Lumpy Reclaim V4
[linux-2.6/zen-sources.git] / mm / vmscan.c
blob1d9971d8924bb074b5a4204909e2a15d773bf371
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
44 #include <linux/swapops.h>
46 #include "internal.h"
48 struct scan_control {
49 /* Incremented by the number of inactive pages that were scanned */
50 unsigned long nr_scanned;
52 /* This context's GFP mask */
53 gfp_t gfp_mask;
55 int may_writepage;
57 /* Can pages be swapped as part of reclaim? */
58 int may_swap;
60 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
61 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
62 * In this context, it doesn't matter that we scan the
63 * whole list at once. */
64 int swap_cluster_max;
66 int swappiness;
68 int all_unreclaimable;
70 int order;
74 * The list of shrinker callbacks used by to apply pressure to
75 * ageable caches.
77 struct shrinker {
78 shrinker_t shrinker;
79 struct list_head list;
80 int seeks; /* seeks to recreate an obj */
81 long nr; /* objs pending delete */
84 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
86 #ifdef ARCH_HAS_PREFETCH
87 #define prefetch_prev_lru_page(_page, _base, _field) \
88 do { \
89 if ((_page)->lru.prev != _base) { \
90 struct page *prev; \
92 prev = lru_to_page(&(_page->lru)); \
93 prefetch(&prev->_field); \
94 } \
95 } while (0)
96 #else
97 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
98 #endif
100 #ifdef ARCH_HAS_PREFETCHW
101 #define prefetchw_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetchw(&prev->_field); \
109 } while (0)
110 #else
111 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
115 * From 0 .. 100. Higher means more swappy.
117 int vm_swappiness = 60;
118 long vm_total_pages; /* The total number of pages which the VM controls */
120 static LIST_HEAD(shrinker_list);
121 static DECLARE_RWSEM(shrinker_rwsem);
124 * Add a shrinker callback to be called from the vm
126 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
128 struct shrinker *shrinker;
130 shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
131 if (shrinker) {
132 shrinker->shrinker = theshrinker;
133 shrinker->seeks = seeks;
134 shrinker->nr = 0;
135 down_write(&shrinker_rwsem);
136 list_add_tail(&shrinker->list, &shrinker_list);
137 up_write(&shrinker_rwsem);
139 return shrinker;
141 EXPORT_SYMBOL(set_shrinker);
144 * Remove one
146 void remove_shrinker(struct shrinker *shrinker)
148 down_write(&shrinker_rwsem);
149 list_del(&shrinker->list);
150 up_write(&shrinker_rwsem);
151 kfree(shrinker);
153 EXPORT_SYMBOL(remove_shrinker);
155 #define SHRINK_BATCH 128
157 * Call the shrink functions to age shrinkable caches
159 * Here we assume it costs one seek to replace a lru page and that it also
160 * takes a seek to recreate a cache object. With this in mind we age equal
161 * percentages of the lru and ageable caches. This should balance the seeks
162 * generated by these structures.
164 * If the vm encounted mapped pages on the LRU it increase the pressure on
165 * slab to avoid swapping.
167 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
169 * `lru_pages' represents the number of on-LRU pages in all the zones which
170 * are eligible for the caller's allocation attempt. It is used for balancing
171 * slab reclaim versus page reclaim.
173 * Returns the number of slab objects which we shrunk.
175 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
176 unsigned long lru_pages)
178 struct shrinker *shrinker;
179 unsigned long ret = 0;
181 if (scanned == 0)
182 scanned = SWAP_CLUSTER_MAX;
184 if (!down_read_trylock(&shrinker_rwsem))
185 return 1; /* Assume we'll be able to shrink next time */
187 list_for_each_entry(shrinker, &shrinker_list, list) {
188 unsigned long long delta;
189 unsigned long total_scan;
190 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
192 delta = (4 * scanned) / shrinker->seeks;
193 delta *= max_pass;
194 do_div(delta, lru_pages + 1);
195 shrinker->nr += delta;
196 if (shrinker->nr < 0) {
197 printk(KERN_ERR "%s: nr=%ld\n",
198 __FUNCTION__, shrinker->nr);
199 shrinker->nr = max_pass;
203 * Avoid risking looping forever due to too large nr value:
204 * never try to free more than twice the estimate number of
205 * freeable entries.
207 if (shrinker->nr > max_pass * 2)
208 shrinker->nr = max_pass * 2;
210 total_scan = shrinker->nr;
211 shrinker->nr = 0;
213 while (total_scan >= SHRINK_BATCH) {
214 long this_scan = SHRINK_BATCH;
215 int shrink_ret;
216 int nr_before;
218 nr_before = (*shrinker->shrinker)(0, gfp_mask);
219 shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
220 if (shrink_ret == -1)
221 break;
222 if (shrink_ret < nr_before)
223 ret += nr_before - shrink_ret;
224 count_vm_events(SLABS_SCANNED, this_scan);
225 total_scan -= this_scan;
227 cond_resched();
230 shrinker->nr += total_scan;
232 up_read(&shrinker_rwsem);
233 return ret;
236 /* Called without lock on whether page is mapped, so answer is unstable */
237 static inline int page_mapping_inuse(struct page *page)
239 struct address_space *mapping;
241 /* Page is in somebody's page tables. */
242 if (page_mapped(page))
243 return 1;
245 /* Be more reluctant to reclaim swapcache than pagecache */
246 if (PageSwapCache(page))
247 return 1;
249 mapping = page_mapping(page);
250 if (!mapping)
251 return 0;
253 /* File is mmap'd by somebody? */
254 return mapping_mapped(mapping);
257 static inline int is_page_cache_freeable(struct page *page)
259 return page_count(page) - !!PagePrivate(page) == 2;
262 static int may_write_to_queue(struct backing_dev_info *bdi)
264 if (current->flags & PF_SWAPWRITE)
265 return 1;
266 if (!bdi_write_congested(bdi))
267 return 1;
268 if (bdi == current->backing_dev_info)
269 return 1;
270 return 0;
274 * We detected a synchronous write error writing a page out. Probably
275 * -ENOSPC. We need to propagate that into the address_space for a subsequent
276 * fsync(), msync() or close().
278 * The tricky part is that after writepage we cannot touch the mapping: nothing
279 * prevents it from being freed up. But we have a ref on the page and once
280 * that page is locked, the mapping is pinned.
282 * We're allowed to run sleeping lock_page() here because we know the caller has
283 * __GFP_FS.
285 static void handle_write_error(struct address_space *mapping,
286 struct page *page, int error)
288 lock_page(page);
289 if (page_mapping(page) == mapping)
290 mapping_set_error(mapping, error);
291 unlock_page(page);
294 /* possible outcome of pageout() */
295 typedef enum {
296 /* failed to write page out, page is locked */
297 PAGE_KEEP,
298 /* move page to the active list, page is locked */
299 PAGE_ACTIVATE,
300 /* page has been sent to the disk successfully, page is unlocked */
301 PAGE_SUCCESS,
302 /* page is clean and locked */
303 PAGE_CLEAN,
304 } pageout_t;
307 * pageout is called by shrink_page_list() for each dirty page.
308 * Calls ->writepage().
310 static pageout_t pageout(struct page *page, struct address_space *mapping)
313 * If the page is dirty, only perform writeback if that write
314 * will be non-blocking. To prevent this allocation from being
315 * stalled by pagecache activity. But note that there may be
316 * stalls if we need to run get_block(). We could test
317 * PagePrivate for that.
319 * If this process is currently in generic_file_write() against
320 * this page's queue, we can perform writeback even if that
321 * will block.
323 * If the page is swapcache, write it back even if that would
324 * block, for some throttling. This happens by accident, because
325 * swap_backing_dev_info is bust: it doesn't reflect the
326 * congestion state of the swapdevs. Easy to fix, if needed.
327 * See swapfile.c:page_queue_congested().
329 if (!is_page_cache_freeable(page))
330 return PAGE_KEEP;
331 if (!mapping) {
333 * Some data journaling orphaned pages can have
334 * page->mapping == NULL while being dirty with clean buffers.
336 if (PagePrivate(page)) {
337 if (try_to_free_buffers(page)) {
338 ClearPageDirty(page);
339 printk("%s: orphaned page\n", __FUNCTION__);
340 return PAGE_CLEAN;
343 return PAGE_KEEP;
345 if (mapping->a_ops->writepage == NULL)
346 return PAGE_ACTIVATE;
347 if (!may_write_to_queue(mapping->backing_dev_info))
348 return PAGE_KEEP;
350 if (clear_page_dirty_for_io(page)) {
351 int res;
352 struct writeback_control wbc = {
353 .sync_mode = WB_SYNC_NONE,
354 .nr_to_write = SWAP_CLUSTER_MAX,
355 .range_start = 0,
356 .range_end = LLONG_MAX,
357 .nonblocking = 1,
358 .for_reclaim = 1,
361 SetPageReclaim(page);
362 res = mapping->a_ops->writepage(page, &wbc);
363 if (res < 0)
364 handle_write_error(mapping, page, res);
365 if (res == AOP_WRITEPAGE_ACTIVATE) {
366 ClearPageReclaim(page);
367 return PAGE_ACTIVATE;
369 if (!PageWriteback(page)) {
370 /* synchronous write or broken a_ops? */
371 ClearPageReclaim(page);
373 inc_zone_page_state(page, NR_VMSCAN_WRITE);
374 return PAGE_SUCCESS;
377 return PAGE_CLEAN;
381 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
382 * someone else has a ref on the page, abort and return 0. If it was
383 * successfully detached, return 1. Assumes the caller has a single ref on
384 * this page.
386 int remove_mapping(struct address_space *mapping, struct page *page)
388 BUG_ON(!PageLocked(page));
389 BUG_ON(mapping != page_mapping(page));
391 write_lock_irq(&mapping->tree_lock);
393 * The non racy check for a busy page.
395 * Must be careful with the order of the tests. When someone has
396 * a ref to the page, it may be possible that they dirty it then
397 * drop the reference. So if PageDirty is tested before page_count
398 * here, then the following race may occur:
400 * get_user_pages(&page);
401 * [user mapping goes away]
402 * write_to(page);
403 * !PageDirty(page) [good]
404 * SetPageDirty(page);
405 * put_page(page);
406 * !page_count(page) [good, discard it]
408 * [oops, our write_to data is lost]
410 * Reversing the order of the tests ensures such a situation cannot
411 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
412 * load is not satisfied before that of page->_count.
414 * Note that if SetPageDirty is always performed via set_page_dirty,
415 * and thus under tree_lock, then this ordering is not required.
417 if (unlikely(page_count(page) != 2))
418 goto cannot_free;
419 smp_rmb();
420 if (unlikely(PageDirty(page)))
421 goto cannot_free;
423 if (PageSwapCache(page)) {
424 swp_entry_t swap = { .val = page_private(page) };
425 __delete_from_swap_cache(page);
426 write_unlock_irq(&mapping->tree_lock);
427 swap_free(swap);
428 __put_page(page); /* The pagecache ref */
429 return 1;
432 __remove_from_page_cache(page);
433 write_unlock_irq(&mapping->tree_lock);
434 __put_page(page);
435 return 1;
437 cannot_free:
438 write_unlock_irq(&mapping->tree_lock);
439 return 0;
443 * shrink_page_list() returns the number of reclaimed pages
445 static unsigned long shrink_page_list(struct list_head *page_list,
446 struct scan_control *sc)
448 LIST_HEAD(ret_pages);
449 struct pagevec freed_pvec;
450 int pgactivate = 0;
451 unsigned long nr_reclaimed = 0;
453 cond_resched();
455 pagevec_init(&freed_pvec, 1);
456 while (!list_empty(page_list)) {
457 struct address_space *mapping;
458 struct page *page;
459 int may_enter_fs;
460 int referenced;
462 cond_resched();
464 page = lru_to_page(page_list);
465 list_del(&page->lru);
467 if (TestSetPageLocked(page))
468 goto keep;
470 VM_BUG_ON(PageActive(page));
472 sc->nr_scanned++;
474 if (!sc->may_swap && page_mapped(page))
475 goto keep_locked;
477 /* Double the slab pressure for mapped and swapcache pages */
478 if (page_mapped(page) || PageSwapCache(page))
479 sc->nr_scanned++;
481 if (PageWriteback(page))
482 goto keep_locked;
484 referenced = page_referenced(page, 1);
485 /* In active use or really unfreeable? Activate it. */
486 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
487 referenced && page_mapping_inuse(page))
488 goto activate_locked;
490 #ifdef CONFIG_SWAP
492 * Anonymous process memory has backing store?
493 * Try to allocate it some swap space here.
495 if (PageAnon(page) && !PageSwapCache(page))
496 if (!add_to_swap(page, GFP_ATOMIC))
497 goto activate_locked;
498 #endif /* CONFIG_SWAP */
500 mapping = page_mapping(page);
501 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
502 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
505 * The page is mapped into the page tables of one or more
506 * processes. Try to unmap it here.
508 if (page_mapped(page) && mapping) {
509 switch (try_to_unmap(page, 0)) {
510 case SWAP_FAIL:
511 goto activate_locked;
512 case SWAP_AGAIN:
513 goto keep_locked;
514 case SWAP_SUCCESS:
515 ; /* try to free the page below */
519 if (PageDirty(page)) {
520 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
521 goto keep_locked;
522 if (!may_enter_fs)
523 goto keep_locked;
524 if (!sc->may_writepage)
525 goto keep_locked;
527 /* Page is dirty, try to write it out here */
528 switch(pageout(page, mapping)) {
529 case PAGE_KEEP:
530 goto keep_locked;
531 case PAGE_ACTIVATE:
532 goto activate_locked;
533 case PAGE_SUCCESS:
534 if (PageWriteback(page) || PageDirty(page))
535 goto keep;
537 * A synchronous write - probably a ramdisk. Go
538 * ahead and try to reclaim the page.
540 if (TestSetPageLocked(page))
541 goto keep;
542 if (PageDirty(page) || PageWriteback(page))
543 goto keep_locked;
544 mapping = page_mapping(page);
545 case PAGE_CLEAN:
546 ; /* try to free the page below */
551 * If the page has buffers, try to free the buffer mappings
552 * associated with this page. If we succeed we try to free
553 * the page as well.
555 * We do this even if the page is PageDirty().
556 * try_to_release_page() does not perform I/O, but it is
557 * possible for a page to have PageDirty set, but it is actually
558 * clean (all its buffers are clean). This happens if the
559 * buffers were written out directly, with submit_bh(). ext3
560 * will do this, as well as the blockdev mapping.
561 * try_to_release_page() will discover that cleanness and will
562 * drop the buffers and mark the page clean - it can be freed.
564 * Rarely, pages can have buffers and no ->mapping. These are
565 * the pages which were not successfully invalidated in
566 * truncate_complete_page(). We try to drop those buffers here
567 * and if that worked, and the page is no longer mapped into
568 * process address space (page_count == 1) it can be freed.
569 * Otherwise, leave the page on the LRU so it is swappable.
571 if (PagePrivate(page)) {
572 if (!try_to_release_page(page, sc->gfp_mask))
573 goto activate_locked;
574 if (!mapping && page_count(page) == 1)
575 goto free_it;
578 if (!mapping || !remove_mapping(mapping, page))
579 goto keep_locked;
581 free_it:
582 unlock_page(page);
583 nr_reclaimed++;
584 if (!pagevec_add(&freed_pvec, page))
585 __pagevec_release_nonlru(&freed_pvec);
586 continue;
588 activate_locked:
589 SetPageActive(page);
590 pgactivate++;
591 keep_locked:
592 unlock_page(page);
593 keep:
594 list_add(&page->lru, &ret_pages);
595 VM_BUG_ON(PageLRU(page));
597 list_splice(&ret_pages, page_list);
598 if (pagevec_count(&freed_pvec))
599 __pagevec_release_nonlru(&freed_pvec);
600 count_vm_events(PGACTIVATE, pgactivate);
601 return nr_reclaimed;
604 /* LRU Isolation modes. */
605 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
606 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
607 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
610 * Attempt to remove the specified page from its LRU. Only take this page
611 * if it is of the appropriate PageActive status. Pages which are being
612 * freed elsewhere are also ignored.
614 * page: page to consider
615 * mode: one of the LRU isolation modes defined above
617 * returns 0 on success, -ve errno on failure.
619 static int __isolate_lru_page(struct page *page, int mode)
621 int ret = -EINVAL;
623 /* Only take pages on the LRU. */
624 if (!PageLRU(page))
625 return ret;
628 * When checking the active state, we need to be sure we are
629 * dealing with comparible boolean values. Take the logical not
630 * of each.
632 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
633 return ret;
635 ret = -EBUSY;
636 if (likely(get_page_unless_zero(page))) {
638 * Be careful not to clear PageLRU until after we're
639 * sure the page is not being freed elsewhere -- the
640 * page release code relies on it.
642 ClearPageLRU(page);
643 ret = 0;
646 return ret;
650 * zone->lru_lock is heavily contended. Some of the functions that
651 * shrink the lists perform better by taking out a batch of pages
652 * and working on them outside the LRU lock.
654 * For pagecache intensive workloads, this function is the hottest
655 * spot in the kernel (apart from copy_*_user functions).
657 * Appropriate locks must be held before calling this function.
659 * @nr_to_scan: The number of pages to look through on the list.
660 * @src: The LRU list to pull pages off.
661 * @dst: The temp list to put pages on to.
662 * @scanned: The number of pages that were scanned.
663 * @order: The caller's attempted allocation order
664 * @mode: One of the LRU isolation modes
666 * returns how many pages were moved onto *@dst.
668 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
669 struct list_head *src, struct list_head *dst,
670 unsigned long *scanned, int order, int mode)
672 unsigned long nr_taken = 0;
673 unsigned long scan;
675 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
676 struct page *page;
677 unsigned long pfn;
678 unsigned long end_pfn;
679 unsigned long page_pfn;
680 int zone_id;
682 page = lru_to_page(src);
683 prefetchw_prev_lru_page(page, src, flags);
685 VM_BUG_ON(!PageLRU(page));
687 switch (__isolate_lru_page(page, mode)) {
688 case 0:
689 list_move(&page->lru, dst);
690 nr_taken++;
691 break;
693 case -EBUSY:
694 /* else it is being freed elsewhere */
695 list_move(&page->lru, src);
696 continue;
698 default:
699 BUG();
702 if (!order)
703 continue;
706 * Attempt to take all pages in the order aligned region
707 * surrounding the tag page. Only take those pages of
708 * the same active state as that tag page. We may safely
709 * round the target page pfn down to the requested order
710 * as the mem_map is guarenteed valid out to MAX_ORDER,
711 * where that page is in a different zone we will detect
712 * it from its zone id and abort this block scan.
714 zone_id = page_zone_id(page);
715 page_pfn = page_to_pfn(page);
716 pfn = page_pfn & ~((1 << order) - 1);
717 end_pfn = pfn + (1 << order);
718 for (; pfn < end_pfn; pfn++) {
719 struct page *cursor_page;
721 /* The target page is in the block, ignore it. */
722 if (unlikely(pfn == page_pfn))
723 continue;
725 /* Avoid holes within the zone. */
726 if (unlikely(!pfn_valid_within(pfn)))
727 break;
729 cursor_page = pfn_to_page(pfn);
730 /* Check that we have not crossed a zone boundary. */
731 if (unlikely(page_zone_id(cursor_page) != zone_id))
732 continue;
733 switch (__isolate_lru_page(cursor_page, mode)) {
734 case 0:
735 list_move(&cursor_page->lru, dst);
736 nr_taken++;
737 scan++;
738 break;
740 case -EBUSY:
741 /* else it is being freed elsewhere */
742 list_move(&cursor_page->lru, src);
743 default:
744 break;
749 *scanned = scan;
750 return nr_taken;
754 * clear_active_flags() is a helper for shrink_active_list(), clearing
755 * any active bits from the pages in the list.
757 static unsigned long clear_active_flags(struct list_head *page_list)
759 int nr_active = 0;
760 struct page *page;
762 list_for_each_entry(page, page_list, lru)
763 if (PageActive(page)) {
764 ClearPageActive(page);
765 nr_active++;
768 return nr_active;
772 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
773 * of reclaimed pages
775 static unsigned long shrink_inactive_list(unsigned long max_scan,
776 struct zone *zone, struct scan_control *sc)
778 LIST_HEAD(page_list);
779 struct pagevec pvec;
780 unsigned long nr_scanned = 0;
781 unsigned long nr_reclaimed = 0;
783 pagevec_init(&pvec, 1);
785 lru_add_drain();
786 spin_lock_irq(&zone->lru_lock);
787 do {
788 struct page *page;
789 unsigned long nr_taken;
790 unsigned long nr_scan;
791 unsigned long nr_freed;
792 unsigned long nr_active;
794 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
795 &zone->inactive_list,
796 &page_list, &nr_scan, sc->order,
797 (sc->order > PAGE_ALLOC_COSTLY_ORDER)?
798 ISOLATE_BOTH : ISOLATE_INACTIVE);
799 nr_active = clear_active_flags(&page_list);
801 __mod_zone_page_state(zone, NR_ACTIVE, -nr_active);
802 __mod_zone_page_state(zone, NR_INACTIVE,
803 -(nr_taken - nr_active));
804 zone->pages_scanned += nr_scan;
805 spin_unlock_irq(&zone->lru_lock);
807 nr_scanned += nr_scan;
808 nr_freed = shrink_page_list(&page_list, sc);
809 nr_reclaimed += nr_freed;
810 local_irq_disable();
811 if (current_is_kswapd()) {
812 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
813 __count_vm_events(KSWAPD_STEAL, nr_freed);
814 } else
815 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
816 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
818 if (nr_taken == 0)
819 goto done;
821 spin_lock(&zone->lru_lock);
823 * Put back any unfreeable pages.
825 while (!list_empty(&page_list)) {
826 page = lru_to_page(&page_list);
827 VM_BUG_ON(PageLRU(page));
828 SetPageLRU(page);
829 list_del(&page->lru);
830 if (PageActive(page))
831 add_page_to_active_list(zone, page);
832 else
833 add_page_to_inactive_list(zone, page);
834 if (!pagevec_add(&pvec, page)) {
835 spin_unlock_irq(&zone->lru_lock);
836 __pagevec_release(&pvec);
837 spin_lock_irq(&zone->lru_lock);
840 } while (nr_scanned < max_scan);
841 spin_unlock(&zone->lru_lock);
842 done:
843 local_irq_enable();
844 pagevec_release(&pvec);
845 return nr_reclaimed;
849 * We are about to scan this zone at a certain priority level. If that priority
850 * level is smaller (ie: more urgent) than the previous priority, then note
851 * that priority level within the zone. This is done so that when the next
852 * process comes in to scan this zone, it will immediately start out at this
853 * priority level rather than having to build up its own scanning priority.
854 * Here, this priority affects only the reclaim-mapped threshold.
856 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
858 if (priority < zone->prev_priority)
859 zone->prev_priority = priority;
862 static inline int zone_is_near_oom(struct zone *zone)
864 return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
865 + zone_page_state(zone, NR_INACTIVE))*3;
869 * This moves pages from the active list to the inactive list.
871 * We move them the other way if the page is referenced by one or more
872 * processes, from rmap.
874 * If the pages are mostly unmapped, the processing is fast and it is
875 * appropriate to hold zone->lru_lock across the whole operation. But if
876 * the pages are mapped, the processing is slow (page_referenced()) so we
877 * should drop zone->lru_lock around each page. It's impossible to balance
878 * this, so instead we remove the pages from the LRU while processing them.
879 * It is safe to rely on PG_active against the non-LRU pages in here because
880 * nobody will play with that bit on a non-LRU page.
882 * The downside is that we have to touch page->_count against each page.
883 * But we had to alter page->flags anyway.
885 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
886 struct scan_control *sc, int priority)
888 unsigned long pgmoved;
889 int pgdeactivate = 0;
890 unsigned long pgscanned;
891 LIST_HEAD(l_hold); /* The pages which were snipped off */
892 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
893 LIST_HEAD(l_active); /* Pages to go onto the active_list */
894 struct page *page;
895 struct pagevec pvec;
896 int reclaim_mapped = 0;
898 if (sc->may_swap) {
899 long mapped_ratio;
900 long distress;
901 long swap_tendency;
903 if (zone_is_near_oom(zone))
904 goto force_reclaim_mapped;
907 * `distress' is a measure of how much trouble we're having
908 * reclaiming pages. 0 -> no problems. 100 -> great trouble.
910 distress = 100 >> min(zone->prev_priority, priority);
913 * The point of this algorithm is to decide when to start
914 * reclaiming mapped memory instead of just pagecache. Work out
915 * how much memory
916 * is mapped.
918 mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
919 global_page_state(NR_ANON_PAGES)) * 100) /
920 vm_total_pages;
923 * Now decide how much we really want to unmap some pages. The
924 * mapped ratio is downgraded - just because there's a lot of
925 * mapped memory doesn't necessarily mean that page reclaim
926 * isn't succeeding.
928 * The distress ratio is important - we don't want to start
929 * going oom.
931 * A 100% value of vm_swappiness overrides this algorithm
932 * altogether.
934 swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
937 * Now use this metric to decide whether to start moving mapped
938 * memory onto the inactive list.
940 if (swap_tendency >= 100)
941 force_reclaim_mapped:
942 reclaim_mapped = 1;
945 lru_add_drain();
946 spin_lock_irq(&zone->lru_lock);
947 pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
948 &l_hold, &pgscanned, sc->order, ISOLATE_ACTIVE);
949 zone->pages_scanned += pgscanned;
950 __mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
951 spin_unlock_irq(&zone->lru_lock);
953 while (!list_empty(&l_hold)) {
954 cond_resched();
955 page = lru_to_page(&l_hold);
956 list_del(&page->lru);
957 if (page_mapped(page)) {
958 if (!reclaim_mapped ||
959 (total_swap_pages == 0 && PageAnon(page)) ||
960 page_referenced(page, 0)) {
961 list_add(&page->lru, &l_active);
962 continue;
965 list_add(&page->lru, &l_inactive);
968 pagevec_init(&pvec, 1);
969 pgmoved = 0;
970 spin_lock_irq(&zone->lru_lock);
971 while (!list_empty(&l_inactive)) {
972 page = lru_to_page(&l_inactive);
973 prefetchw_prev_lru_page(page, &l_inactive, flags);
974 VM_BUG_ON(PageLRU(page));
975 SetPageLRU(page);
976 VM_BUG_ON(!PageActive(page));
977 ClearPageActive(page);
979 list_move(&page->lru, &zone->inactive_list);
980 pgmoved++;
981 if (!pagevec_add(&pvec, page)) {
982 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
983 spin_unlock_irq(&zone->lru_lock);
984 pgdeactivate += pgmoved;
985 pgmoved = 0;
986 if (buffer_heads_over_limit)
987 pagevec_strip(&pvec);
988 __pagevec_release(&pvec);
989 spin_lock_irq(&zone->lru_lock);
992 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
993 pgdeactivate += pgmoved;
994 if (buffer_heads_over_limit) {
995 spin_unlock_irq(&zone->lru_lock);
996 pagevec_strip(&pvec);
997 spin_lock_irq(&zone->lru_lock);
1000 pgmoved = 0;
1001 while (!list_empty(&l_active)) {
1002 page = lru_to_page(&l_active);
1003 prefetchw_prev_lru_page(page, &l_active, flags);
1004 VM_BUG_ON(PageLRU(page));
1005 SetPageLRU(page);
1006 VM_BUG_ON(!PageActive(page));
1007 list_move(&page->lru, &zone->active_list);
1008 pgmoved++;
1009 if (!pagevec_add(&pvec, page)) {
1010 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1011 pgmoved = 0;
1012 spin_unlock_irq(&zone->lru_lock);
1013 __pagevec_release(&pvec);
1014 spin_lock_irq(&zone->lru_lock);
1017 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1019 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1020 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1021 spin_unlock_irq(&zone->lru_lock);
1023 pagevec_release(&pvec);
1027 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1029 static unsigned long shrink_zone(int priority, struct zone *zone,
1030 struct scan_control *sc)
1032 unsigned long nr_active;
1033 unsigned long nr_inactive;
1034 unsigned long nr_to_scan;
1035 unsigned long nr_reclaimed = 0;
1037 atomic_inc(&zone->reclaim_in_progress);
1040 * Add one to `nr_to_scan' just to make sure that the kernel will
1041 * slowly sift through the active list.
1043 zone->nr_scan_active +=
1044 (zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
1045 nr_active = zone->nr_scan_active;
1046 if (nr_active >= sc->swap_cluster_max)
1047 zone->nr_scan_active = 0;
1048 else
1049 nr_active = 0;
1051 zone->nr_scan_inactive +=
1052 (zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
1053 nr_inactive = zone->nr_scan_inactive;
1054 if (nr_inactive >= sc->swap_cluster_max)
1055 zone->nr_scan_inactive = 0;
1056 else
1057 nr_inactive = 0;
1059 while (nr_active || nr_inactive) {
1060 if (nr_active) {
1061 nr_to_scan = min(nr_active,
1062 (unsigned long)sc->swap_cluster_max);
1063 nr_active -= nr_to_scan;
1064 shrink_active_list(nr_to_scan, zone, sc, priority);
1067 if (nr_inactive) {
1068 nr_to_scan = min(nr_inactive,
1069 (unsigned long)sc->swap_cluster_max);
1070 nr_inactive -= nr_to_scan;
1071 nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
1072 sc);
1076 throttle_vm_writeout(sc->gfp_mask);
1078 atomic_dec(&zone->reclaim_in_progress);
1079 return nr_reclaimed;
1083 * This is the direct reclaim path, for page-allocating processes. We only
1084 * try to reclaim pages from zones which will satisfy the caller's allocation
1085 * request.
1087 * We reclaim from a zone even if that zone is over pages_high. Because:
1088 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1089 * allocation or
1090 * b) The zones may be over pages_high but they must go *over* pages_high to
1091 * satisfy the `incremental min' zone defense algorithm.
1093 * Returns the number of reclaimed pages.
1095 * If a zone is deemed to be full of pinned pages then just give it a light
1096 * scan then give up on it.
1098 static unsigned long shrink_zones(int priority, struct zone **zones,
1099 struct scan_control *sc)
1101 unsigned long nr_reclaimed = 0;
1102 int i;
1104 sc->all_unreclaimable = 1;
1105 for (i = 0; zones[i] != NULL; i++) {
1106 struct zone *zone = zones[i];
1108 if (!populated_zone(zone))
1109 continue;
1111 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1112 continue;
1114 note_zone_scanning_priority(zone, priority);
1116 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1117 continue; /* Let kswapd poll it */
1119 sc->all_unreclaimable = 0;
1121 nr_reclaimed += shrink_zone(priority, zone, sc);
1123 return nr_reclaimed;
1127 * This is the main entry point to direct page reclaim.
1129 * If a full scan of the inactive list fails to free enough memory then we
1130 * are "out of memory" and something needs to be killed.
1132 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1133 * high - the zone may be full of dirty or under-writeback pages, which this
1134 * caller can't do much about. We kick pdflush and take explicit naps in the
1135 * hope that some of these pages can be written. But if the allocating task
1136 * holds filesystem locks which prevent writeout this might not work, and the
1137 * allocation attempt will fail.
1139 unsigned long try_to_free_pages(struct zone **zones, int order, gfp_t gfp_mask)
1141 int priority;
1142 int ret = 0;
1143 unsigned long total_scanned = 0;
1144 unsigned long nr_reclaimed = 0;
1145 struct reclaim_state *reclaim_state = current->reclaim_state;
1146 unsigned long lru_pages = 0;
1147 int i;
1148 struct scan_control sc = {
1149 .gfp_mask = gfp_mask,
1150 .may_writepage = !laptop_mode,
1151 .swap_cluster_max = SWAP_CLUSTER_MAX,
1152 .may_swap = 1,
1153 .swappiness = vm_swappiness,
1154 .order = order,
1157 count_vm_event(ALLOCSTALL);
1159 for (i = 0; zones[i] != NULL; i++) {
1160 struct zone *zone = zones[i];
1162 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1163 continue;
1165 lru_pages += zone_page_state(zone, NR_ACTIVE)
1166 + zone_page_state(zone, NR_INACTIVE);
1169 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1170 sc.nr_scanned = 0;
1171 if (!priority)
1172 disable_swap_token();
1173 nr_reclaimed += shrink_zones(priority, zones, &sc);
1174 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1175 if (reclaim_state) {
1176 nr_reclaimed += reclaim_state->reclaimed_slab;
1177 reclaim_state->reclaimed_slab = 0;
1179 total_scanned += sc.nr_scanned;
1180 if (nr_reclaimed >= sc.swap_cluster_max) {
1181 ret = 1;
1182 goto out;
1186 * Try to write back as many pages as we just scanned. This
1187 * tends to cause slow streaming writers to write data to the
1188 * disk smoothly, at the dirtying rate, which is nice. But
1189 * that's undesirable in laptop mode, where we *want* lumpy
1190 * writeout. So in laptop mode, write out the whole world.
1192 if (total_scanned > sc.swap_cluster_max +
1193 sc.swap_cluster_max / 2) {
1194 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1195 sc.may_writepage = 1;
1198 /* Take a nap, wait for some writeback to complete */
1199 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1200 congestion_wait(WRITE, HZ/10);
1202 /* top priority shrink_caches still had more to do? don't OOM, then */
1203 if (!sc.all_unreclaimable)
1204 ret = 1;
1205 out:
1207 * Now that we've scanned all the zones at this priority level, note
1208 * that level within the zone so that the next thread which performs
1209 * scanning of this zone will immediately start out at this priority
1210 * level. This affects only the decision whether or not to bring
1211 * mapped pages onto the inactive list.
1213 if (priority < 0)
1214 priority = 0;
1215 for (i = 0; zones[i] != 0; i++) {
1216 struct zone *zone = zones[i];
1218 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1219 continue;
1221 zone->prev_priority = priority;
1223 return ret;
1227 * For kswapd, balance_pgdat() will work across all this node's zones until
1228 * they are all at pages_high.
1230 * Returns the number of pages which were actually freed.
1232 * There is special handling here for zones which are full of pinned pages.
1233 * This can happen if the pages are all mlocked, or if they are all used by
1234 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1235 * What we do is to detect the case where all pages in the zone have been
1236 * scanned twice and there has been zero successful reclaim. Mark the zone as
1237 * dead and from now on, only perform a short scan. Basically we're polling
1238 * the zone for when the problem goes away.
1240 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1241 * zones which have free_pages > pages_high, but once a zone is found to have
1242 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1243 * of the number of free pages in the lower zones. This interoperates with
1244 * the page allocator fallback scheme to ensure that aging of pages is balanced
1245 * across the zones.
1247 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1249 int all_zones_ok;
1250 int priority;
1251 int i;
1252 unsigned long total_scanned;
1253 unsigned long nr_reclaimed;
1254 struct reclaim_state *reclaim_state = current->reclaim_state;
1255 struct scan_control sc = {
1256 .gfp_mask = GFP_KERNEL,
1257 .may_swap = 1,
1258 .swap_cluster_max = SWAP_CLUSTER_MAX,
1259 .swappiness = vm_swappiness,
1260 .order = order,
1263 * temp_priority is used to remember the scanning priority at which
1264 * this zone was successfully refilled to free_pages == pages_high.
1266 int temp_priority[MAX_NR_ZONES];
1268 loop_again:
1269 total_scanned = 0;
1270 nr_reclaimed = 0;
1271 sc.may_writepage = !laptop_mode;
1272 count_vm_event(PAGEOUTRUN);
1274 for (i = 0; i < pgdat->nr_zones; i++)
1275 temp_priority[i] = DEF_PRIORITY;
1277 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1278 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1279 unsigned long lru_pages = 0;
1281 /* The swap token gets in the way of swapout... */
1282 if (!priority)
1283 disable_swap_token();
1285 all_zones_ok = 1;
1288 * Scan in the highmem->dma direction for the highest
1289 * zone which needs scanning
1291 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1292 struct zone *zone = pgdat->node_zones + i;
1294 if (!populated_zone(zone))
1295 continue;
1297 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1298 continue;
1300 if (!zone_watermark_ok(zone, order, zone->pages_high,
1301 0, 0)) {
1302 end_zone = i;
1303 break;
1306 if (i < 0)
1307 goto out;
1309 for (i = 0; i <= end_zone; i++) {
1310 struct zone *zone = pgdat->node_zones + i;
1312 lru_pages += zone_page_state(zone, NR_ACTIVE)
1313 + zone_page_state(zone, NR_INACTIVE);
1317 * Now scan the zone in the dma->highmem direction, stopping
1318 * at the last zone which needs scanning.
1320 * We do this because the page allocator works in the opposite
1321 * direction. This prevents the page allocator from allocating
1322 * pages behind kswapd's direction of progress, which would
1323 * cause too much scanning of the lower zones.
1325 for (i = 0; i <= end_zone; i++) {
1326 struct zone *zone = pgdat->node_zones + i;
1327 int nr_slab;
1329 if (!populated_zone(zone))
1330 continue;
1332 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1333 continue;
1335 if (!zone_watermark_ok(zone, order, zone->pages_high,
1336 end_zone, 0))
1337 all_zones_ok = 0;
1338 temp_priority[i] = priority;
1339 sc.nr_scanned = 0;
1340 note_zone_scanning_priority(zone, priority);
1341 nr_reclaimed += shrink_zone(priority, zone, &sc);
1342 reclaim_state->reclaimed_slab = 0;
1343 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1344 lru_pages);
1345 nr_reclaimed += reclaim_state->reclaimed_slab;
1346 total_scanned += sc.nr_scanned;
1347 if (zone->all_unreclaimable)
1348 continue;
1349 if (nr_slab == 0 && zone->pages_scanned >=
1350 (zone_page_state(zone, NR_ACTIVE)
1351 + zone_page_state(zone, NR_INACTIVE)) * 6)
1352 zone->all_unreclaimable = 1;
1354 * If we've done a decent amount of scanning and
1355 * the reclaim ratio is low, start doing writepage
1356 * even in laptop mode
1358 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1359 total_scanned > nr_reclaimed + nr_reclaimed / 2)
1360 sc.may_writepage = 1;
1362 if (all_zones_ok)
1363 break; /* kswapd: all done */
1365 * OK, kswapd is getting into trouble. Take a nap, then take
1366 * another pass across the zones.
1368 if (total_scanned && priority < DEF_PRIORITY - 2)
1369 congestion_wait(WRITE, HZ/10);
1372 * We do this so kswapd doesn't build up large priorities for
1373 * example when it is freeing in parallel with allocators. It
1374 * matches the direct reclaim path behaviour in terms of impact
1375 * on zone->*_priority.
1377 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1378 break;
1380 out:
1382 * Note within each zone the priority level at which this zone was
1383 * brought into a happy state. So that the next thread which scans this
1384 * zone will start out at that priority level.
1386 for (i = 0; i < pgdat->nr_zones; i++) {
1387 struct zone *zone = pgdat->node_zones + i;
1389 zone->prev_priority = temp_priority[i];
1391 if (!all_zones_ok) {
1392 cond_resched();
1394 try_to_freeze();
1396 goto loop_again;
1399 return nr_reclaimed;
1403 * The background pageout daemon, started as a kernel thread
1404 * from the init process.
1406 * This basically trickles out pages so that we have _some_
1407 * free memory available even if there is no other activity
1408 * that frees anything up. This is needed for things like routing
1409 * etc, where we otherwise might have all activity going on in
1410 * asynchronous contexts that cannot page things out.
1412 * If there are applications that are active memory-allocators
1413 * (most normal use), this basically shouldn't matter.
1415 static int kswapd(void *p)
1417 unsigned long order;
1418 pg_data_t *pgdat = (pg_data_t*)p;
1419 struct task_struct *tsk = current;
1420 DEFINE_WAIT(wait);
1421 struct reclaim_state reclaim_state = {
1422 .reclaimed_slab = 0,
1424 cpumask_t cpumask;
1426 cpumask = node_to_cpumask(pgdat->node_id);
1427 if (!cpus_empty(cpumask))
1428 set_cpus_allowed(tsk, cpumask);
1429 current->reclaim_state = &reclaim_state;
1432 * Tell the memory management that we're a "memory allocator",
1433 * and that if we need more memory we should get access to it
1434 * regardless (see "__alloc_pages()"). "kswapd" should
1435 * never get caught in the normal page freeing logic.
1437 * (Kswapd normally doesn't need memory anyway, but sometimes
1438 * you need a small amount of memory in order to be able to
1439 * page out something else, and this flag essentially protects
1440 * us from recursively trying to free more memory as we're
1441 * trying to free the first piece of memory in the first place).
1443 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1445 order = 0;
1446 for ( ; ; ) {
1447 unsigned long new_order;
1449 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1450 new_order = pgdat->kswapd_max_order;
1451 pgdat->kswapd_max_order = 0;
1452 if (order < new_order) {
1454 * Don't sleep if someone wants a larger 'order'
1455 * allocation
1457 order = new_order;
1458 } else {
1459 if (!freezing(current))
1460 schedule();
1462 order = pgdat->kswapd_max_order;
1464 finish_wait(&pgdat->kswapd_wait, &wait);
1466 if (!try_to_freeze()) {
1467 /* We can speed up thawing tasks if we don't call
1468 * balance_pgdat after returning from the refrigerator
1470 balance_pgdat(pgdat, order);
1473 return 0;
1477 * A zone is low on free memory, so wake its kswapd task to service it.
1479 void wakeup_kswapd(struct zone *zone, int order)
1481 pg_data_t *pgdat;
1483 if (!populated_zone(zone))
1484 return;
1486 pgdat = zone->zone_pgdat;
1487 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1488 return;
1489 if (pgdat->kswapd_max_order < order)
1490 pgdat->kswapd_max_order = order;
1491 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1492 return;
1493 if (!waitqueue_active(&pgdat->kswapd_wait))
1494 return;
1495 wake_up_interruptible(&pgdat->kswapd_wait);
1498 #ifdef CONFIG_PM
1500 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1501 * from LRU lists system-wide, for given pass and priority, and returns the
1502 * number of reclaimed pages
1504 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1506 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1507 int pass, struct scan_control *sc)
1509 struct zone *zone;
1510 unsigned long nr_to_scan, ret = 0;
1512 for_each_zone(zone) {
1514 if (!populated_zone(zone))
1515 continue;
1517 if (zone->all_unreclaimable && prio != DEF_PRIORITY)
1518 continue;
1520 /* For pass = 0 we don't shrink the active list */
1521 if (pass > 0) {
1522 zone->nr_scan_active +=
1523 (zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
1524 if (zone->nr_scan_active >= nr_pages || pass > 3) {
1525 zone->nr_scan_active = 0;
1526 nr_to_scan = min(nr_pages,
1527 zone_page_state(zone, NR_ACTIVE));
1528 shrink_active_list(nr_to_scan, zone, sc, prio);
1532 zone->nr_scan_inactive +=
1533 (zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
1534 if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1535 zone->nr_scan_inactive = 0;
1536 nr_to_scan = min(nr_pages,
1537 zone_page_state(zone, NR_INACTIVE));
1538 ret += shrink_inactive_list(nr_to_scan, zone, sc);
1539 if (ret >= nr_pages)
1540 return ret;
1544 return ret;
1547 static unsigned long count_lru_pages(void)
1549 return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
1553 * Try to free `nr_pages' of memory, system-wide, and return the number of
1554 * freed pages.
1556 * Rather than trying to age LRUs the aim is to preserve the overall
1557 * LRU order by reclaiming preferentially
1558 * inactive > active > active referenced > active mapped
1560 unsigned long shrink_all_memory(unsigned long nr_pages)
1562 unsigned long lru_pages, nr_slab;
1563 unsigned long ret = 0;
1564 int pass;
1565 struct reclaim_state reclaim_state;
1566 struct scan_control sc = {
1567 .gfp_mask = GFP_KERNEL,
1568 .may_swap = 0,
1569 .swap_cluster_max = nr_pages,
1570 .may_writepage = 1,
1571 .swappiness = vm_swappiness,
1574 current->reclaim_state = &reclaim_state;
1576 lru_pages = count_lru_pages();
1577 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1578 /* If slab caches are huge, it's better to hit them first */
1579 while (nr_slab >= lru_pages) {
1580 reclaim_state.reclaimed_slab = 0;
1581 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1582 if (!reclaim_state.reclaimed_slab)
1583 break;
1585 ret += reclaim_state.reclaimed_slab;
1586 if (ret >= nr_pages)
1587 goto out;
1589 nr_slab -= reclaim_state.reclaimed_slab;
1593 * We try to shrink LRUs in 5 passes:
1594 * 0 = Reclaim from inactive_list only
1595 * 1 = Reclaim from active list but don't reclaim mapped
1596 * 2 = 2nd pass of type 1
1597 * 3 = Reclaim mapped (normal reclaim)
1598 * 4 = 2nd pass of type 3
1600 for (pass = 0; pass < 5; pass++) {
1601 int prio;
1603 /* Force reclaiming mapped pages in the passes #3 and #4 */
1604 if (pass > 2) {
1605 sc.may_swap = 1;
1606 sc.swappiness = 100;
1609 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1610 unsigned long nr_to_scan = nr_pages - ret;
1612 sc.nr_scanned = 0;
1613 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1614 if (ret >= nr_pages)
1615 goto out;
1617 reclaim_state.reclaimed_slab = 0;
1618 shrink_slab(sc.nr_scanned, sc.gfp_mask,
1619 count_lru_pages());
1620 ret += reclaim_state.reclaimed_slab;
1621 if (ret >= nr_pages)
1622 goto out;
1624 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1625 congestion_wait(WRITE, HZ / 10);
1630 * If ret = 0, we could not shrink LRUs, but there may be something
1631 * in slab caches
1633 if (!ret) {
1634 do {
1635 reclaim_state.reclaimed_slab = 0;
1636 shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
1637 ret += reclaim_state.reclaimed_slab;
1638 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1641 out:
1642 current->reclaim_state = NULL;
1644 return ret;
1646 #endif
1648 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1649 not required for correctness. So if the last cpu in a node goes
1650 away, we get changed to run anywhere: as the first one comes back,
1651 restore their cpu bindings. */
1652 static int __devinit cpu_callback(struct notifier_block *nfb,
1653 unsigned long action, void *hcpu)
1655 pg_data_t *pgdat;
1656 cpumask_t mask;
1658 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1659 for_each_online_pgdat(pgdat) {
1660 mask = node_to_cpumask(pgdat->node_id);
1661 if (any_online_cpu(mask) != NR_CPUS)
1662 /* One of our CPUs online: restore mask */
1663 set_cpus_allowed(pgdat->kswapd, mask);
1666 return NOTIFY_OK;
1670 * This kswapd start function will be called by init and node-hot-add.
1671 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1673 int kswapd_run(int nid)
1675 pg_data_t *pgdat = NODE_DATA(nid);
1676 int ret = 0;
1678 if (pgdat->kswapd)
1679 return 0;
1681 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1682 if (IS_ERR(pgdat->kswapd)) {
1683 /* failure at boot is fatal */
1684 BUG_ON(system_state == SYSTEM_BOOTING);
1685 printk("Failed to start kswapd on node %d\n",nid);
1686 ret = -1;
1688 return ret;
1691 static int __init kswapd_init(void)
1693 int nid;
1695 swap_setup();
1696 for_each_online_node(nid)
1697 kswapd_run(nid);
1698 hotcpu_notifier(cpu_callback, 0);
1699 return 0;
1702 module_init(kswapd_init)
1704 #ifdef CONFIG_NUMA
1706 * Zone reclaim mode
1708 * If non-zero call zone_reclaim when the number of free pages falls below
1709 * the watermarks.
1711 int zone_reclaim_mode __read_mostly;
1713 #define RECLAIM_OFF 0
1714 #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
1715 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
1716 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
1719 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1720 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1721 * a zone.
1723 #define ZONE_RECLAIM_PRIORITY 4
1726 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1727 * occur.
1729 int sysctl_min_unmapped_ratio = 1;
1732 * If the number of slab pages in a zone grows beyond this percentage then
1733 * slab reclaim needs to occur.
1735 int sysctl_min_slab_ratio = 5;
1738 * Try to free up some pages from this zone through reclaim.
1740 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1742 /* Minimum pages needed in order to stay on node */
1743 const unsigned long nr_pages = 1 << order;
1744 struct task_struct *p = current;
1745 struct reclaim_state reclaim_state;
1746 int priority;
1747 unsigned long nr_reclaimed = 0;
1748 struct scan_control sc = {
1749 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1750 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1751 .swap_cluster_max = max_t(unsigned long, nr_pages,
1752 SWAP_CLUSTER_MAX),
1753 .gfp_mask = gfp_mask,
1754 .swappiness = vm_swappiness,
1756 unsigned long slab_reclaimable;
1758 disable_swap_token();
1759 cond_resched();
1761 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1762 * and we also need to be able to write out pages for RECLAIM_WRITE
1763 * and RECLAIM_SWAP.
1765 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1766 reclaim_state.reclaimed_slab = 0;
1767 p->reclaim_state = &reclaim_state;
1769 if (zone_page_state(zone, NR_FILE_PAGES) -
1770 zone_page_state(zone, NR_FILE_MAPPED) >
1771 zone->min_unmapped_pages) {
1773 * Free memory by calling shrink zone with increasing
1774 * priorities until we have enough memory freed.
1776 priority = ZONE_RECLAIM_PRIORITY;
1777 do {
1778 note_zone_scanning_priority(zone, priority);
1779 nr_reclaimed += shrink_zone(priority, zone, &sc);
1780 priority--;
1781 } while (priority >= 0 && nr_reclaimed < nr_pages);
1784 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1785 if (slab_reclaimable > zone->min_slab_pages) {
1787 * shrink_slab() does not currently allow us to determine how
1788 * many pages were freed in this zone. So we take the current
1789 * number of slab pages and shake the slab until it is reduced
1790 * by the same nr_pages that we used for reclaiming unmapped
1791 * pages.
1793 * Note that shrink_slab will free memory on all zones and may
1794 * take a long time.
1796 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
1797 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
1798 slab_reclaimable - nr_pages)
1802 * Update nr_reclaimed by the number of slab pages we
1803 * reclaimed from this zone.
1805 nr_reclaimed += slab_reclaimable -
1806 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
1809 p->reclaim_state = NULL;
1810 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1811 return nr_reclaimed >= nr_pages;
1814 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1816 cpumask_t mask;
1817 int node_id;
1820 * Zone reclaim reclaims unmapped file backed pages and
1821 * slab pages if we are over the defined limits.
1823 * A small portion of unmapped file backed pages is needed for
1824 * file I/O otherwise pages read by file I/O will be immediately
1825 * thrown out if the zone is overallocated. So we do not reclaim
1826 * if less than a specified percentage of the zone is used by
1827 * unmapped file backed pages.
1829 if (zone_page_state(zone, NR_FILE_PAGES) -
1830 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
1831 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
1832 <= zone->min_slab_pages)
1833 return 0;
1836 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1837 * not have reclaimable pages and if we should not delay the allocation
1838 * then do not scan.
1840 if (!(gfp_mask & __GFP_WAIT) ||
1841 zone->all_unreclaimable ||
1842 atomic_read(&zone->reclaim_in_progress) > 0 ||
1843 (current->flags & PF_MEMALLOC))
1844 return 0;
1847 * Only run zone reclaim on the local zone or on zones that do not
1848 * have associated processors. This will favor the local processor
1849 * over remote processors and spread off node memory allocations
1850 * as wide as possible.
1852 node_id = zone_to_nid(zone);
1853 mask = node_to_cpumask(node_id);
1854 if (!cpus_empty(mask) && node_id != numa_node_id())
1855 return 0;
1856 return __zone_reclaim(zone, gfp_mask, order);
1858 #endif