4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
44 #include <linux/swapops.h>
49 /* Incremented by the number of inactive pages that were scanned */
50 unsigned long nr_scanned
;
52 /* This context's GFP mask */
57 /* Can pages be swapped as part of reclaim? */
60 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
61 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
62 * In this context, it doesn't matter that we scan the
63 * whole list at once. */
68 int all_unreclaimable
;
74 * The list of shrinker callbacks used by to apply pressure to
79 struct list_head list
;
80 int seeks
; /* seeks to recreate an obj */
81 long nr
; /* objs pending delete */
84 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
86 #ifdef ARCH_HAS_PREFETCH
87 #define prefetch_prev_lru_page(_page, _base, _field) \
89 if ((_page)->lru.prev != _base) { \
92 prev = lru_to_page(&(_page->lru)); \
93 prefetch(&prev->_field); \
97 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
100 #ifdef ARCH_HAS_PREFETCHW
101 #define prefetchw_prev_lru_page(_page, _base, _field) \
103 if ((_page)->lru.prev != _base) { \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetchw(&prev->_field); \
111 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
115 * From 0 .. 100. Higher means more swappy.
117 int vm_swappiness
= 60;
118 long vm_total_pages
; /* The total number of pages which the VM controls */
120 static LIST_HEAD(shrinker_list
);
121 static DECLARE_RWSEM(shrinker_rwsem
);
124 * Add a shrinker callback to be called from the vm
126 struct shrinker
*set_shrinker(int seeks
, shrinker_t theshrinker
)
128 struct shrinker
*shrinker
;
130 shrinker
= kmalloc(sizeof(*shrinker
), GFP_KERNEL
);
132 shrinker
->shrinker
= theshrinker
;
133 shrinker
->seeks
= seeks
;
135 down_write(&shrinker_rwsem
);
136 list_add_tail(&shrinker
->list
, &shrinker_list
);
137 up_write(&shrinker_rwsem
);
141 EXPORT_SYMBOL(set_shrinker
);
146 void remove_shrinker(struct shrinker
*shrinker
)
148 down_write(&shrinker_rwsem
);
149 list_del(&shrinker
->list
);
150 up_write(&shrinker_rwsem
);
153 EXPORT_SYMBOL(remove_shrinker
);
155 #define SHRINK_BATCH 128
157 * Call the shrink functions to age shrinkable caches
159 * Here we assume it costs one seek to replace a lru page and that it also
160 * takes a seek to recreate a cache object. With this in mind we age equal
161 * percentages of the lru and ageable caches. This should balance the seeks
162 * generated by these structures.
164 * If the vm encounted mapped pages on the LRU it increase the pressure on
165 * slab to avoid swapping.
167 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
169 * `lru_pages' represents the number of on-LRU pages in all the zones which
170 * are eligible for the caller's allocation attempt. It is used for balancing
171 * slab reclaim versus page reclaim.
173 * Returns the number of slab objects which we shrunk.
175 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
176 unsigned long lru_pages
)
178 struct shrinker
*shrinker
;
179 unsigned long ret
= 0;
182 scanned
= SWAP_CLUSTER_MAX
;
184 if (!down_read_trylock(&shrinker_rwsem
))
185 return 1; /* Assume we'll be able to shrink next time */
187 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
188 unsigned long long delta
;
189 unsigned long total_scan
;
190 unsigned long max_pass
= (*shrinker
->shrinker
)(0, gfp_mask
);
192 delta
= (4 * scanned
) / shrinker
->seeks
;
194 do_div(delta
, lru_pages
+ 1);
195 shrinker
->nr
+= delta
;
196 if (shrinker
->nr
< 0) {
197 printk(KERN_ERR
"%s: nr=%ld\n",
198 __FUNCTION__
, shrinker
->nr
);
199 shrinker
->nr
= max_pass
;
203 * Avoid risking looping forever due to too large nr value:
204 * never try to free more than twice the estimate number of
207 if (shrinker
->nr
> max_pass
* 2)
208 shrinker
->nr
= max_pass
* 2;
210 total_scan
= shrinker
->nr
;
213 while (total_scan
>= SHRINK_BATCH
) {
214 long this_scan
= SHRINK_BATCH
;
218 nr_before
= (*shrinker
->shrinker
)(0, gfp_mask
);
219 shrink_ret
= (*shrinker
->shrinker
)(this_scan
, gfp_mask
);
220 if (shrink_ret
== -1)
222 if (shrink_ret
< nr_before
)
223 ret
+= nr_before
- shrink_ret
;
224 count_vm_events(SLABS_SCANNED
, this_scan
);
225 total_scan
-= this_scan
;
230 shrinker
->nr
+= total_scan
;
232 up_read(&shrinker_rwsem
);
236 /* Called without lock on whether page is mapped, so answer is unstable */
237 static inline int page_mapping_inuse(struct page
*page
)
239 struct address_space
*mapping
;
241 /* Page is in somebody's page tables. */
242 if (page_mapped(page
))
245 /* Be more reluctant to reclaim swapcache than pagecache */
246 if (PageSwapCache(page
))
249 mapping
= page_mapping(page
);
253 /* File is mmap'd by somebody? */
254 return mapping_mapped(mapping
);
257 static inline int is_page_cache_freeable(struct page
*page
)
259 return page_count(page
) - !!PagePrivate(page
) == 2;
262 static int may_write_to_queue(struct backing_dev_info
*bdi
)
264 if (current
->flags
& PF_SWAPWRITE
)
266 if (!bdi_write_congested(bdi
))
268 if (bdi
== current
->backing_dev_info
)
274 * We detected a synchronous write error writing a page out. Probably
275 * -ENOSPC. We need to propagate that into the address_space for a subsequent
276 * fsync(), msync() or close().
278 * The tricky part is that after writepage we cannot touch the mapping: nothing
279 * prevents it from being freed up. But we have a ref on the page and once
280 * that page is locked, the mapping is pinned.
282 * We're allowed to run sleeping lock_page() here because we know the caller has
285 static void handle_write_error(struct address_space
*mapping
,
286 struct page
*page
, int error
)
289 if (page_mapping(page
) == mapping
)
290 mapping_set_error(mapping
, error
);
294 /* possible outcome of pageout() */
296 /* failed to write page out, page is locked */
298 /* move page to the active list, page is locked */
300 /* page has been sent to the disk successfully, page is unlocked */
302 /* page is clean and locked */
307 * pageout is called by shrink_page_list() for each dirty page.
308 * Calls ->writepage().
310 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
)
313 * If the page is dirty, only perform writeback if that write
314 * will be non-blocking. To prevent this allocation from being
315 * stalled by pagecache activity. But note that there may be
316 * stalls if we need to run get_block(). We could test
317 * PagePrivate for that.
319 * If this process is currently in generic_file_write() against
320 * this page's queue, we can perform writeback even if that
323 * If the page is swapcache, write it back even if that would
324 * block, for some throttling. This happens by accident, because
325 * swap_backing_dev_info is bust: it doesn't reflect the
326 * congestion state of the swapdevs. Easy to fix, if needed.
327 * See swapfile.c:page_queue_congested().
329 if (!is_page_cache_freeable(page
))
333 * Some data journaling orphaned pages can have
334 * page->mapping == NULL while being dirty with clean buffers.
336 if (PagePrivate(page
)) {
337 if (try_to_free_buffers(page
)) {
338 ClearPageDirty(page
);
339 printk("%s: orphaned page\n", __FUNCTION__
);
345 if (mapping
->a_ops
->writepage
== NULL
)
346 return PAGE_ACTIVATE
;
347 if (!may_write_to_queue(mapping
->backing_dev_info
))
350 if (clear_page_dirty_for_io(page
)) {
352 struct writeback_control wbc
= {
353 .sync_mode
= WB_SYNC_NONE
,
354 .nr_to_write
= SWAP_CLUSTER_MAX
,
356 .range_end
= LLONG_MAX
,
361 SetPageReclaim(page
);
362 res
= mapping
->a_ops
->writepage(page
, &wbc
);
364 handle_write_error(mapping
, page
, res
);
365 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
366 ClearPageReclaim(page
);
367 return PAGE_ACTIVATE
;
369 if (!PageWriteback(page
)) {
370 /* synchronous write or broken a_ops? */
371 ClearPageReclaim(page
);
373 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
381 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
382 * someone else has a ref on the page, abort and return 0. If it was
383 * successfully detached, return 1. Assumes the caller has a single ref on
386 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
388 BUG_ON(!PageLocked(page
));
389 BUG_ON(mapping
!= page_mapping(page
));
391 write_lock_irq(&mapping
->tree_lock
);
393 * The non racy check for a busy page.
395 * Must be careful with the order of the tests. When someone has
396 * a ref to the page, it may be possible that they dirty it then
397 * drop the reference. So if PageDirty is tested before page_count
398 * here, then the following race may occur:
400 * get_user_pages(&page);
401 * [user mapping goes away]
403 * !PageDirty(page) [good]
404 * SetPageDirty(page);
406 * !page_count(page) [good, discard it]
408 * [oops, our write_to data is lost]
410 * Reversing the order of the tests ensures such a situation cannot
411 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
412 * load is not satisfied before that of page->_count.
414 * Note that if SetPageDirty is always performed via set_page_dirty,
415 * and thus under tree_lock, then this ordering is not required.
417 if (unlikely(page_count(page
) != 2))
420 if (unlikely(PageDirty(page
)))
423 if (PageSwapCache(page
)) {
424 swp_entry_t swap
= { .val
= page_private(page
) };
425 __delete_from_swap_cache(page
);
426 write_unlock_irq(&mapping
->tree_lock
);
428 __put_page(page
); /* The pagecache ref */
432 __remove_from_page_cache(page
);
433 write_unlock_irq(&mapping
->tree_lock
);
438 write_unlock_irq(&mapping
->tree_lock
);
443 * shrink_page_list() returns the number of reclaimed pages
445 static unsigned long shrink_page_list(struct list_head
*page_list
,
446 struct scan_control
*sc
)
448 LIST_HEAD(ret_pages
);
449 struct pagevec freed_pvec
;
451 unsigned long nr_reclaimed
= 0;
455 pagevec_init(&freed_pvec
, 1);
456 while (!list_empty(page_list
)) {
457 struct address_space
*mapping
;
464 page
= lru_to_page(page_list
);
465 list_del(&page
->lru
);
467 if (TestSetPageLocked(page
))
470 VM_BUG_ON(PageActive(page
));
474 if (!sc
->may_swap
&& page_mapped(page
))
477 /* Double the slab pressure for mapped and swapcache pages */
478 if (page_mapped(page
) || PageSwapCache(page
))
481 if (PageWriteback(page
))
484 referenced
= page_referenced(page
, 1);
485 /* In active use or really unfreeable? Activate it. */
486 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&&
487 referenced
&& page_mapping_inuse(page
))
488 goto activate_locked
;
492 * Anonymous process memory has backing store?
493 * Try to allocate it some swap space here.
495 if (PageAnon(page
) && !PageSwapCache(page
))
496 if (!add_to_swap(page
, GFP_ATOMIC
))
497 goto activate_locked
;
498 #endif /* CONFIG_SWAP */
500 mapping
= page_mapping(page
);
501 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
502 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
505 * The page is mapped into the page tables of one or more
506 * processes. Try to unmap it here.
508 if (page_mapped(page
) && mapping
) {
509 switch (try_to_unmap(page
, 0)) {
511 goto activate_locked
;
515 ; /* try to free the page below */
519 if (PageDirty(page
)) {
520 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&& referenced
)
524 if (!sc
->may_writepage
)
527 /* Page is dirty, try to write it out here */
528 switch(pageout(page
, mapping
)) {
532 goto activate_locked
;
534 if (PageWriteback(page
) || PageDirty(page
))
537 * A synchronous write - probably a ramdisk. Go
538 * ahead and try to reclaim the page.
540 if (TestSetPageLocked(page
))
542 if (PageDirty(page
) || PageWriteback(page
))
544 mapping
= page_mapping(page
);
546 ; /* try to free the page below */
551 * If the page has buffers, try to free the buffer mappings
552 * associated with this page. If we succeed we try to free
555 * We do this even if the page is PageDirty().
556 * try_to_release_page() does not perform I/O, but it is
557 * possible for a page to have PageDirty set, but it is actually
558 * clean (all its buffers are clean). This happens if the
559 * buffers were written out directly, with submit_bh(). ext3
560 * will do this, as well as the blockdev mapping.
561 * try_to_release_page() will discover that cleanness and will
562 * drop the buffers and mark the page clean - it can be freed.
564 * Rarely, pages can have buffers and no ->mapping. These are
565 * the pages which were not successfully invalidated in
566 * truncate_complete_page(). We try to drop those buffers here
567 * and if that worked, and the page is no longer mapped into
568 * process address space (page_count == 1) it can be freed.
569 * Otherwise, leave the page on the LRU so it is swappable.
571 if (PagePrivate(page
)) {
572 if (!try_to_release_page(page
, sc
->gfp_mask
))
573 goto activate_locked
;
574 if (!mapping
&& page_count(page
) == 1)
578 if (!mapping
|| !remove_mapping(mapping
, page
))
584 if (!pagevec_add(&freed_pvec
, page
))
585 __pagevec_release_nonlru(&freed_pvec
);
594 list_add(&page
->lru
, &ret_pages
);
595 VM_BUG_ON(PageLRU(page
));
597 list_splice(&ret_pages
, page_list
);
598 if (pagevec_count(&freed_pvec
))
599 __pagevec_release_nonlru(&freed_pvec
);
600 count_vm_events(PGACTIVATE
, pgactivate
);
604 /* LRU Isolation modes. */
605 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
606 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
607 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
610 * Attempt to remove the specified page from its LRU. Only take this page
611 * if it is of the appropriate PageActive status. Pages which are being
612 * freed elsewhere are also ignored.
614 * page: page to consider
615 * mode: one of the LRU isolation modes defined above
617 * returns 0 on success, -ve errno on failure.
619 static int __isolate_lru_page(struct page
*page
, int mode
)
623 /* Only take pages on the LRU. */
628 * When checking the active state, we need to be sure we are
629 * dealing with comparible boolean values. Take the logical not
632 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
636 if (likely(get_page_unless_zero(page
))) {
638 * Be careful not to clear PageLRU until after we're
639 * sure the page is not being freed elsewhere -- the
640 * page release code relies on it.
650 * zone->lru_lock is heavily contended. Some of the functions that
651 * shrink the lists perform better by taking out a batch of pages
652 * and working on them outside the LRU lock.
654 * For pagecache intensive workloads, this function is the hottest
655 * spot in the kernel (apart from copy_*_user functions).
657 * Appropriate locks must be held before calling this function.
659 * @nr_to_scan: The number of pages to look through on the list.
660 * @src: The LRU list to pull pages off.
661 * @dst: The temp list to put pages on to.
662 * @scanned: The number of pages that were scanned.
663 * @order: The caller's attempted allocation order
664 * @mode: One of the LRU isolation modes
666 * returns how many pages were moved onto *@dst.
668 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
669 struct list_head
*src
, struct list_head
*dst
,
670 unsigned long *scanned
, int order
, int mode
)
672 unsigned long nr_taken
= 0;
675 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
678 unsigned long end_pfn
;
679 unsigned long page_pfn
;
682 page
= lru_to_page(src
);
683 prefetchw_prev_lru_page(page
, src
, flags
);
685 VM_BUG_ON(!PageLRU(page
));
687 switch (__isolate_lru_page(page
, mode
)) {
689 list_move(&page
->lru
, dst
);
694 /* else it is being freed elsewhere */
695 list_move(&page
->lru
, src
);
706 * Attempt to take all pages in the order aligned region
707 * surrounding the tag page. Only take those pages of
708 * the same active state as that tag page. We may safely
709 * round the target page pfn down to the requested order
710 * as the mem_map is guarenteed valid out to MAX_ORDER,
711 * where that page is in a different zone we will detect
712 * it from its zone id and abort this block scan.
714 zone_id
= page_zone_id(page
);
715 page_pfn
= page_to_pfn(page
);
716 pfn
= page_pfn
& ~((1 << order
) - 1);
717 end_pfn
= pfn
+ (1 << order
);
718 for (; pfn
< end_pfn
; pfn
++) {
719 struct page
*cursor_page
;
721 /* The target page is in the block, ignore it. */
722 if (unlikely(pfn
== page_pfn
))
725 /* Avoid holes within the zone. */
726 if (unlikely(!pfn_valid_within(pfn
)))
729 cursor_page
= pfn_to_page(pfn
);
730 /* Check that we have not crossed a zone boundary. */
731 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
733 switch (__isolate_lru_page(cursor_page
, mode
)) {
735 list_move(&cursor_page
->lru
, dst
);
741 /* else it is being freed elsewhere */
742 list_move(&cursor_page
->lru
, src
);
754 * clear_active_flags() is a helper for shrink_active_list(), clearing
755 * any active bits from the pages in the list.
757 static unsigned long clear_active_flags(struct list_head
*page_list
)
762 list_for_each_entry(page
, page_list
, lru
)
763 if (PageActive(page
)) {
764 ClearPageActive(page
);
772 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
775 static unsigned long shrink_inactive_list(unsigned long max_scan
,
776 struct zone
*zone
, struct scan_control
*sc
)
778 LIST_HEAD(page_list
);
780 unsigned long nr_scanned
= 0;
781 unsigned long nr_reclaimed
= 0;
783 pagevec_init(&pvec
, 1);
786 spin_lock_irq(&zone
->lru_lock
);
789 unsigned long nr_taken
;
790 unsigned long nr_scan
;
791 unsigned long nr_freed
;
792 unsigned long nr_active
;
794 nr_taken
= isolate_lru_pages(sc
->swap_cluster_max
,
795 &zone
->inactive_list
,
796 &page_list
, &nr_scan
, sc
->order
,
797 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)?
798 ISOLATE_BOTH
: ISOLATE_INACTIVE
);
799 nr_active
= clear_active_flags(&page_list
);
801 __mod_zone_page_state(zone
, NR_ACTIVE
, -nr_active
);
802 __mod_zone_page_state(zone
, NR_INACTIVE
,
803 -(nr_taken
- nr_active
));
804 zone
->pages_scanned
+= nr_scan
;
805 spin_unlock_irq(&zone
->lru_lock
);
807 nr_scanned
+= nr_scan
;
808 nr_freed
= shrink_page_list(&page_list
, sc
);
809 nr_reclaimed
+= nr_freed
;
811 if (current_is_kswapd()) {
812 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scan
);
813 __count_vm_events(KSWAPD_STEAL
, nr_freed
);
815 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scan
);
816 __count_zone_vm_events(PGSTEAL
, zone
, nr_freed
);
821 spin_lock(&zone
->lru_lock
);
823 * Put back any unfreeable pages.
825 while (!list_empty(&page_list
)) {
826 page
= lru_to_page(&page_list
);
827 VM_BUG_ON(PageLRU(page
));
829 list_del(&page
->lru
);
830 if (PageActive(page
))
831 add_page_to_active_list(zone
, page
);
833 add_page_to_inactive_list(zone
, page
);
834 if (!pagevec_add(&pvec
, page
)) {
835 spin_unlock_irq(&zone
->lru_lock
);
836 __pagevec_release(&pvec
);
837 spin_lock_irq(&zone
->lru_lock
);
840 } while (nr_scanned
< max_scan
);
841 spin_unlock(&zone
->lru_lock
);
844 pagevec_release(&pvec
);
849 * We are about to scan this zone at a certain priority level. If that priority
850 * level is smaller (ie: more urgent) than the previous priority, then note
851 * that priority level within the zone. This is done so that when the next
852 * process comes in to scan this zone, it will immediately start out at this
853 * priority level rather than having to build up its own scanning priority.
854 * Here, this priority affects only the reclaim-mapped threshold.
856 static inline void note_zone_scanning_priority(struct zone
*zone
, int priority
)
858 if (priority
< zone
->prev_priority
)
859 zone
->prev_priority
= priority
;
862 static inline int zone_is_near_oom(struct zone
*zone
)
864 return zone
->pages_scanned
>= (zone_page_state(zone
, NR_ACTIVE
)
865 + zone_page_state(zone
, NR_INACTIVE
))*3;
869 * This moves pages from the active list to the inactive list.
871 * We move them the other way if the page is referenced by one or more
872 * processes, from rmap.
874 * If the pages are mostly unmapped, the processing is fast and it is
875 * appropriate to hold zone->lru_lock across the whole operation. But if
876 * the pages are mapped, the processing is slow (page_referenced()) so we
877 * should drop zone->lru_lock around each page. It's impossible to balance
878 * this, so instead we remove the pages from the LRU while processing them.
879 * It is safe to rely on PG_active against the non-LRU pages in here because
880 * nobody will play with that bit on a non-LRU page.
882 * The downside is that we have to touch page->_count against each page.
883 * But we had to alter page->flags anyway.
885 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
886 struct scan_control
*sc
, int priority
)
888 unsigned long pgmoved
;
889 int pgdeactivate
= 0;
890 unsigned long pgscanned
;
891 LIST_HEAD(l_hold
); /* The pages which were snipped off */
892 LIST_HEAD(l_inactive
); /* Pages to go onto the inactive_list */
893 LIST_HEAD(l_active
); /* Pages to go onto the active_list */
896 int reclaim_mapped
= 0;
903 if (zone_is_near_oom(zone
))
904 goto force_reclaim_mapped
;
907 * `distress' is a measure of how much trouble we're having
908 * reclaiming pages. 0 -> no problems. 100 -> great trouble.
910 distress
= 100 >> min(zone
->prev_priority
, priority
);
913 * The point of this algorithm is to decide when to start
914 * reclaiming mapped memory instead of just pagecache. Work out
918 mapped_ratio
= ((global_page_state(NR_FILE_MAPPED
) +
919 global_page_state(NR_ANON_PAGES
)) * 100) /
923 * Now decide how much we really want to unmap some pages. The
924 * mapped ratio is downgraded - just because there's a lot of
925 * mapped memory doesn't necessarily mean that page reclaim
928 * The distress ratio is important - we don't want to start
931 * A 100% value of vm_swappiness overrides this algorithm
934 swap_tendency
= mapped_ratio
/ 2 + distress
+ sc
->swappiness
;
937 * Now use this metric to decide whether to start moving mapped
938 * memory onto the inactive list.
940 if (swap_tendency
>= 100)
941 force_reclaim_mapped
:
946 spin_lock_irq(&zone
->lru_lock
);
947 pgmoved
= isolate_lru_pages(nr_pages
, &zone
->active_list
,
948 &l_hold
, &pgscanned
, sc
->order
, ISOLATE_ACTIVE
);
949 zone
->pages_scanned
+= pgscanned
;
950 __mod_zone_page_state(zone
, NR_ACTIVE
, -pgmoved
);
951 spin_unlock_irq(&zone
->lru_lock
);
953 while (!list_empty(&l_hold
)) {
955 page
= lru_to_page(&l_hold
);
956 list_del(&page
->lru
);
957 if (page_mapped(page
)) {
958 if (!reclaim_mapped
||
959 (total_swap_pages
== 0 && PageAnon(page
)) ||
960 page_referenced(page
, 0)) {
961 list_add(&page
->lru
, &l_active
);
965 list_add(&page
->lru
, &l_inactive
);
968 pagevec_init(&pvec
, 1);
970 spin_lock_irq(&zone
->lru_lock
);
971 while (!list_empty(&l_inactive
)) {
972 page
= lru_to_page(&l_inactive
);
973 prefetchw_prev_lru_page(page
, &l_inactive
, flags
);
974 VM_BUG_ON(PageLRU(page
));
976 VM_BUG_ON(!PageActive(page
));
977 ClearPageActive(page
);
979 list_move(&page
->lru
, &zone
->inactive_list
);
981 if (!pagevec_add(&pvec
, page
)) {
982 __mod_zone_page_state(zone
, NR_INACTIVE
, pgmoved
);
983 spin_unlock_irq(&zone
->lru_lock
);
984 pgdeactivate
+= pgmoved
;
986 if (buffer_heads_over_limit
)
987 pagevec_strip(&pvec
);
988 __pagevec_release(&pvec
);
989 spin_lock_irq(&zone
->lru_lock
);
992 __mod_zone_page_state(zone
, NR_INACTIVE
, pgmoved
);
993 pgdeactivate
+= pgmoved
;
994 if (buffer_heads_over_limit
) {
995 spin_unlock_irq(&zone
->lru_lock
);
996 pagevec_strip(&pvec
);
997 spin_lock_irq(&zone
->lru_lock
);
1001 while (!list_empty(&l_active
)) {
1002 page
= lru_to_page(&l_active
);
1003 prefetchw_prev_lru_page(page
, &l_active
, flags
);
1004 VM_BUG_ON(PageLRU(page
));
1006 VM_BUG_ON(!PageActive(page
));
1007 list_move(&page
->lru
, &zone
->active_list
);
1009 if (!pagevec_add(&pvec
, page
)) {
1010 __mod_zone_page_state(zone
, NR_ACTIVE
, pgmoved
);
1012 spin_unlock_irq(&zone
->lru_lock
);
1013 __pagevec_release(&pvec
);
1014 spin_lock_irq(&zone
->lru_lock
);
1017 __mod_zone_page_state(zone
, NR_ACTIVE
, pgmoved
);
1019 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1020 __count_vm_events(PGDEACTIVATE
, pgdeactivate
);
1021 spin_unlock_irq(&zone
->lru_lock
);
1023 pagevec_release(&pvec
);
1027 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1029 static unsigned long shrink_zone(int priority
, struct zone
*zone
,
1030 struct scan_control
*sc
)
1032 unsigned long nr_active
;
1033 unsigned long nr_inactive
;
1034 unsigned long nr_to_scan
;
1035 unsigned long nr_reclaimed
= 0;
1037 atomic_inc(&zone
->reclaim_in_progress
);
1040 * Add one to `nr_to_scan' just to make sure that the kernel will
1041 * slowly sift through the active list.
1043 zone
->nr_scan_active
+=
1044 (zone_page_state(zone
, NR_ACTIVE
) >> priority
) + 1;
1045 nr_active
= zone
->nr_scan_active
;
1046 if (nr_active
>= sc
->swap_cluster_max
)
1047 zone
->nr_scan_active
= 0;
1051 zone
->nr_scan_inactive
+=
1052 (zone_page_state(zone
, NR_INACTIVE
) >> priority
) + 1;
1053 nr_inactive
= zone
->nr_scan_inactive
;
1054 if (nr_inactive
>= sc
->swap_cluster_max
)
1055 zone
->nr_scan_inactive
= 0;
1059 while (nr_active
|| nr_inactive
) {
1061 nr_to_scan
= min(nr_active
,
1062 (unsigned long)sc
->swap_cluster_max
);
1063 nr_active
-= nr_to_scan
;
1064 shrink_active_list(nr_to_scan
, zone
, sc
, priority
);
1068 nr_to_scan
= min(nr_inactive
,
1069 (unsigned long)sc
->swap_cluster_max
);
1070 nr_inactive
-= nr_to_scan
;
1071 nr_reclaimed
+= shrink_inactive_list(nr_to_scan
, zone
,
1076 throttle_vm_writeout(sc
->gfp_mask
);
1078 atomic_dec(&zone
->reclaim_in_progress
);
1079 return nr_reclaimed
;
1083 * This is the direct reclaim path, for page-allocating processes. We only
1084 * try to reclaim pages from zones which will satisfy the caller's allocation
1087 * We reclaim from a zone even if that zone is over pages_high. Because:
1088 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1090 * b) The zones may be over pages_high but they must go *over* pages_high to
1091 * satisfy the `incremental min' zone defense algorithm.
1093 * Returns the number of reclaimed pages.
1095 * If a zone is deemed to be full of pinned pages then just give it a light
1096 * scan then give up on it.
1098 static unsigned long shrink_zones(int priority
, struct zone
**zones
,
1099 struct scan_control
*sc
)
1101 unsigned long nr_reclaimed
= 0;
1104 sc
->all_unreclaimable
= 1;
1105 for (i
= 0; zones
[i
] != NULL
; i
++) {
1106 struct zone
*zone
= zones
[i
];
1108 if (!populated_zone(zone
))
1111 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1114 note_zone_scanning_priority(zone
, priority
);
1116 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1117 continue; /* Let kswapd poll it */
1119 sc
->all_unreclaimable
= 0;
1121 nr_reclaimed
+= shrink_zone(priority
, zone
, sc
);
1123 return nr_reclaimed
;
1127 * This is the main entry point to direct page reclaim.
1129 * If a full scan of the inactive list fails to free enough memory then we
1130 * are "out of memory" and something needs to be killed.
1132 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1133 * high - the zone may be full of dirty or under-writeback pages, which this
1134 * caller can't do much about. We kick pdflush and take explicit naps in the
1135 * hope that some of these pages can be written. But if the allocating task
1136 * holds filesystem locks which prevent writeout this might not work, and the
1137 * allocation attempt will fail.
1139 unsigned long try_to_free_pages(struct zone
**zones
, int order
, gfp_t gfp_mask
)
1143 unsigned long total_scanned
= 0;
1144 unsigned long nr_reclaimed
= 0;
1145 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1146 unsigned long lru_pages
= 0;
1148 struct scan_control sc
= {
1149 .gfp_mask
= gfp_mask
,
1150 .may_writepage
= !laptop_mode
,
1151 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1153 .swappiness
= vm_swappiness
,
1157 count_vm_event(ALLOCSTALL
);
1159 for (i
= 0; zones
[i
] != NULL
; i
++) {
1160 struct zone
*zone
= zones
[i
];
1162 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1165 lru_pages
+= zone_page_state(zone
, NR_ACTIVE
)
1166 + zone_page_state(zone
, NR_INACTIVE
);
1169 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1172 disable_swap_token();
1173 nr_reclaimed
+= shrink_zones(priority
, zones
, &sc
);
1174 shrink_slab(sc
.nr_scanned
, gfp_mask
, lru_pages
);
1175 if (reclaim_state
) {
1176 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1177 reclaim_state
->reclaimed_slab
= 0;
1179 total_scanned
+= sc
.nr_scanned
;
1180 if (nr_reclaimed
>= sc
.swap_cluster_max
) {
1186 * Try to write back as many pages as we just scanned. This
1187 * tends to cause slow streaming writers to write data to the
1188 * disk smoothly, at the dirtying rate, which is nice. But
1189 * that's undesirable in laptop mode, where we *want* lumpy
1190 * writeout. So in laptop mode, write out the whole world.
1192 if (total_scanned
> sc
.swap_cluster_max
+
1193 sc
.swap_cluster_max
/ 2) {
1194 wakeup_pdflush(laptop_mode
? 0 : total_scanned
);
1195 sc
.may_writepage
= 1;
1198 /* Take a nap, wait for some writeback to complete */
1199 if (sc
.nr_scanned
&& priority
< DEF_PRIORITY
- 2)
1200 congestion_wait(WRITE
, HZ
/10);
1202 /* top priority shrink_caches still had more to do? don't OOM, then */
1203 if (!sc
.all_unreclaimable
)
1207 * Now that we've scanned all the zones at this priority level, note
1208 * that level within the zone so that the next thread which performs
1209 * scanning of this zone will immediately start out at this priority
1210 * level. This affects only the decision whether or not to bring
1211 * mapped pages onto the inactive list.
1215 for (i
= 0; zones
[i
] != 0; i
++) {
1216 struct zone
*zone
= zones
[i
];
1218 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1221 zone
->prev_priority
= priority
;
1227 * For kswapd, balance_pgdat() will work across all this node's zones until
1228 * they are all at pages_high.
1230 * Returns the number of pages which were actually freed.
1232 * There is special handling here for zones which are full of pinned pages.
1233 * This can happen if the pages are all mlocked, or if they are all used by
1234 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1235 * What we do is to detect the case where all pages in the zone have been
1236 * scanned twice and there has been zero successful reclaim. Mark the zone as
1237 * dead and from now on, only perform a short scan. Basically we're polling
1238 * the zone for when the problem goes away.
1240 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1241 * zones which have free_pages > pages_high, but once a zone is found to have
1242 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1243 * of the number of free pages in the lower zones. This interoperates with
1244 * the page allocator fallback scheme to ensure that aging of pages is balanced
1247 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
1252 unsigned long total_scanned
;
1253 unsigned long nr_reclaimed
;
1254 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1255 struct scan_control sc
= {
1256 .gfp_mask
= GFP_KERNEL
,
1258 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1259 .swappiness
= vm_swappiness
,
1263 * temp_priority is used to remember the scanning priority at which
1264 * this zone was successfully refilled to free_pages == pages_high.
1266 int temp_priority
[MAX_NR_ZONES
];
1271 sc
.may_writepage
= !laptop_mode
;
1272 count_vm_event(PAGEOUTRUN
);
1274 for (i
= 0; i
< pgdat
->nr_zones
; i
++)
1275 temp_priority
[i
] = DEF_PRIORITY
;
1277 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1278 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
1279 unsigned long lru_pages
= 0;
1281 /* The swap token gets in the way of swapout... */
1283 disable_swap_token();
1288 * Scan in the highmem->dma direction for the highest
1289 * zone which needs scanning
1291 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
1292 struct zone
*zone
= pgdat
->node_zones
+ i
;
1294 if (!populated_zone(zone
))
1297 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1300 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1309 for (i
= 0; i
<= end_zone
; i
++) {
1310 struct zone
*zone
= pgdat
->node_zones
+ i
;
1312 lru_pages
+= zone_page_state(zone
, NR_ACTIVE
)
1313 + zone_page_state(zone
, NR_INACTIVE
);
1317 * Now scan the zone in the dma->highmem direction, stopping
1318 * at the last zone which needs scanning.
1320 * We do this because the page allocator works in the opposite
1321 * direction. This prevents the page allocator from allocating
1322 * pages behind kswapd's direction of progress, which would
1323 * cause too much scanning of the lower zones.
1325 for (i
= 0; i
<= end_zone
; i
++) {
1326 struct zone
*zone
= pgdat
->node_zones
+ i
;
1329 if (!populated_zone(zone
))
1332 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1335 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1338 temp_priority
[i
] = priority
;
1340 note_zone_scanning_priority(zone
, priority
);
1341 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
1342 reclaim_state
->reclaimed_slab
= 0;
1343 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
1345 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1346 total_scanned
+= sc
.nr_scanned
;
1347 if (zone
->all_unreclaimable
)
1349 if (nr_slab
== 0 && zone
->pages_scanned
>=
1350 (zone_page_state(zone
, NR_ACTIVE
)
1351 + zone_page_state(zone
, NR_INACTIVE
)) * 6)
1352 zone
->all_unreclaimable
= 1;
1354 * If we've done a decent amount of scanning and
1355 * the reclaim ratio is low, start doing writepage
1356 * even in laptop mode
1358 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
1359 total_scanned
> nr_reclaimed
+ nr_reclaimed
/ 2)
1360 sc
.may_writepage
= 1;
1363 break; /* kswapd: all done */
1365 * OK, kswapd is getting into trouble. Take a nap, then take
1366 * another pass across the zones.
1368 if (total_scanned
&& priority
< DEF_PRIORITY
- 2)
1369 congestion_wait(WRITE
, HZ
/10);
1372 * We do this so kswapd doesn't build up large priorities for
1373 * example when it is freeing in parallel with allocators. It
1374 * matches the direct reclaim path behaviour in terms of impact
1375 * on zone->*_priority.
1377 if (nr_reclaimed
>= SWAP_CLUSTER_MAX
)
1382 * Note within each zone the priority level at which this zone was
1383 * brought into a happy state. So that the next thread which scans this
1384 * zone will start out at that priority level.
1386 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1387 struct zone
*zone
= pgdat
->node_zones
+ i
;
1389 zone
->prev_priority
= temp_priority
[i
];
1391 if (!all_zones_ok
) {
1399 return nr_reclaimed
;
1403 * The background pageout daemon, started as a kernel thread
1404 * from the init process.
1406 * This basically trickles out pages so that we have _some_
1407 * free memory available even if there is no other activity
1408 * that frees anything up. This is needed for things like routing
1409 * etc, where we otherwise might have all activity going on in
1410 * asynchronous contexts that cannot page things out.
1412 * If there are applications that are active memory-allocators
1413 * (most normal use), this basically shouldn't matter.
1415 static int kswapd(void *p
)
1417 unsigned long order
;
1418 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1419 struct task_struct
*tsk
= current
;
1421 struct reclaim_state reclaim_state
= {
1422 .reclaimed_slab
= 0,
1426 cpumask
= node_to_cpumask(pgdat
->node_id
);
1427 if (!cpus_empty(cpumask
))
1428 set_cpus_allowed(tsk
, cpumask
);
1429 current
->reclaim_state
= &reclaim_state
;
1432 * Tell the memory management that we're a "memory allocator",
1433 * and that if we need more memory we should get access to it
1434 * regardless (see "__alloc_pages()"). "kswapd" should
1435 * never get caught in the normal page freeing logic.
1437 * (Kswapd normally doesn't need memory anyway, but sometimes
1438 * you need a small amount of memory in order to be able to
1439 * page out something else, and this flag essentially protects
1440 * us from recursively trying to free more memory as we're
1441 * trying to free the first piece of memory in the first place).
1443 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
1447 unsigned long new_order
;
1449 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
1450 new_order
= pgdat
->kswapd_max_order
;
1451 pgdat
->kswapd_max_order
= 0;
1452 if (order
< new_order
) {
1454 * Don't sleep if someone wants a larger 'order'
1459 if (!freezing(current
))
1462 order
= pgdat
->kswapd_max_order
;
1464 finish_wait(&pgdat
->kswapd_wait
, &wait
);
1466 if (!try_to_freeze()) {
1467 /* We can speed up thawing tasks if we don't call
1468 * balance_pgdat after returning from the refrigerator
1470 balance_pgdat(pgdat
, order
);
1477 * A zone is low on free memory, so wake its kswapd task to service it.
1479 void wakeup_kswapd(struct zone
*zone
, int order
)
1483 if (!populated_zone(zone
))
1486 pgdat
= zone
->zone_pgdat
;
1487 if (zone_watermark_ok(zone
, order
, zone
->pages_low
, 0, 0))
1489 if (pgdat
->kswapd_max_order
< order
)
1490 pgdat
->kswapd_max_order
= order
;
1491 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1493 if (!waitqueue_active(&pgdat
->kswapd_wait
))
1495 wake_up_interruptible(&pgdat
->kswapd_wait
);
1500 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1501 * from LRU lists system-wide, for given pass and priority, and returns the
1502 * number of reclaimed pages
1504 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1506 static unsigned long shrink_all_zones(unsigned long nr_pages
, int prio
,
1507 int pass
, struct scan_control
*sc
)
1510 unsigned long nr_to_scan
, ret
= 0;
1512 for_each_zone(zone
) {
1514 if (!populated_zone(zone
))
1517 if (zone
->all_unreclaimable
&& prio
!= DEF_PRIORITY
)
1520 /* For pass = 0 we don't shrink the active list */
1522 zone
->nr_scan_active
+=
1523 (zone_page_state(zone
, NR_ACTIVE
) >> prio
) + 1;
1524 if (zone
->nr_scan_active
>= nr_pages
|| pass
> 3) {
1525 zone
->nr_scan_active
= 0;
1526 nr_to_scan
= min(nr_pages
,
1527 zone_page_state(zone
, NR_ACTIVE
));
1528 shrink_active_list(nr_to_scan
, zone
, sc
, prio
);
1532 zone
->nr_scan_inactive
+=
1533 (zone_page_state(zone
, NR_INACTIVE
) >> prio
) + 1;
1534 if (zone
->nr_scan_inactive
>= nr_pages
|| pass
> 3) {
1535 zone
->nr_scan_inactive
= 0;
1536 nr_to_scan
= min(nr_pages
,
1537 zone_page_state(zone
, NR_INACTIVE
));
1538 ret
+= shrink_inactive_list(nr_to_scan
, zone
, sc
);
1539 if (ret
>= nr_pages
)
1547 static unsigned long count_lru_pages(void)
1549 return global_page_state(NR_ACTIVE
) + global_page_state(NR_INACTIVE
);
1553 * Try to free `nr_pages' of memory, system-wide, and return the number of
1556 * Rather than trying to age LRUs the aim is to preserve the overall
1557 * LRU order by reclaiming preferentially
1558 * inactive > active > active referenced > active mapped
1560 unsigned long shrink_all_memory(unsigned long nr_pages
)
1562 unsigned long lru_pages
, nr_slab
;
1563 unsigned long ret
= 0;
1565 struct reclaim_state reclaim_state
;
1566 struct scan_control sc
= {
1567 .gfp_mask
= GFP_KERNEL
,
1569 .swap_cluster_max
= nr_pages
,
1571 .swappiness
= vm_swappiness
,
1574 current
->reclaim_state
= &reclaim_state
;
1576 lru_pages
= count_lru_pages();
1577 nr_slab
= global_page_state(NR_SLAB_RECLAIMABLE
);
1578 /* If slab caches are huge, it's better to hit them first */
1579 while (nr_slab
>= lru_pages
) {
1580 reclaim_state
.reclaimed_slab
= 0;
1581 shrink_slab(nr_pages
, sc
.gfp_mask
, lru_pages
);
1582 if (!reclaim_state
.reclaimed_slab
)
1585 ret
+= reclaim_state
.reclaimed_slab
;
1586 if (ret
>= nr_pages
)
1589 nr_slab
-= reclaim_state
.reclaimed_slab
;
1593 * We try to shrink LRUs in 5 passes:
1594 * 0 = Reclaim from inactive_list only
1595 * 1 = Reclaim from active list but don't reclaim mapped
1596 * 2 = 2nd pass of type 1
1597 * 3 = Reclaim mapped (normal reclaim)
1598 * 4 = 2nd pass of type 3
1600 for (pass
= 0; pass
< 5; pass
++) {
1603 /* Force reclaiming mapped pages in the passes #3 and #4 */
1606 sc
.swappiness
= 100;
1609 for (prio
= DEF_PRIORITY
; prio
>= 0; prio
--) {
1610 unsigned long nr_to_scan
= nr_pages
- ret
;
1613 ret
+= shrink_all_zones(nr_to_scan
, prio
, pass
, &sc
);
1614 if (ret
>= nr_pages
)
1617 reclaim_state
.reclaimed_slab
= 0;
1618 shrink_slab(sc
.nr_scanned
, sc
.gfp_mask
,
1620 ret
+= reclaim_state
.reclaimed_slab
;
1621 if (ret
>= nr_pages
)
1624 if (sc
.nr_scanned
&& prio
< DEF_PRIORITY
- 2)
1625 congestion_wait(WRITE
, HZ
/ 10);
1630 * If ret = 0, we could not shrink LRUs, but there may be something
1635 reclaim_state
.reclaimed_slab
= 0;
1636 shrink_slab(nr_pages
, sc
.gfp_mask
, count_lru_pages());
1637 ret
+= reclaim_state
.reclaimed_slab
;
1638 } while (ret
< nr_pages
&& reclaim_state
.reclaimed_slab
> 0);
1642 current
->reclaim_state
= NULL
;
1648 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1649 not required for correctness. So if the last cpu in a node goes
1650 away, we get changed to run anywhere: as the first one comes back,
1651 restore their cpu bindings. */
1652 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
1653 unsigned long action
, void *hcpu
)
1658 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
1659 for_each_online_pgdat(pgdat
) {
1660 mask
= node_to_cpumask(pgdat
->node_id
);
1661 if (any_online_cpu(mask
) != NR_CPUS
)
1662 /* One of our CPUs online: restore mask */
1663 set_cpus_allowed(pgdat
->kswapd
, mask
);
1670 * This kswapd start function will be called by init and node-hot-add.
1671 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1673 int kswapd_run(int nid
)
1675 pg_data_t
*pgdat
= NODE_DATA(nid
);
1681 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
1682 if (IS_ERR(pgdat
->kswapd
)) {
1683 /* failure at boot is fatal */
1684 BUG_ON(system_state
== SYSTEM_BOOTING
);
1685 printk("Failed to start kswapd on node %d\n",nid
);
1691 static int __init
kswapd_init(void)
1696 for_each_online_node(nid
)
1698 hotcpu_notifier(cpu_callback
, 0);
1702 module_init(kswapd_init
)
1708 * If non-zero call zone_reclaim when the number of free pages falls below
1711 int zone_reclaim_mode __read_mostly
;
1713 #define RECLAIM_OFF 0
1714 #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
1715 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
1716 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
1719 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1720 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1723 #define ZONE_RECLAIM_PRIORITY 4
1726 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1729 int sysctl_min_unmapped_ratio
= 1;
1732 * If the number of slab pages in a zone grows beyond this percentage then
1733 * slab reclaim needs to occur.
1735 int sysctl_min_slab_ratio
= 5;
1738 * Try to free up some pages from this zone through reclaim.
1740 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
1742 /* Minimum pages needed in order to stay on node */
1743 const unsigned long nr_pages
= 1 << order
;
1744 struct task_struct
*p
= current
;
1745 struct reclaim_state reclaim_state
;
1747 unsigned long nr_reclaimed
= 0;
1748 struct scan_control sc
= {
1749 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
1750 .may_swap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
1751 .swap_cluster_max
= max_t(unsigned long, nr_pages
,
1753 .gfp_mask
= gfp_mask
,
1754 .swappiness
= vm_swappiness
,
1756 unsigned long slab_reclaimable
;
1758 disable_swap_token();
1761 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1762 * and we also need to be able to write out pages for RECLAIM_WRITE
1765 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
1766 reclaim_state
.reclaimed_slab
= 0;
1767 p
->reclaim_state
= &reclaim_state
;
1769 if (zone_page_state(zone
, NR_FILE_PAGES
) -
1770 zone_page_state(zone
, NR_FILE_MAPPED
) >
1771 zone
->min_unmapped_pages
) {
1773 * Free memory by calling shrink zone with increasing
1774 * priorities until we have enough memory freed.
1776 priority
= ZONE_RECLAIM_PRIORITY
;
1778 note_zone_scanning_priority(zone
, priority
);
1779 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
1781 } while (priority
>= 0 && nr_reclaimed
< nr_pages
);
1784 slab_reclaimable
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
1785 if (slab_reclaimable
> zone
->min_slab_pages
) {
1787 * shrink_slab() does not currently allow us to determine how
1788 * many pages were freed in this zone. So we take the current
1789 * number of slab pages and shake the slab until it is reduced
1790 * by the same nr_pages that we used for reclaiming unmapped
1793 * Note that shrink_slab will free memory on all zones and may
1796 while (shrink_slab(sc
.nr_scanned
, gfp_mask
, order
) &&
1797 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) >
1798 slab_reclaimable
- nr_pages
)
1802 * Update nr_reclaimed by the number of slab pages we
1803 * reclaimed from this zone.
1805 nr_reclaimed
+= slab_reclaimable
-
1806 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
1809 p
->reclaim_state
= NULL
;
1810 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
1811 return nr_reclaimed
>= nr_pages
;
1814 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
1820 * Zone reclaim reclaims unmapped file backed pages and
1821 * slab pages if we are over the defined limits.
1823 * A small portion of unmapped file backed pages is needed for
1824 * file I/O otherwise pages read by file I/O will be immediately
1825 * thrown out if the zone is overallocated. So we do not reclaim
1826 * if less than a specified percentage of the zone is used by
1827 * unmapped file backed pages.
1829 if (zone_page_state(zone
, NR_FILE_PAGES
) -
1830 zone_page_state(zone
, NR_FILE_MAPPED
) <= zone
->min_unmapped_pages
1831 && zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)
1832 <= zone
->min_slab_pages
)
1836 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1837 * not have reclaimable pages and if we should not delay the allocation
1840 if (!(gfp_mask
& __GFP_WAIT
) ||
1841 zone
->all_unreclaimable
||
1842 atomic_read(&zone
->reclaim_in_progress
) > 0 ||
1843 (current
->flags
& PF_MEMALLOC
))
1847 * Only run zone reclaim on the local zone or on zones that do not
1848 * have associated processors. This will favor the local processor
1849 * over remote processors and spread off node memory allocations
1850 * as wide as possible.
1852 node_id
= zone_to_nid(zone
);
1853 mask
= node_to_cpumask(node_id
);
1854 if (!cpus_empty(mask
) && node_id
!= numa_node_id())
1856 return __zone_reclaim(zone
, gfp_mask
, order
);