice_used(cfqq
))
983 * The active queue has requests and isn't expired, allow it to
986 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
990 * No requests pending. If the active queue still has requests in
991 * flight or is idling for a new request, allow either of these
992 * conditions to happen (or time out) before selecting a new queue.
994 if (timer_pending(&cfqd
->idle_slice_timer
) ||
995 (cfqq
->dispatched
&& cfq_cfqq_idle_window(cfqq
))) {
1001 cfq_slice_expired(cfqd
, 0);
1003 cfqq
= cfq_set_active_queue(cfqd
);
1009 * Dispatch some requests from cfqq, moving them to the request queue
1013 __cfq_dispatch_requests(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1018 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
1024 * follow expired path, else get first next available
1026 if ((rq
= cfq_check_fifo(cfqq
)) == NULL
)
1030 * finally, insert request into driver dispatch list
1032 cfq_dispatch_insert(cfqd
->queue
, rq
);
1036 if (!cfqd
->active_cic
) {
1037 atomic_inc(&RQ_CIC(rq
)->ioc
->refcount
);
1038 cfqd
->active_cic
= RQ_CIC(rq
);
1041 if (RB_EMPTY_ROOT(&cfqq
->sort_list
))
1044 } while (dispatched
< max_dispatch
);
1047 * expire an async queue immediately if it has used up its slice. idle
1048 * queue always expire after 1 dispatch round.
1050 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
1051 dispatched
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
1052 cfq_class_idle(cfqq
))) {
1053 cfqq
->slice_end
= jiffies
+ 1;
1054 cfq_slice_expired(cfqd
, 0);
1060 static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
1064 while (cfqq
->next_rq
) {
1065 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
1069 BUG_ON(!list_empty(&cfqq
->fifo
));
1074 * Drain our current requests. Used for barriers and when switching
1075 * io schedulers on-the-fly.
1077 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
1082 while ((n
= cfq_rb_first(&cfqd
->service_tree
)) != NULL
) {
1083 struct cfq_queue
*cfqq
= rb_entry(n
, struct cfq_queue
, rb_node
);
1085 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
1088 cfq_slice_expired(cfqd
, 0);
1090 BUG_ON(cfqd
->busy_queues
);
1095 static int cfq_dispatch_requests(request_queue_t
*q
, int force
)
1097 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1098 struct cfq_queue
*cfqq
;
1101 if (!cfqd
->busy_queues
)
1104 if (unlikely(force
))
1105 return cfq_forced_dispatch(cfqd
);
1108 while ((cfqq
= cfq_select_queue(cfqd
)) != NULL
) {
1111 max_dispatch
= cfqd
->cfq_quantum
;
1112 if (cfq_class_idle(cfqq
))
1115 if (cfqq
->dispatched
>= max_dispatch
) {
1116 if (cfqd
->busy_queues
> 1)
1118 if (cfqq
->dispatched
>= 4 * max_dispatch
)
1122 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
1125 cfq_clear_cfqq_must_dispatch(cfqq
);
1126 cfq_clear_cfqq_wait_request(cfqq
);
1127 del_timer(&cfqd
->idle_slice_timer
);
1129 dispatched
+= __cfq_dispatch_requests(cfqd
, cfqq
, max_dispatch
);
1136 * task holds one reference to the queue, dropped when task exits. each rq
1137 * in-flight on this queue also holds a reference, dropped when rq is freed.
1139 * queue lock must be held here.
1141 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1143 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1145 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1147 if (!atomic_dec_and_test(&cfqq
->ref
))
1150 BUG_ON(rb_first(&cfqq
->sort_list
));
1151 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1152 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1154 if (unlikely(cfqd
->active_queue
== cfqq
)) {
1155 __cfq_slice_expired(cfqd
, cfqq
, 0);
1156 cfq_schedule_dispatch(cfqd
);
1159 kmem_cache_free(cfq_pool
, cfqq
);
1162 static void cfq_free_io_context(struct io_context
*ioc
)
1164 struct cfq_io_context
*__cic
;
1168 ioc
->ioc_data
= NULL
;
1170 while ((n
= rb_first(&ioc
->cic_root
)) != NULL
) {
1171 __cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1172 rb_erase(&__cic
->rb_node
, &ioc
->cic_root
);
1173 kmem_cache_free(cfq_ioc_pool
, __cic
);
1177 elv_ioc_count_mod(ioc_count
, -freed
);
1179 if (ioc_gone
&& !elv_ioc_count_read(ioc_count
))
1183 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1185 if (unlikely(cfqq
== cfqd
->active_queue
)) {
1186 __cfq_slice_expired(cfqd
, cfqq
, 0);
1187 cfq_schedule_dispatch(cfqd
);
1190 cfq_put_queue(cfqq
);
1193 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
1194 struct cfq_io_context
*cic
)
1196 list_del_init(&cic
->queue_list
);
1200 if (cic
->cfqq
[ASYNC
]) {
1201 cfq_exit_cfqq(cfqd
, cic
->cfqq
[ASYNC
]);
1202 cic
->cfqq
[ASYNC
] = NULL
;
1205 if (cic
->cfqq
[SYNC
]) {
1206 cfq_exit_cfqq(cfqd
, cic
->cfqq
[SYNC
]);
1207 cic
->cfqq
[SYNC
] = NULL
;
1211 static void cfq_exit_single_io_context(struct cfq_io_context
*cic
)
1213 struct cfq_data
*cfqd
= cic
->key
;
1216 request_queue_t
*q
= cfqd
->queue
;
1218 spin_lock_irq(q
->queue_lock
);
1219 __cfq_exit_single_io_context(cfqd
, cic
);
1220 spin_unlock_irq(q
->queue_lock
);
1225 * The process that ioc belongs to has exited, we need to clean up
1226 * and put the internal structures we have that belongs to that process.
1228 static void cfq_exit_io_context(struct io_context
*ioc
)
1230 struct cfq_io_context
*__cic
;
1233 ioc
->ioc_data
= NULL
;
1236 * put the reference this task is holding to the various queues
1238 n
= rb_first(&ioc
->cic_root
);
1240 __cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1242 cfq_exit_single_io_context(__cic
);
1247 static struct cfq_io_context
*
1248 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1250 struct cfq_io_context
*cic
;
1252 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
, cfqd
->queue
->node
);
1254 memset(cic
, 0, sizeof(*cic
));
1255 cic
->last_end_request
= jiffies
;
1256 INIT_LIST_HEAD(&cic
->queue_list
);
1257 cic
->dtor
= cfq_free_io_context
;
1258 cic
->exit
= cfq_exit_io_context
;
1259 elv_ioc_count_inc(ioc_count
);
1265 static void cfq_init_prio_data(struct cfq_queue
*cfqq
)
1267 struct task_struct
*tsk
= current
;
1270 if (!cfq_cfqq_prio_changed(cfqq
))
1273 ioprio_class
= IOPRIO_PRIO_CLASS(tsk
->ioprio
);
1274 switch (ioprio_class
) {
1276 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1277 case IOPRIO_CLASS_NONE
:
1279 * no prio set, place us in the middle of the BE classes
1281 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1282 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1284 case IOPRIO_CLASS_RT
:
1285 cfqq
->ioprio
= task_ioprio(tsk
);
1286 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1288 case IOPRIO_CLASS_BE
:
1289 cfqq
->ioprio
= task_ioprio(tsk
);
1290 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1292 case IOPRIO_CLASS_IDLE
:
1293 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1295 cfq_clear_cfqq_idle_window(cfqq
);
1300 * keep track of original prio settings in case we have to temporarily
1301 * elevate the priority of this queue
1303 cfqq
->org_ioprio
= cfqq
->ioprio
;
1304 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1305 cfq_clear_cfqq_prio_changed(cfqq
);
1308 static inline void changed_ioprio(struct cfq_io_context
*cic
)
1310 struct cfq_data
*cfqd
= cic
->key
;
1311 struct cfq_queue
*cfqq
;
1312 unsigned long flags
;
1314 if (unlikely(!cfqd
))
1317 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1319 cfqq
= cic
->cfqq
[ASYNC
];
1321 struct cfq_queue
*new_cfqq
;
1322 new_cfqq
= cfq_get_queue(cfqd
, ASYNC
, cic
->ioc
->task
,
1325 cic
->cfqq
[ASYNC
] = new_cfqq
;
1326 cfq_put_queue(cfqq
);
1330 cfqq
= cic
->cfqq
[SYNC
];
1332 cfq_mark_cfqq_prio_changed(cfqq
);
1334 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1337 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
1339 struct cfq_io_context
*cic
;
1342 ioc
->ioprio_changed
= 0;
1344 n
= rb_first(&ioc
->cic_root
);
1346 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1348 changed_ioprio(cic
);
1353 static struct cfq_queue
*
1354 cfq_get_queue(struct cfq_data
*cfqd
, int is_sync
, struct task_struct
*tsk
,
1357 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1358 struct cfq_io_context
*cic
;
1361 cic
= cfq_cic_rb_lookup(cfqd
, tsk
->io_context
);
1362 /* cic always exists here */
1363 cfqq
= cic_to_cfqq(cic
, is_sync
);
1369 } else if (gfp_mask
& __GFP_WAIT
) {
1371 * Inform the allocator of the fact that we will
1372 * just repeat this allocation if it fails, to allow
1373 * the allocator to do whatever it needs to attempt to
1376 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1377 new_cfqq
= kmem_cache_alloc_node(cfq_pool
, gfp_mask
|__GFP_NOFAIL
, cfqd
->queue
->node
);
1378 spin_lock_irq(cfqd
->queue
->queue_lock
);
1381 cfqq
= kmem_cache_alloc_node(cfq_pool
, gfp_mask
, cfqd
->queue
->node
);
1386 memset(cfqq
, 0, sizeof(*cfqq
));
1388 RB_CLEAR_NODE(&cfqq
->rb_node
);
1389 INIT_LIST_HEAD(&cfqq
->fifo
);
1391 atomic_set(&cfqq
->ref
, 0);
1395 cfq_mark_cfqq_idle_window(cfqq
);
1396 cfq_mark_cfqq_sync(cfqq
);
1399 cfq_mark_cfqq_prio_changed(cfqq
);
1400 cfq_mark_cfqq_queue_new(cfqq
);
1402 cfq_init_prio_data(cfqq
);
1406 kmem_cache_free(cfq_pool
, new_cfqq
);
1408 atomic_inc(&cfqq
->ref
);
1410 WARN_ON((gfp_mask
& __GFP_WAIT
) && !cfqq
);
1415 * We drop cfq io contexts lazily, so we may find a dead one.
1418 cfq_drop_dead_cic(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1420 WARN_ON(!list_empty(&cic
->queue_list
));
1422 if (ioc
->ioc_data
== cic
)
1423 ioc
->ioc_data
= NULL
;
1425 rb_erase(&cic
->rb_node
, &ioc
->cic_root
);
1426 kmem_cache_free(cfq_ioc_pool
, cic
);
1427 elv_ioc_count_dec(ioc_count
);
1430 static struct cfq_io_context
*
1431 cfq_cic_rb_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
1434 struct cfq_io_context
*cic
;
1435 void *k
, *key
= cfqd
;
1441 * we maintain a last-hit cache, to avoid browsing over the tree
1443 cic
= ioc
->ioc_data
;
1444 if (cic
&& cic
->key
== cfqd
)
1448 n
= ioc
->cic_root
.rb_node
;
1450 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
1451 /* ->key must be copied to avoid race with cfq_exit_queue() */
1454 cfq_drop_dead_cic(ioc
, cic
);
1463 ioc
->ioc_data
= cic
;
1472 cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1473 struct cfq_io_context
*cic
)
1476 struct rb_node
*parent
;
1477 struct cfq_io_context
*__cic
;
1478 unsigned long flags
;
1486 p
= &ioc
->cic_root
.rb_node
;
1489 __cic
= rb_entry(parent
, struct cfq_io_context
, rb_node
);
1490 /* ->key must be copied to avoid race with cfq_exit_queue() */
1493 cfq_drop_dead_cic(ioc
, __cic
);
1499 else if (cic
->key
> k
)
1500 p
= &(*p
)->rb_right
;
1505 rb_link_node(&cic
->rb_node
, parent
, p
);
1506 rb_insert_color(&cic
->rb_node
, &ioc
->cic_root
);
1508 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1509 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
1510 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1514 * Setup general io context and cfq io context. There can be several cfq
1515 * io contexts per general io context, if this process is doing io to more
1516 * than one device managed by cfq.
1518 static struct cfq_io_context
*
1519 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1521 struct io_context
*ioc
= NULL
;
1522 struct cfq_io_context
*cic
;
1524 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1526 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
1530 cic
= cfq_cic_rb_lookup(cfqd
, ioc
);
1534 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1538 cfq_cic_link(cfqd
, ioc
, cic
);
1540 smp_read_barrier_depends();
1541 if (unlikely(ioc
->ioprio_changed
))
1542 cfq_ioc_set_ioprio(ioc
);
1546 put_io_context(ioc
);
1551 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
1553 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
1554 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
1556 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
1557 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
1558 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
1562 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
1568 if (cic
->last_request_pos
< rq
->sector
)
1569 sdist
= rq
->sector
- cic
->last_request_pos
;
1571 sdist
= cic
->last_request_pos
- rq
->sector
;
1573 if (!cic
->seek_samples
) {
1574 cfqd
->new_seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1575 cfqd
->new_seek_mean
= cfqd
->new_seek_total
/ 256;
1579 * Don't allow the seek distance to get too large from the
1580 * odd fragment, pagein, etc
1582 if (cic
->seek_samples
<= 60) /* second&third seek */
1583 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*1024);
1585 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*64);
1587 cic
->seek_samples
= (7*cic
->seek_samples
+ 256) / 8;
1588 cic
->seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1589 total
= cic
->seek_total
+ (cic
->seek_samples
/2);
1590 do_div(total
, cic
->seek_samples
);
1591 cic
->seek_mean
= (sector_t
)total
;
1595 * Disable idle window if the process thinks too long or seeks so much that
1599 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1600 struct cfq_io_context
*cic
)
1604 if (!cfq_cfqq_sync(cfqq
))
1607 enable_idle
= cfq_cfqq_idle_window(cfqq
);
1609 if (!cic
->ioc
->task
|| !cfqd
->cfq_slice_idle
||
1610 (cfqd
->hw_tag
&& CIC_SEEKY(cic
)))
1612 else if (sample_valid(cic
->ttime_samples
)) {
1613 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
1620 cfq_mark_cfqq_idle_window(cfqq
);
1622 cfq_clear_cfqq_idle_window(cfqq
);
1626 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1627 * no or if we aren't sure, a 1 will cause a preempt.
1630 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
1633 struct cfq_queue
*cfqq
;
1635 cfqq
= cfqd
->active_queue
;
1639 if (cfq_slice_used(cfqq
))
1642 if (cfq_class_idle(new_cfqq
))
1645 if (cfq_class_idle(cfqq
))
1649 * if the new request is sync, but the currently running queue is
1650 * not, let the sync request have priority.
1652 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
1656 * So both queues are sync. Let the new request get disk time if
1657 * it's a metadata request and the current queue is doing regular IO.
1659 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
1662 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
1666 * if this request is as-good as one we would expect from the
1667 * current cfqq, let it preempt
1669 if (cfq_rq_close(cfqd
, rq
))
1676 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1677 * let it have half of its nominal slice.
1679 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1681 cfq_slice_expired(cfqd
, 1);
1684 * Put the new queue at the front of the of the current list,
1685 * so we know that it will be selected next.
1687 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1689 cfq_service_tree_add(cfqd
, cfqq
, 1);
1691 cfqq
->slice_end
= 0;
1692 cfq_mark_cfqq_slice_new(cfqq
);
1696 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1697 * something we should do about it
1700 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1703 struct cfq_io_context
*cic
= RQ_CIC(rq
);
1706 cfqq
->meta_pending
++;
1708 cfq_update_io_thinktime(cfqd
, cic
);
1709 cfq_update_io_seektime(cfqd
, cic
, rq
);
1710 cfq_update_idle_window(cfqd
, cfqq
, cic
);
1712 cic
->last_request_pos
= rq
->sector
+ rq
->nr_sectors
;
1713 cfqq
->last_request_pos
= cic
->last_request_pos
;
1715 if (cfqq
== cfqd
->active_queue
) {
1717 * if we are waiting for a request for this queue, let it rip
1718 * immediately and flag that we must not expire this queue
1721 if (cfq_cfqq_wait_request(cfqq
)) {
1722 cfq_mark_cfqq_must_dispatch(cfqq
);
1723 del_timer(&cfqd
->idle_slice_timer
);
1724 blk_start_queueing(cfqd
->queue
);
1726 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
1728 * not the active queue - expire current slice if it is
1729 * idle and has expired it's mean thinktime or this new queue
1730 * has some old slice time left and is of higher priority
1732 cfq_preempt_queue(cfqd
, cfqq
);
1733 cfq_mark_cfqq_must_dispatch(cfqq
);
1734 blk_start_queueing(cfqd
->queue
);
1738 static void cfq_insert_request(request_queue_t
*q
, struct request
*rq
)
1740 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1741 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1743 cfq_init_prio_data(cfqq
);
1747 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
1749 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
1752 static void cfq_completed_request(request_queue_t
*q
, struct request
*rq
)
1754 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1755 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1756 const int sync
= rq_is_sync(rq
);
1761 WARN_ON(!cfqd
->rq_in_driver
);
1762 WARN_ON(!cfqq
->dispatched
);
1763 cfqd
->rq_in_driver
--;
1766 if (cfq_cfqq_sync(cfqq
))
1767 cfqd
->sync_flight
--;
1769 if (!cfq_class_idle(cfqq
))
1770 cfqd
->last_end_request
= now
;
1773 RQ_CIC(rq
)->last_end_request
= now
;
1776 * If this is the active queue, check if it needs to be expired,
1777 * or if we want to idle in case it has no pending requests.
1779 if (cfqd
->active_queue
== cfqq
) {
1780 if (cfq_cfqq_slice_new(cfqq
)) {
1781 cfq_set_prio_slice(cfqd
, cfqq
);
1782 cfq_clear_cfqq_slice_new(cfqq
);
1784 if (cfq_slice_used(cfqq
))
1785 cfq_slice_expired(cfqd
, 1);
1786 else if (sync
&& RB_EMPTY_ROOT(&cfqq
->sort_list
))
1787 cfq_arm_slice_timer(cfqd
);
1790 if (!cfqd
->rq_in_driver
)
1791 cfq_schedule_dispatch(cfqd
);
1795 * we temporarily boost lower priority queues if they are holding fs exclusive
1796 * resources. they are boosted to normal prio (CLASS_BE/4)
1798 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
1800 if (has_fs_excl()) {
1802 * boost idle prio on transactions that would lock out other
1803 * users of the filesystem
1805 if (cfq_class_idle(cfqq
))
1806 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1807 if (cfqq
->ioprio
> IOPRIO_NORM
)
1808 cfqq
->ioprio
= IOPRIO_NORM
;
1811 * check if we need to unboost the queue
1813 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
1814 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
1815 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
1816 cfqq
->ioprio
= cfqq
->org_ioprio
;
1820 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
1822 if ((cfq_cfqq_wait_request(cfqq
) || cfq_cfqq_must_alloc(cfqq
)) &&
1823 !cfq_cfqq_must_alloc_slice(cfqq
)) {
1824 cfq_mark_cfqq_must_alloc_slice(cfqq
);
1825 return ELV_MQUEUE_MUST
;
1828 return ELV_MQUEUE_MAY
;
1831 static int cfq_may_queue(request_queue_t
*q
, int rw
)
1833 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1834 struct task_struct
*tsk
= current
;
1835 struct cfq_io_context
*cic
;
1836 struct cfq_queue
*cfqq
;
1839 * don't force setup of a queue from here, as a call to may_queue
1840 * does not necessarily imply that a request actually will be queued.
1841 * so just lookup a possibly existing queue, or return 'may queue'
1844 cic
= cfq_cic_rb_lookup(cfqd
, tsk
->io_context
);
1846 return ELV_MQUEUE_MAY
;
1848 cfqq
= cic_to_cfqq(cic
, rw
& REQ_RW_SYNC
);
1850 cfq_init_prio_data(cfqq
);
1851 cfq_prio_boost(cfqq
);
1853 return __cfq_may_queue(cfqq
);
1856 return ELV_MQUEUE_MAY
;
1860 * queue lock held here
1862 static void cfq_put_request(struct request
*rq
)
1864 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1867 const int rw
= rq_data_dir(rq
);
1869 BUG_ON(!cfqq
->allocated
[rw
]);
1870 cfqq
->allocated
[rw
]--;
1872 put_io_context(RQ_CIC(rq
)->ioc
);
1874 rq
->elevator_private
= NULL
;
1875 rq
->elevator_private2
= NULL
;
1877 cfq_put_queue(cfqq
);
1882 * Allocate cfq data structures associated with this request.
1885 cfq_set_request(request_queue_t
*q
, struct request
*rq
, gfp_t gfp_mask
)
1887 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1888 struct task_struct
*tsk
= current
;
1889 struct cfq_io_context
*cic
;
1890 const int rw
= rq_data_dir(rq
);
1891 const int is_sync
= rq_is_sync(rq
);
1892 struct cfq_queue
*cfqq
;
1893 unsigned long flags
;
1895 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1897 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
1899 spin_lock_irqsave(q
->queue_lock
, flags
);
1904 cfqq
= cic_to_cfqq(cic
, is_sync
);
1906 cfqq
= cfq_get_queue(cfqd
, is_sync
, tsk
, gfp_mask
);
1911 cic_set_cfqq(cic
, cfqq
, is_sync
);
1914 cfqq
->allocated
[rw
]++;
1915 cfq_clear_cfqq_must_alloc(cfqq
);
1916 atomic_inc(&cfqq
->ref
);
1918 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1920 rq
->elevator_private
= cic
;
1921 rq
->elevator_private2
= cfqq
;
1926 put_io_context(cic
->ioc
);
1928 cfq_schedule_dispatch(cfqd
);
1929 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1933 static void cfq_kick_queue(struct work_struct
*work
)
1935 struct cfq_data
*cfqd
=
1936 container_of(work
, struct cfq_data
, unplug_work
);
1937 request_queue_t
*q
= cfqd
->queue
;
1938 unsigned long flags
;
1940 spin_lock_irqsave(q
->queue_lock
, flags
);
1941 blk_start_queueing(q
);
1942 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1946 * Timer running if the active_queue is currently idling inside its time slice
1948 static void cfq_idle_slice_timer(unsigned long data
)
1950 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
1951 struct cfq_queue
*cfqq
;
1952 unsigned long flags
;
1955 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1957 if ((cfqq
= cfqd
->active_queue
) != NULL
) {
1963 if (cfq_slice_used(cfqq
))
1967 * only expire and reinvoke request handler, if there are
1968 * other queues with pending requests
1970 if (!cfqd
->busy_queues
)
1974 * not expired and it has a request pending, let it dispatch
1976 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1977 cfq_mark_cfqq_must_dispatch(cfqq
);
1982 cfq_slice_expired(cfqd
, timed_out
);
1984 cfq_schedule_dispatch(cfqd
);
1986 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1990 * Timer running if an idle class queue is waiting for service
1992 static void cfq_idle_class_timer(unsigned long data
)
1994 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
1995 unsigned long flags
, end
;
1997 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2000 * race with a non-idle queue, reset timer
2002 end
= cfqd
->last_end_request
+ CFQ_IDLE_GRACE
;
2003 if (!time_after_eq(jiffies
, end
))
2004 mod_timer(&cfqd
->idle_class_timer
, end
);
2006 cfq_schedule_dispatch(cfqd
);
2008 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2011 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
2013 del_timer_sync(&cfqd
->idle_slice_timer
);
2014 del_timer_sync(&cfqd
->idle_class_timer
);
2015 blk_sync_queue(cfqd
->queue
);
2018 static void cfq_exit_queue(elevator_t
*e
)
2020 struct cfq_data
*cfqd
= e
->elevator_data
;
2021 request_queue_t
*q
= cfqd
->queue
;
2023 cfq_shutdown_timer_wq(cfqd
);
2025 spin_lock_irq(q
->queue_lock
);
2027 if (cfqd
->active_queue
)
2028 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
2030 while (!list_empty(&cfqd
->cic_list
)) {
2031 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
2032 struct cfq_io_context
,
2035 __cfq_exit_single_io_context(cfqd
, cic
);
2038 spin_unlock_irq(q
->queue_lock
);
2040 cfq_shutdown_timer_wq(cfqd
);
2045 static void *cfq_init_queue(request_queue_t
*q
)
2047 struct cfq_data
*cfqd
;
2049 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
, q
->node
);
2053 memset(cfqd
, 0, sizeof(*cfqd
));
2055 cfqd
->service_tree
= CFQ_RB_ROOT
;
2056 INIT_LIST_HEAD(&cfqd
->cic_list
);
2060 init_timer(&cfqd
->idle_slice_timer
);
2061 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2062 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2064 init_timer(&cfqd
->idle_class_timer
);
2065 cfqd
->idle_class_timer
.function
= cfq_idle_class_timer
;
2066 cfqd
->idle_class_timer
.data
= (unsigned long) cfqd
;
2068 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
2070 cfqd
->cfq_quantum
= cfq_quantum
;
2071 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2072 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2073 cfqd
->cfq_back_max
= cfq_back_max
;
2074 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2075 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2076 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2077 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2078 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2083 static void cfq_slab_kill(void)
2086 kmem_cache_destroy(cfq_pool
);
2088 kmem_cache_destroy(cfq_ioc_pool
);
2091 static int __init
cfq_slab_setup(void)
2093 cfq_pool
= kmem_cache_create("cfq_pool", sizeof(struct cfq_queue
), 0, 0,
2098 cfq_ioc_pool
= kmem_cache_create("cfq_ioc_pool",
2099 sizeof(struct cfq_io_context
), 0, 0, NULL
, NULL
);
2110 * sysfs parts below -->
2113 cfq_var_show(unsigned int var
, char *page
)
2115 return sprintf(page
, "%d\n", var
);
2119 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2121 char *p
= (char *) page
;
2123 *var
= simple_strtoul(p
, &p
, 10);
2127 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2128 static ssize_t __FUNC(elevator_t *e, char *page) \
2130 struct cfq_data *cfqd = e->elevator_data; \
2131 unsigned int __data = __VAR; \
2133 __data = jiffies_to_msecs(__data); \
2134 return cfq_var_show(__data, (page)); \
2136 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2137 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2138 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2139 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
2140 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2141 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2142 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2143 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2144 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2145 #undef SHOW_FUNCTION
2147 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2148 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2150 struct cfq_data *cfqd = e->elevator_data; \
2151 unsigned int __data; \
2152 int ret = cfq_var_store(&__data, (page), count); \
2153 if (__data < (MIN)) \
2155 else if (__data > (MAX)) \
2158 *(__PTR) = msecs_to_jiffies(__data); \
2160 *(__PTR) = __data; \
2163 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2164 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1, UINT_MAX
, 1);
2165 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1, UINT_MAX
, 1);
2166 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2167 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1, UINT_MAX
, 0);
2168 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2169 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2170 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2171 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1, UINT_MAX
, 0);
2172 #undef STORE_FUNCTION
2174 #define CFQ_ATTR(name) \
2175 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2177 static struct elv_fs_entry cfq_attrs
[] = {
2179 CFQ_ATTR(fifo_expire_sync
),
2180 CFQ_ATTR(fifo_expire_async
),
2181 CFQ_ATTR(back_seek_max
),
2182 CFQ_ATTR(back_seek_penalty
),
2183 CFQ_ATTR(slice_sync
),
2184 CFQ_ATTR(slice_async
),
2185 CFQ_ATTR(slice_async_rq
),
2186 CFQ_ATTR(slice_idle
),
2190 static struct elevator_type iosched_cfq
= {
2192 .elevator_merge_fn
= cfq_merge
,
2193 .elevator_merged_fn
= cfq_merged_request
,
2194 .elevator_merge_req_fn
= cfq_merged_requests
,
2195 .elevator_allow_merge_fn
= cfq_allow_merge
,
2196 .elevator_dispatch_fn
= cfq_dispatch_requests
,
2197 .elevator_add_req_fn
= cfq_insert_request
,
2198 .elevator_activate_req_fn
= cfq_activate_request
,
2199 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2200 .elevator_queue_empty_fn
= cfq_queue_empty
,
2201 .elevator_completed_req_fn
= cfq_completed_request
,
2202 .elevator_former_req_fn
= elv_rb_former_request
,
2203 .elevator_latter_req_fn
= elv_rb_latter_request
,
2204 .elevator_set_req_fn
= cfq_set_request
,
2205 .elevator_put_req_fn
= cfq_put_request
,
2206 .elevator_may_queue_fn
= cfq_may_queue
,
2207 .elevator_init_fn
= cfq_init_queue
,
2208 .elevator_exit_fn
= cfq_exit_queue
,
2209 .trim
= cfq_free_io_context
,
2211 .elevator_attrs
= cfq_attrs
,
2212 .elevator_name
= "cfq",
2213 .elevator_owner
= THIS_MODULE
,
2216 static int __init
cfq_init(void)
2221 * could be 0 on HZ < 1000 setups
2223 if (!cfq_slice_async
)
2224 cfq_slice_async
= 1;
2225 if (!cfq_slice_idle
)
2228 if (cfq_slab_setup())
2231 ret
= elv_register(&iosched_cfq
);
2238 static void __exit
cfq_exit(void)
2240 DECLARE_COMPLETION_ONSTACK(all_gone
);
2241 elv_unregister(&iosched_cfq
);
2242 ioc_gone
= &all_gone
;
2243 /* ioc_gone's update must be visible before reading ioc_count */
2245 if (elv_ioc_count_read(ioc_count
))
2246 wait_for_completion(ioc_gone
);
2251 module_init(cfq_init
);
2252 module_exit(cfq_exit
);
2254 MODULE_AUTHOR("Jens Axboe");
2255 MODULE_LICENSE("GPL");
2256 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");