Use rtc_lock to protect RTC operations
[linux-2.6/zen-sources.git] / arch / mips / momentum / ocelot_c / setup.c
blob2755c1547473b5a0ca42956ca75066231f5da96e
1 /*
2 * BRIEF MODULE DESCRIPTION
3 * Momentum Computer Ocelot-C and -CS board dependent boot routines
5 * Copyright (C) 1996, 1997, 2001 Ralf Baechle
6 * Copyright (C) 2000 RidgeRun, Inc.
7 * Copyright (C) 2001 Red Hat, Inc.
8 * Copyright (C) 2002 Momentum Computer
10 * Author: Matthew Dharm, Momentum Computer
11 * mdharm@momenco.com
13 * Louis Hamilton, Red Hat, Inc.
14 * hamilton@redhat.com [MIPS64 modifications]
16 * Author: RidgeRun, Inc.
17 * glonnon@ridgerun.com, skranz@ridgerun.com, stevej@ridgerun.com
19 * Copyright 2001 MontaVista Software Inc.
20 * Author: jsun@mvista.com or jsun@junsun.net
22 * This program is free software; you can redistribute it and/or modify it
23 * under the terms of the GNU General Public License as published by the
24 * Free Software Foundation; either version 2 of the License, or (at your
25 * option) any later version.
27 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
28 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
29 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
30 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
31 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
32 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
33 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
34 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
35 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
36 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 * You should have received a copy of the GNU General Public License along
39 * with this program; if not, write to the Free Software Foundation, Inc.,
40 * 675 Mass Ave, Cambridge, MA 02139, USA.
43 #include <linux/config.h>
44 #include <linux/bcd.h>
45 #include <linux/init.h>
46 #include <linux/kernel.h>
47 #include <linux/types.h>
48 #include <linux/mm.h>
49 #include <linux/swap.h>
50 #include <linux/ioport.h>
51 #include <linux/sched.h>
52 #include <linux/interrupt.h>
53 #include <linux/pci.h>
54 #include <linux/timex.h>
55 #include <linux/vmalloc.h>
56 #include <asm/time.h>
57 #include <asm/bootinfo.h>
58 #include <asm/page.h>
59 #include <asm/io.h>
60 #include <asm/irq.h>
61 #include <asm/pci.h>
62 #include <asm/processor.h>
63 #include <asm/ptrace.h>
64 #include <asm/reboot.h>
65 #include <linux/bootmem.h>
66 #include <linux/blkdev.h>
67 #include <asm/mv64340.h>
68 #include "ocelot_c_fpga.h"
70 unsigned long marvell_base;
71 extern unsigned long mv64340_sram_base;
72 unsigned long cpu_clock;
74 /* These functions are used for rebooting or halting the machine*/
75 extern void momenco_ocelot_restart(char *command);
76 extern void momenco_ocelot_halt(void);
77 extern void momenco_ocelot_power_off(void);
79 void momenco_time_init(void);
81 static char reset_reason;
83 void add_wired_entry(unsigned long entrylo0, unsigned long entrylo1, unsigned long entryhi, unsigned long pagemask);
85 static unsigned long ENTRYLO(unsigned long paddr)
87 return ((paddr & PAGE_MASK) |
88 (_PAGE_PRESENT | __READABLE | __WRITEABLE | _PAGE_GLOBAL |
89 _CACHE_UNCACHED)) >> 6;
92 /* setup code for a handoff from a version 2 PMON 2000 PROM */
93 void PMON_v2_setup(void)
95 /* Some wired TLB entries for the MV64340 and perhiperals. The
96 MV64340 is going to be hit on every IRQ anyway - there's
97 absolutely no point in letting it be a random TLB entry, as
98 it'll just cause needless churning of the TLB. And we use
99 the other half for the serial port, which is just a PITA
100 otherwise :)
102 Device Physical Virtual
103 MV64340 Internal Regs 0xf4000000 0xf4000000
104 Ocelot-C[S] PLD (CS0) 0xfc000000 0xfc000000
105 NVRAM (CS1) 0xfc800000 0xfc800000
106 UARTs (CS2) 0xfd000000 0xfd000000
107 Internal SRAM 0xfe000000 0xfe000000
108 M-Systems DOC (CS3) 0xff000000 0xff000000
110 printk("PMON_v2_setup\n");
112 #ifdef CONFIG_64BIT
113 /* marvell and extra space */
114 add_wired_entry(ENTRYLO(0xf4000000), ENTRYLO(0xf4010000), 0xfffffffff4000000, PM_64K);
115 /* fpga, rtc, and uart */
116 add_wired_entry(ENTRYLO(0xfc000000), ENTRYLO(0xfd000000), 0xfffffffffc000000, PM_16M);
117 /* m-sys and internal SRAM */
118 add_wired_entry(ENTRYLO(0xfe000000), ENTRYLO(0xff000000), 0xfffffffffe000000, PM_16M);
120 marvell_base = 0xfffffffff4000000;
121 mv64340_sram_base = 0xfffffffffe000000;
122 #else
123 /* marvell and extra space */
124 add_wired_entry(ENTRYLO(0xf4000000), ENTRYLO(0xf4010000), 0xf4000000, PM_64K);
125 /* fpga, rtc, and uart */
126 add_wired_entry(ENTRYLO(0xfc000000), ENTRYLO(0xfd000000), 0xfc000000, PM_16M);
127 /* m-sys and internal SRAM */
128 add_wired_entry(ENTRYLO(0xfe000000), ENTRYLO(0xff000000), 0xfe000000, PM_16M);
130 marvell_base = 0xf4000000;
131 mv64340_sram_base = 0xfe000000;
132 #endif
135 unsigned long m48t37y_get_time(void)
137 #ifdef CONFIG_64BIT
138 unsigned char *rtc_base = (unsigned char*)0xfffffffffc800000;
139 #else
140 unsigned char* rtc_base = (unsigned char*)0xfc800000;
141 #endif
142 unsigned int year, month, day, hour, min, sec;
143 unsigned long flags;
145 spin_lock_irqsave(&rtc_lock, flags);
146 /* stop the update */
147 rtc_base[0x7ff8] = 0x40;
149 year = BCD2BIN(rtc_base[0x7fff]);
150 year += BCD2BIN(rtc_base[0x7ff1]) * 100;
152 month = BCD2BIN(rtc_base[0x7ffe]);
154 day = BCD2BIN(rtc_base[0x7ffd]);
156 hour = BCD2BIN(rtc_base[0x7ffb]);
157 min = BCD2BIN(rtc_base[0x7ffa]);
158 sec = BCD2BIN(rtc_base[0x7ff9]);
160 /* start the update */
161 rtc_base[0x7ff8] = 0x00;
162 spin_unlock_irqrestore(&rtc_lock, flags);
164 return mktime(year, month, day, hour, min, sec);
167 int m48t37y_set_time(unsigned long sec)
169 #ifdef CONFIG_64BIT
170 unsigned char* rtc_base = (unsigned char*)0xfffffffffc800000;
171 #else
172 unsigned char* rtc_base = (unsigned char*)0xfc800000;
173 #endif
174 struct rtc_time tm;
175 unsigned long flags;
177 /* convert to a more useful format -- note months count from 0 */
178 to_tm(sec, &tm);
179 tm.tm_mon += 1;
181 spin_lock_irqsave(&rtc_lock, flags);
182 /* enable writing */
183 rtc_base[0x7ff8] = 0x80;
185 /* year */
186 rtc_base[0x7fff] = BIN2BCD(tm.tm_year % 100);
187 rtc_base[0x7ff1] = BIN2BCD(tm.tm_year / 100);
189 /* month */
190 rtc_base[0x7ffe] = BIN2BCD(tm.tm_mon);
192 /* day */
193 rtc_base[0x7ffd] = BIN2BCD(tm.tm_mday);
195 /* hour/min/sec */
196 rtc_base[0x7ffb] = BIN2BCD(tm.tm_hour);
197 rtc_base[0x7ffa] = BIN2BCD(tm.tm_min);
198 rtc_base[0x7ff9] = BIN2BCD(tm.tm_sec);
200 /* day of week -- not really used, but let's keep it up-to-date */
201 rtc_base[0x7ffc] = BIN2BCD(tm.tm_wday + 1);
203 /* disable writing */
204 rtc_base[0x7ff8] = 0x00;
205 spin_unlock_irqrestore(&rtc_lock, flags);
207 return 0;
210 void momenco_timer_setup(struct irqaction *irq)
212 setup_irq(7, irq);
215 void momenco_time_init(void)
217 #ifdef CONFIG_CPU_SR71000
218 mips_hpt_frequency = cpu_clock;
219 #elif defined(CONFIG_CPU_RM7000)
220 mips_hpt_frequency = cpu_clock / 2;
221 #else
222 #error Unknown CPU for this board
223 #endif
224 printk("momenco_time_init cpu_clock=%d\n", cpu_clock);
225 board_timer_setup = momenco_timer_setup;
227 rtc_get_time = m48t37y_get_time;
228 rtc_set_time = m48t37y_set_time;
231 void __init plat_setup(void)
233 unsigned int tmpword;
235 board_time_init = momenco_time_init;
237 _machine_restart = momenco_ocelot_restart;
238 _machine_halt = momenco_ocelot_halt;
239 _machine_power_off = momenco_ocelot_power_off;
242 * initrd_start = (ulong)ocelot_initrd_start;
243 * initrd_end = (ulong)ocelot_initrd_start + (ulong)ocelot_initrd_size;
244 * initrd_below_start_ok = 1;
247 /* do handoff reconfiguration */
248 PMON_v2_setup();
250 /* shut down ethernet ports, just to be sure our memory doesn't get
251 * corrupted by random ethernet traffic.
253 MV_WRITE(MV64340_ETH_TRANSMIT_QUEUE_COMMAND_REG(0), 0xff << 8);
254 MV_WRITE(MV64340_ETH_TRANSMIT_QUEUE_COMMAND_REG(1), 0xff << 8);
255 MV_WRITE(MV64340_ETH_RECEIVE_QUEUE_COMMAND_REG(0), 0xff << 8);
256 MV_WRITE(MV64340_ETH_RECEIVE_QUEUE_COMMAND_REG(1), 0xff << 8);
257 do {}
258 while (MV_READ(MV64340_ETH_RECEIVE_QUEUE_COMMAND_REG(0)) & 0xff);
259 do {}
260 while (MV_READ(MV64340_ETH_RECEIVE_QUEUE_COMMAND_REG(1)) & 0xff);
261 do {}
262 while (MV_READ(MV64340_ETH_TRANSMIT_QUEUE_COMMAND_REG(0)) & 0xff);
263 do {}
264 while (MV_READ(MV64340_ETH_TRANSMIT_QUEUE_COMMAND_REG(1)) & 0xff);
265 MV_WRITE(MV64340_ETH_PORT_SERIAL_CONTROL_REG(0),
266 MV_READ(MV64340_ETH_PORT_SERIAL_CONTROL_REG(0)) & ~1);
267 MV_WRITE(MV64340_ETH_PORT_SERIAL_CONTROL_REG(1),
268 MV_READ(MV64340_ETH_PORT_SERIAL_CONTROL_REG(1)) & ~1);
270 /* Turn off the Bit-Error LED */
271 OCELOT_FPGA_WRITE(0x80, CLR);
273 tmpword = OCELOT_FPGA_READ(BOARDREV);
274 #ifdef CONFIG_CPU_SR71000
275 if (tmpword < 26)
276 printk("Momenco Ocelot-CS: Board Assembly Rev. %c\n",
277 'A'+tmpword);
278 else
279 printk("Momenco Ocelot-CS: Board Assembly Revision #0x%x\n",
280 tmpword);
281 #else
282 if (tmpword < 26)
283 printk("Momenco Ocelot-C: Board Assembly Rev. %c\n",
284 'A'+tmpword);
285 else
286 printk("Momenco Ocelot-C: Board Assembly Revision #0x%x\n",
287 tmpword);
288 #endif
290 tmpword = OCELOT_FPGA_READ(FPGA_REV);
291 printk("FPGA Rev: %d.%d\n", tmpword>>4, tmpword&15);
292 tmpword = OCELOT_FPGA_READ(RESET_STATUS);
293 printk("Reset reason: 0x%x\n", tmpword);
294 switch (tmpword) {
295 case 0x1:
296 printk(" - Power-up reset\n");
297 break;
298 case 0x2:
299 printk(" - Push-button reset\n");
300 break;
301 case 0x4:
302 printk(" - cPCI bus reset\n");
303 break;
304 case 0x8:
305 printk(" - Watchdog reset\n");
306 break;
307 case 0x10:
308 printk(" - Software reset\n");
309 break;
310 default:
311 printk(" - Unknown reset cause\n");
313 reset_reason = tmpword;
314 OCELOT_FPGA_WRITE(0xff, RESET_STATUS);
316 tmpword = OCELOT_FPGA_READ(CPCI_ID);
317 printk("cPCI ID register: 0x%02x\n", tmpword);
318 printk(" - Slot number: %d\n", tmpword & 0x1f);
319 printk(" - PCI bus present: %s\n", tmpword & 0x40 ? "yes" : "no");
320 printk(" - System Slot: %s\n", tmpword & 0x20 ? "yes" : "no");
322 tmpword = OCELOT_FPGA_READ(BOARD_STATUS);
323 printk("Board Status register: 0x%02x\n", tmpword);
324 printk(" - User jumper: %s\n", (tmpword & 0x80)?"installed":"absent");
325 printk(" - Boot flash write jumper: %s\n", (tmpword&0x40)?"installed":"absent");
326 printk(" - L3 Cache size: %d MiB\n", (1<<((tmpword&12) >> 2))&~1);
327 printk(" - SDRAM size: %d MiB\n", 1<<(6+(tmpword&3)));
329 switch(tmpword &3) {
330 case 3:
331 /* 512MiB */
332 add_memory_region(0x0, 0x200<<20, BOOT_MEM_RAM);
333 break;
334 case 2:
335 /* 256MiB */
336 add_memory_region(0x0, 0x100<<20, BOOT_MEM_RAM);
337 break;
338 case 1:
339 /* 128MiB */
340 add_memory_region(0x0, 0x80<<20, BOOT_MEM_RAM);
341 break;
342 case 0:
343 /* 1GiB -- needs CONFIG_HIGHMEM */
344 add_memory_region(0x0, 0x400<<20, BOOT_MEM_RAM);
345 break;
349 #ifndef CONFIG_64BIT
350 /* This needs to be one of the first initcalls, because no I/O port access
351 can work before this */
352 static int io_base_ioremap(void)
354 /* we're mapping PCI accesses from 0xc0000000 to 0xf0000000 */
355 void *io_remap_range = ioremap(0xc0000000, 0x30000000);
357 if (!io_remap_range) {
358 panic("Could not ioremap I/O port range");
360 printk("io_remap_range set at 0x%08x\n", (uint32_t)io_remap_range);
361 set_io_port_base(io_remap_range - 0xc0000000);
363 return 0;
366 module_init(io_base_ioremap);
367 #endif