4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/kthread.h>
56 #include <linux/seq_file.h>
57 #include <linux/sysctl.h>
58 #include <linux/syscalls.h>
59 #include <linux/times.h>
60 #include <linux/tsacct_kern.h>
61 #include <linux/kprobes.h>
62 #include <linux/delayacct.h>
63 #include <linux/reciprocal_div.h>
64 #include <linux/unistd.h>
65 #include <linux/pagemap.h>
68 #include <asm/irq_regs.h>
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
75 unsigned long long __attribute__((weak
)) sched_clock(void)
77 return (unsigned long long)jiffies
* (NSEC_PER_SEC
/ HZ
);
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99 * Some helpers for converting nanosecond timing to jiffy resolution
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108 * These are the 'tuning knobs' of the scheduler:
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
113 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
122 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
129 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
131 sg
->__cpu_power
+= val
;
132 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
136 static inline int rt_policy(int policy
)
138 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
143 static inline int task_has_rt_policy(struct task_struct
*p
)
145 return rt_policy(p
->policy
);
149 * This is the priority-queue data structure of the RT scheduling class:
151 struct rt_prio_array
{
152 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
153 struct list_head queue
[MAX_RT_PRIO
];
156 #ifdef CONFIG_FAIR_GROUP_SCHED
158 #include <linux/cgroup.h>
162 /* task group related information */
164 #ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css
;
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity
**se
;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq
**cfs_rq
;
171 unsigned long shares
;
172 /* spinlock to serialize modification to shares */
177 /* Default task group's sched entity on each cpu */
178 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
179 /* Default task group's cfs_rq on each cpu */
180 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
182 static struct sched_entity
*init_sched_entity_p
[NR_CPUS
];
183 static struct cfs_rq
*init_cfs_rq_p
[NR_CPUS
];
185 /* Default task group.
186 * Every task in system belong to this group at bootup.
188 struct task_group init_task_group
= {
189 .se
= init_sched_entity_p
,
190 .cfs_rq
= init_cfs_rq_p
,
193 #ifdef CONFIG_FAIR_USER_SCHED
194 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
196 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
199 static int init_task_group_load
= INIT_TASK_GRP_LOAD
;
201 /* return group to which a task belongs */
202 static inline struct task_group
*task_group(struct task_struct
*p
)
204 struct task_group
*tg
;
206 #ifdef CONFIG_FAIR_USER_SCHED
208 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
209 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
210 struct task_group
, css
);
212 tg
= &init_task_group
;
217 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
218 static inline void set_task_cfs_rq(struct task_struct
*p
, unsigned int cpu
)
220 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
221 p
->se
.parent
= task_group(p
)->se
[cpu
];
226 static inline void set_task_cfs_rq(struct task_struct
*p
, unsigned int cpu
) { }
228 #endif /* CONFIG_FAIR_GROUP_SCHED */
230 /* CFS-related fields in a runqueue */
232 struct load_weight load
;
233 unsigned long nr_running
;
238 struct rb_root tasks_timeline
;
239 struct rb_node
*rb_leftmost
;
240 struct rb_node
*rb_load_balance_curr
;
241 /* 'curr' points to currently running entity on this cfs_rq.
242 * It is set to NULL otherwise (i.e when none are currently running).
244 struct sched_entity
*curr
;
246 unsigned long nr_spread_over
;
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
252 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
253 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
254 * (like users, containers etc.)
256 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
257 * list is used during load balance.
259 struct list_head leaf_cfs_rq_list
;
260 struct task_group
*tg
; /* group that "owns" this runqueue */
264 /* Real-Time classes' related field in a runqueue: */
266 struct rt_prio_array active
;
267 int rt_load_balance_idx
;
268 struct list_head
*rt_load_balance_head
, *rt_load_balance_curr
;
272 * This is the main, per-CPU runqueue data structure.
274 * Locking rule: those places that want to lock multiple runqueues
275 * (such as the load balancing or the thread migration code), lock
276 * acquire operations must be ordered by ascending &runqueue.
283 * nr_running and cpu_load should be in the same cacheline because
284 * remote CPUs use both these fields when doing load calculation.
286 unsigned long nr_running
;
287 #define CPU_LOAD_IDX_MAX 5
288 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
289 unsigned char idle_at_tick
;
291 unsigned char in_nohz_recently
;
293 /* capture load from *all* tasks on this cpu: */
294 struct load_weight load
;
295 unsigned long nr_load_updates
;
299 #ifdef CONFIG_FAIR_GROUP_SCHED
300 /* list of leaf cfs_rq on this cpu: */
301 struct list_head leaf_cfs_rq_list
;
306 * This is part of a global counter where only the total sum
307 * over all CPUs matters. A task can increase this counter on
308 * one CPU and if it got migrated afterwards it may decrease
309 * it on another CPU. Always updated under the runqueue lock:
311 unsigned long nr_uninterruptible
;
313 struct task_struct
*curr
, *idle
;
314 unsigned long next_balance
;
315 struct mm_struct
*prev_mm
;
317 u64 clock
, prev_clock_raw
;
320 unsigned int clock_warps
, clock_overflows
;
322 unsigned int clock_deep_idle_events
;
328 struct sched_domain
*sd
;
330 /* For active balancing */
333 /* cpu of this runqueue: */
336 struct task_struct
*migration_thread
;
337 struct list_head migration_queue
;
340 #ifdef CONFIG_SCHEDSTATS
342 struct sched_info rq_sched_info
;
344 /* sys_sched_yield() stats */
345 unsigned int yld_exp_empty
;
346 unsigned int yld_act_empty
;
347 unsigned int yld_both_empty
;
348 unsigned int yld_count
;
350 /* schedule() stats */
351 unsigned int sched_switch
;
352 unsigned int sched_count
;
353 unsigned int sched_goidle
;
355 /* try_to_wake_up() stats */
356 unsigned int ttwu_count
;
357 unsigned int ttwu_local
;
360 unsigned int bkl_count
;
362 struct lock_class_key rq_lock_key
;
365 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
366 static DEFINE_MUTEX(sched_hotcpu_mutex
);
368 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
370 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
373 static inline int cpu_of(struct rq
*rq
)
383 * Update the per-runqueue clock, as finegrained as the platform can give
384 * us, but without assuming monotonicity, etc.:
386 static void __update_rq_clock(struct rq
*rq
)
388 u64 prev_raw
= rq
->prev_clock_raw
;
389 u64 now
= sched_clock();
390 s64 delta
= now
- prev_raw
;
391 u64 clock
= rq
->clock
;
393 #ifdef CONFIG_SCHED_DEBUG
394 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
397 * Protect against sched_clock() occasionally going backwards:
399 if (unlikely(delta
< 0)) {
404 * Catch too large forward jumps too:
406 if (unlikely(clock
+ delta
> rq
->tick_timestamp
+ TICK_NSEC
)) {
407 if (clock
< rq
->tick_timestamp
+ TICK_NSEC
)
408 clock
= rq
->tick_timestamp
+ TICK_NSEC
;
411 rq
->clock_overflows
++;
413 if (unlikely(delta
> rq
->clock_max_delta
))
414 rq
->clock_max_delta
= delta
;
419 rq
->prev_clock_raw
= now
;
423 static void update_rq_clock(struct rq
*rq
)
425 if (likely(smp_processor_id() == cpu_of(rq
)))
426 __update_rq_clock(rq
);
430 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
431 * See detach_destroy_domains: synchronize_sched for details.
433 * The domain tree of any CPU may only be accessed from within
434 * preempt-disabled sections.
436 #define for_each_domain(cpu, __sd) \
437 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
439 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
440 #define this_rq() (&__get_cpu_var(runqueues))
441 #define task_rq(p) cpu_rq(task_cpu(p))
442 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
445 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
447 #ifdef CONFIG_SCHED_DEBUG
448 # define const_debug __read_mostly
450 # define const_debug static const
454 * Debugging: various feature bits
457 SCHED_FEAT_NEW_FAIR_SLEEPERS
= 1,
458 SCHED_FEAT_WAKEUP_PREEMPT
= 2,
459 SCHED_FEAT_START_DEBIT
= 4,
460 SCHED_FEAT_TREE_AVG
= 8,
461 SCHED_FEAT_APPROX_AVG
= 16,
464 const_debug
unsigned int sysctl_sched_features
=
465 SCHED_FEAT_NEW_FAIR_SLEEPERS
* 1 |
466 SCHED_FEAT_WAKEUP_PREEMPT
* 1 |
467 SCHED_FEAT_START_DEBIT
* 1 |
468 SCHED_FEAT_TREE_AVG
* 0 |
469 SCHED_FEAT_APPROX_AVG
* 0;
471 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
474 * Number of tasks to iterate in a single balance run.
475 * Limited because this is done with IRQs disabled.
477 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
480 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
481 * clock constructed from sched_clock():
483 unsigned long long cpu_clock(int cpu
)
485 unsigned long long now
;
489 local_irq_save(flags
);
492 * Only call sched_clock() if the scheduler has already been
493 * initialized (some code might call cpu_clock() very early):
498 local_irq_restore(flags
);
502 EXPORT_SYMBOL_GPL(cpu_clock
);
504 #ifndef prepare_arch_switch
505 # define prepare_arch_switch(next) do { } while (0)
507 #ifndef finish_arch_switch
508 # define finish_arch_switch(prev) do { } while (0)
511 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
512 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
514 return rq
->curr
== p
;
517 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
521 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
523 #ifdef CONFIG_DEBUG_SPINLOCK
524 /* this is a valid case when another task releases the spinlock */
525 rq
->lock
.owner
= current
;
528 * If we are tracking spinlock dependencies then we have to
529 * fix up the runqueue lock - which gets 'carried over' from
532 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
534 spin_unlock_irq(&rq
->lock
);
537 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
538 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
543 return rq
->curr
== p
;
547 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
551 * We can optimise this out completely for !SMP, because the
552 * SMP rebalancing from interrupt is the only thing that cares
557 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
558 spin_unlock_irq(&rq
->lock
);
560 spin_unlock(&rq
->lock
);
564 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
568 * After ->oncpu is cleared, the task can be moved to a different CPU.
569 * We must ensure this doesn't happen until the switch is completely
575 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
579 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
582 * __task_rq_lock - lock the runqueue a given task resides on.
583 * Must be called interrupts disabled.
585 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
589 struct rq
*rq
= task_rq(p
);
590 spin_lock(&rq
->lock
);
591 if (likely(rq
== task_rq(p
)))
593 spin_unlock(&rq
->lock
);
598 * task_rq_lock - lock the runqueue a given task resides on and disable
599 * interrupts. Note the ordering: we can safely lookup the task_rq without
600 * explicitly disabling preemption.
602 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
608 local_irq_save(*flags
);
610 spin_lock(&rq
->lock
);
611 if (likely(rq
== task_rq(p
)))
613 spin_unlock_irqrestore(&rq
->lock
, *flags
);
617 static void __task_rq_unlock(struct rq
*rq
)
620 spin_unlock(&rq
->lock
);
623 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
626 spin_unlock_irqrestore(&rq
->lock
, *flags
);
630 * this_rq_lock - lock this runqueue and disable interrupts.
632 static struct rq
*this_rq_lock(void)
639 spin_lock(&rq
->lock
);
645 * We are going deep-idle (irqs are disabled):
647 void sched_clock_idle_sleep_event(void)
649 struct rq
*rq
= cpu_rq(smp_processor_id());
651 spin_lock(&rq
->lock
);
652 __update_rq_clock(rq
);
653 spin_unlock(&rq
->lock
);
654 rq
->clock_deep_idle_events
++;
656 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
659 * We just idled delta nanoseconds (called with irqs disabled):
661 void sched_clock_idle_wakeup_event(u64 delta_ns
)
663 struct rq
*rq
= cpu_rq(smp_processor_id());
664 u64 now
= sched_clock();
666 rq
->idle_clock
+= delta_ns
;
668 * Override the previous timestamp and ignore all
669 * sched_clock() deltas that occured while we idled,
670 * and use the PM-provided delta_ns to advance the
673 spin_lock(&rq
->lock
);
674 rq
->prev_clock_raw
= now
;
675 rq
->clock
+= delta_ns
;
676 spin_unlock(&rq
->lock
);
678 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
681 * resched_task - mark a task 'to be rescheduled now'.
683 * On UP this means the setting of the need_resched flag, on SMP it
684 * might also involve a cross-CPU call to trigger the scheduler on
689 #ifndef tsk_is_polling
690 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
693 static void resched_task(struct task_struct
*p
)
697 assert_spin_locked(&task_rq(p
)->lock
);
699 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
702 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
705 if (cpu
== smp_processor_id())
708 /* NEED_RESCHED must be visible before we test polling */
710 if (!tsk_is_polling(p
))
711 smp_send_reschedule(cpu
);
714 static void resched_cpu(int cpu
)
716 struct rq
*rq
= cpu_rq(cpu
);
719 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
721 resched_task(cpu_curr(cpu
));
722 spin_unlock_irqrestore(&rq
->lock
, flags
);
725 static inline void resched_task(struct task_struct
*p
)
727 assert_spin_locked(&task_rq(p
)->lock
);
728 set_tsk_need_resched(p
);
732 #if BITS_PER_LONG == 32
733 # define WMULT_CONST (~0UL)
735 # define WMULT_CONST (1UL << 32)
738 #define WMULT_SHIFT 32
741 * Shift right and round:
743 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
746 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
747 struct load_weight
*lw
)
751 if (unlikely(!lw
->inv_weight
))
752 lw
->inv_weight
= (WMULT_CONST
- lw
->weight
/2) / lw
->weight
+ 1;
754 tmp
= (u64
)delta_exec
* weight
;
756 * Check whether we'd overflow the 64-bit multiplication:
758 if (unlikely(tmp
> WMULT_CONST
))
759 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
762 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
764 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
767 static inline unsigned long
768 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
770 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
773 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
778 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
784 * To aid in avoiding the subversion of "niceness" due to uneven distribution
785 * of tasks with abnormal "nice" values across CPUs the contribution that
786 * each task makes to its run queue's load is weighted according to its
787 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
788 * scaled version of the new time slice allocation that they receive on time
792 #define WEIGHT_IDLEPRIO 2
793 #define WMULT_IDLEPRIO (1 << 31)
796 * Nice levels are multiplicative, with a gentle 10% change for every
797 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
798 * nice 1, it will get ~10% less CPU time than another CPU-bound task
799 * that remained on nice 0.
801 * The "10% effect" is relative and cumulative: from _any_ nice level,
802 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
803 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
804 * If a task goes up by ~10% and another task goes down by ~10% then
805 * the relative distance between them is ~25%.)
807 static const int prio_to_weight
[40] = {
808 /* -20 */ 88761, 71755, 56483, 46273, 36291,
809 /* -15 */ 29154, 23254, 18705, 14949, 11916,
810 /* -10 */ 9548, 7620, 6100, 4904, 3906,
811 /* -5 */ 3121, 2501, 1991, 1586, 1277,
812 /* 0 */ 1024, 820, 655, 526, 423,
813 /* 5 */ 335, 272, 215, 172, 137,
814 /* 10 */ 110, 87, 70, 56, 45,
815 /* 15 */ 36, 29, 23, 18, 15,
819 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
821 * In cases where the weight does not change often, we can use the
822 * precalculated inverse to speed up arithmetics by turning divisions
823 * into multiplications:
825 static const u32 prio_to_wmult
[40] = {
826 /* -20 */ 48388, 59856, 76040, 92818, 118348,
827 /* -15 */ 147320, 184698, 229616, 287308, 360437,
828 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
829 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
830 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
831 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
832 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
833 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
836 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
839 * runqueue iterator, to support SMP load-balancing between different
840 * scheduling classes, without having to expose their internal data
841 * structures to the load-balancing proper:
845 struct task_struct
*(*start
)(void *);
846 struct task_struct
*(*next
)(void *);
851 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
852 unsigned long max_load_move
, struct sched_domain
*sd
,
853 enum cpu_idle_type idle
, int *all_pinned
,
854 int *this_best_prio
, struct rq_iterator
*iterator
);
857 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
858 struct sched_domain
*sd
, enum cpu_idle_type idle
,
859 struct rq_iterator
*iterator
);
862 #ifdef CONFIG_CGROUP_CPUACCT
863 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
865 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
868 #include "sched_stats.h"
869 #include "sched_idletask.c"
870 #include "sched_fair.c"
871 #include "sched_rt.c"
872 #ifdef CONFIG_SCHED_DEBUG
873 # include "sched_debug.c"
876 #define sched_class_highest (&rt_sched_class)
879 * Update delta_exec, delta_fair fields for rq.
881 * delta_fair clock advances at a rate inversely proportional to
882 * total load (rq->load.weight) on the runqueue, while
883 * delta_exec advances at the same rate as wall-clock (provided
886 * delta_exec / delta_fair is a measure of the (smoothened) load on this
887 * runqueue over any given interval. This (smoothened) load is used
888 * during load balance.
890 * This function is called /before/ updating rq->load
891 * and when switching tasks.
893 static inline void inc_load(struct rq
*rq
, const struct task_struct
*p
)
895 update_load_add(&rq
->load
, p
->se
.load
.weight
);
898 static inline void dec_load(struct rq
*rq
, const struct task_struct
*p
)
900 update_load_sub(&rq
->load
, p
->se
.load
.weight
);
903 static void inc_nr_running(struct task_struct
*p
, struct rq
*rq
)
909 static void dec_nr_running(struct task_struct
*p
, struct rq
*rq
)
915 static void set_load_weight(struct task_struct
*p
)
917 if (task_has_rt_policy(p
)) {
918 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
919 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
924 * SCHED_IDLE tasks get minimal weight:
926 if (p
->policy
== SCHED_IDLE
) {
927 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
928 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
932 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
933 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
936 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
938 sched_info_queued(p
);
939 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
943 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
945 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
950 * __normal_prio - return the priority that is based on the static prio
952 static inline int __normal_prio(struct task_struct
*p
)
954 return p
->static_prio
;
958 * Calculate the expected normal priority: i.e. priority
959 * without taking RT-inheritance into account. Might be
960 * boosted by interactivity modifiers. Changes upon fork,
961 * setprio syscalls, and whenever the interactivity
962 * estimator recalculates.
964 static inline int normal_prio(struct task_struct
*p
)
968 if (task_has_rt_policy(p
))
969 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
971 prio
= __normal_prio(p
);
976 * Calculate the current priority, i.e. the priority
977 * taken into account by the scheduler. This value might
978 * be boosted by RT tasks, or might be boosted by
979 * interactivity modifiers. Will be RT if the task got
980 * RT-boosted. If not then it returns p->normal_prio.
982 static int effective_prio(struct task_struct
*p
)
984 p
->normal_prio
= normal_prio(p
);
986 * If we are RT tasks or we were boosted to RT priority,
987 * keep the priority unchanged. Otherwise, update priority
988 * to the normal priority:
990 if (!rt_prio(p
->prio
))
991 return p
->normal_prio
;
996 * activate_task - move a task to the runqueue.
998 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1000 if (p
->state
== TASK_UNINTERRUPTIBLE
)
1001 rq
->nr_uninterruptible
--;
1003 enqueue_task(rq
, p
, wakeup
);
1004 inc_nr_running(p
, rq
);
1008 * deactivate_task - remove a task from the runqueue.
1010 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1012 if (p
->state
== TASK_UNINTERRUPTIBLE
)
1013 rq
->nr_uninterruptible
++;
1015 dequeue_task(rq
, p
, sleep
);
1016 dec_nr_running(p
, rq
);
1020 * task_curr - is this task currently executing on a CPU?
1021 * @p: the task in question.
1023 inline int task_curr(const struct task_struct
*p
)
1025 return cpu_curr(task_cpu(p
)) == p
;
1028 /* Used instead of source_load when we know the type == 0 */
1029 unsigned long weighted_cpuload(const int cpu
)
1031 return cpu_rq(cpu
)->load
.weight
;
1034 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1036 set_task_cfs_rq(p
, cpu
);
1039 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1040 * successfuly executed on another CPU. We must ensure that updates of
1041 * per-task data have been completed by this moment.
1044 task_thread_info(p
)->cpu
= cpu
;
1051 * Is this task likely cache-hot:
1054 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1058 if (p
->sched_class
!= &fair_sched_class
)
1061 if (sysctl_sched_migration_cost
== -1)
1063 if (sysctl_sched_migration_cost
== 0)
1066 delta
= now
- p
->se
.exec_start
;
1068 return delta
< (s64
)sysctl_sched_migration_cost
;
1072 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1074 int old_cpu
= task_cpu(p
);
1075 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1076 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1077 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1080 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1082 #ifdef CONFIG_SCHEDSTATS
1083 if (p
->se
.wait_start
)
1084 p
->se
.wait_start
-= clock_offset
;
1085 if (p
->se
.sleep_start
)
1086 p
->se
.sleep_start
-= clock_offset
;
1087 if (p
->se
.block_start
)
1088 p
->se
.block_start
-= clock_offset
;
1089 if (old_cpu
!= new_cpu
) {
1090 schedstat_inc(p
, se
.nr_migrations
);
1091 if (task_hot(p
, old_rq
->clock
, NULL
))
1092 schedstat_inc(p
, se
.nr_forced2_migrations
);
1095 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1096 new_cfsrq
->min_vruntime
;
1098 __set_task_cpu(p
, new_cpu
);
1101 struct migration_req
{
1102 struct list_head list
;
1104 struct task_struct
*task
;
1107 struct completion done
;
1111 * The task's runqueue lock must be held.
1112 * Returns true if you have to wait for migration thread.
1115 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1117 struct rq
*rq
= task_rq(p
);
1120 * If the task is not on a runqueue (and not running), then
1121 * it is sufficient to simply update the task's cpu field.
1123 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1124 set_task_cpu(p
, dest_cpu
);
1128 init_completion(&req
->done
);
1130 req
->dest_cpu
= dest_cpu
;
1131 list_add(&req
->list
, &rq
->migration_queue
);
1137 * wait_task_inactive - wait for a thread to unschedule.
1139 * The caller must ensure that the task *will* unschedule sometime soon,
1140 * else this function might spin for a *long* time. This function can't
1141 * be called with interrupts off, or it may introduce deadlock with
1142 * smp_call_function() if an IPI is sent by the same process we are
1143 * waiting to become inactive.
1145 void wait_task_inactive(struct task_struct
*p
)
1147 unsigned long flags
;
1153 * We do the initial early heuristics without holding
1154 * any task-queue locks at all. We'll only try to get
1155 * the runqueue lock when things look like they will
1161 * If the task is actively running on another CPU
1162 * still, just relax and busy-wait without holding
1165 * NOTE! Since we don't hold any locks, it's not
1166 * even sure that "rq" stays as the right runqueue!
1167 * But we don't care, since "task_running()" will
1168 * return false if the runqueue has changed and p
1169 * is actually now running somewhere else!
1171 while (task_running(rq
, p
))
1175 * Ok, time to look more closely! We need the rq
1176 * lock now, to be *sure*. If we're wrong, we'll
1177 * just go back and repeat.
1179 rq
= task_rq_lock(p
, &flags
);
1180 running
= task_running(rq
, p
);
1181 on_rq
= p
->se
.on_rq
;
1182 task_rq_unlock(rq
, &flags
);
1185 * Was it really running after all now that we
1186 * checked with the proper locks actually held?
1188 * Oops. Go back and try again..
1190 if (unlikely(running
)) {
1196 * It's not enough that it's not actively running,
1197 * it must be off the runqueue _entirely_, and not
1200 * So if it wa still runnable (but just not actively
1201 * running right now), it's preempted, and we should
1202 * yield - it could be a while.
1204 if (unlikely(on_rq
)) {
1205 schedule_timeout_uninterruptible(1);
1210 * Ahh, all good. It wasn't running, and it wasn't
1211 * runnable, which means that it will never become
1212 * running in the future either. We're all done!
1219 * kick_process - kick a running thread to enter/exit the kernel
1220 * @p: the to-be-kicked thread
1222 * Cause a process which is running on another CPU to enter
1223 * kernel-mode, without any delay. (to get signals handled.)
1225 * NOTE: this function doesnt have to take the runqueue lock,
1226 * because all it wants to ensure is that the remote task enters
1227 * the kernel. If the IPI races and the task has been migrated
1228 * to another CPU then no harm is done and the purpose has been
1231 void kick_process(struct task_struct
*p
)
1237 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1238 smp_send_reschedule(cpu
);
1243 * Return a low guess at the load of a migration-source cpu weighted
1244 * according to the scheduling class and "nice" value.
1246 * We want to under-estimate the load of migration sources, to
1247 * balance conservatively.
1249 static unsigned long source_load(int cpu
, int type
)
1251 struct rq
*rq
= cpu_rq(cpu
);
1252 unsigned long total
= weighted_cpuload(cpu
);
1257 return min(rq
->cpu_load
[type
-1], total
);
1261 * Return a high guess at the load of a migration-target cpu weighted
1262 * according to the scheduling class and "nice" value.
1264 static unsigned long target_load(int cpu
, int type
)
1266 struct rq
*rq
= cpu_rq(cpu
);
1267 unsigned long total
= weighted_cpuload(cpu
);
1272 return max(rq
->cpu_load
[type
-1], total
);
1276 * Return the average load per task on the cpu's run queue
1278 static inline unsigned long cpu_avg_load_per_task(int cpu
)
1280 struct rq
*rq
= cpu_rq(cpu
);
1281 unsigned long total
= weighted_cpuload(cpu
);
1282 unsigned long n
= rq
->nr_running
;
1284 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1288 * find_idlest_group finds and returns the least busy CPU group within the
1291 static struct sched_group
*
1292 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1294 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1295 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1296 int load_idx
= sd
->forkexec_idx
;
1297 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1300 unsigned long load
, avg_load
;
1304 /* Skip over this group if it has no CPUs allowed */
1305 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1308 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1310 /* Tally up the load of all CPUs in the group */
1313 for_each_cpu_mask(i
, group
->cpumask
) {
1314 /* Bias balancing toward cpus of our domain */
1316 load
= source_load(i
, load_idx
);
1318 load
= target_load(i
, load_idx
);
1323 /* Adjust by relative CPU power of the group */
1324 avg_load
= sg_div_cpu_power(group
,
1325 avg_load
* SCHED_LOAD_SCALE
);
1328 this_load
= avg_load
;
1330 } else if (avg_load
< min_load
) {
1331 min_load
= avg_load
;
1334 } while (group
= group
->next
, group
!= sd
->groups
);
1336 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1342 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1345 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1348 unsigned long load
, min_load
= ULONG_MAX
;
1352 /* Traverse only the allowed CPUs */
1353 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1355 for_each_cpu_mask(i
, tmp
) {
1356 load
= weighted_cpuload(i
);
1358 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1368 * sched_balance_self: balance the current task (running on cpu) in domains
1369 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1372 * Balance, ie. select the least loaded group.
1374 * Returns the target CPU number, or the same CPU if no balancing is needed.
1376 * preempt must be disabled.
1378 static int sched_balance_self(int cpu
, int flag
)
1380 struct task_struct
*t
= current
;
1381 struct sched_domain
*tmp
, *sd
= NULL
;
1383 for_each_domain(cpu
, tmp
) {
1385 * If power savings logic is enabled for a domain, stop there.
1387 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1389 if (tmp
->flags
& flag
)
1395 struct sched_group
*group
;
1396 int new_cpu
, weight
;
1398 if (!(sd
->flags
& flag
)) {
1404 group
= find_idlest_group(sd
, t
, cpu
);
1410 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1411 if (new_cpu
== -1 || new_cpu
== cpu
) {
1412 /* Now try balancing at a lower domain level of cpu */
1417 /* Now try balancing at a lower domain level of new_cpu */
1420 weight
= cpus_weight(span
);
1421 for_each_domain(cpu
, tmp
) {
1422 if (weight
<= cpus_weight(tmp
->span
))
1424 if (tmp
->flags
& flag
)
1427 /* while loop will break here if sd == NULL */
1433 #endif /* CONFIG_SMP */
1436 * wake_idle() will wake a task on an idle cpu if task->cpu is
1437 * not idle and an idle cpu is available. The span of cpus to
1438 * search starts with cpus closest then further out as needed,
1439 * so we always favor a closer, idle cpu.
1441 * Returns the CPU we should wake onto.
1443 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1444 static int wake_idle(int cpu
, struct task_struct
*p
)
1447 struct sched_domain
*sd
;
1451 * If it is idle, then it is the best cpu to run this task.
1453 * This cpu is also the best, if it has more than one task already.
1454 * Siblings must be also busy(in most cases) as they didn't already
1455 * pickup the extra load from this cpu and hence we need not check
1456 * sibling runqueue info. This will avoid the checks and cache miss
1457 * penalities associated with that.
1459 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
1462 for_each_domain(cpu
, sd
) {
1463 if (sd
->flags
& SD_WAKE_IDLE
) {
1464 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1465 for_each_cpu_mask(i
, tmp
) {
1467 if (i
!= task_cpu(p
)) {
1469 se
.nr_wakeups_idle
);
1481 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1488 * try_to_wake_up - wake up a thread
1489 * @p: the to-be-woken-up thread
1490 * @state: the mask of task states that can be woken
1491 * @sync: do a synchronous wakeup?
1493 * Put it on the run-queue if it's not already there. The "current"
1494 * thread is always on the run-queue (except when the actual
1495 * re-schedule is in progress), and as such you're allowed to do
1496 * the simpler "current->state = TASK_RUNNING" to mark yourself
1497 * runnable without the overhead of this.
1499 * returns failure only if the task is already active.
1501 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1503 int cpu
, orig_cpu
, this_cpu
, success
= 0;
1504 unsigned long flags
;
1508 struct sched_domain
*sd
, *this_sd
= NULL
;
1509 unsigned long load
, this_load
;
1513 rq
= task_rq_lock(p
, &flags
);
1514 old_state
= p
->state
;
1515 if (!(old_state
& state
))
1523 this_cpu
= smp_processor_id();
1526 if (unlikely(task_running(rq
, p
)))
1531 schedstat_inc(rq
, ttwu_count
);
1532 if (cpu
== this_cpu
) {
1533 schedstat_inc(rq
, ttwu_local
);
1537 for_each_domain(this_cpu
, sd
) {
1538 if (cpu_isset(cpu
, sd
->span
)) {
1539 schedstat_inc(sd
, ttwu_wake_remote
);
1545 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1549 * Check for affine wakeup and passive balancing possibilities.
1552 int idx
= this_sd
->wake_idx
;
1553 unsigned int imbalance
;
1555 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1557 load
= source_load(cpu
, idx
);
1558 this_load
= target_load(this_cpu
, idx
);
1560 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1562 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1563 unsigned long tl
= this_load
;
1564 unsigned long tl_per_task
;
1567 * Attract cache-cold tasks on sync wakeups:
1569 if (sync
&& !task_hot(p
, rq
->clock
, this_sd
))
1572 schedstat_inc(p
, se
.nr_wakeups_affine_attempts
);
1573 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1576 * If sync wakeup then subtract the (maximum possible)
1577 * effect of the currently running task from the load
1578 * of the current CPU:
1581 tl
-= current
->se
.load
.weight
;
1584 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1585 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1587 * This domain has SD_WAKE_AFFINE and
1588 * p is cache cold in this domain, and
1589 * there is no bad imbalance.
1591 schedstat_inc(this_sd
, ttwu_move_affine
);
1592 schedstat_inc(p
, se
.nr_wakeups_affine
);
1598 * Start passive balancing when half the imbalance_pct
1601 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1602 if (imbalance
*this_load
<= 100*load
) {
1603 schedstat_inc(this_sd
, ttwu_move_balance
);
1604 schedstat_inc(p
, se
.nr_wakeups_passive
);
1610 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1612 new_cpu
= wake_idle(new_cpu
, p
);
1613 if (new_cpu
!= cpu
) {
1614 set_task_cpu(p
, new_cpu
);
1615 task_rq_unlock(rq
, &flags
);
1616 /* might preempt at this point */
1617 rq
= task_rq_lock(p
, &flags
);
1618 old_state
= p
->state
;
1619 if (!(old_state
& state
))
1624 this_cpu
= smp_processor_id();
1629 #endif /* CONFIG_SMP */
1630 schedstat_inc(p
, se
.nr_wakeups
);
1632 schedstat_inc(p
, se
.nr_wakeups_sync
);
1633 if (orig_cpu
!= cpu
)
1634 schedstat_inc(p
, se
.nr_wakeups_migrate
);
1635 if (cpu
== this_cpu
)
1636 schedstat_inc(p
, se
.nr_wakeups_local
);
1638 schedstat_inc(p
, se
.nr_wakeups_remote
);
1639 update_rq_clock(rq
);
1640 activate_task(rq
, p
, 1);
1641 check_preempt_curr(rq
, p
);
1645 p
->state
= TASK_RUNNING
;
1647 task_rq_unlock(rq
, &flags
);
1652 int fastcall
wake_up_process(struct task_struct
*p
)
1654 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1655 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1657 EXPORT_SYMBOL(wake_up_process
);
1659 int fastcall
wake_up_state(struct task_struct
*p
, unsigned int state
)
1661 return try_to_wake_up(p
, state
, 0);
1665 * Perform scheduler related setup for a newly forked process p.
1666 * p is forked by current.
1668 * __sched_fork() is basic setup used by init_idle() too:
1670 static void __sched_fork(struct task_struct
*p
)
1672 p
->se
.exec_start
= 0;
1673 p
->se
.sum_exec_runtime
= 0;
1674 p
->se
.prev_sum_exec_runtime
= 0;
1676 #ifdef CONFIG_SCHEDSTATS
1677 p
->se
.wait_start
= 0;
1678 p
->se
.sum_sleep_runtime
= 0;
1679 p
->se
.sleep_start
= 0;
1680 p
->se
.block_start
= 0;
1681 p
->se
.sleep_max
= 0;
1682 p
->se
.block_max
= 0;
1684 p
->se
.slice_max
= 0;
1688 INIT_LIST_HEAD(&p
->run_list
);
1691 #ifdef CONFIG_PREEMPT_NOTIFIERS
1692 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1696 * We mark the process as running here, but have not actually
1697 * inserted it onto the runqueue yet. This guarantees that
1698 * nobody will actually run it, and a signal or other external
1699 * event cannot wake it up and insert it on the runqueue either.
1701 p
->state
= TASK_RUNNING
;
1705 * fork()/clone()-time setup:
1707 void sched_fork(struct task_struct
*p
, int clone_flags
)
1709 int cpu
= get_cpu();
1714 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1716 set_task_cpu(p
, cpu
);
1719 * Make sure we do not leak PI boosting priority to the child:
1721 p
->prio
= current
->normal_prio
;
1722 if (!rt_prio(p
->prio
))
1723 p
->sched_class
= &fair_sched_class
;
1725 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1726 if (likely(sched_info_on()))
1727 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1729 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1732 #ifdef CONFIG_PREEMPT
1733 /* Want to start with kernel preemption disabled. */
1734 task_thread_info(p
)->preempt_count
= 1;
1740 * wake_up_new_task - wake up a newly created task for the first time.
1742 * This function will do some initial scheduler statistics housekeeping
1743 * that must be done for every newly created context, then puts the task
1744 * on the runqueue and wakes it.
1746 void fastcall
wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1748 unsigned long flags
;
1751 rq
= task_rq_lock(p
, &flags
);
1752 BUG_ON(p
->state
!= TASK_RUNNING
);
1753 update_rq_clock(rq
);
1755 p
->prio
= effective_prio(p
);
1757 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
1758 activate_task(rq
, p
, 0);
1761 * Let the scheduling class do new task startup
1762 * management (if any):
1764 p
->sched_class
->task_new(rq
, p
);
1765 inc_nr_running(p
, rq
);
1767 check_preempt_curr(rq
, p
);
1768 task_rq_unlock(rq
, &flags
);
1771 #ifdef CONFIG_PREEMPT_NOTIFIERS
1774 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1775 * @notifier: notifier struct to register
1777 void preempt_notifier_register(struct preempt_notifier
*notifier
)
1779 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
1781 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
1784 * preempt_notifier_unregister - no longer interested in preemption notifications
1785 * @notifier: notifier struct to unregister
1787 * This is safe to call from within a preemption notifier.
1789 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
1791 hlist_del(¬ifier
->link
);
1793 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
1795 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1797 struct preempt_notifier
*notifier
;
1798 struct hlist_node
*node
;
1800 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1801 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
1805 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1806 struct task_struct
*next
)
1808 struct preempt_notifier
*notifier
;
1809 struct hlist_node
*node
;
1811 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1812 notifier
->ops
->sched_out(notifier
, next
);
1817 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1822 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1823 struct task_struct
*next
)
1830 * prepare_task_switch - prepare to switch tasks
1831 * @rq: the runqueue preparing to switch
1832 * @prev: the current task that is being switched out
1833 * @next: the task we are going to switch to.
1835 * This is called with the rq lock held and interrupts off. It must
1836 * be paired with a subsequent finish_task_switch after the context
1839 * prepare_task_switch sets up locking and calls architecture specific
1843 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
1844 struct task_struct
*next
)
1846 fire_sched_out_preempt_notifiers(prev
, next
);
1847 prepare_lock_switch(rq
, next
);
1848 prepare_arch_switch(next
);
1852 * finish_task_switch - clean up after a task-switch
1853 * @rq: runqueue associated with task-switch
1854 * @prev: the thread we just switched away from.
1856 * finish_task_switch must be called after the context switch, paired
1857 * with a prepare_task_switch call before the context switch.
1858 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1859 * and do any other architecture-specific cleanup actions.
1861 * Note that we may have delayed dropping an mm in context_switch(). If
1862 * so, we finish that here outside of the runqueue lock. (Doing it
1863 * with the lock held can cause deadlocks; see schedule() for
1866 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1867 __releases(rq
->lock
)
1869 struct mm_struct
*mm
= rq
->prev_mm
;
1875 * A task struct has one reference for the use as "current".
1876 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1877 * schedule one last time. The schedule call will never return, and
1878 * the scheduled task must drop that reference.
1879 * The test for TASK_DEAD must occur while the runqueue locks are
1880 * still held, otherwise prev could be scheduled on another cpu, die
1881 * there before we look at prev->state, and then the reference would
1883 * Manfred Spraul <manfred@colorfullife.com>
1885 prev_state
= prev
->state
;
1886 finish_arch_switch(prev
);
1887 finish_lock_switch(rq
, prev
);
1888 fire_sched_in_preempt_notifiers(current
);
1891 if (unlikely(prev_state
== TASK_DEAD
)) {
1893 * Remove function-return probe instances associated with this
1894 * task and put them back on the free list.
1896 kprobe_flush_task(prev
);
1897 put_task_struct(prev
);
1902 * schedule_tail - first thing a freshly forked thread must call.
1903 * @prev: the thread we just switched away from.
1905 asmlinkage
void schedule_tail(struct task_struct
*prev
)
1906 __releases(rq
->lock
)
1908 struct rq
*rq
= this_rq();
1910 finish_task_switch(rq
, prev
);
1911 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1912 /* In this case, finish_task_switch does not reenable preemption */
1915 if (current
->set_child_tid
)
1916 put_user(task_pid_vnr(current
), current
->set_child_tid
);
1920 * context_switch - switch to the new MM and the new
1921 * thread's register state.
1924 context_switch(struct rq
*rq
, struct task_struct
*prev
,
1925 struct task_struct
*next
)
1927 struct mm_struct
*mm
, *oldmm
;
1929 prepare_task_switch(rq
, prev
, next
);
1931 oldmm
= prev
->active_mm
;
1933 * For paravirt, this is coupled with an exit in switch_to to
1934 * combine the page table reload and the switch backend into
1937 arch_enter_lazy_cpu_mode();
1939 if (unlikely(!mm
)) {
1940 next
->active_mm
= oldmm
;
1941 atomic_inc(&oldmm
->mm_count
);
1942 enter_lazy_tlb(oldmm
, next
);
1944 switch_mm(oldmm
, mm
, next
);
1946 if (unlikely(!prev
->mm
)) {
1947 prev
->active_mm
= NULL
;
1948 rq
->prev_mm
= oldmm
;
1951 * Since the runqueue lock will be released by the next
1952 * task (which is an invalid locking op but in the case
1953 * of the scheduler it's an obvious special-case), so we
1954 * do an early lockdep release here:
1956 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1957 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
1960 /* Here we just switch the register state and the stack. */
1961 switch_to(prev
, next
, prev
);
1965 * this_rq must be evaluated again because prev may have moved
1966 * CPUs since it called schedule(), thus the 'rq' on its stack
1967 * frame will be invalid.
1969 finish_task_switch(this_rq(), prev
);
1973 * nr_running, nr_uninterruptible and nr_context_switches:
1975 * externally visible scheduler statistics: current number of runnable
1976 * threads, current number of uninterruptible-sleeping threads, total
1977 * number of context switches performed since bootup.
1979 unsigned long nr_running(void)
1981 unsigned long i
, sum
= 0;
1983 for_each_online_cpu(i
)
1984 sum
+= cpu_rq(i
)->nr_running
;
1989 unsigned long nr_uninterruptible(void)
1991 unsigned long i
, sum
= 0;
1993 for_each_possible_cpu(i
)
1994 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1997 * Since we read the counters lockless, it might be slightly
1998 * inaccurate. Do not allow it to go below zero though:
2000 if (unlikely((long)sum
< 0))
2006 unsigned long long nr_context_switches(void)
2009 unsigned long long sum
= 0;
2011 for_each_possible_cpu(i
)
2012 sum
+= cpu_rq(i
)->nr_switches
;
2017 unsigned long nr_iowait(void)
2019 unsigned long i
, sum
= 0;
2021 for_each_possible_cpu(i
)
2022 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2027 unsigned long nr_active(void)
2029 unsigned long i
, running
= 0, uninterruptible
= 0;
2031 for_each_online_cpu(i
) {
2032 running
+= cpu_rq(i
)->nr_running
;
2033 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2036 if (unlikely((long)uninterruptible
< 0))
2037 uninterruptible
= 0;
2039 return running
+ uninterruptible
;
2043 * Update rq->cpu_load[] statistics. This function is usually called every
2044 * scheduler tick (TICK_NSEC).
2046 static void update_cpu_load(struct rq
*this_rq
)
2048 unsigned long this_load
= this_rq
->load
.weight
;
2051 this_rq
->nr_load_updates
++;
2053 /* Update our load: */
2054 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2055 unsigned long old_load
, new_load
;
2057 /* scale is effectively 1 << i now, and >> i divides by scale */
2059 old_load
= this_rq
->cpu_load
[i
];
2060 new_load
= this_load
;
2062 * Round up the averaging division if load is increasing. This
2063 * prevents us from getting stuck on 9 if the load is 10, for
2066 if (new_load
> old_load
)
2067 new_load
+= scale
-1;
2068 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2075 * double_rq_lock - safely lock two runqueues
2077 * Note this does not disable interrupts like task_rq_lock,
2078 * you need to do so manually before calling.
2080 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2081 __acquires(rq1
->lock
)
2082 __acquires(rq2
->lock
)
2084 BUG_ON(!irqs_disabled());
2086 spin_lock(&rq1
->lock
);
2087 __acquire(rq2
->lock
); /* Fake it out ;) */
2090 spin_lock(&rq1
->lock
);
2091 spin_lock(&rq2
->lock
);
2093 spin_lock(&rq2
->lock
);
2094 spin_lock(&rq1
->lock
);
2097 update_rq_clock(rq1
);
2098 update_rq_clock(rq2
);
2102 * double_rq_unlock - safely unlock two runqueues
2104 * Note this does not restore interrupts like task_rq_unlock,
2105 * you need to do so manually after calling.
2107 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2108 __releases(rq1
->lock
)
2109 __releases(rq2
->lock
)
2111 spin_unlock(&rq1
->lock
);
2113 spin_unlock(&rq2
->lock
);
2115 __release(rq2
->lock
);
2119 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2121 static void double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2122 __releases(this_rq
->lock
)
2123 __acquires(busiest
->lock
)
2124 __acquires(this_rq
->lock
)
2126 if (unlikely(!irqs_disabled())) {
2127 /* printk() doesn't work good under rq->lock */
2128 spin_unlock(&this_rq
->lock
);
2131 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2132 if (busiest
< this_rq
) {
2133 spin_unlock(&this_rq
->lock
);
2134 spin_lock(&busiest
->lock
);
2135 spin_lock(&this_rq
->lock
);
2137 spin_lock(&busiest
->lock
);
2142 * If dest_cpu is allowed for this process, migrate the task to it.
2143 * This is accomplished by forcing the cpu_allowed mask to only
2144 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2145 * the cpu_allowed mask is restored.
2147 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2149 struct migration_req req
;
2150 unsigned long flags
;
2153 rq
= task_rq_lock(p
, &flags
);
2154 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2155 || unlikely(cpu_is_offline(dest_cpu
)))
2158 /* force the process onto the specified CPU */
2159 if (migrate_task(p
, dest_cpu
, &req
)) {
2160 /* Need to wait for migration thread (might exit: take ref). */
2161 struct task_struct
*mt
= rq
->migration_thread
;
2163 get_task_struct(mt
);
2164 task_rq_unlock(rq
, &flags
);
2165 wake_up_process(mt
);
2166 put_task_struct(mt
);
2167 wait_for_completion(&req
.done
);
2172 task_rq_unlock(rq
, &flags
);
2176 * sched_exec - execve() is a valuable balancing opportunity, because at
2177 * this point the task has the smallest effective memory and cache footprint.
2179 void sched_exec(void)
2181 int new_cpu
, this_cpu
= get_cpu();
2182 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2184 if (new_cpu
!= this_cpu
)
2185 sched_migrate_task(current
, new_cpu
);
2189 * pull_task - move a task from a remote runqueue to the local runqueue.
2190 * Both runqueues must be locked.
2192 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2193 struct rq
*this_rq
, int this_cpu
)
2195 deactivate_task(src_rq
, p
, 0);
2196 set_task_cpu(p
, this_cpu
);
2197 activate_task(this_rq
, p
, 0);
2199 * Note that idle threads have a prio of MAX_PRIO, for this test
2200 * to be always true for them.
2202 check_preempt_curr(this_rq
, p
);
2206 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2209 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2210 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2214 * We do not migrate tasks that are:
2215 * 1) running (obviously), or
2216 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2217 * 3) are cache-hot on their current CPU.
2219 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2220 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2225 if (task_running(rq
, p
)) {
2226 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2231 * Aggressive migration if:
2232 * 1) task is cache cold, or
2233 * 2) too many balance attempts have failed.
2236 if (!task_hot(p
, rq
->clock
, sd
) ||
2237 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2238 #ifdef CONFIG_SCHEDSTATS
2239 if (task_hot(p
, rq
->clock
, sd
)) {
2240 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2241 schedstat_inc(p
, se
.nr_forced_migrations
);
2247 if (task_hot(p
, rq
->clock
, sd
)) {
2248 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2254 static unsigned long
2255 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2256 unsigned long max_load_move
, struct sched_domain
*sd
,
2257 enum cpu_idle_type idle
, int *all_pinned
,
2258 int *this_best_prio
, struct rq_iterator
*iterator
)
2260 int loops
= 0, pulled
= 0, pinned
= 0, skip_for_load
;
2261 struct task_struct
*p
;
2262 long rem_load_move
= max_load_move
;
2264 if (max_load_move
== 0)
2270 * Start the load-balancing iterator:
2272 p
= iterator
->start(iterator
->arg
);
2274 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2277 * To help distribute high priority tasks across CPUs we don't
2278 * skip a task if it will be the highest priority task (i.e. smallest
2279 * prio value) on its new queue regardless of its load weight
2281 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2282 SCHED_LOAD_SCALE_FUZZ
;
2283 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2284 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2285 p
= iterator
->next(iterator
->arg
);
2289 pull_task(busiest
, p
, this_rq
, this_cpu
);
2291 rem_load_move
-= p
->se
.load
.weight
;
2294 * We only want to steal up to the prescribed amount of weighted load.
2296 if (rem_load_move
> 0) {
2297 if (p
->prio
< *this_best_prio
)
2298 *this_best_prio
= p
->prio
;
2299 p
= iterator
->next(iterator
->arg
);
2304 * Right now, this is one of only two places pull_task() is called,
2305 * so we can safely collect pull_task() stats here rather than
2306 * inside pull_task().
2308 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2311 *all_pinned
= pinned
;
2313 return max_load_move
- rem_load_move
;
2317 * move_tasks tries to move up to max_load_move weighted load from busiest to
2318 * this_rq, as part of a balancing operation within domain "sd".
2319 * Returns 1 if successful and 0 otherwise.
2321 * Called with both runqueues locked.
2323 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2324 unsigned long max_load_move
,
2325 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2328 const struct sched_class
*class = sched_class_highest
;
2329 unsigned long total_load_moved
= 0;
2330 int this_best_prio
= this_rq
->curr
->prio
;
2334 class->load_balance(this_rq
, this_cpu
, busiest
,
2335 max_load_move
- total_load_moved
,
2336 sd
, idle
, all_pinned
, &this_best_prio
);
2337 class = class->next
;
2338 } while (class && max_load_move
> total_load_moved
);
2340 return total_load_moved
> 0;
2344 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2345 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2346 struct rq_iterator
*iterator
)
2348 struct task_struct
*p
= iterator
->start(iterator
->arg
);
2352 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2353 pull_task(busiest
, p
, this_rq
, this_cpu
);
2355 * Right now, this is only the second place pull_task()
2356 * is called, so we can safely collect pull_task()
2357 * stats here rather than inside pull_task().
2359 schedstat_inc(sd
, lb_gained
[idle
]);
2363 p
= iterator
->next(iterator
->arg
);
2370 * move_one_task tries to move exactly one task from busiest to this_rq, as
2371 * part of active balancing operations within "domain".
2372 * Returns 1 if successful and 0 otherwise.
2374 * Called with both runqueues locked.
2376 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2377 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2379 const struct sched_class
*class;
2381 for (class = sched_class_highest
; class; class = class->next
)
2382 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
2389 * find_busiest_group finds and returns the busiest CPU group within the
2390 * domain. It calculates and returns the amount of weighted load which
2391 * should be moved to restore balance via the imbalance parameter.
2393 static struct sched_group
*
2394 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2395 unsigned long *imbalance
, enum cpu_idle_type idle
,
2396 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2398 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2399 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2400 unsigned long max_pull
;
2401 unsigned long busiest_load_per_task
, busiest_nr_running
;
2402 unsigned long this_load_per_task
, this_nr_running
;
2403 int load_idx
, group_imb
= 0;
2404 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2405 int power_savings_balance
= 1;
2406 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2407 unsigned long min_nr_running
= ULONG_MAX
;
2408 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2411 max_load
= this_load
= total_load
= total_pwr
= 0;
2412 busiest_load_per_task
= busiest_nr_running
= 0;
2413 this_load_per_task
= this_nr_running
= 0;
2414 if (idle
== CPU_NOT_IDLE
)
2415 load_idx
= sd
->busy_idx
;
2416 else if (idle
== CPU_NEWLY_IDLE
)
2417 load_idx
= sd
->newidle_idx
;
2419 load_idx
= sd
->idle_idx
;
2422 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
2425 int __group_imb
= 0;
2426 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2427 unsigned long sum_nr_running
, sum_weighted_load
;
2429 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2432 balance_cpu
= first_cpu(group
->cpumask
);
2434 /* Tally up the load of all CPUs in the group */
2435 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2437 min_cpu_load
= ~0UL;
2439 for_each_cpu_mask(i
, group
->cpumask
) {
2442 if (!cpu_isset(i
, *cpus
))
2447 if (*sd_idle
&& rq
->nr_running
)
2450 /* Bias balancing toward cpus of our domain */
2452 if (idle_cpu(i
) && !first_idle_cpu
) {
2457 load
= target_load(i
, load_idx
);
2459 load
= source_load(i
, load_idx
);
2460 if (load
> max_cpu_load
)
2461 max_cpu_load
= load
;
2462 if (min_cpu_load
> load
)
2463 min_cpu_load
= load
;
2467 sum_nr_running
+= rq
->nr_running
;
2468 sum_weighted_load
+= weighted_cpuload(i
);
2472 * First idle cpu or the first cpu(busiest) in this sched group
2473 * is eligible for doing load balancing at this and above
2474 * domains. In the newly idle case, we will allow all the cpu's
2475 * to do the newly idle load balance.
2477 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2478 balance_cpu
!= this_cpu
&& balance
) {
2483 total_load
+= avg_load
;
2484 total_pwr
+= group
->__cpu_power
;
2486 /* Adjust by relative CPU power of the group */
2487 avg_load
= sg_div_cpu_power(group
,
2488 avg_load
* SCHED_LOAD_SCALE
);
2490 if ((max_cpu_load
- min_cpu_load
) > SCHED_LOAD_SCALE
)
2493 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2496 this_load
= avg_load
;
2498 this_nr_running
= sum_nr_running
;
2499 this_load_per_task
= sum_weighted_load
;
2500 } else if (avg_load
> max_load
&&
2501 (sum_nr_running
> group_capacity
|| __group_imb
)) {
2502 max_load
= avg_load
;
2504 busiest_nr_running
= sum_nr_running
;
2505 busiest_load_per_task
= sum_weighted_load
;
2506 group_imb
= __group_imb
;
2509 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2511 * Busy processors will not participate in power savings
2514 if (idle
== CPU_NOT_IDLE
||
2515 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2519 * If the local group is idle or completely loaded
2520 * no need to do power savings balance at this domain
2522 if (local_group
&& (this_nr_running
>= group_capacity
||
2524 power_savings_balance
= 0;
2527 * If a group is already running at full capacity or idle,
2528 * don't include that group in power savings calculations
2530 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2535 * Calculate the group which has the least non-idle load.
2536 * This is the group from where we need to pick up the load
2539 if ((sum_nr_running
< min_nr_running
) ||
2540 (sum_nr_running
== min_nr_running
&&
2541 first_cpu(group
->cpumask
) <
2542 first_cpu(group_min
->cpumask
))) {
2544 min_nr_running
= sum_nr_running
;
2545 min_load_per_task
= sum_weighted_load
/
2550 * Calculate the group which is almost near its
2551 * capacity but still has some space to pick up some load
2552 * from other group and save more power
2554 if (sum_nr_running
<= group_capacity
- 1) {
2555 if (sum_nr_running
> leader_nr_running
||
2556 (sum_nr_running
== leader_nr_running
&&
2557 first_cpu(group
->cpumask
) >
2558 first_cpu(group_leader
->cpumask
))) {
2559 group_leader
= group
;
2560 leader_nr_running
= sum_nr_running
;
2565 group
= group
->next
;
2566 } while (group
!= sd
->groups
);
2568 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2571 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2573 if (this_load
>= avg_load
||
2574 100*max_load
<= sd
->imbalance_pct
*this_load
)
2577 busiest_load_per_task
/= busiest_nr_running
;
2579 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
2582 * We're trying to get all the cpus to the average_load, so we don't
2583 * want to push ourselves above the average load, nor do we wish to
2584 * reduce the max loaded cpu below the average load, as either of these
2585 * actions would just result in more rebalancing later, and ping-pong
2586 * tasks around. Thus we look for the minimum possible imbalance.
2587 * Negative imbalances (*we* are more loaded than anyone else) will
2588 * be counted as no imbalance for these purposes -- we can't fix that
2589 * by pulling tasks to us. Be careful of negative numbers as they'll
2590 * appear as very large values with unsigned longs.
2592 if (max_load
<= busiest_load_per_task
)
2596 * In the presence of smp nice balancing, certain scenarios can have
2597 * max load less than avg load(as we skip the groups at or below
2598 * its cpu_power, while calculating max_load..)
2600 if (max_load
< avg_load
) {
2602 goto small_imbalance
;
2605 /* Don't want to pull so many tasks that a group would go idle */
2606 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2608 /* How much load to actually move to equalise the imbalance */
2609 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2610 (avg_load
- this_load
) * this->__cpu_power
)
2614 * if *imbalance is less than the average load per runnable task
2615 * there is no gaurantee that any tasks will be moved so we'll have
2616 * a think about bumping its value to force at least one task to be
2619 if (*imbalance
< busiest_load_per_task
) {
2620 unsigned long tmp
, pwr_now
, pwr_move
;
2624 pwr_move
= pwr_now
= 0;
2626 if (this_nr_running
) {
2627 this_load_per_task
/= this_nr_running
;
2628 if (busiest_load_per_task
> this_load_per_task
)
2631 this_load_per_task
= SCHED_LOAD_SCALE
;
2633 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2634 busiest_load_per_task
* imbn
) {
2635 *imbalance
= busiest_load_per_task
;
2640 * OK, we don't have enough imbalance to justify moving tasks,
2641 * however we may be able to increase total CPU power used by
2645 pwr_now
+= busiest
->__cpu_power
*
2646 min(busiest_load_per_task
, max_load
);
2647 pwr_now
+= this->__cpu_power
*
2648 min(this_load_per_task
, this_load
);
2649 pwr_now
/= SCHED_LOAD_SCALE
;
2651 /* Amount of load we'd subtract */
2652 tmp
= sg_div_cpu_power(busiest
,
2653 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2655 pwr_move
+= busiest
->__cpu_power
*
2656 min(busiest_load_per_task
, max_load
- tmp
);
2658 /* Amount of load we'd add */
2659 if (max_load
* busiest
->__cpu_power
<
2660 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2661 tmp
= sg_div_cpu_power(this,
2662 max_load
* busiest
->__cpu_power
);
2664 tmp
= sg_div_cpu_power(this,
2665 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2666 pwr_move
+= this->__cpu_power
*
2667 min(this_load_per_task
, this_load
+ tmp
);
2668 pwr_move
/= SCHED_LOAD_SCALE
;
2670 /* Move if we gain throughput */
2671 if (pwr_move
> pwr_now
)
2672 *imbalance
= busiest_load_per_task
;
2678 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2679 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2682 if (this == group_leader
&& group_leader
!= group_min
) {
2683 *imbalance
= min_load_per_task
;
2693 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2696 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2697 unsigned long imbalance
, cpumask_t
*cpus
)
2699 struct rq
*busiest
= NULL
, *rq
;
2700 unsigned long max_load
= 0;
2703 for_each_cpu_mask(i
, group
->cpumask
) {
2706 if (!cpu_isset(i
, *cpus
))
2710 wl
= weighted_cpuload(i
);
2712 if (rq
->nr_running
== 1 && wl
> imbalance
)
2715 if (wl
> max_load
) {
2725 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2726 * so long as it is large enough.
2728 #define MAX_PINNED_INTERVAL 512
2731 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2732 * tasks if there is an imbalance.
2734 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2735 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2738 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2739 struct sched_group
*group
;
2740 unsigned long imbalance
;
2742 cpumask_t cpus
= CPU_MASK_ALL
;
2743 unsigned long flags
;
2746 * When power savings policy is enabled for the parent domain, idle
2747 * sibling can pick up load irrespective of busy siblings. In this case,
2748 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2749 * portraying it as CPU_NOT_IDLE.
2751 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2752 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2755 schedstat_inc(sd
, lb_count
[idle
]);
2758 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
2765 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2769 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
2771 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2775 BUG_ON(busiest
== this_rq
);
2777 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2780 if (busiest
->nr_running
> 1) {
2782 * Attempt to move tasks. If find_busiest_group has found
2783 * an imbalance but busiest->nr_running <= 1, the group is
2784 * still unbalanced. ld_moved simply stays zero, so it is
2785 * correctly treated as an imbalance.
2787 local_irq_save(flags
);
2788 double_rq_lock(this_rq
, busiest
);
2789 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2790 imbalance
, sd
, idle
, &all_pinned
);
2791 double_rq_unlock(this_rq
, busiest
);
2792 local_irq_restore(flags
);
2795 * some other cpu did the load balance for us.
2797 if (ld_moved
&& this_cpu
!= smp_processor_id())
2798 resched_cpu(this_cpu
);
2800 /* All tasks on this runqueue were pinned by CPU affinity */
2801 if (unlikely(all_pinned
)) {
2802 cpu_clear(cpu_of(busiest
), cpus
);
2803 if (!cpus_empty(cpus
))
2810 schedstat_inc(sd
, lb_failed
[idle
]);
2811 sd
->nr_balance_failed
++;
2813 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2815 spin_lock_irqsave(&busiest
->lock
, flags
);
2817 /* don't kick the migration_thread, if the curr
2818 * task on busiest cpu can't be moved to this_cpu
2820 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2821 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2823 goto out_one_pinned
;
2826 if (!busiest
->active_balance
) {
2827 busiest
->active_balance
= 1;
2828 busiest
->push_cpu
= this_cpu
;
2831 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2833 wake_up_process(busiest
->migration_thread
);
2836 * We've kicked active balancing, reset the failure
2839 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2842 sd
->nr_balance_failed
= 0;
2844 if (likely(!active_balance
)) {
2845 /* We were unbalanced, so reset the balancing interval */
2846 sd
->balance_interval
= sd
->min_interval
;
2849 * If we've begun active balancing, start to back off. This
2850 * case may not be covered by the all_pinned logic if there
2851 * is only 1 task on the busy runqueue (because we don't call
2854 if (sd
->balance_interval
< sd
->max_interval
)
2855 sd
->balance_interval
*= 2;
2858 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2859 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2864 schedstat_inc(sd
, lb_balanced
[idle
]);
2866 sd
->nr_balance_failed
= 0;
2869 /* tune up the balancing interval */
2870 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2871 (sd
->balance_interval
< sd
->max_interval
))
2872 sd
->balance_interval
*= 2;
2874 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2875 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2881 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2882 * tasks if there is an imbalance.
2884 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2885 * this_rq is locked.
2888 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
2890 struct sched_group
*group
;
2891 struct rq
*busiest
= NULL
;
2892 unsigned long imbalance
;
2896 cpumask_t cpus
= CPU_MASK_ALL
;
2899 * When power savings policy is enabled for the parent domain, idle
2900 * sibling can pick up load irrespective of busy siblings. In this case,
2901 * let the state of idle sibling percolate up as IDLE, instead of
2902 * portraying it as CPU_NOT_IDLE.
2904 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
2905 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2908 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
2910 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
2911 &sd_idle
, &cpus
, NULL
);
2913 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
2917 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
2920 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
2924 BUG_ON(busiest
== this_rq
);
2926 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
2929 if (busiest
->nr_running
> 1) {
2930 /* Attempt to move tasks */
2931 double_lock_balance(this_rq
, busiest
);
2932 /* this_rq->clock is already updated */
2933 update_rq_clock(busiest
);
2934 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2935 imbalance
, sd
, CPU_NEWLY_IDLE
,
2937 spin_unlock(&busiest
->lock
);
2939 if (unlikely(all_pinned
)) {
2940 cpu_clear(cpu_of(busiest
), cpus
);
2941 if (!cpus_empty(cpus
))
2947 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
2948 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2949 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2952 sd
->nr_balance_failed
= 0;
2957 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
2958 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2959 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2961 sd
->nr_balance_failed
= 0;
2967 * idle_balance is called by schedule() if this_cpu is about to become
2968 * idle. Attempts to pull tasks from other CPUs.
2970 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
2972 struct sched_domain
*sd
;
2973 int pulled_task
= -1;
2974 unsigned long next_balance
= jiffies
+ HZ
;
2976 for_each_domain(this_cpu
, sd
) {
2977 unsigned long interval
;
2979 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2982 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
2983 /* If we've pulled tasks over stop searching: */
2984 pulled_task
= load_balance_newidle(this_cpu
,
2987 interval
= msecs_to_jiffies(sd
->balance_interval
);
2988 if (time_after(next_balance
, sd
->last_balance
+ interval
))
2989 next_balance
= sd
->last_balance
+ interval
;
2993 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
2995 * We are going idle. next_balance may be set based on
2996 * a busy processor. So reset next_balance.
2998 this_rq
->next_balance
= next_balance
;
3003 * active_load_balance is run by migration threads. It pushes running tasks
3004 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3005 * running on each physical CPU where possible, and avoids physical /
3006 * logical imbalances.
3008 * Called with busiest_rq locked.
3010 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3012 int target_cpu
= busiest_rq
->push_cpu
;
3013 struct sched_domain
*sd
;
3014 struct rq
*target_rq
;
3016 /* Is there any task to move? */
3017 if (busiest_rq
->nr_running
<= 1)
3020 target_rq
= cpu_rq(target_cpu
);
3023 * This condition is "impossible", if it occurs
3024 * we need to fix it. Originally reported by
3025 * Bjorn Helgaas on a 128-cpu setup.
3027 BUG_ON(busiest_rq
== target_rq
);
3029 /* move a task from busiest_rq to target_rq */
3030 double_lock_balance(busiest_rq
, target_rq
);
3031 update_rq_clock(busiest_rq
);
3032 update_rq_clock(target_rq
);
3034 /* Search for an sd spanning us and the target CPU. */
3035 for_each_domain(target_cpu
, sd
) {
3036 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3037 cpu_isset(busiest_cpu
, sd
->span
))
3042 schedstat_inc(sd
, alb_count
);
3044 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3046 schedstat_inc(sd
, alb_pushed
);
3048 schedstat_inc(sd
, alb_failed
);
3050 spin_unlock(&target_rq
->lock
);
3055 atomic_t load_balancer
;
3057 } nohz ____cacheline_aligned
= {
3058 .load_balancer
= ATOMIC_INIT(-1),
3059 .cpu_mask
= CPU_MASK_NONE
,
3063 * This routine will try to nominate the ilb (idle load balancing)
3064 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3065 * load balancing on behalf of all those cpus. If all the cpus in the system
3066 * go into this tickless mode, then there will be no ilb owner (as there is
3067 * no need for one) and all the cpus will sleep till the next wakeup event
3070 * For the ilb owner, tick is not stopped. And this tick will be used
3071 * for idle load balancing. ilb owner will still be part of
3074 * While stopping the tick, this cpu will become the ilb owner if there
3075 * is no other owner. And will be the owner till that cpu becomes busy
3076 * or if all cpus in the system stop their ticks at which point
3077 * there is no need for ilb owner.
3079 * When the ilb owner becomes busy, it nominates another owner, during the
3080 * next busy scheduler_tick()
3082 int select_nohz_load_balancer(int stop_tick
)
3084 int cpu
= smp_processor_id();
3087 cpu_set(cpu
, nohz
.cpu_mask
);
3088 cpu_rq(cpu
)->in_nohz_recently
= 1;
3091 * If we are going offline and still the leader, give up!
3093 if (cpu_is_offline(cpu
) &&
3094 atomic_read(&nohz
.load_balancer
) == cpu
) {
3095 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3100 /* time for ilb owner also to sleep */
3101 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3102 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3103 atomic_set(&nohz
.load_balancer
, -1);
3107 if (atomic_read(&nohz
.load_balancer
) == -1) {
3108 /* make me the ilb owner */
3109 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3111 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3114 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3117 cpu_clear(cpu
, nohz
.cpu_mask
);
3119 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3120 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3127 static DEFINE_SPINLOCK(balancing
);
3130 * It checks each scheduling domain to see if it is due to be balanced,
3131 * and initiates a balancing operation if so.
3133 * Balancing parameters are set up in arch_init_sched_domains.
3135 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3138 struct rq
*rq
= cpu_rq(cpu
);
3139 unsigned long interval
;
3140 struct sched_domain
*sd
;
3141 /* Earliest time when we have to do rebalance again */
3142 unsigned long next_balance
= jiffies
+ 60*HZ
;
3143 int update_next_balance
= 0;
3145 for_each_domain(cpu
, sd
) {
3146 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3149 interval
= sd
->balance_interval
;
3150 if (idle
!= CPU_IDLE
)
3151 interval
*= sd
->busy_factor
;
3153 /* scale ms to jiffies */
3154 interval
= msecs_to_jiffies(interval
);
3155 if (unlikely(!interval
))
3157 if (interval
> HZ
*NR_CPUS
/10)
3158 interval
= HZ
*NR_CPUS
/10;
3161 if (sd
->flags
& SD_SERIALIZE
) {
3162 if (!spin_trylock(&balancing
))
3166 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3167 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3169 * We've pulled tasks over so either we're no
3170 * longer idle, or one of our SMT siblings is
3173 idle
= CPU_NOT_IDLE
;
3175 sd
->last_balance
= jiffies
;
3177 if (sd
->flags
& SD_SERIALIZE
)
3178 spin_unlock(&balancing
);
3180 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3181 next_balance
= sd
->last_balance
+ interval
;
3182 update_next_balance
= 1;
3186 * Stop the load balance at this level. There is another
3187 * CPU in our sched group which is doing load balancing more
3195 * next_balance will be updated only when there is a need.
3196 * When the cpu is attached to null domain for ex, it will not be
3199 if (likely(update_next_balance
))
3200 rq
->next_balance
= next_balance
;
3204 * run_rebalance_domains is triggered when needed from the scheduler tick.
3205 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3206 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3208 static void run_rebalance_domains(struct softirq_action
*h
)
3210 int this_cpu
= smp_processor_id();
3211 struct rq
*this_rq
= cpu_rq(this_cpu
);
3212 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3213 CPU_IDLE
: CPU_NOT_IDLE
;
3215 rebalance_domains(this_cpu
, idle
);
3219 * If this cpu is the owner for idle load balancing, then do the
3220 * balancing on behalf of the other idle cpus whose ticks are
3223 if (this_rq
->idle_at_tick
&&
3224 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3225 cpumask_t cpus
= nohz
.cpu_mask
;
3229 cpu_clear(this_cpu
, cpus
);
3230 for_each_cpu_mask(balance_cpu
, cpus
) {
3232 * If this cpu gets work to do, stop the load balancing
3233 * work being done for other cpus. Next load
3234 * balancing owner will pick it up.
3239 rebalance_domains(balance_cpu
, CPU_IDLE
);
3241 rq
= cpu_rq(balance_cpu
);
3242 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3243 this_rq
->next_balance
= rq
->next_balance
;
3250 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3252 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3253 * idle load balancing owner or decide to stop the periodic load balancing,
3254 * if the whole system is idle.
3256 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3260 * If we were in the nohz mode recently and busy at the current
3261 * scheduler tick, then check if we need to nominate new idle
3264 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3265 rq
->in_nohz_recently
= 0;
3267 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3268 cpu_clear(cpu
, nohz
.cpu_mask
);
3269 atomic_set(&nohz
.load_balancer
, -1);
3272 if (atomic_read(&nohz
.load_balancer
) == -1) {
3274 * simple selection for now: Nominate the
3275 * first cpu in the nohz list to be the next
3278 * TBD: Traverse the sched domains and nominate
3279 * the nearest cpu in the nohz.cpu_mask.
3281 int ilb
= first_cpu(nohz
.cpu_mask
);
3289 * If this cpu is idle and doing idle load balancing for all the
3290 * cpus with ticks stopped, is it time for that to stop?
3292 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3293 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3299 * If this cpu is idle and the idle load balancing is done by
3300 * someone else, then no need raise the SCHED_SOFTIRQ
3302 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3303 cpu_isset(cpu
, nohz
.cpu_mask
))
3306 if (time_after_eq(jiffies
, rq
->next_balance
))
3307 raise_softirq(SCHED_SOFTIRQ
);
3310 #else /* CONFIG_SMP */
3313 * on UP we do not need to balance between CPUs:
3315 static inline void idle_balance(int cpu
, struct rq
*rq
)
3321 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3323 EXPORT_PER_CPU_SYMBOL(kstat
);
3326 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3327 * that have not yet been banked in case the task is currently running.
3329 unsigned long long task_sched_runtime(struct task_struct
*p
)
3331 unsigned long flags
;
3335 rq
= task_rq_lock(p
, &flags
);
3336 ns
= p
->se
.sum_exec_runtime
;
3337 if (rq
->curr
== p
) {
3338 update_rq_clock(rq
);
3339 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3340 if ((s64
)delta_exec
> 0)
3343 task_rq_unlock(rq
, &flags
);
3349 * Account user cpu time to a process.
3350 * @p: the process that the cpu time gets accounted to
3351 * @cputime: the cpu time spent in user space since the last update
3353 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3355 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3358 p
->utime
= cputime_add(p
->utime
, cputime
);
3360 /* Add user time to cpustat. */
3361 tmp
= cputime_to_cputime64(cputime
);
3362 if (TASK_NICE(p
) > 0)
3363 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3365 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3369 * Account guest cpu time to a process.
3370 * @p: the process that the cpu time gets accounted to
3371 * @cputime: the cpu time spent in virtual machine since the last update
3373 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
3376 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3378 tmp
= cputime_to_cputime64(cputime
);
3380 p
->utime
= cputime_add(p
->utime
, cputime
);
3381 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3383 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3384 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3388 * Account scaled user cpu time to a process.
3389 * @p: the process that the cpu time gets accounted to
3390 * @cputime: the cpu time spent in user space since the last update
3392 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3394 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
3398 * Account system cpu time to a process.
3399 * @p: the process that the cpu time gets accounted to
3400 * @hardirq_offset: the offset to subtract from hardirq_count()
3401 * @cputime: the cpu time spent in kernel space since the last update
3403 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3406 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3407 struct rq
*rq
= this_rq();
3410 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0))
3411 return account_guest_time(p
, cputime
);
3413 p
->stime
= cputime_add(p
->stime
, cputime
);
3415 /* Add system time to cpustat. */
3416 tmp
= cputime_to_cputime64(cputime
);
3417 if (hardirq_count() - hardirq_offset
)
3418 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3419 else if (softirq_count())
3420 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3421 else if (p
!= rq
->idle
)
3422 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3423 else if (atomic_read(&rq
->nr_iowait
) > 0)
3424 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3426 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3427 /* Account for system time used */
3428 acct_update_integrals(p
);
3432 * Account scaled system cpu time to a process.
3433 * @p: the process that the cpu time gets accounted to
3434 * @hardirq_offset: the offset to subtract from hardirq_count()
3435 * @cputime: the cpu time spent in kernel space since the last update
3437 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3439 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
3443 * Account for involuntary wait time.
3444 * @p: the process from which the cpu time has been stolen
3445 * @steal: the cpu time spent in involuntary wait
3447 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3449 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3450 cputime64_t tmp
= cputime_to_cputime64(steal
);
3451 struct rq
*rq
= this_rq();
3453 if (p
== rq
->idle
) {
3454 p
->stime
= cputime_add(p
->stime
, steal
);
3455 if (atomic_read(&rq
->nr_iowait
) > 0)
3456 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3458 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3460 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3464 * This function gets called by the timer code, with HZ frequency.
3465 * We call it with interrupts disabled.
3467 * It also gets called by the fork code, when changing the parent's
3470 void scheduler_tick(void)
3472 int cpu
= smp_processor_id();
3473 struct rq
*rq
= cpu_rq(cpu
);
3474 struct task_struct
*curr
= rq
->curr
;
3475 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3477 spin_lock(&rq
->lock
);
3478 __update_rq_clock(rq
);
3480 * Let rq->clock advance by at least TICK_NSEC:
3482 if (unlikely(rq
->clock
< next_tick
))
3483 rq
->clock
= next_tick
;
3484 rq
->tick_timestamp
= rq
->clock
;
3485 update_cpu_load(rq
);
3486 if (curr
!= rq
->idle
) /* FIXME: needed? */
3487 curr
->sched_class
->task_tick(rq
, curr
);
3488 spin_unlock(&rq
->lock
);
3491 rq
->idle_at_tick
= idle_cpu(cpu
);
3492 trigger_load_balance(rq
, cpu
);
3496 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3498 void fastcall
add_preempt_count(int val
)
3503 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3505 preempt_count() += val
;
3507 * Spinlock count overflowing soon?
3509 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3512 EXPORT_SYMBOL(add_preempt_count
);
3514 void fastcall
sub_preempt_count(int val
)
3519 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3522 * Is the spinlock portion underflowing?
3524 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3525 !(preempt_count() & PREEMPT_MASK
)))
3528 preempt_count() -= val
;
3530 EXPORT_SYMBOL(sub_preempt_count
);
3535 * Print scheduling while atomic bug:
3537 static noinline
void __schedule_bug(struct task_struct
*prev
)
3539 struct pt_regs
*regs
= get_irq_regs();
3541 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3542 prev
->comm
, prev
->pid
, preempt_count());
3544 debug_show_held_locks(prev
);
3545 if (irqs_disabled())
3546 print_irqtrace_events(prev
);
3555 * Various schedule()-time debugging checks and statistics:
3557 static inline void schedule_debug(struct task_struct
*prev
)
3560 * Test if we are atomic. Since do_exit() needs to call into
3561 * schedule() atomically, we ignore that path for now.
3562 * Otherwise, whine if we are scheduling when we should not be.
3564 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3565 __schedule_bug(prev
);
3567 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3569 schedstat_inc(this_rq(), sched_count
);
3570 #ifdef CONFIG_SCHEDSTATS
3571 if (unlikely(prev
->lock_depth
>= 0)) {
3572 schedstat_inc(this_rq(), bkl_count
);
3573 schedstat_inc(prev
, sched_info
.bkl_count
);
3579 * Pick up the highest-prio task:
3581 static inline struct task_struct
*
3582 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3584 const struct sched_class
*class;
3585 struct task_struct
*p
;
3588 * Optimization: we know that if all tasks are in
3589 * the fair class we can call that function directly:
3591 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3592 p
= fair_sched_class
.pick_next_task(rq
);
3597 class = sched_class_highest
;
3599 p
= class->pick_next_task(rq
);
3603 * Will never be NULL as the idle class always
3604 * returns a non-NULL p:
3606 class = class->next
;
3611 * schedule() is the main scheduler function.
3613 asmlinkage
void __sched
schedule(void)
3615 struct task_struct
*prev
, *next
;
3622 cpu
= smp_processor_id();
3626 switch_count
= &prev
->nivcsw
;
3628 release_kernel_lock(prev
);
3629 need_resched_nonpreemptible
:
3631 schedule_debug(prev
);
3634 * Do the rq-clock update outside the rq lock:
3636 local_irq_disable();
3637 __update_rq_clock(rq
);
3638 spin_lock(&rq
->lock
);
3639 clear_tsk_need_resched(prev
);
3641 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3642 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3643 unlikely(signal_pending(prev
)))) {
3644 prev
->state
= TASK_RUNNING
;
3646 deactivate_task(rq
, prev
, 1);
3648 switch_count
= &prev
->nvcsw
;
3651 if (unlikely(!rq
->nr_running
))
3652 idle_balance(cpu
, rq
);
3654 prev
->sched_class
->put_prev_task(rq
, prev
);
3655 next
= pick_next_task(rq
, prev
);
3657 sched_info_switch(prev
, next
);
3659 if (likely(prev
!= next
)) {
3664 context_switch(rq
, prev
, next
); /* unlocks the rq */
3666 spin_unlock_irq(&rq
->lock
);
3668 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3669 cpu
= smp_processor_id();
3671 goto need_resched_nonpreemptible
;
3673 preempt_enable_no_resched();
3674 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3677 EXPORT_SYMBOL(schedule
);
3679 #ifdef CONFIG_PREEMPT
3681 * this is the entry point to schedule() from in-kernel preemption
3682 * off of preempt_enable. Kernel preemptions off return from interrupt
3683 * occur there and call schedule directly.
3685 asmlinkage
void __sched
preempt_schedule(void)
3687 struct thread_info
*ti
= current_thread_info();
3688 #ifdef CONFIG_PREEMPT_BKL
3689 struct task_struct
*task
= current
;
3690 int saved_lock_depth
;
3693 * If there is a non-zero preempt_count or interrupts are disabled,
3694 * we do not want to preempt the current task. Just return..
3696 if (likely(ti
->preempt_count
|| irqs_disabled()))
3700 add_preempt_count(PREEMPT_ACTIVE
);
3703 * We keep the big kernel semaphore locked, but we
3704 * clear ->lock_depth so that schedule() doesnt
3705 * auto-release the semaphore:
3707 #ifdef CONFIG_PREEMPT_BKL
3708 saved_lock_depth
= task
->lock_depth
;
3709 task
->lock_depth
= -1;
3712 #ifdef CONFIG_PREEMPT_BKL
3713 task
->lock_depth
= saved_lock_depth
;
3715 sub_preempt_count(PREEMPT_ACTIVE
);
3718 * Check again in case we missed a preemption opportunity
3719 * between schedule and now.
3722 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
3724 EXPORT_SYMBOL(preempt_schedule
);
3727 * this is the entry point to schedule() from kernel preemption
3728 * off of irq context.
3729 * Note, that this is called and return with irqs disabled. This will
3730 * protect us against recursive calling from irq.
3732 asmlinkage
void __sched
preempt_schedule_irq(void)
3734 struct thread_info
*ti
= current_thread_info();
3735 #ifdef CONFIG_PREEMPT_BKL
3736 struct task_struct
*task
= current
;
3737 int saved_lock_depth
;
3739 /* Catch callers which need to be fixed */
3740 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3743 add_preempt_count(PREEMPT_ACTIVE
);
3746 * We keep the big kernel semaphore locked, but we
3747 * clear ->lock_depth so that schedule() doesnt
3748 * auto-release the semaphore:
3750 #ifdef CONFIG_PREEMPT_BKL
3751 saved_lock_depth
= task
->lock_depth
;
3752 task
->lock_depth
= -1;
3756 local_irq_disable();
3757 #ifdef CONFIG_PREEMPT_BKL
3758 task
->lock_depth
= saved_lock_depth
;
3760 sub_preempt_count(PREEMPT_ACTIVE
);
3763 * Check again in case we missed a preemption opportunity
3764 * between schedule and now.
3767 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
3770 #endif /* CONFIG_PREEMPT */
3772 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3775 return try_to_wake_up(curr
->private, mode
, sync
);
3777 EXPORT_SYMBOL(default_wake_function
);
3780 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3781 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3782 * number) then we wake all the non-exclusive tasks and one exclusive task.
3784 * There are circumstances in which we can try to wake a task which has already
3785 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3786 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3788 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3789 int nr_exclusive
, int sync
, void *key
)
3791 wait_queue_t
*curr
, *next
;
3793 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3794 unsigned flags
= curr
->flags
;
3796 if (curr
->func(curr
, mode
, sync
, key
) &&
3797 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3803 * __wake_up - wake up threads blocked on a waitqueue.
3805 * @mode: which threads
3806 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3807 * @key: is directly passed to the wakeup function
3809 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3810 int nr_exclusive
, void *key
)
3812 unsigned long flags
;
3814 spin_lock_irqsave(&q
->lock
, flags
);
3815 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3816 spin_unlock_irqrestore(&q
->lock
, flags
);
3818 EXPORT_SYMBOL(__wake_up
);
3821 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3823 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3825 __wake_up_common(q
, mode
, 1, 0, NULL
);
3829 * __wake_up_sync - wake up threads blocked on a waitqueue.
3831 * @mode: which threads
3832 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3834 * The sync wakeup differs that the waker knows that it will schedule
3835 * away soon, so while the target thread will be woken up, it will not
3836 * be migrated to another CPU - ie. the two threads are 'synchronized'
3837 * with each other. This can prevent needless bouncing between CPUs.
3839 * On UP it can prevent extra preemption.
3842 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3844 unsigned long flags
;
3850 if (unlikely(!nr_exclusive
))
3853 spin_lock_irqsave(&q
->lock
, flags
);
3854 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3855 spin_unlock_irqrestore(&q
->lock
, flags
);
3857 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3859 void complete(struct completion
*x
)
3861 unsigned long flags
;
3863 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3865 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3867 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3869 EXPORT_SYMBOL(complete
);
3871 void complete_all(struct completion
*x
)
3873 unsigned long flags
;
3875 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3876 x
->done
+= UINT_MAX
/2;
3877 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3879 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3881 EXPORT_SYMBOL(complete_all
);
3883 static inline long __sched
3884 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
3887 DECLARE_WAITQUEUE(wait
, current
);
3889 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3890 __add_wait_queue_tail(&x
->wait
, &wait
);
3892 if (state
== TASK_INTERRUPTIBLE
&&
3893 signal_pending(current
)) {
3894 __remove_wait_queue(&x
->wait
, &wait
);
3895 return -ERESTARTSYS
;
3897 __set_current_state(state
);
3898 spin_unlock_irq(&x
->wait
.lock
);
3899 timeout
= schedule_timeout(timeout
);
3900 spin_lock_irq(&x
->wait
.lock
);
3902 __remove_wait_queue(&x
->wait
, &wait
);
3906 __remove_wait_queue(&x
->wait
, &wait
);
3913 wait_for_common(struct completion
*x
, long timeout
, int state
)
3917 spin_lock_irq(&x
->wait
.lock
);
3918 timeout
= do_wait_for_common(x
, timeout
, state
);
3919 spin_unlock_irq(&x
->wait
.lock
);
3923 void __sched
wait_for_completion(struct completion
*x
)
3925 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
3927 EXPORT_SYMBOL(wait_for_completion
);
3929 unsigned long __sched
3930 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3932 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
3934 EXPORT_SYMBOL(wait_for_completion_timeout
);
3936 int __sched
wait_for_completion_interruptible(struct completion
*x
)
3938 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
3939 if (t
== -ERESTARTSYS
)
3943 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3945 unsigned long __sched
3946 wait_for_completion_interruptible_timeout(struct completion
*x
,
3947 unsigned long timeout
)
3949 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
3951 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3954 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
3956 unsigned long flags
;
3959 init_waitqueue_entry(&wait
, current
);
3961 __set_current_state(state
);
3963 spin_lock_irqsave(&q
->lock
, flags
);
3964 __add_wait_queue(q
, &wait
);
3965 spin_unlock(&q
->lock
);
3966 timeout
= schedule_timeout(timeout
);
3967 spin_lock_irq(&q
->lock
);
3968 __remove_wait_queue(q
, &wait
);
3969 spin_unlock_irqrestore(&q
->lock
, flags
);
3974 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3976 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
3978 EXPORT_SYMBOL(interruptible_sleep_on
);
3981 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3983 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
3985 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3987 void __sched
sleep_on(wait_queue_head_t
*q
)
3989 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
3991 EXPORT_SYMBOL(sleep_on
);
3993 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3995 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
3997 EXPORT_SYMBOL(sleep_on_timeout
);
3999 #ifdef CONFIG_RT_MUTEXES
4002 * rt_mutex_setprio - set the current priority of a task
4004 * @prio: prio value (kernel-internal form)
4006 * This function changes the 'effective' priority of a task. It does
4007 * not touch ->normal_prio like __setscheduler().
4009 * Used by the rt_mutex code to implement priority inheritance logic.
4011 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4013 unsigned long flags
;
4014 int oldprio
, on_rq
, running
;
4017 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4019 rq
= task_rq_lock(p
, &flags
);
4020 update_rq_clock(rq
);
4023 on_rq
= p
->se
.on_rq
;
4024 running
= task_running(rq
, p
);
4026 dequeue_task(rq
, p
, 0);
4028 p
->sched_class
->put_prev_task(rq
, p
);
4032 p
->sched_class
= &rt_sched_class
;
4034 p
->sched_class
= &fair_sched_class
;
4040 p
->sched_class
->set_curr_task(rq
);
4041 enqueue_task(rq
, p
, 0);
4043 * Reschedule if we are currently running on this runqueue and
4044 * our priority decreased, or if we are not currently running on
4045 * this runqueue and our priority is higher than the current's
4048 if (p
->prio
> oldprio
)
4049 resched_task(rq
->curr
);
4051 check_preempt_curr(rq
, p
);
4054 task_rq_unlock(rq
, &flags
);
4059 void set_user_nice(struct task_struct
*p
, long nice
)
4061 int old_prio
, delta
, on_rq
;
4062 unsigned long flags
;
4065 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4068 * We have to be careful, if called from sys_setpriority(),
4069 * the task might be in the middle of scheduling on another CPU.
4071 rq
= task_rq_lock(p
, &flags
);
4072 update_rq_clock(rq
);
4074 * The RT priorities are set via sched_setscheduler(), but we still
4075 * allow the 'normal' nice value to be set - but as expected
4076 * it wont have any effect on scheduling until the task is
4077 * SCHED_FIFO/SCHED_RR:
4079 if (task_has_rt_policy(p
)) {
4080 p
->static_prio
= NICE_TO_PRIO(nice
);
4083 on_rq
= p
->se
.on_rq
;
4085 dequeue_task(rq
, p
, 0);
4089 p
->static_prio
= NICE_TO_PRIO(nice
);
4092 p
->prio
= effective_prio(p
);
4093 delta
= p
->prio
- old_prio
;
4096 enqueue_task(rq
, p
, 0);
4099 * If the task increased its priority or is running and
4100 * lowered its priority, then reschedule its CPU:
4102 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4103 resched_task(rq
->curr
);
4106 task_rq_unlock(rq
, &flags
);
4108 EXPORT_SYMBOL(set_user_nice
);
4111 * can_nice - check if a task can reduce its nice value
4115 int can_nice(const struct task_struct
*p
, const int nice
)
4117 /* convert nice value [19,-20] to rlimit style value [1,40] */
4118 int nice_rlim
= 20 - nice
;
4120 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4121 capable(CAP_SYS_NICE
));
4124 #ifdef __ARCH_WANT_SYS_NICE
4127 * sys_nice - change the priority of the current process.
4128 * @increment: priority increment
4130 * sys_setpriority is a more generic, but much slower function that
4131 * does similar things.
4133 asmlinkage
long sys_nice(int increment
)
4138 * Setpriority might change our priority at the same moment.
4139 * We don't have to worry. Conceptually one call occurs first
4140 * and we have a single winner.
4142 if (increment
< -40)
4147 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4153 if (increment
< 0 && !can_nice(current
, nice
))
4156 retval
= security_task_setnice(current
, nice
);
4160 set_user_nice(current
, nice
);
4167 * task_prio - return the priority value of a given task.
4168 * @p: the task in question.
4170 * This is the priority value as seen by users in /proc.
4171 * RT tasks are offset by -200. Normal tasks are centered
4172 * around 0, value goes from -16 to +15.
4174 int task_prio(const struct task_struct
*p
)
4176 return p
->prio
- MAX_RT_PRIO
;
4180 * task_nice - return the nice value of a given task.
4181 * @p: the task in question.
4183 int task_nice(const struct task_struct
*p
)
4185 return TASK_NICE(p
);
4187 EXPORT_SYMBOL_GPL(task_nice
);
4190 * idle_cpu - is a given cpu idle currently?
4191 * @cpu: the processor in question.
4193 int idle_cpu(int cpu
)
4195 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4199 * idle_task - return the idle task for a given cpu.
4200 * @cpu: the processor in question.
4202 struct task_struct
*idle_task(int cpu
)
4204 return cpu_rq(cpu
)->idle
;
4208 * find_process_by_pid - find a process with a matching PID value.
4209 * @pid: the pid in question.
4211 static struct task_struct
*find_process_by_pid(pid_t pid
)
4213 return pid
? find_task_by_vpid(pid
) : current
;
4216 /* Actually do priority change: must hold rq lock. */
4218 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4220 BUG_ON(p
->se
.on_rq
);
4223 switch (p
->policy
) {
4227 p
->sched_class
= &fair_sched_class
;
4231 p
->sched_class
= &rt_sched_class
;
4235 p
->rt_priority
= prio
;
4236 p
->normal_prio
= normal_prio(p
);
4237 /* we are holding p->pi_lock already */
4238 p
->prio
= rt_mutex_getprio(p
);
4243 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4244 * @p: the task in question.
4245 * @policy: new policy.
4246 * @param: structure containing the new RT priority.
4248 * NOTE that the task may be already dead.
4250 int sched_setscheduler(struct task_struct
*p
, int policy
,
4251 struct sched_param
*param
)
4253 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4254 unsigned long flags
;
4257 /* may grab non-irq protected spin_locks */
4258 BUG_ON(in_interrupt());
4260 /* double check policy once rq lock held */
4262 policy
= oldpolicy
= p
->policy
;
4263 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4264 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4265 policy
!= SCHED_IDLE
)
4268 * Valid priorities for SCHED_FIFO and SCHED_RR are
4269 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4270 * SCHED_BATCH and SCHED_IDLE is 0.
4272 if (param
->sched_priority
< 0 ||
4273 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4274 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4276 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4280 * Allow unprivileged RT tasks to decrease priority:
4282 if (!capable(CAP_SYS_NICE
)) {
4283 if (rt_policy(policy
)) {
4284 unsigned long rlim_rtprio
;
4286 if (!lock_task_sighand(p
, &flags
))
4288 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4289 unlock_task_sighand(p
, &flags
);
4291 /* can't set/change the rt policy */
4292 if (policy
!= p
->policy
&& !rlim_rtprio
)
4295 /* can't increase priority */
4296 if (param
->sched_priority
> p
->rt_priority
&&
4297 param
->sched_priority
> rlim_rtprio
)
4301 * Like positive nice levels, dont allow tasks to
4302 * move out of SCHED_IDLE either:
4304 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4307 /* can't change other user's priorities */
4308 if ((current
->euid
!= p
->euid
) &&
4309 (current
->euid
!= p
->uid
))
4313 retval
= security_task_setscheduler(p
, policy
, param
);
4317 * make sure no PI-waiters arrive (or leave) while we are
4318 * changing the priority of the task:
4320 spin_lock_irqsave(&p
->pi_lock
, flags
);
4322 * To be able to change p->policy safely, the apropriate
4323 * runqueue lock must be held.
4325 rq
= __task_rq_lock(p
);
4326 /* recheck policy now with rq lock held */
4327 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4328 policy
= oldpolicy
= -1;
4329 __task_rq_unlock(rq
);
4330 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4333 update_rq_clock(rq
);
4334 on_rq
= p
->se
.on_rq
;
4335 running
= task_running(rq
, p
);
4337 deactivate_task(rq
, p
, 0);
4339 p
->sched_class
->put_prev_task(rq
, p
);
4343 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4347 p
->sched_class
->set_curr_task(rq
);
4348 activate_task(rq
, p
, 0);
4350 * Reschedule if we are currently running on this runqueue and
4351 * our priority decreased, or if we are not currently running on
4352 * this runqueue and our priority is higher than the current's
4355 if (p
->prio
> oldprio
)
4356 resched_task(rq
->curr
);
4358 check_preempt_curr(rq
, p
);
4361 __task_rq_unlock(rq
);
4362 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4364 rt_mutex_adjust_pi(p
);
4368 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4371 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4373 struct sched_param lparam
;
4374 struct task_struct
*p
;
4377 if (!param
|| pid
< 0)
4379 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4384 p
= find_process_by_pid(pid
);
4386 retval
= sched_setscheduler(p
, policy
, &lparam
);
4393 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4394 * @pid: the pid in question.
4395 * @policy: new policy.
4396 * @param: structure containing the new RT priority.
4399 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4401 /* negative values for policy are not valid */
4405 return do_sched_setscheduler(pid
, policy
, param
);
4409 * sys_sched_setparam - set/change the RT priority of a thread
4410 * @pid: the pid in question.
4411 * @param: structure containing the new RT priority.
4413 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4415 return do_sched_setscheduler(pid
, -1, param
);
4419 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4420 * @pid: the pid in question.
4422 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4424 struct task_struct
*p
;
4431 read_lock(&tasklist_lock
);
4432 p
= find_process_by_pid(pid
);
4434 retval
= security_task_getscheduler(p
);
4438 read_unlock(&tasklist_lock
);
4443 * sys_sched_getscheduler - get the RT priority of a thread
4444 * @pid: the pid in question.
4445 * @param: structure containing the RT priority.
4447 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4449 struct sched_param lp
;
4450 struct task_struct
*p
;
4453 if (!param
|| pid
< 0)
4456 read_lock(&tasklist_lock
);
4457 p
= find_process_by_pid(pid
);
4462 retval
= security_task_getscheduler(p
);
4466 lp
.sched_priority
= p
->rt_priority
;
4467 read_unlock(&tasklist_lock
);
4470 * This one might sleep, we cannot do it with a spinlock held ...
4472 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4477 read_unlock(&tasklist_lock
);
4481 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4483 cpumask_t cpus_allowed
;
4484 struct task_struct
*p
;
4487 mutex_lock(&sched_hotcpu_mutex
);
4488 read_lock(&tasklist_lock
);
4490 p
= find_process_by_pid(pid
);
4492 read_unlock(&tasklist_lock
);
4493 mutex_unlock(&sched_hotcpu_mutex
);
4498 * It is not safe to call set_cpus_allowed with the
4499 * tasklist_lock held. We will bump the task_struct's
4500 * usage count and then drop tasklist_lock.
4503 read_unlock(&tasklist_lock
);
4506 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4507 !capable(CAP_SYS_NICE
))
4510 retval
= security_task_setscheduler(p
, 0, NULL
);
4514 cpus_allowed
= cpuset_cpus_allowed(p
);
4515 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4517 retval
= set_cpus_allowed(p
, new_mask
);
4520 cpus_allowed
= cpuset_cpus_allowed(p
);
4521 if (!cpus_subset(new_mask
, cpus_allowed
)) {
4523 * We must have raced with a concurrent cpuset
4524 * update. Just reset the cpus_allowed to the
4525 * cpuset's cpus_allowed
4527 new_mask
= cpus_allowed
;
4533 mutex_unlock(&sched_hotcpu_mutex
);
4537 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4538 cpumask_t
*new_mask
)
4540 if (len
< sizeof(cpumask_t
)) {
4541 memset(new_mask
, 0, sizeof(cpumask_t
));
4542 } else if (len
> sizeof(cpumask_t
)) {
4543 len
= sizeof(cpumask_t
);
4545 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4549 * sys_sched_setaffinity - set the cpu affinity of a process
4550 * @pid: pid of the process
4551 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4552 * @user_mask_ptr: user-space pointer to the new cpu mask
4554 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4555 unsigned long __user
*user_mask_ptr
)
4560 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4564 return sched_setaffinity(pid
, new_mask
);
4568 * Represents all cpu's present in the system
4569 * In systems capable of hotplug, this map could dynamically grow
4570 * as new cpu's are detected in the system via any platform specific
4571 * method, such as ACPI for e.g.
4574 cpumask_t cpu_present_map __read_mostly
;
4575 EXPORT_SYMBOL(cpu_present_map
);
4578 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4579 EXPORT_SYMBOL(cpu_online_map
);
4581 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4582 EXPORT_SYMBOL(cpu_possible_map
);
4585 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4587 struct task_struct
*p
;
4590 mutex_lock(&sched_hotcpu_mutex
);
4591 read_lock(&tasklist_lock
);
4594 p
= find_process_by_pid(pid
);
4598 retval
= security_task_getscheduler(p
);
4602 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4605 read_unlock(&tasklist_lock
);
4606 mutex_unlock(&sched_hotcpu_mutex
);
4612 * sys_sched_getaffinity - get the cpu affinity of a process
4613 * @pid: pid of the process
4614 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4615 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4617 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4618 unsigned long __user
*user_mask_ptr
)
4623 if (len
< sizeof(cpumask_t
))
4626 ret
= sched_getaffinity(pid
, &mask
);
4630 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4633 return sizeof(cpumask_t
);
4637 * sys_sched_yield - yield the current processor to other threads.
4639 * This function yields the current CPU to other tasks. If there are no
4640 * other threads running on this CPU then this function will return.
4642 asmlinkage
long sys_sched_yield(void)
4644 struct rq
*rq
= this_rq_lock();
4646 schedstat_inc(rq
, yld_count
);
4647 current
->sched_class
->yield_task(rq
);
4650 * Since we are going to call schedule() anyway, there's
4651 * no need to preempt or enable interrupts:
4653 __release(rq
->lock
);
4654 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4655 _raw_spin_unlock(&rq
->lock
);
4656 preempt_enable_no_resched();
4663 static void __cond_resched(void)
4665 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4666 __might_sleep(__FILE__
, __LINE__
);
4669 * The BKS might be reacquired before we have dropped
4670 * PREEMPT_ACTIVE, which could trigger a second
4671 * cond_resched() call.
4674 add_preempt_count(PREEMPT_ACTIVE
);
4676 sub_preempt_count(PREEMPT_ACTIVE
);
4677 } while (need_resched());
4680 int __sched
cond_resched(void)
4682 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4683 system_state
== SYSTEM_RUNNING
) {
4689 EXPORT_SYMBOL(cond_resched
);
4692 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4693 * call schedule, and on return reacquire the lock.
4695 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4696 * operations here to prevent schedule() from being called twice (once via
4697 * spin_unlock(), once by hand).
4699 int cond_resched_lock(spinlock_t
*lock
)
4703 if (need_lockbreak(lock
)) {
4709 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4710 spin_release(&lock
->dep_map
, 1, _THIS_IP_
);
4711 _raw_spin_unlock(lock
);
4712 preempt_enable_no_resched();
4719 EXPORT_SYMBOL(cond_resched_lock
);
4721 int __sched
cond_resched_softirq(void)
4723 BUG_ON(!in_softirq());
4725 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4733 EXPORT_SYMBOL(cond_resched_softirq
);
4736 * yield - yield the current processor to other threads.
4738 * This is a shortcut for kernel-space yielding - it marks the
4739 * thread runnable and calls sys_sched_yield().
4741 void __sched
yield(void)
4743 set_current_state(TASK_RUNNING
);
4746 EXPORT_SYMBOL(yield
);
4749 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4750 * that process accounting knows that this is a task in IO wait state.
4752 * But don't do that if it is a deliberate, throttling IO wait (this task
4753 * has set its backing_dev_info: the queue against which it should throttle)
4755 void __sched
io_schedule(void)
4757 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4759 delayacct_blkio_start();
4760 atomic_inc(&rq
->nr_iowait
);
4762 atomic_dec(&rq
->nr_iowait
);
4763 delayacct_blkio_end();
4765 EXPORT_SYMBOL(io_schedule
);
4767 long __sched
io_schedule_timeout(long timeout
)
4769 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4772 delayacct_blkio_start();
4773 atomic_inc(&rq
->nr_iowait
);
4774 ret
= schedule_timeout(timeout
);
4775 atomic_dec(&rq
->nr_iowait
);
4776 delayacct_blkio_end();
4781 * sys_sched_get_priority_max - return maximum RT priority.
4782 * @policy: scheduling class.
4784 * this syscall returns the maximum rt_priority that can be used
4785 * by a given scheduling class.
4787 asmlinkage
long sys_sched_get_priority_max(int policy
)
4794 ret
= MAX_USER_RT_PRIO
-1;
4806 * sys_sched_get_priority_min - return minimum RT priority.
4807 * @policy: scheduling class.
4809 * this syscall returns the minimum rt_priority that can be used
4810 * by a given scheduling class.
4812 asmlinkage
long sys_sched_get_priority_min(int policy
)
4830 * sys_sched_rr_get_interval - return the default timeslice of a process.
4831 * @pid: pid of the process.
4832 * @interval: userspace pointer to the timeslice value.
4834 * this syscall writes the default timeslice value of a given process
4835 * into the user-space timespec buffer. A value of '0' means infinity.
4838 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4840 struct task_struct
*p
;
4841 unsigned int time_slice
;
4849 read_lock(&tasklist_lock
);
4850 p
= find_process_by_pid(pid
);
4854 retval
= security_task_getscheduler(p
);
4859 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4860 * tasks that are on an otherwise idle runqueue:
4863 if (p
->policy
== SCHED_RR
) {
4864 time_slice
= DEF_TIMESLICE
;
4866 struct sched_entity
*se
= &p
->se
;
4867 unsigned long flags
;
4870 rq
= task_rq_lock(p
, &flags
);
4871 if (rq
->cfs
.load
.weight
)
4872 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
4873 task_rq_unlock(rq
, &flags
);
4875 read_unlock(&tasklist_lock
);
4876 jiffies_to_timespec(time_slice
, &t
);
4877 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4881 read_unlock(&tasklist_lock
);
4885 static const char stat_nam
[] = "RSDTtZX";
4887 static void show_task(struct task_struct
*p
)
4889 unsigned long free
= 0;
4892 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4893 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
4894 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4895 #if BITS_PER_LONG == 32
4896 if (state
== TASK_RUNNING
)
4897 printk(KERN_CONT
" running ");
4899 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
4901 if (state
== TASK_RUNNING
)
4902 printk(KERN_CONT
" running task ");
4904 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
4906 #ifdef CONFIG_DEBUG_STACK_USAGE
4908 unsigned long *n
= end_of_stack(p
);
4911 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4914 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
4915 task_pid_nr(p
), task_pid_nr(p
->parent
));
4917 if (state
!= TASK_RUNNING
)
4918 show_stack(p
, NULL
);
4921 void show_state_filter(unsigned long state_filter
)
4923 struct task_struct
*g
, *p
;
4925 #if BITS_PER_LONG == 32
4927 " task PC stack pid father\n");
4930 " task PC stack pid father\n");
4932 read_lock(&tasklist_lock
);
4933 do_each_thread(g
, p
) {
4935 * reset the NMI-timeout, listing all files on a slow
4936 * console might take alot of time:
4938 touch_nmi_watchdog();
4939 if (!state_filter
|| (p
->state
& state_filter
))
4941 } while_each_thread(g
, p
);
4943 touch_all_softlockup_watchdogs();
4945 #ifdef CONFIG_SCHED_DEBUG
4946 sysrq_sched_debug_show();
4948 read_unlock(&tasklist_lock
);
4950 * Only show locks if all tasks are dumped:
4952 if (state_filter
== -1)
4953 debug_show_all_locks();
4956 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
4958 idle
->sched_class
= &idle_sched_class
;
4962 * init_idle - set up an idle thread for a given CPU
4963 * @idle: task in question
4964 * @cpu: cpu the idle task belongs to
4966 * NOTE: this function does not set the idle thread's NEED_RESCHED
4967 * flag, to make booting more robust.
4969 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
4971 struct rq
*rq
= cpu_rq(cpu
);
4972 unsigned long flags
;
4975 idle
->se
.exec_start
= sched_clock();
4977 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
4978 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4979 __set_task_cpu(idle
, cpu
);
4981 spin_lock_irqsave(&rq
->lock
, flags
);
4982 rq
->curr
= rq
->idle
= idle
;
4983 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4986 spin_unlock_irqrestore(&rq
->lock
, flags
);
4988 /* Set the preempt count _outside_ the spinlocks! */
4989 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4990 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4992 task_thread_info(idle
)->preempt_count
= 0;
4995 * The idle tasks have their own, simple scheduling class:
4997 idle
->sched_class
= &idle_sched_class
;
5001 * In a system that switches off the HZ timer nohz_cpu_mask
5002 * indicates which cpus entered this state. This is used
5003 * in the rcu update to wait only for active cpus. For system
5004 * which do not switch off the HZ timer nohz_cpu_mask should
5005 * always be CPU_MASK_NONE.
5007 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5010 * Increase the granularity value when there are more CPUs,
5011 * because with more CPUs the 'effective latency' as visible
5012 * to users decreases. But the relationship is not linear,
5013 * so pick a second-best guess by going with the log2 of the
5016 * This idea comes from the SD scheduler of Con Kolivas:
5018 static inline void sched_init_granularity(void)
5020 unsigned int factor
= 1 + ilog2(num_online_cpus());
5021 const unsigned long limit
= 200000000;
5023 sysctl_sched_min_granularity
*= factor
;
5024 if (sysctl_sched_min_granularity
> limit
)
5025 sysctl_sched_min_granularity
= limit
;
5027 sysctl_sched_latency
*= factor
;
5028 if (sysctl_sched_latency
> limit
)
5029 sysctl_sched_latency
= limit
;
5031 sysctl_sched_wakeup_granularity
*= factor
;
5032 sysctl_sched_batch_wakeup_granularity
*= factor
;
5037 * This is how migration works:
5039 * 1) we queue a struct migration_req structure in the source CPU's
5040 * runqueue and wake up that CPU's migration thread.
5041 * 2) we down() the locked semaphore => thread blocks.
5042 * 3) migration thread wakes up (implicitly it forces the migrated
5043 * thread off the CPU)
5044 * 4) it gets the migration request and checks whether the migrated
5045 * task is still in the wrong runqueue.
5046 * 5) if it's in the wrong runqueue then the migration thread removes
5047 * it and puts it into the right queue.
5048 * 6) migration thread up()s the semaphore.
5049 * 7) we wake up and the migration is done.
5053 * Change a given task's CPU affinity. Migrate the thread to a
5054 * proper CPU and schedule it away if the CPU it's executing on
5055 * is removed from the allowed bitmask.
5057 * NOTE: the caller must have a valid reference to the task, the
5058 * task must not exit() & deallocate itself prematurely. The
5059 * call is not atomic; no spinlocks may be held.
5061 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
5063 struct migration_req req
;
5064 unsigned long flags
;
5068 rq
= task_rq_lock(p
, &flags
);
5069 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
5074 p
->cpus_allowed
= new_mask
;
5075 /* Can the task run on the task's current CPU? If so, we're done */
5076 if (cpu_isset(task_cpu(p
), new_mask
))
5079 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
5080 /* Need help from migration thread: drop lock and wait. */
5081 task_rq_unlock(rq
, &flags
);
5082 wake_up_process(rq
->migration_thread
);
5083 wait_for_completion(&req
.done
);
5084 tlb_migrate_finish(p
->mm
);
5088 task_rq_unlock(rq
, &flags
);
5092 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
5095 * Move (not current) task off this cpu, onto dest cpu. We're doing
5096 * this because either it can't run here any more (set_cpus_allowed()
5097 * away from this CPU, or CPU going down), or because we're
5098 * attempting to rebalance this task on exec (sched_exec).
5100 * So we race with normal scheduler movements, but that's OK, as long
5101 * as the task is no longer on this CPU.
5103 * Returns non-zero if task was successfully migrated.
5105 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5107 struct rq
*rq_dest
, *rq_src
;
5110 if (unlikely(cpu_is_offline(dest_cpu
)))
5113 rq_src
= cpu_rq(src_cpu
);
5114 rq_dest
= cpu_rq(dest_cpu
);
5116 double_rq_lock(rq_src
, rq_dest
);
5117 /* Already moved. */
5118 if (task_cpu(p
) != src_cpu
)
5120 /* Affinity changed (again). */
5121 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5124 on_rq
= p
->se
.on_rq
;
5126 deactivate_task(rq_src
, p
, 0);
5128 set_task_cpu(p
, dest_cpu
);
5130 activate_task(rq_dest
, p
, 0);
5131 check_preempt_curr(rq_dest
, p
);
5135 double_rq_unlock(rq_src
, rq_dest
);
5140 * migration_thread - this is a highprio system thread that performs
5141 * thread migration by bumping thread off CPU then 'pushing' onto
5144 static int migration_thread(void *data
)
5146 int cpu
= (long)data
;
5150 BUG_ON(rq
->migration_thread
!= current
);
5152 set_current_state(TASK_INTERRUPTIBLE
);
5153 while (!kthread_should_stop()) {
5154 struct migration_req
*req
;
5155 struct list_head
*head
;
5157 spin_lock_irq(&rq
->lock
);
5159 if (cpu_is_offline(cpu
)) {
5160 spin_unlock_irq(&rq
->lock
);
5164 if (rq
->active_balance
) {
5165 active_load_balance(rq
, cpu
);
5166 rq
->active_balance
= 0;
5169 head
= &rq
->migration_queue
;
5171 if (list_empty(head
)) {
5172 spin_unlock_irq(&rq
->lock
);
5174 set_current_state(TASK_INTERRUPTIBLE
);
5177 req
= list_entry(head
->next
, struct migration_req
, list
);
5178 list_del_init(head
->next
);
5180 spin_unlock(&rq
->lock
);
5181 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5184 complete(&req
->done
);
5186 __set_current_state(TASK_RUNNING
);
5190 /* Wait for kthread_stop */
5191 set_current_state(TASK_INTERRUPTIBLE
);
5192 while (!kthread_should_stop()) {
5194 set_current_state(TASK_INTERRUPTIBLE
);
5196 __set_current_state(TASK_RUNNING
);
5200 #ifdef CONFIG_HOTPLUG_CPU
5202 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5206 local_irq_disable();
5207 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5213 * Figure out where task on dead CPU should go, use force if necessary.
5214 * NOTE: interrupts should be disabled by the caller
5216 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5218 unsigned long flags
;
5225 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5226 cpus_and(mask
, mask
, p
->cpus_allowed
);
5227 dest_cpu
= any_online_cpu(mask
);
5229 /* On any allowed CPU? */
5230 if (dest_cpu
== NR_CPUS
)
5231 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5233 /* No more Mr. Nice Guy. */
5234 if (dest_cpu
== NR_CPUS
) {
5235 cpumask_t cpus_allowed
= cpuset_cpus_allowed_locked(p
);
5237 * Try to stay on the same cpuset, where the
5238 * current cpuset may be a subset of all cpus.
5239 * The cpuset_cpus_allowed_locked() variant of
5240 * cpuset_cpus_allowed() will not block. It must be
5241 * called within calls to cpuset_lock/cpuset_unlock.
5243 rq
= task_rq_lock(p
, &flags
);
5244 p
->cpus_allowed
= cpus_allowed
;
5245 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5246 task_rq_unlock(rq
, &flags
);
5249 * Don't tell them about moving exiting tasks or
5250 * kernel threads (both mm NULL), since they never
5253 if (p
->mm
&& printk_ratelimit()) {
5254 printk(KERN_INFO
"process %d (%s) no "
5255 "longer affine to cpu%d\n",
5256 task_pid_nr(p
), p
->comm
, dead_cpu
);
5259 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
5263 * While a dead CPU has no uninterruptible tasks queued at this point,
5264 * it might still have a nonzero ->nr_uninterruptible counter, because
5265 * for performance reasons the counter is not stricly tracking tasks to
5266 * their home CPUs. So we just add the counter to another CPU's counter,
5267 * to keep the global sum constant after CPU-down:
5269 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5271 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5272 unsigned long flags
;
5274 local_irq_save(flags
);
5275 double_rq_lock(rq_src
, rq_dest
);
5276 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5277 rq_src
->nr_uninterruptible
= 0;
5278 double_rq_unlock(rq_src
, rq_dest
);
5279 local_irq_restore(flags
);
5282 /* Run through task list and migrate tasks from the dead cpu. */
5283 static void migrate_live_tasks(int src_cpu
)
5285 struct task_struct
*p
, *t
;
5287 read_lock(&tasklist_lock
);
5289 do_each_thread(t
, p
) {
5293 if (task_cpu(p
) == src_cpu
)
5294 move_task_off_dead_cpu(src_cpu
, p
);
5295 } while_each_thread(t
, p
);
5297 read_unlock(&tasklist_lock
);
5301 * Schedules idle task to be the next runnable task on current CPU.
5302 * It does so by boosting its priority to highest possible.
5303 * Used by CPU offline code.
5305 void sched_idle_next(void)
5307 int this_cpu
= smp_processor_id();
5308 struct rq
*rq
= cpu_rq(this_cpu
);
5309 struct task_struct
*p
= rq
->idle
;
5310 unsigned long flags
;
5312 /* cpu has to be offline */
5313 BUG_ON(cpu_online(this_cpu
));
5316 * Strictly not necessary since rest of the CPUs are stopped by now
5317 * and interrupts disabled on the current cpu.
5319 spin_lock_irqsave(&rq
->lock
, flags
);
5321 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5323 update_rq_clock(rq
);
5324 activate_task(rq
, p
, 0);
5326 spin_unlock_irqrestore(&rq
->lock
, flags
);
5330 * Ensures that the idle task is using init_mm right before its cpu goes
5333 void idle_task_exit(void)
5335 struct mm_struct
*mm
= current
->active_mm
;
5337 BUG_ON(cpu_online(smp_processor_id()));
5340 switch_mm(mm
, &init_mm
, current
);
5344 /* called under rq->lock with disabled interrupts */
5345 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5347 struct rq
*rq
= cpu_rq(dead_cpu
);
5349 /* Must be exiting, otherwise would be on tasklist. */
5350 BUG_ON(!p
->exit_state
);
5352 /* Cannot have done final schedule yet: would have vanished. */
5353 BUG_ON(p
->state
== TASK_DEAD
);
5358 * Drop lock around migration; if someone else moves it,
5359 * that's OK. No task can be added to this CPU, so iteration is
5362 spin_unlock_irq(&rq
->lock
);
5363 move_task_off_dead_cpu(dead_cpu
, p
);
5364 spin_lock_irq(&rq
->lock
);
5369 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5370 static void migrate_dead_tasks(unsigned int dead_cpu
)
5372 struct rq
*rq
= cpu_rq(dead_cpu
);
5373 struct task_struct
*next
;
5376 if (!rq
->nr_running
)
5378 update_rq_clock(rq
);
5379 next
= pick_next_task(rq
, rq
->curr
);
5382 migrate_dead(dead_cpu
, next
);
5386 #endif /* CONFIG_HOTPLUG_CPU */
5388 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5390 static struct ctl_table sd_ctl_dir
[] = {
5392 .procname
= "sched_domain",
5398 static struct ctl_table sd_ctl_root
[] = {
5400 .ctl_name
= CTL_KERN
,
5401 .procname
= "kernel",
5403 .child
= sd_ctl_dir
,
5408 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5410 struct ctl_table
*entry
=
5411 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5416 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5418 struct ctl_table
*entry
;
5421 * In the intermediate directories, both the child directory and
5422 * procname are dynamically allocated and could fail but the mode
5423 * will always be set. In the lowest directory the names are
5424 * static strings and all have proc handlers.
5426 for (entry
= *tablep
; entry
->mode
; entry
++) {
5428 sd_free_ctl_entry(&entry
->child
);
5429 if (entry
->proc_handler
== NULL
)
5430 kfree(entry
->procname
);
5438 set_table_entry(struct ctl_table
*entry
,
5439 const char *procname
, void *data
, int maxlen
,
5440 mode_t mode
, proc_handler
*proc_handler
)
5442 entry
->procname
= procname
;
5444 entry
->maxlen
= maxlen
;
5446 entry
->proc_handler
= proc_handler
;
5449 static struct ctl_table
*
5450 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5452 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
5457 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5458 sizeof(long), 0644, proc_doulongvec_minmax
);
5459 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5460 sizeof(long), 0644, proc_doulongvec_minmax
);
5461 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5462 sizeof(int), 0644, proc_dointvec_minmax
);
5463 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5464 sizeof(int), 0644, proc_dointvec_minmax
);
5465 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5466 sizeof(int), 0644, proc_dointvec_minmax
);
5467 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5468 sizeof(int), 0644, proc_dointvec_minmax
);
5469 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5470 sizeof(int), 0644, proc_dointvec_minmax
);
5471 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5472 sizeof(int), 0644, proc_dointvec_minmax
);
5473 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5474 sizeof(int), 0644, proc_dointvec_minmax
);
5475 set_table_entry(&table
[9], "cache_nice_tries",
5476 &sd
->cache_nice_tries
,
5477 sizeof(int), 0644, proc_dointvec_minmax
);
5478 set_table_entry(&table
[10], "flags", &sd
->flags
,
5479 sizeof(int), 0644, proc_dointvec_minmax
);
5480 /* &table[11] is terminator */
5485 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5487 struct ctl_table
*entry
, *table
;
5488 struct sched_domain
*sd
;
5489 int domain_num
= 0, i
;
5492 for_each_domain(cpu
, sd
)
5494 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5499 for_each_domain(cpu
, sd
) {
5500 snprintf(buf
, 32, "domain%d", i
);
5501 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5503 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5510 static struct ctl_table_header
*sd_sysctl_header
;
5511 static void register_sched_domain_sysctl(void)
5513 int i
, cpu_num
= num_online_cpus();
5514 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5517 WARN_ON(sd_ctl_dir
[0].child
);
5518 sd_ctl_dir
[0].child
= entry
;
5523 for_each_online_cpu(i
) {
5524 snprintf(buf
, 32, "cpu%d", i
);
5525 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5527 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5531 WARN_ON(sd_sysctl_header
);
5532 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5535 /* may be called multiple times per register */
5536 static void unregister_sched_domain_sysctl(void)
5538 if (sd_sysctl_header
)
5539 unregister_sysctl_table(sd_sysctl_header
);
5540 sd_sysctl_header
= NULL
;
5541 if (sd_ctl_dir
[0].child
)
5542 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5545 static void register_sched_domain_sysctl(void)
5548 static void unregister_sched_domain_sysctl(void)
5554 * migration_call - callback that gets triggered when a CPU is added.
5555 * Here we can start up the necessary migration thread for the new CPU.
5557 static int __cpuinit
5558 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5560 struct task_struct
*p
;
5561 int cpu
= (long)hcpu
;
5562 unsigned long flags
;
5566 case CPU_LOCK_ACQUIRE
:
5567 mutex_lock(&sched_hotcpu_mutex
);
5570 case CPU_UP_PREPARE
:
5571 case CPU_UP_PREPARE_FROZEN
:
5572 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5575 kthread_bind(p
, cpu
);
5576 /* Must be high prio: stop_machine expects to yield to it. */
5577 rq
= task_rq_lock(p
, &flags
);
5578 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5579 task_rq_unlock(rq
, &flags
);
5580 cpu_rq(cpu
)->migration_thread
= p
;
5584 case CPU_ONLINE_FROZEN
:
5585 /* Strictly unnecessary, as first user will wake it. */
5586 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5589 #ifdef CONFIG_HOTPLUG_CPU
5590 case CPU_UP_CANCELED
:
5591 case CPU_UP_CANCELED_FROZEN
:
5592 if (!cpu_rq(cpu
)->migration_thread
)
5594 /* Unbind it from offline cpu so it can run. Fall thru. */
5595 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5596 any_online_cpu(cpu_online_map
));
5597 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5598 cpu_rq(cpu
)->migration_thread
= NULL
;
5602 case CPU_DEAD_FROZEN
:
5603 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5604 migrate_live_tasks(cpu
);
5606 kthread_stop(rq
->migration_thread
);
5607 rq
->migration_thread
= NULL
;
5608 /* Idle task back to normal (off runqueue, low prio) */
5609 spin_lock_irq(&rq
->lock
);
5610 update_rq_clock(rq
);
5611 deactivate_task(rq
, rq
->idle
, 0);
5612 rq
->idle
->static_prio
= MAX_PRIO
;
5613 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5614 rq
->idle
->sched_class
= &idle_sched_class
;
5615 migrate_dead_tasks(cpu
);
5616 spin_unlock_irq(&rq
->lock
);
5618 migrate_nr_uninterruptible(rq
);
5619 BUG_ON(rq
->nr_running
!= 0);
5622 * No need to migrate the tasks: it was best-effort if
5623 * they didn't take sched_hotcpu_mutex. Just wake up
5626 spin_lock_irq(&rq
->lock
);
5627 while (!list_empty(&rq
->migration_queue
)) {
5628 struct migration_req
*req
;
5630 req
= list_entry(rq
->migration_queue
.next
,
5631 struct migration_req
, list
);
5632 list_del_init(&req
->list
);
5633 complete(&req
->done
);
5635 spin_unlock_irq(&rq
->lock
);
5638 case CPU_LOCK_RELEASE
:
5639 mutex_unlock(&sched_hotcpu_mutex
);
5645 /* Register at highest priority so that task migration (migrate_all_tasks)
5646 * happens before everything else.
5648 static struct notifier_block __cpuinitdata migration_notifier
= {
5649 .notifier_call
= migration_call
,
5653 void __init
migration_init(void)
5655 void *cpu
= (void *)(long)smp_processor_id();
5658 /* Start one for the boot CPU: */
5659 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5660 BUG_ON(err
== NOTIFY_BAD
);
5661 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5662 register_cpu_notifier(&migration_notifier
);
5668 /* Number of possible processor ids */
5669 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5670 EXPORT_SYMBOL(nr_cpu_ids
);
5672 #ifdef CONFIG_SCHED_DEBUG
5674 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
)
5676 struct sched_group
*group
= sd
->groups
;
5677 cpumask_t groupmask
;
5680 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5681 cpus_clear(groupmask
);
5683 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5685 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5686 printk("does not load-balance\n");
5688 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5693 printk(KERN_CONT
"span %s\n", str
);
5695 if (!cpu_isset(cpu
, sd
->span
)) {
5696 printk(KERN_ERR
"ERROR: domain->span does not contain "
5699 if (!cpu_isset(cpu
, group
->cpumask
)) {
5700 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5704 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5708 printk(KERN_ERR
"ERROR: group is NULL\n");
5712 if (!group
->__cpu_power
) {
5713 printk(KERN_CONT
"\n");
5714 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5719 if (!cpus_weight(group
->cpumask
)) {
5720 printk(KERN_CONT
"\n");
5721 printk(KERN_ERR
"ERROR: empty group\n");
5725 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5726 printk(KERN_CONT
"\n");
5727 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5731 cpus_or(groupmask
, groupmask
, group
->cpumask
);
5733 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
5734 printk(KERN_CONT
" %s", str
);
5736 group
= group
->next
;
5737 } while (group
!= sd
->groups
);
5738 printk(KERN_CONT
"\n");
5740 if (!cpus_equal(sd
->span
, groupmask
))
5741 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
5743 if (sd
->parent
&& !cpus_subset(groupmask
, sd
->parent
->span
))
5744 printk(KERN_ERR
"ERROR: parent span is not a superset "
5745 "of domain->span\n");
5749 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5754 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5758 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5761 if (sched_domain_debug_one(sd
, cpu
, level
))
5770 # define sched_domain_debug(sd, cpu) do { } while (0)
5773 static int sd_degenerate(struct sched_domain
*sd
)
5775 if (cpus_weight(sd
->span
) == 1)
5778 /* Following flags need at least 2 groups */
5779 if (sd
->flags
& (SD_LOAD_BALANCE
|
5780 SD_BALANCE_NEWIDLE
|
5784 SD_SHARE_PKG_RESOURCES
)) {
5785 if (sd
->groups
!= sd
->groups
->next
)
5789 /* Following flags don't use groups */
5790 if (sd
->flags
& (SD_WAKE_IDLE
|
5799 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5801 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5803 if (sd_degenerate(parent
))
5806 if (!cpus_equal(sd
->span
, parent
->span
))
5809 /* Does parent contain flags not in child? */
5810 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5811 if (cflags
& SD_WAKE_AFFINE
)
5812 pflags
&= ~SD_WAKE_BALANCE
;
5813 /* Flags needing groups don't count if only 1 group in parent */
5814 if (parent
->groups
== parent
->groups
->next
) {
5815 pflags
&= ~(SD_LOAD_BALANCE
|
5816 SD_BALANCE_NEWIDLE
|
5820 SD_SHARE_PKG_RESOURCES
);
5822 if (~cflags
& pflags
)
5829 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5830 * hold the hotplug lock.
5832 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
5834 struct rq
*rq
= cpu_rq(cpu
);
5835 struct sched_domain
*tmp
;
5837 /* Remove the sched domains which do not contribute to scheduling. */
5838 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
5839 struct sched_domain
*parent
= tmp
->parent
;
5842 if (sd_parent_degenerate(tmp
, parent
)) {
5843 tmp
->parent
= parent
->parent
;
5845 parent
->parent
->child
= tmp
;
5849 if (sd
&& sd_degenerate(sd
)) {
5855 sched_domain_debug(sd
, cpu
);
5857 rcu_assign_pointer(rq
->sd
, sd
);
5860 /* cpus with isolated domains */
5861 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
5863 /* Setup the mask of cpus configured for isolated domains */
5864 static int __init
isolated_cpu_setup(char *str
)
5866 int ints
[NR_CPUS
], i
;
5868 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5869 cpus_clear(cpu_isolated_map
);
5870 for (i
= 1; i
<= ints
[0]; i
++)
5871 if (ints
[i
] < NR_CPUS
)
5872 cpu_set(ints
[i
], cpu_isolated_map
);
5876 __setup("isolcpus=", isolated_cpu_setup
);
5879 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5880 * to a function which identifies what group(along with sched group) a CPU
5881 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5882 * (due to the fact that we keep track of groups covered with a cpumask_t).
5884 * init_sched_build_groups will build a circular linked list of the groups
5885 * covered by the given span, and will set each group's ->cpumask correctly,
5886 * and ->cpu_power to 0.
5889 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
5890 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
5891 struct sched_group
**sg
))
5893 struct sched_group
*first
= NULL
, *last
= NULL
;
5894 cpumask_t covered
= CPU_MASK_NONE
;
5897 for_each_cpu_mask(i
, span
) {
5898 struct sched_group
*sg
;
5899 int group
= group_fn(i
, cpu_map
, &sg
);
5902 if (cpu_isset(i
, covered
))
5905 sg
->cpumask
= CPU_MASK_NONE
;
5906 sg
->__cpu_power
= 0;
5908 for_each_cpu_mask(j
, span
) {
5909 if (group_fn(j
, cpu_map
, NULL
) != group
)
5912 cpu_set(j
, covered
);
5913 cpu_set(j
, sg
->cpumask
);
5924 #define SD_NODES_PER_DOMAIN 16
5929 * find_next_best_node - find the next node to include in a sched_domain
5930 * @node: node whose sched_domain we're building
5931 * @used_nodes: nodes already in the sched_domain
5933 * Find the next node to include in a given scheduling domain. Simply
5934 * finds the closest node not already in the @used_nodes map.
5936 * Should use nodemask_t.
5938 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5940 int i
, n
, val
, min_val
, best_node
= 0;
5944 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5945 /* Start at @node */
5946 n
= (node
+ i
) % MAX_NUMNODES
;
5948 if (!nr_cpus_node(n
))
5951 /* Skip already used nodes */
5952 if (test_bit(n
, used_nodes
))
5955 /* Simple min distance search */
5956 val
= node_distance(node
, n
);
5958 if (val
< min_val
) {
5964 set_bit(best_node
, used_nodes
);
5969 * sched_domain_node_span - get a cpumask for a node's sched_domain
5970 * @node: node whose cpumask we're constructing
5971 * @size: number of nodes to include in this span
5973 * Given a node, construct a good cpumask for its sched_domain to span. It
5974 * should be one that prevents unnecessary balancing, but also spreads tasks
5977 static cpumask_t
sched_domain_node_span(int node
)
5979 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5980 cpumask_t span
, nodemask
;
5984 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5986 nodemask
= node_to_cpumask(node
);
5987 cpus_or(span
, span
, nodemask
);
5988 set_bit(node
, used_nodes
);
5990 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5991 int next_node
= find_next_best_node(node
, used_nodes
);
5993 nodemask
= node_to_cpumask(next_node
);
5994 cpus_or(span
, span
, nodemask
);
6001 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6004 * SMT sched-domains:
6006 #ifdef CONFIG_SCHED_SMT
6007 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
6008 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
6011 cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6014 *sg
= &per_cpu(sched_group_cpus
, cpu
);
6020 * multi-core sched-domains:
6022 #ifdef CONFIG_SCHED_MC
6023 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
6024 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
6027 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6029 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6032 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6033 cpus_and(mask
, mask
, *cpu_map
);
6034 group
= first_cpu(mask
);
6036 *sg
= &per_cpu(sched_group_core
, group
);
6039 #elif defined(CONFIG_SCHED_MC)
6041 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6044 *sg
= &per_cpu(sched_group_core
, cpu
);
6049 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
6050 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
6053 cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
)
6056 #ifdef CONFIG_SCHED_MC
6057 cpumask_t mask
= cpu_coregroup_map(cpu
);
6058 cpus_and(mask
, mask
, *cpu_map
);
6059 group
= first_cpu(mask
);
6060 #elif defined(CONFIG_SCHED_SMT)
6061 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6062 cpus_and(mask
, mask
, *cpu_map
);
6063 group
= first_cpu(mask
);
6068 *sg
= &per_cpu(sched_group_phys
, group
);
6074 * The init_sched_build_groups can't handle what we want to do with node
6075 * groups, so roll our own. Now each node has its own list of groups which
6076 * gets dynamically allocated.
6078 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
6079 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
6081 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
6082 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
6084 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
6085 struct sched_group
**sg
)
6087 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
6090 cpus_and(nodemask
, nodemask
, *cpu_map
);
6091 group
= first_cpu(nodemask
);
6094 *sg
= &per_cpu(sched_group_allnodes
, group
);
6098 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6100 struct sched_group
*sg
= group_head
;
6106 for_each_cpu_mask(j
, sg
->cpumask
) {
6107 struct sched_domain
*sd
;
6109 sd
= &per_cpu(phys_domains
, j
);
6110 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
6112 * Only add "power" once for each
6118 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
6121 } while (sg
!= group_head
);
6126 /* Free memory allocated for various sched_group structures */
6127 static void free_sched_groups(const cpumask_t
*cpu_map
)
6131 for_each_cpu_mask(cpu
, *cpu_map
) {
6132 struct sched_group
**sched_group_nodes
6133 = sched_group_nodes_bycpu
[cpu
];
6135 if (!sched_group_nodes
)
6138 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6139 cpumask_t nodemask
= node_to_cpumask(i
);
6140 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6142 cpus_and(nodemask
, nodemask
, *cpu_map
);
6143 if (cpus_empty(nodemask
))
6153 if (oldsg
!= sched_group_nodes
[i
])
6156 kfree(sched_group_nodes
);
6157 sched_group_nodes_bycpu
[cpu
] = NULL
;
6161 static void free_sched_groups(const cpumask_t
*cpu_map
)
6167 * Initialize sched groups cpu_power.
6169 * cpu_power indicates the capacity of sched group, which is used while
6170 * distributing the load between different sched groups in a sched domain.
6171 * Typically cpu_power for all the groups in a sched domain will be same unless
6172 * there are asymmetries in the topology. If there are asymmetries, group
6173 * having more cpu_power will pickup more load compared to the group having
6176 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6177 * the maximum number of tasks a group can handle in the presence of other idle
6178 * or lightly loaded groups in the same sched domain.
6180 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6182 struct sched_domain
*child
;
6183 struct sched_group
*group
;
6185 WARN_ON(!sd
|| !sd
->groups
);
6187 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
6192 sd
->groups
->__cpu_power
= 0;
6195 * For perf policy, if the groups in child domain share resources
6196 * (for example cores sharing some portions of the cache hierarchy
6197 * or SMT), then set this domain groups cpu_power such that each group
6198 * can handle only one task, when there are other idle groups in the
6199 * same sched domain.
6201 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6203 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6204 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6209 * add cpu_power of each child group to this groups cpu_power
6211 group
= child
->groups
;
6213 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6214 group
= group
->next
;
6215 } while (group
!= child
->groups
);
6219 * Build sched domains for a given set of cpus and attach the sched domains
6220 * to the individual cpus
6222 static int build_sched_domains(const cpumask_t
*cpu_map
)
6226 struct sched_group
**sched_group_nodes
= NULL
;
6227 int sd_allnodes
= 0;
6230 * Allocate the per-node list of sched groups
6232 sched_group_nodes
= kcalloc(MAX_NUMNODES
, sizeof(struct sched_group
*),
6234 if (!sched_group_nodes
) {
6235 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6238 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6242 * Set up domains for cpus specified by the cpu_map.
6244 for_each_cpu_mask(i
, *cpu_map
) {
6245 struct sched_domain
*sd
= NULL
, *p
;
6246 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6248 cpus_and(nodemask
, nodemask
, *cpu_map
);
6251 if (cpus_weight(*cpu_map
) >
6252 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6253 sd
= &per_cpu(allnodes_domains
, i
);
6254 *sd
= SD_ALLNODES_INIT
;
6255 sd
->span
= *cpu_map
;
6256 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6262 sd
= &per_cpu(node_domains
, i
);
6264 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6268 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6272 sd
= &per_cpu(phys_domains
, i
);
6274 sd
->span
= nodemask
;
6278 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6280 #ifdef CONFIG_SCHED_MC
6282 sd
= &per_cpu(core_domains
, i
);
6284 sd
->span
= cpu_coregroup_map(i
);
6285 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6288 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6291 #ifdef CONFIG_SCHED_SMT
6293 sd
= &per_cpu(cpu_domains
, i
);
6294 *sd
= SD_SIBLING_INIT
;
6295 sd
->span
= per_cpu(cpu_sibling_map
, i
);
6296 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6299 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6303 #ifdef CONFIG_SCHED_SMT
6304 /* Set up CPU (sibling) groups */
6305 for_each_cpu_mask(i
, *cpu_map
) {
6306 cpumask_t this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
6307 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6308 if (i
!= first_cpu(this_sibling_map
))
6311 init_sched_build_groups(this_sibling_map
, cpu_map
,
6316 #ifdef CONFIG_SCHED_MC
6317 /* Set up multi-core groups */
6318 for_each_cpu_mask(i
, *cpu_map
) {
6319 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6320 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6321 if (i
!= first_cpu(this_core_map
))
6323 init_sched_build_groups(this_core_map
, cpu_map
,
6324 &cpu_to_core_group
);
6328 /* Set up physical groups */
6329 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6330 cpumask_t nodemask
= node_to_cpumask(i
);
6332 cpus_and(nodemask
, nodemask
, *cpu_map
);
6333 if (cpus_empty(nodemask
))
6336 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6340 /* Set up node groups */
6342 init_sched_build_groups(*cpu_map
, cpu_map
,
6343 &cpu_to_allnodes_group
);
6345 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6346 /* Set up node groups */
6347 struct sched_group
*sg
, *prev
;
6348 cpumask_t nodemask
= node_to_cpumask(i
);
6349 cpumask_t domainspan
;
6350 cpumask_t covered
= CPU_MASK_NONE
;
6353 cpus_and(nodemask
, nodemask
, *cpu_map
);
6354 if (cpus_empty(nodemask
)) {
6355 sched_group_nodes
[i
] = NULL
;
6359 domainspan
= sched_domain_node_span(i
);
6360 cpus_and(domainspan
, domainspan
, *cpu_map
);
6362 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6364 printk(KERN_WARNING
"Can not alloc domain group for "
6368 sched_group_nodes
[i
] = sg
;
6369 for_each_cpu_mask(j
, nodemask
) {
6370 struct sched_domain
*sd
;
6372 sd
= &per_cpu(node_domains
, j
);
6375 sg
->__cpu_power
= 0;
6376 sg
->cpumask
= nodemask
;
6378 cpus_or(covered
, covered
, nodemask
);
6381 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6382 cpumask_t tmp
, notcovered
;
6383 int n
= (i
+ j
) % MAX_NUMNODES
;
6385 cpus_complement(notcovered
, covered
);
6386 cpus_and(tmp
, notcovered
, *cpu_map
);
6387 cpus_and(tmp
, tmp
, domainspan
);
6388 if (cpus_empty(tmp
))
6391 nodemask
= node_to_cpumask(n
);
6392 cpus_and(tmp
, tmp
, nodemask
);
6393 if (cpus_empty(tmp
))
6396 sg
= kmalloc_node(sizeof(struct sched_group
),
6400 "Can not alloc domain group for node %d\n", j
);
6403 sg
->__cpu_power
= 0;
6405 sg
->next
= prev
->next
;
6406 cpus_or(covered
, covered
, tmp
);
6413 /* Calculate CPU power for physical packages and nodes */
6414 #ifdef CONFIG_SCHED_SMT
6415 for_each_cpu_mask(i
, *cpu_map
) {
6416 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6418 init_sched_groups_power(i
, sd
);
6421 #ifdef CONFIG_SCHED_MC
6422 for_each_cpu_mask(i
, *cpu_map
) {
6423 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6425 init_sched_groups_power(i
, sd
);
6429 for_each_cpu_mask(i
, *cpu_map
) {
6430 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6432 init_sched_groups_power(i
, sd
);
6436 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6437 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6440 struct sched_group
*sg
;
6442 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6443 init_numa_sched_groups_power(sg
);
6447 /* Attach the domains */
6448 for_each_cpu_mask(i
, *cpu_map
) {
6449 struct sched_domain
*sd
;
6450 #ifdef CONFIG_SCHED_SMT
6451 sd
= &per_cpu(cpu_domains
, i
);
6452 #elif defined(CONFIG_SCHED_MC)
6453 sd
= &per_cpu(core_domains
, i
);
6455 sd
= &per_cpu(phys_domains
, i
);
6457 cpu_attach_domain(sd
, i
);
6464 free_sched_groups(cpu_map
);
6469 static cpumask_t
*doms_cur
; /* current sched domains */
6470 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6473 * Special case: If a kmalloc of a doms_cur partition (array of
6474 * cpumask_t) fails, then fallback to a single sched domain,
6475 * as determined by the single cpumask_t fallback_doms.
6477 static cpumask_t fallback_doms
;
6480 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6481 * For now this just excludes isolated cpus, but could be used to
6482 * exclude other special cases in the future.
6484 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6489 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6491 doms_cur
= &fallback_doms
;
6492 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
6493 err
= build_sched_domains(doms_cur
);
6494 register_sched_domain_sysctl();
6499 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6501 free_sched_groups(cpu_map
);
6505 * Detach sched domains from a group of cpus specified in cpu_map
6506 * These cpus will now be attached to the NULL domain
6508 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6512 unregister_sched_domain_sysctl();
6514 for_each_cpu_mask(i
, *cpu_map
)
6515 cpu_attach_domain(NULL
, i
);
6516 synchronize_sched();
6517 arch_destroy_sched_domains(cpu_map
);
6521 * Partition sched domains as specified by the 'ndoms_new'
6522 * cpumasks in the array doms_new[] of cpumasks. This compares
6523 * doms_new[] to the current sched domain partitioning, doms_cur[].
6524 * It destroys each deleted domain and builds each new domain.
6526 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6527 * The masks don't intersect (don't overlap.) We should setup one
6528 * sched domain for each mask. CPUs not in any of the cpumasks will
6529 * not be load balanced. If the same cpumask appears both in the
6530 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6533 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6534 * ownership of it and will kfree it when done with it. If the caller
6535 * failed the kmalloc call, then it can pass in doms_new == NULL,
6536 * and partition_sched_domains() will fallback to the single partition
6539 * Call with hotplug lock held
6541 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
)
6545 /* always unregister in case we don't destroy any domains */
6546 unregister_sched_domain_sysctl();
6548 if (doms_new
== NULL
) {
6550 doms_new
= &fallback_doms
;
6551 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
6554 /* Destroy deleted domains */
6555 for (i
= 0; i
< ndoms_cur
; i
++) {
6556 for (j
= 0; j
< ndoms_new
; j
++) {
6557 if (cpus_equal(doms_cur
[i
], doms_new
[j
]))
6560 /* no match - a current sched domain not in new doms_new[] */
6561 detach_destroy_domains(doms_cur
+ i
);
6566 /* Build new domains */
6567 for (i
= 0; i
< ndoms_new
; i
++) {
6568 for (j
= 0; j
< ndoms_cur
; j
++) {
6569 if (cpus_equal(doms_new
[i
], doms_cur
[j
]))
6572 /* no match - add a new doms_new */
6573 build_sched_domains(doms_new
+ i
);
6578 /* Remember the new sched domains */
6579 if (doms_cur
!= &fallback_doms
)
6581 doms_cur
= doms_new
;
6582 ndoms_cur
= ndoms_new
;
6584 register_sched_domain_sysctl();
6587 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6588 static int arch_reinit_sched_domains(void)
6592 mutex_lock(&sched_hotcpu_mutex
);
6593 detach_destroy_domains(&cpu_online_map
);
6594 err
= arch_init_sched_domains(&cpu_online_map
);
6595 mutex_unlock(&sched_hotcpu_mutex
);
6600 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6604 if (buf
[0] != '0' && buf
[0] != '1')
6608 sched_smt_power_savings
= (buf
[0] == '1');
6610 sched_mc_power_savings
= (buf
[0] == '1');
6612 ret
= arch_reinit_sched_domains();
6614 return ret
? ret
: count
;
6617 #ifdef CONFIG_SCHED_MC
6618 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6620 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6622 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6623 const char *buf
, size_t count
)
6625 return sched_power_savings_store(buf
, count
, 0);
6627 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6628 sched_mc_power_savings_store
);
6631 #ifdef CONFIG_SCHED_SMT
6632 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6634 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6636 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6637 const char *buf
, size_t count
)
6639 return sched_power_savings_store(buf
, count
, 1);
6641 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6642 sched_smt_power_savings_store
);
6645 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6649 #ifdef CONFIG_SCHED_SMT
6651 err
= sysfs_create_file(&cls
->kset
.kobj
,
6652 &attr_sched_smt_power_savings
.attr
);
6654 #ifdef CONFIG_SCHED_MC
6655 if (!err
&& mc_capable())
6656 err
= sysfs_create_file(&cls
->kset
.kobj
,
6657 &attr_sched_mc_power_savings
.attr
);
6664 * Force a reinitialization of the sched domains hierarchy. The domains
6665 * and groups cannot be updated in place without racing with the balancing
6666 * code, so we temporarily attach all running cpus to the NULL domain
6667 * which will prevent rebalancing while the sched domains are recalculated.
6669 static int update_sched_domains(struct notifier_block
*nfb
,
6670 unsigned long action
, void *hcpu
)
6673 case CPU_UP_PREPARE
:
6674 case CPU_UP_PREPARE_FROZEN
:
6675 case CPU_DOWN_PREPARE
:
6676 case CPU_DOWN_PREPARE_FROZEN
:
6677 detach_destroy_domains(&cpu_online_map
);
6680 case CPU_UP_CANCELED
:
6681 case CPU_UP_CANCELED_FROZEN
:
6682 case CPU_DOWN_FAILED
:
6683 case CPU_DOWN_FAILED_FROZEN
:
6685 case CPU_ONLINE_FROZEN
:
6687 case CPU_DEAD_FROZEN
:
6689 * Fall through and re-initialise the domains.
6696 /* The hotplug lock is already held by cpu_up/cpu_down */
6697 arch_init_sched_domains(&cpu_online_map
);
6702 void __init
sched_init_smp(void)
6704 cpumask_t non_isolated_cpus
;
6706 mutex_lock(&sched_hotcpu_mutex
);
6707 arch_init_sched_domains(&cpu_online_map
);
6708 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
6709 if (cpus_empty(non_isolated_cpus
))
6710 cpu_set(smp_processor_id(), non_isolated_cpus
);
6711 mutex_unlock(&sched_hotcpu_mutex
);
6712 /* XXX: Theoretical race here - CPU may be hotplugged now */
6713 hotcpu_notifier(update_sched_domains
, 0);
6715 /* Move init over to a non-isolated CPU */
6716 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
6718 sched_init_granularity();
6721 void __init
sched_init_smp(void)
6723 sched_init_granularity();
6725 #endif /* CONFIG_SMP */
6727 int in_sched_functions(unsigned long addr
)
6729 return in_lock_functions(addr
) ||
6730 (addr
>= (unsigned long)__sched_text_start
6731 && addr
< (unsigned long)__sched_text_end
);
6734 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
6736 cfs_rq
->tasks_timeline
= RB_ROOT
;
6737 #ifdef CONFIG_FAIR_GROUP_SCHED
6740 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
6743 void __init
sched_init(void)
6745 int highest_cpu
= 0;
6748 for_each_possible_cpu(i
) {
6749 struct rt_prio_array
*array
;
6753 spin_lock_init(&rq
->lock
);
6754 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
6757 init_cfs_rq(&rq
->cfs
, rq
);
6758 #ifdef CONFIG_FAIR_GROUP_SCHED
6759 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6761 struct cfs_rq
*cfs_rq
= &per_cpu(init_cfs_rq
, i
);
6762 struct sched_entity
*se
=
6763 &per_cpu(init_sched_entity
, i
);
6765 init_cfs_rq_p
[i
] = cfs_rq
;
6766 init_cfs_rq(cfs_rq
, rq
);
6767 cfs_rq
->tg
= &init_task_group
;
6768 list_add(&cfs_rq
->leaf_cfs_rq_list
,
6769 &rq
->leaf_cfs_rq_list
);
6771 init_sched_entity_p
[i
] = se
;
6772 se
->cfs_rq
= &rq
->cfs
;
6774 se
->load
.weight
= init_task_group_load
;
6775 se
->load
.inv_weight
=
6776 div64_64(1ULL<<32, init_task_group_load
);
6779 init_task_group
.shares
= init_task_group_load
;
6780 spin_lock_init(&init_task_group
.lock
);
6783 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6784 rq
->cpu_load
[j
] = 0;
6787 rq
->active_balance
= 0;
6788 rq
->next_balance
= jiffies
;
6791 rq
->migration_thread
= NULL
;
6792 INIT_LIST_HEAD(&rq
->migration_queue
);
6794 atomic_set(&rq
->nr_iowait
, 0);
6796 array
= &rq
->rt
.active
;
6797 for (j
= 0; j
< MAX_RT_PRIO
; j
++) {
6798 INIT_LIST_HEAD(array
->queue
+ j
);
6799 __clear_bit(j
, array
->bitmap
);
6802 /* delimiter for bitsearch: */
6803 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
6806 set_load_weight(&init_task
);
6808 #ifdef CONFIG_PREEMPT_NOTIFIERS
6809 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
6813 nr_cpu_ids
= highest_cpu
+ 1;
6814 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
6817 #ifdef CONFIG_RT_MUTEXES
6818 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
6822 * The boot idle thread does lazy MMU switching as well:
6824 atomic_inc(&init_mm
.mm_count
);
6825 enter_lazy_tlb(&init_mm
, current
);
6828 * Make us the idle thread. Technically, schedule() should not be
6829 * called from this thread, however somewhere below it might be,
6830 * but because we are the idle thread, we just pick up running again
6831 * when this runqueue becomes "idle".
6833 init_idle(current
, smp_processor_id());
6835 * During early bootup we pretend to be a normal task:
6837 current
->sched_class
= &fair_sched_class
;
6840 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6841 void __might_sleep(char *file
, int line
)
6844 static unsigned long prev_jiffy
; /* ratelimiting */
6846 if ((in_atomic() || irqs_disabled()) &&
6847 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6848 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6850 prev_jiffy
= jiffies
;
6851 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6852 " context at %s:%d\n", file
, line
);
6853 printk("in_atomic():%d, irqs_disabled():%d\n",
6854 in_atomic(), irqs_disabled());
6855 debug_show_held_locks(current
);
6856 if (irqs_disabled())
6857 print_irqtrace_events(current
);
6862 EXPORT_SYMBOL(__might_sleep
);
6865 #ifdef CONFIG_MAGIC_SYSRQ
6866 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
6869 update_rq_clock(rq
);
6870 on_rq
= p
->se
.on_rq
;
6872 deactivate_task(rq
, p
, 0);
6873 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
6875 activate_task(rq
, p
, 0);
6876 resched_task(rq
->curr
);
6880 void normalize_rt_tasks(void)
6882 struct task_struct
*g
, *p
;
6883 unsigned long flags
;
6886 read_lock_irq(&tasklist_lock
);
6887 do_each_thread(g
, p
) {
6889 * Only normalize user tasks:
6894 p
->se
.exec_start
= 0;
6895 #ifdef CONFIG_SCHEDSTATS
6896 p
->se
.wait_start
= 0;
6897 p
->se
.sleep_start
= 0;
6898 p
->se
.block_start
= 0;
6900 task_rq(p
)->clock
= 0;
6904 * Renice negative nice level userspace
6907 if (TASK_NICE(p
) < 0 && p
->mm
)
6908 set_user_nice(p
, 0);
6912 spin_lock_irqsave(&p
->pi_lock
, flags
);
6913 rq
= __task_rq_lock(p
);
6915 normalize_task(rq
, p
);
6917 __task_rq_unlock(rq
);
6918 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6919 } while_each_thread(g
, p
);
6921 read_unlock_irq(&tasklist_lock
);
6924 #endif /* CONFIG_MAGIC_SYSRQ */
6928 * These functions are only useful for the IA64 MCA handling.
6930 * They can only be called when the whole system has been
6931 * stopped - every CPU needs to be quiescent, and no scheduling
6932 * activity can take place. Using them for anything else would
6933 * be a serious bug, and as a result, they aren't even visible
6934 * under any other configuration.
6938 * curr_task - return the current task for a given cpu.
6939 * @cpu: the processor in question.
6941 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6943 struct task_struct
*curr_task(int cpu
)
6945 return cpu_curr(cpu
);
6949 * set_curr_task - set the current task for a given cpu.
6950 * @cpu: the processor in question.
6951 * @p: the task pointer to set.
6953 * Description: This function must only be used when non-maskable interrupts
6954 * are serviced on a separate stack. It allows the architecture to switch the
6955 * notion of the current task on a cpu in a non-blocking manner. This function
6956 * must be called with all CPU's synchronized, and interrupts disabled, the
6957 * and caller must save the original value of the current task (see
6958 * curr_task() above) and restore that value before reenabling interrupts and
6959 * re-starting the system.
6961 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6963 void set_curr_task(int cpu
, struct task_struct
*p
)
6970 #ifdef CONFIG_FAIR_GROUP_SCHED
6972 /* allocate runqueue etc for a new task group */
6973 struct task_group
*sched_create_group(void)
6975 struct task_group
*tg
;
6976 struct cfs_rq
*cfs_rq
;
6977 struct sched_entity
*se
;
6981 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
6983 return ERR_PTR(-ENOMEM
);
6985 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * NR_CPUS
, GFP_KERNEL
);
6988 tg
->se
= kzalloc(sizeof(se
) * NR_CPUS
, GFP_KERNEL
);
6992 for_each_possible_cpu(i
) {
6995 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
), GFP_KERNEL
,
7000 se
= kmalloc_node(sizeof(struct sched_entity
), GFP_KERNEL
,
7005 memset(cfs_rq
, 0, sizeof(struct cfs_rq
));
7006 memset(se
, 0, sizeof(struct sched_entity
));
7008 tg
->cfs_rq
[i
] = cfs_rq
;
7009 init_cfs_rq(cfs_rq
, rq
);
7013 se
->cfs_rq
= &rq
->cfs
;
7015 se
->load
.weight
= NICE_0_LOAD
;
7016 se
->load
.inv_weight
= div64_64(1ULL<<32, NICE_0_LOAD
);
7020 for_each_possible_cpu(i
) {
7022 cfs_rq
= tg
->cfs_rq
[i
];
7023 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7026 tg
->shares
= NICE_0_LOAD
;
7027 spin_lock_init(&tg
->lock
);
7032 for_each_possible_cpu(i
) {
7034 kfree(tg
->cfs_rq
[i
]);
7042 return ERR_PTR(-ENOMEM
);
7045 /* rcu callback to free various structures associated with a task group */
7046 static void free_sched_group(struct rcu_head
*rhp
)
7048 struct task_group
*tg
= container_of(rhp
, struct task_group
, rcu
);
7049 struct cfs_rq
*cfs_rq
;
7050 struct sched_entity
*se
;
7053 /* now it should be safe to free those cfs_rqs */
7054 for_each_possible_cpu(i
) {
7055 cfs_rq
= tg
->cfs_rq
[i
];
7067 /* Destroy runqueue etc associated with a task group */
7068 void sched_destroy_group(struct task_group
*tg
)
7070 struct cfs_rq
*cfs_rq
= NULL
;
7073 for_each_possible_cpu(i
) {
7074 cfs_rq
= tg
->cfs_rq
[i
];
7075 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
7080 /* wait for possible concurrent references to cfs_rqs complete */
7081 call_rcu(&tg
->rcu
, free_sched_group
);
7084 /* change task's runqueue when it moves between groups.
7085 * The caller of this function should have put the task in its new group
7086 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7087 * reflect its new group.
7089 void sched_move_task(struct task_struct
*tsk
)
7092 unsigned long flags
;
7095 rq
= task_rq_lock(tsk
, &flags
);
7097 if (tsk
->sched_class
!= &fair_sched_class
) {
7098 set_task_cfs_rq(tsk
, task_cpu(tsk
));
7102 update_rq_clock(rq
);
7104 running
= task_running(rq
, tsk
);
7105 on_rq
= tsk
->se
.on_rq
;
7108 dequeue_task(rq
, tsk
, 0);
7109 if (unlikely(running
))
7110 tsk
->sched_class
->put_prev_task(rq
, tsk
);
7113 set_task_cfs_rq(tsk
, task_cpu(tsk
));
7116 if (unlikely(running
))
7117 tsk
->sched_class
->set_curr_task(rq
);
7118 enqueue_task(rq
, tsk
, 0);
7122 task_rq_unlock(rq
, &flags
);
7125 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
7127 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
7128 struct rq
*rq
= cfs_rq
->rq
;
7131 spin_lock_irq(&rq
->lock
);
7135 dequeue_entity(cfs_rq
, se
, 0);
7137 se
->load
.weight
= shares
;
7138 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
7141 enqueue_entity(cfs_rq
, se
, 0);
7143 spin_unlock_irq(&rq
->lock
);
7146 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
7150 spin_lock(&tg
->lock
);
7151 if (tg
->shares
== shares
)
7154 tg
->shares
= shares
;
7155 for_each_possible_cpu(i
)
7156 set_se_shares(tg
->se
[i
], shares
);
7159 spin_unlock(&tg
->lock
);
7163 unsigned long sched_group_shares(struct task_group
*tg
)
7168 #endif /* CONFIG_FAIR_GROUP_SCHED */
7170 #ifdef CONFIG_FAIR_CGROUP_SCHED
7172 /* return corresponding task_group object of a cgroup */
7173 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
7175 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
7176 struct task_group
, css
);
7179 static struct cgroup_subsys_state
*
7180 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
7182 struct task_group
*tg
;
7184 if (!cgrp
->parent
) {
7185 /* This is early initialization for the top cgroup */
7186 init_task_group
.css
.cgroup
= cgrp
;
7187 return &init_task_group
.css
;
7190 /* we support only 1-level deep hierarchical scheduler atm */
7191 if (cgrp
->parent
->parent
)
7192 return ERR_PTR(-EINVAL
);
7194 tg
= sched_create_group();
7196 return ERR_PTR(-ENOMEM
);
7198 /* Bind the cgroup to task_group object we just created */
7199 tg
->css
.cgroup
= cgrp
;
7205 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
7207 struct task_group
*tg
= cgroup_tg(cgrp
);
7209 sched_destroy_group(tg
);
7213 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7214 struct task_struct
*tsk
)
7216 /* We don't support RT-tasks being in separate groups */
7217 if (tsk
->sched_class
!= &fair_sched_class
)
7224 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7225 struct cgroup
*old_cont
, struct task_struct
*tsk
)
7227 sched_move_task(tsk
);
7230 static int cpu_shares_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
7233 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
7236 static u64
cpu_shares_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
7238 struct task_group
*tg
= cgroup_tg(cgrp
);
7240 return (u64
) tg
->shares
;
7243 static struct cftype cpu_files
[] = {
7246 .read_uint
= cpu_shares_read_uint
,
7247 .write_uint
= cpu_shares_write_uint
,
7251 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7253 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
7256 struct cgroup_subsys cpu_cgroup_subsys
= {
7258 .create
= cpu_cgroup_create
,
7259 .destroy
= cpu_cgroup_destroy
,
7260 .can_attach
= cpu_cgroup_can_attach
,
7261 .attach
= cpu_cgroup_attach
,
7262 .populate
= cpu_cgroup_populate
,
7263 .subsys_id
= cpu_cgroup_subsys_id
,
7267 #endif /* CONFIG_FAIR_CGROUP_SCHED */
7269 #ifdef CONFIG_CGROUP_CPUACCT
7272 * CPU accounting code for task groups.
7274 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7275 * (balbir@in.ibm.com).
7278 /* track cpu usage of a group of tasks */
7280 struct cgroup_subsys_state css
;
7281 /* cpuusage holds pointer to a u64-type object on every cpu */
7285 struct cgroup_subsys cpuacct_subsys
;
7287 /* return cpu accounting group corresponding to this container */
7288 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cont
)
7290 return container_of(cgroup_subsys_state(cont
, cpuacct_subsys_id
),
7291 struct cpuacct
, css
);
7294 /* return cpu accounting group to which this task belongs */
7295 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
7297 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
7298 struct cpuacct
, css
);
7301 /* create a new cpu accounting group */
7302 static struct cgroup_subsys_state
*cpuacct_create(
7303 struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7305 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
7308 return ERR_PTR(-ENOMEM
);
7310 ca
->cpuusage
= alloc_percpu(u64
);
7311 if (!ca
->cpuusage
) {
7313 return ERR_PTR(-ENOMEM
);
7319 /* destroy an existing cpu accounting group */
7321 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7323 struct cpuacct
*ca
= cgroup_ca(cont
);
7325 free_percpu(ca
->cpuusage
);
7329 /* return total cpu usage (in nanoseconds) of a group */
7330 static u64
cpuusage_read(struct cgroup
*cont
, struct cftype
*cft
)
7332 struct cpuacct
*ca
= cgroup_ca(cont
);
7333 u64 totalcpuusage
= 0;
7336 for_each_possible_cpu(i
) {
7337 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
7340 * Take rq->lock to make 64-bit addition safe on 32-bit
7343 spin_lock_irq(&cpu_rq(i
)->lock
);
7344 totalcpuusage
+= *cpuusage
;
7345 spin_unlock_irq(&cpu_rq(i
)->lock
);
7348 return totalcpuusage
;
7351 static struct cftype files
[] = {
7354 .read_uint
= cpuusage_read
,
7358 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7360 return cgroup_add_files(cont
, ss
, files
, ARRAY_SIZE(files
));
7364 * charge this task's execution time to its accounting group.
7366 * called with rq->lock held.
7368 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
7372 if (!cpuacct_subsys
.active
)
7377 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, task_cpu(tsk
));
7379 *cpuusage
+= cputime
;
7383 struct cgroup_subsys cpuacct_subsys
= {
7385 .create
= cpuacct_create
,
7386 .destroy
= cpuacct_destroy
,
7387 .populate
= cpuacct_populate
,
7388 .subsys_id
= cpuacct_subsys_id
,
7390 #endif /* CONFIG_CGROUP_CPUACCT */