Pull bsp-removal into release branch
[linux-2.6/zen-sources.git] / arch / ia64 / kernel / perfmon.c
blob077f21216b654cc433cb58c2104b11c7954b8b19
1 /*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <linux/interrupt.h>
27 #include <linux/smp_lock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/mm.h>
33 #include <linux/sysctl.h>
34 #include <linux/list.h>
35 #include <linux/file.h>
36 #include <linux/poll.h>
37 #include <linux/vfs.h>
38 #include <linux/pagemap.h>
39 #include <linux/mount.h>
40 #include <linux/bitops.h>
41 #include <linux/capability.h>
42 #include <linux/rcupdate.h>
43 #include <linux/completion.h>
45 #include <asm/errno.h>
46 #include <asm/intrinsics.h>
47 #include <asm/page.h>
48 #include <asm/perfmon.h>
49 #include <asm/processor.h>
50 #include <asm/signal.h>
51 #include <asm/system.h>
52 #include <asm/uaccess.h>
53 #include <asm/delay.h>
55 #ifdef CONFIG_PERFMON
57 * perfmon context state
59 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
60 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
61 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
62 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
64 #define PFM_INVALID_ACTIVATION (~0UL)
67 * depth of message queue
69 #define PFM_MAX_MSGS 32
70 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
73 * type of a PMU register (bitmask).
74 * bitmask structure:
75 * bit0 : register implemented
76 * bit1 : end marker
77 * bit2-3 : reserved
78 * bit4 : pmc has pmc.pm
79 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
80 * bit6-7 : register type
81 * bit8-31: reserved
83 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
84 #define PFM_REG_IMPL 0x1 /* register implemented */
85 #define PFM_REG_END 0x2 /* end marker */
86 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
87 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
88 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
89 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
90 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
92 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
93 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
95 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
97 /* i assumed unsigned */
98 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
99 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
101 /* XXX: these assume that register i is implemented */
102 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
103 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
104 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
105 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
107 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
108 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
109 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
110 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
112 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
113 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
115 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
116 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
117 #define PFM_CTX_TASK(h) (h)->ctx_task
119 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
121 /* XXX: does not support more than 64 PMDs */
122 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
123 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
125 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
127 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
128 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
129 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
130 #define PFM_CODE_RR 0 /* requesting code range restriction */
131 #define PFM_DATA_RR 1 /* requestion data range restriction */
133 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
134 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
135 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
137 #define RDEP(x) (1UL<<(x))
140 * context protection macros
141 * in SMP:
142 * - we need to protect against CPU concurrency (spin_lock)
143 * - we need to protect against PMU overflow interrupts (local_irq_disable)
144 * in UP:
145 * - we need to protect against PMU overflow interrupts (local_irq_disable)
147 * spin_lock_irqsave()/spin_lock_irqrestore():
148 * in SMP: local_irq_disable + spin_lock
149 * in UP : local_irq_disable
151 * spin_lock()/spin_lock():
152 * in UP : removed automatically
153 * in SMP: protect against context accesses from other CPU. interrupts
154 * are not masked. This is useful for the PMU interrupt handler
155 * because we know we will not get PMU concurrency in that code.
157 #define PROTECT_CTX(c, f) \
158 do { \
159 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
160 spin_lock_irqsave(&(c)->ctx_lock, f); \
161 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
162 } while(0)
164 #define UNPROTECT_CTX(c, f) \
165 do { \
166 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
167 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
168 } while(0)
170 #define PROTECT_CTX_NOPRINT(c, f) \
171 do { \
172 spin_lock_irqsave(&(c)->ctx_lock, f); \
173 } while(0)
176 #define UNPROTECT_CTX_NOPRINT(c, f) \
177 do { \
178 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
179 } while(0)
182 #define PROTECT_CTX_NOIRQ(c) \
183 do { \
184 spin_lock(&(c)->ctx_lock); \
185 } while(0)
187 #define UNPROTECT_CTX_NOIRQ(c) \
188 do { \
189 spin_unlock(&(c)->ctx_lock); \
190 } while(0)
193 #ifdef CONFIG_SMP
195 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
196 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
197 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
199 #else /* !CONFIG_SMP */
200 #define SET_ACTIVATION(t) do {} while(0)
201 #define GET_ACTIVATION(t) do {} while(0)
202 #define INC_ACTIVATION(t) do {} while(0)
203 #endif /* CONFIG_SMP */
205 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
206 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
207 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
209 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
210 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
212 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
215 * cmp0 must be the value of pmc0
217 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
219 #define PFMFS_MAGIC 0xa0b4d889
222 * debugging
224 #define PFM_DEBUGGING 1
225 #ifdef PFM_DEBUGGING
226 #define DPRINT(a) \
227 do { \
228 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
229 } while (0)
231 #define DPRINT_ovfl(a) \
232 do { \
233 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
234 } while (0)
235 #endif
238 * 64-bit software counter structure
240 * the next_reset_type is applied to the next call to pfm_reset_regs()
242 typedef struct {
243 unsigned long val; /* virtual 64bit counter value */
244 unsigned long lval; /* last reset value */
245 unsigned long long_reset; /* reset value on sampling overflow */
246 unsigned long short_reset; /* reset value on overflow */
247 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
248 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
249 unsigned long seed; /* seed for random-number generator */
250 unsigned long mask; /* mask for random-number generator */
251 unsigned int flags; /* notify/do not notify */
252 unsigned long eventid; /* overflow event identifier */
253 } pfm_counter_t;
256 * context flags
258 typedef struct {
259 unsigned int block:1; /* when 1, task will blocked on user notifications */
260 unsigned int system:1; /* do system wide monitoring */
261 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
262 unsigned int is_sampling:1; /* true if using a custom format */
263 unsigned int excl_idle:1; /* exclude idle task in system wide session */
264 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
265 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
266 unsigned int no_msg:1; /* no message sent on overflow */
267 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
268 unsigned int reserved:22;
269 } pfm_context_flags_t;
271 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
272 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
273 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
277 * perfmon context: encapsulates all the state of a monitoring session
280 typedef struct pfm_context {
281 spinlock_t ctx_lock; /* context protection */
283 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
284 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
286 struct task_struct *ctx_task; /* task to which context is attached */
288 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
290 struct completion ctx_restart_done; /* use for blocking notification mode */
292 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
293 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
294 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
296 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
297 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
298 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
300 unsigned long ctx_pmcs[IA64_NUM_PMC_REGS]; /* saved copies of PMC values */
302 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
303 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
304 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
305 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
307 pfm_counter_t ctx_pmds[IA64_NUM_PMD_REGS]; /* software state for PMDS */
309 u64 ctx_saved_psr_up; /* only contains psr.up value */
311 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
312 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
313 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
315 int ctx_fd; /* file descriptor used my this context */
316 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
318 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
319 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
320 unsigned long ctx_smpl_size; /* size of sampling buffer */
321 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
323 wait_queue_head_t ctx_msgq_wait;
324 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
325 int ctx_msgq_head;
326 int ctx_msgq_tail;
327 struct fasync_struct *ctx_async_queue;
329 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
330 } pfm_context_t;
333 * magic number used to verify that structure is really
334 * a perfmon context
336 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
338 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
340 #ifdef CONFIG_SMP
341 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
342 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
343 #else
344 #define SET_LAST_CPU(ctx, v) do {} while(0)
345 #define GET_LAST_CPU(ctx) do {} while(0)
346 #endif
349 #define ctx_fl_block ctx_flags.block
350 #define ctx_fl_system ctx_flags.system
351 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
352 #define ctx_fl_is_sampling ctx_flags.is_sampling
353 #define ctx_fl_excl_idle ctx_flags.excl_idle
354 #define ctx_fl_going_zombie ctx_flags.going_zombie
355 #define ctx_fl_trap_reason ctx_flags.trap_reason
356 #define ctx_fl_no_msg ctx_flags.no_msg
357 #define ctx_fl_can_restart ctx_flags.can_restart
359 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
360 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
363 * global information about all sessions
364 * mostly used to synchronize between system wide and per-process
366 typedef struct {
367 spinlock_t pfs_lock; /* lock the structure */
369 unsigned int pfs_task_sessions; /* number of per task sessions */
370 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
371 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
372 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
373 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
374 } pfm_session_t;
377 * information about a PMC or PMD.
378 * dep_pmd[]: a bitmask of dependent PMD registers
379 * dep_pmc[]: a bitmask of dependent PMC registers
381 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
382 typedef struct {
383 unsigned int type;
384 int pm_pos;
385 unsigned long default_value; /* power-on default value */
386 unsigned long reserved_mask; /* bitmask of reserved bits */
387 pfm_reg_check_t read_check;
388 pfm_reg_check_t write_check;
389 unsigned long dep_pmd[4];
390 unsigned long dep_pmc[4];
391 } pfm_reg_desc_t;
393 /* assume cnum is a valid monitor */
394 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
397 * This structure is initialized at boot time and contains
398 * a description of the PMU main characteristics.
400 * If the probe function is defined, detection is based
401 * on its return value:
402 * - 0 means recognized PMU
403 * - anything else means not supported
404 * When the probe function is not defined, then the pmu_family field
405 * is used and it must match the host CPU family such that:
406 * - cpu->family & config->pmu_family != 0
408 typedef struct {
409 unsigned long ovfl_val; /* overflow value for counters */
411 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
412 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
414 unsigned int num_pmcs; /* number of PMCS: computed at init time */
415 unsigned int num_pmds; /* number of PMDS: computed at init time */
416 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
417 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
419 char *pmu_name; /* PMU family name */
420 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
421 unsigned int flags; /* pmu specific flags */
422 unsigned int num_ibrs; /* number of IBRS: computed at init time */
423 unsigned int num_dbrs; /* number of DBRS: computed at init time */
424 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
425 int (*probe)(void); /* customized probe routine */
426 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
427 } pmu_config_t;
429 * PMU specific flags
431 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
434 * debug register related type definitions
436 typedef struct {
437 unsigned long ibr_mask:56;
438 unsigned long ibr_plm:4;
439 unsigned long ibr_ig:3;
440 unsigned long ibr_x:1;
441 } ibr_mask_reg_t;
443 typedef struct {
444 unsigned long dbr_mask:56;
445 unsigned long dbr_plm:4;
446 unsigned long dbr_ig:2;
447 unsigned long dbr_w:1;
448 unsigned long dbr_r:1;
449 } dbr_mask_reg_t;
451 typedef union {
452 unsigned long val;
453 ibr_mask_reg_t ibr;
454 dbr_mask_reg_t dbr;
455 } dbreg_t;
459 * perfmon command descriptions
461 typedef struct {
462 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
463 char *cmd_name;
464 int cmd_flags;
465 unsigned int cmd_narg;
466 size_t cmd_argsize;
467 int (*cmd_getsize)(void *arg, size_t *sz);
468 } pfm_cmd_desc_t;
470 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
471 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
472 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
473 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
476 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
477 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
478 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
479 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
480 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
482 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
484 typedef struct {
485 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
486 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
487 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
488 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
489 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
490 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
491 unsigned long pfm_smpl_handler_calls;
492 unsigned long pfm_smpl_handler_cycles;
493 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
494 } pfm_stats_t;
497 * perfmon internal variables
499 static pfm_stats_t pfm_stats[NR_CPUS];
500 static pfm_session_t pfm_sessions; /* global sessions information */
502 static DEFINE_SPINLOCK(pfm_alt_install_check);
503 static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
505 static struct proc_dir_entry *perfmon_dir;
506 static pfm_uuid_t pfm_null_uuid = {0,};
508 static spinlock_t pfm_buffer_fmt_lock;
509 static LIST_HEAD(pfm_buffer_fmt_list);
511 static pmu_config_t *pmu_conf;
513 /* sysctl() controls */
514 pfm_sysctl_t pfm_sysctl;
515 EXPORT_SYMBOL(pfm_sysctl);
517 static ctl_table pfm_ctl_table[]={
518 {1, "debug", &pfm_sysctl.debug, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
519 {2, "debug_ovfl", &pfm_sysctl.debug_ovfl, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
520 {3, "fastctxsw", &pfm_sysctl.fastctxsw, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
521 {4, "expert_mode", &pfm_sysctl.expert_mode, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
522 { 0, },
524 static ctl_table pfm_sysctl_dir[] = {
525 {1, "perfmon", NULL, 0, 0755, pfm_ctl_table, },
526 {0,},
528 static ctl_table pfm_sysctl_root[] = {
529 {1, "kernel", NULL, 0, 0755, pfm_sysctl_dir, },
530 {0,},
532 static struct ctl_table_header *pfm_sysctl_header;
534 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
535 static int pfm_flush(struct file *filp);
537 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
538 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
540 static inline void
541 pfm_put_task(struct task_struct *task)
543 if (task != current) put_task_struct(task);
546 static inline void
547 pfm_set_task_notify(struct task_struct *task)
549 struct thread_info *info;
551 info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
552 set_bit(TIF_NOTIFY_RESUME, &info->flags);
555 static inline void
556 pfm_clear_task_notify(void)
558 clear_thread_flag(TIF_NOTIFY_RESUME);
561 static inline void
562 pfm_reserve_page(unsigned long a)
564 SetPageReserved(vmalloc_to_page((void *)a));
566 static inline void
567 pfm_unreserve_page(unsigned long a)
569 ClearPageReserved(vmalloc_to_page((void*)a));
572 static inline unsigned long
573 pfm_protect_ctx_ctxsw(pfm_context_t *x)
575 spin_lock(&(x)->ctx_lock);
576 return 0UL;
579 static inline void
580 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
582 spin_unlock(&(x)->ctx_lock);
585 static inline unsigned int
586 pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
588 return do_munmap(mm, addr, len);
591 static inline unsigned long
592 pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
594 return get_unmapped_area(file, addr, len, pgoff, flags);
598 static struct super_block *
599 pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
601 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC);
604 static struct file_system_type pfm_fs_type = {
605 .name = "pfmfs",
606 .get_sb = pfmfs_get_sb,
607 .kill_sb = kill_anon_super,
610 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
611 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
612 DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
613 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
614 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
617 /* forward declaration */
618 static struct file_operations pfm_file_ops;
621 * forward declarations
623 #ifndef CONFIG_SMP
624 static void pfm_lazy_save_regs (struct task_struct *ta);
625 #endif
627 void dump_pmu_state(const char *);
628 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
630 #include "perfmon_itanium.h"
631 #include "perfmon_mckinley.h"
632 #include "perfmon_montecito.h"
633 #include "perfmon_generic.h"
635 static pmu_config_t *pmu_confs[]={
636 &pmu_conf_mont,
637 &pmu_conf_mck,
638 &pmu_conf_ita,
639 &pmu_conf_gen, /* must be last */
640 NULL
644 static int pfm_end_notify_user(pfm_context_t *ctx);
646 static inline void
647 pfm_clear_psr_pp(void)
649 ia64_rsm(IA64_PSR_PP);
650 ia64_srlz_i();
653 static inline void
654 pfm_set_psr_pp(void)
656 ia64_ssm(IA64_PSR_PP);
657 ia64_srlz_i();
660 static inline void
661 pfm_clear_psr_up(void)
663 ia64_rsm(IA64_PSR_UP);
664 ia64_srlz_i();
667 static inline void
668 pfm_set_psr_up(void)
670 ia64_ssm(IA64_PSR_UP);
671 ia64_srlz_i();
674 static inline unsigned long
675 pfm_get_psr(void)
677 unsigned long tmp;
678 tmp = ia64_getreg(_IA64_REG_PSR);
679 ia64_srlz_i();
680 return tmp;
683 static inline void
684 pfm_set_psr_l(unsigned long val)
686 ia64_setreg(_IA64_REG_PSR_L, val);
687 ia64_srlz_i();
690 static inline void
691 pfm_freeze_pmu(void)
693 ia64_set_pmc(0,1UL);
694 ia64_srlz_d();
697 static inline void
698 pfm_unfreeze_pmu(void)
700 ia64_set_pmc(0,0UL);
701 ia64_srlz_d();
704 static inline void
705 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
707 int i;
709 for (i=0; i < nibrs; i++) {
710 ia64_set_ibr(i, ibrs[i]);
711 ia64_dv_serialize_instruction();
713 ia64_srlz_i();
716 static inline void
717 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
719 int i;
721 for (i=0; i < ndbrs; i++) {
722 ia64_set_dbr(i, dbrs[i]);
723 ia64_dv_serialize_data();
725 ia64_srlz_d();
729 * PMD[i] must be a counter. no check is made
731 static inline unsigned long
732 pfm_read_soft_counter(pfm_context_t *ctx, int i)
734 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
738 * PMD[i] must be a counter. no check is made
740 static inline void
741 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
743 unsigned long ovfl_val = pmu_conf->ovfl_val;
745 ctx->ctx_pmds[i].val = val & ~ovfl_val;
747 * writing to unimplemented part is ignore, so we do not need to
748 * mask off top part
750 ia64_set_pmd(i, val & ovfl_val);
753 static pfm_msg_t *
754 pfm_get_new_msg(pfm_context_t *ctx)
756 int idx, next;
758 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
760 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
761 if (next == ctx->ctx_msgq_head) return NULL;
763 idx = ctx->ctx_msgq_tail;
764 ctx->ctx_msgq_tail = next;
766 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
768 return ctx->ctx_msgq+idx;
771 static pfm_msg_t *
772 pfm_get_next_msg(pfm_context_t *ctx)
774 pfm_msg_t *msg;
776 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
778 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
781 * get oldest message
783 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
786 * and move forward
788 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
790 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
792 return msg;
795 static void
796 pfm_reset_msgq(pfm_context_t *ctx)
798 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
799 DPRINT(("ctx=%p msgq reset\n", ctx));
802 static void *
803 pfm_rvmalloc(unsigned long size)
805 void *mem;
806 unsigned long addr;
808 size = PAGE_ALIGN(size);
809 mem = vmalloc(size);
810 if (mem) {
811 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
812 memset(mem, 0, size);
813 addr = (unsigned long)mem;
814 while (size > 0) {
815 pfm_reserve_page(addr);
816 addr+=PAGE_SIZE;
817 size-=PAGE_SIZE;
820 return mem;
823 static void
824 pfm_rvfree(void *mem, unsigned long size)
826 unsigned long addr;
828 if (mem) {
829 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
830 addr = (unsigned long) mem;
831 while ((long) size > 0) {
832 pfm_unreserve_page(addr);
833 addr+=PAGE_SIZE;
834 size-=PAGE_SIZE;
836 vfree(mem);
838 return;
841 static pfm_context_t *
842 pfm_context_alloc(void)
844 pfm_context_t *ctx;
847 * allocate context descriptor
848 * must be able to free with interrupts disabled
850 ctx = kmalloc(sizeof(pfm_context_t), GFP_KERNEL);
851 if (ctx) {
852 memset(ctx, 0, sizeof(pfm_context_t));
853 DPRINT(("alloc ctx @%p\n", ctx));
855 return ctx;
858 static void
859 pfm_context_free(pfm_context_t *ctx)
861 if (ctx) {
862 DPRINT(("free ctx @%p\n", ctx));
863 kfree(ctx);
867 static void
868 pfm_mask_monitoring(struct task_struct *task)
870 pfm_context_t *ctx = PFM_GET_CTX(task);
871 struct thread_struct *th = &task->thread;
872 unsigned long mask, val, ovfl_mask;
873 int i;
875 DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
877 ovfl_mask = pmu_conf->ovfl_val;
879 * monitoring can only be masked as a result of a valid
880 * counter overflow. In UP, it means that the PMU still
881 * has an owner. Note that the owner can be different
882 * from the current task. However the PMU state belongs
883 * to the owner.
884 * In SMP, a valid overflow only happens when task is
885 * current. Therefore if we come here, we know that
886 * the PMU state belongs to the current task, therefore
887 * we can access the live registers.
889 * So in both cases, the live register contains the owner's
890 * state. We can ONLY touch the PMU registers and NOT the PSR.
892 * As a consequence to this call, the thread->pmds[] array
893 * contains stale information which must be ignored
894 * when context is reloaded AND monitoring is active (see
895 * pfm_restart).
897 mask = ctx->ctx_used_pmds[0];
898 for (i = 0; mask; i++, mask>>=1) {
899 /* skip non used pmds */
900 if ((mask & 0x1) == 0) continue;
901 val = ia64_get_pmd(i);
903 if (PMD_IS_COUNTING(i)) {
905 * we rebuild the full 64 bit value of the counter
907 ctx->ctx_pmds[i].val += (val & ovfl_mask);
908 } else {
909 ctx->ctx_pmds[i].val = val;
911 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
913 ctx->ctx_pmds[i].val,
914 val & ovfl_mask));
917 * mask monitoring by setting the privilege level to 0
918 * we cannot use psr.pp/psr.up for this, it is controlled by
919 * the user
921 * if task is current, modify actual registers, otherwise modify
922 * thread save state, i.e., what will be restored in pfm_load_regs()
924 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
925 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
926 if ((mask & 0x1) == 0UL) continue;
927 ia64_set_pmc(i, th->pmcs[i] & ~0xfUL);
928 th->pmcs[i] &= ~0xfUL;
929 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, th->pmcs[i]));
932 * make all of this visible
934 ia64_srlz_d();
938 * must always be done with task == current
940 * context must be in MASKED state when calling
942 static void
943 pfm_restore_monitoring(struct task_struct *task)
945 pfm_context_t *ctx = PFM_GET_CTX(task);
946 struct thread_struct *th = &task->thread;
947 unsigned long mask, ovfl_mask;
948 unsigned long psr, val;
949 int i, is_system;
951 is_system = ctx->ctx_fl_system;
952 ovfl_mask = pmu_conf->ovfl_val;
954 if (task != current) {
955 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
956 return;
958 if (ctx->ctx_state != PFM_CTX_MASKED) {
959 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
960 task->pid, current->pid, ctx->ctx_state);
961 return;
963 psr = pfm_get_psr();
965 * monitoring is masked via the PMC.
966 * As we restore their value, we do not want each counter to
967 * restart right away. We stop monitoring using the PSR,
968 * restore the PMC (and PMD) and then re-establish the psr
969 * as it was. Note that there can be no pending overflow at
970 * this point, because monitoring was MASKED.
972 * system-wide session are pinned and self-monitoring
974 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
975 /* disable dcr pp */
976 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
977 pfm_clear_psr_pp();
978 } else {
979 pfm_clear_psr_up();
982 * first, we restore the PMD
984 mask = ctx->ctx_used_pmds[0];
985 for (i = 0; mask; i++, mask>>=1) {
986 /* skip non used pmds */
987 if ((mask & 0x1) == 0) continue;
989 if (PMD_IS_COUNTING(i)) {
991 * we split the 64bit value according to
992 * counter width
994 val = ctx->ctx_pmds[i].val & ovfl_mask;
995 ctx->ctx_pmds[i].val &= ~ovfl_mask;
996 } else {
997 val = ctx->ctx_pmds[i].val;
999 ia64_set_pmd(i, val);
1001 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1003 ctx->ctx_pmds[i].val,
1004 val));
1007 * restore the PMCs
1009 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1010 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1011 if ((mask & 0x1) == 0UL) continue;
1012 th->pmcs[i] = ctx->ctx_pmcs[i];
1013 ia64_set_pmc(i, th->pmcs[i]);
1014 DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, th->pmcs[i]));
1016 ia64_srlz_d();
1019 * must restore DBR/IBR because could be modified while masked
1020 * XXX: need to optimize
1022 if (ctx->ctx_fl_using_dbreg) {
1023 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1024 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1028 * now restore PSR
1030 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1031 /* enable dcr pp */
1032 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1033 ia64_srlz_i();
1035 pfm_set_psr_l(psr);
1038 static inline void
1039 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1041 int i;
1043 ia64_srlz_d();
1045 for (i=0; mask; i++, mask>>=1) {
1046 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1051 * reload from thread state (used for ctxw only)
1053 static inline void
1054 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1056 int i;
1057 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1059 for (i=0; mask; i++, mask>>=1) {
1060 if ((mask & 0x1) == 0) continue;
1061 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1062 ia64_set_pmd(i, val);
1064 ia64_srlz_d();
1068 * propagate PMD from context to thread-state
1070 static inline void
1071 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1073 struct thread_struct *thread = &task->thread;
1074 unsigned long ovfl_val = pmu_conf->ovfl_val;
1075 unsigned long mask = ctx->ctx_all_pmds[0];
1076 unsigned long val;
1077 int i;
1079 DPRINT(("mask=0x%lx\n", mask));
1081 for (i=0; mask; i++, mask>>=1) {
1083 val = ctx->ctx_pmds[i].val;
1086 * We break up the 64 bit value into 2 pieces
1087 * the lower bits go to the machine state in the
1088 * thread (will be reloaded on ctxsw in).
1089 * The upper part stays in the soft-counter.
1091 if (PMD_IS_COUNTING(i)) {
1092 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1093 val &= ovfl_val;
1095 thread->pmds[i] = val;
1097 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1099 thread->pmds[i],
1100 ctx->ctx_pmds[i].val));
1105 * propagate PMC from context to thread-state
1107 static inline void
1108 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1110 struct thread_struct *thread = &task->thread;
1111 unsigned long mask = ctx->ctx_all_pmcs[0];
1112 int i;
1114 DPRINT(("mask=0x%lx\n", mask));
1116 for (i=0; mask; i++, mask>>=1) {
1117 /* masking 0 with ovfl_val yields 0 */
1118 thread->pmcs[i] = ctx->ctx_pmcs[i];
1119 DPRINT(("pmc[%d]=0x%lx\n", i, thread->pmcs[i]));
1125 static inline void
1126 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1128 int i;
1130 for (i=0; mask; i++, mask>>=1) {
1131 if ((mask & 0x1) == 0) continue;
1132 ia64_set_pmc(i, pmcs[i]);
1134 ia64_srlz_d();
1137 static inline int
1138 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1140 return memcmp(a, b, sizeof(pfm_uuid_t));
1143 static inline int
1144 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1146 int ret = 0;
1147 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1148 return ret;
1151 static inline int
1152 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1154 int ret = 0;
1155 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1156 return ret;
1160 static inline int
1161 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1162 int cpu, void *arg)
1164 int ret = 0;
1165 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1166 return ret;
1169 static inline int
1170 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1171 int cpu, void *arg)
1173 int ret = 0;
1174 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1175 return ret;
1178 static inline int
1179 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1181 int ret = 0;
1182 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1183 return ret;
1186 static inline int
1187 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1189 int ret = 0;
1190 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1191 return ret;
1194 static pfm_buffer_fmt_t *
1195 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1197 struct list_head * pos;
1198 pfm_buffer_fmt_t * entry;
1200 list_for_each(pos, &pfm_buffer_fmt_list) {
1201 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1202 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1203 return entry;
1205 return NULL;
1209 * find a buffer format based on its uuid
1211 static pfm_buffer_fmt_t *
1212 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1214 pfm_buffer_fmt_t * fmt;
1215 spin_lock(&pfm_buffer_fmt_lock);
1216 fmt = __pfm_find_buffer_fmt(uuid);
1217 spin_unlock(&pfm_buffer_fmt_lock);
1218 return fmt;
1222 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1224 int ret = 0;
1226 /* some sanity checks */
1227 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1229 /* we need at least a handler */
1230 if (fmt->fmt_handler == NULL) return -EINVAL;
1233 * XXX: need check validity of fmt_arg_size
1236 spin_lock(&pfm_buffer_fmt_lock);
1238 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1239 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1240 ret = -EBUSY;
1241 goto out;
1243 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1244 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1246 out:
1247 spin_unlock(&pfm_buffer_fmt_lock);
1248 return ret;
1250 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1253 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1255 pfm_buffer_fmt_t *fmt;
1256 int ret = 0;
1258 spin_lock(&pfm_buffer_fmt_lock);
1260 fmt = __pfm_find_buffer_fmt(uuid);
1261 if (!fmt) {
1262 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1263 ret = -EINVAL;
1264 goto out;
1266 list_del_init(&fmt->fmt_list);
1267 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1269 out:
1270 spin_unlock(&pfm_buffer_fmt_lock);
1271 return ret;
1274 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1276 extern void update_pal_halt_status(int);
1278 static int
1279 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1281 unsigned long flags;
1283 * validy checks on cpu_mask have been done upstream
1285 LOCK_PFS(flags);
1287 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1288 pfm_sessions.pfs_sys_sessions,
1289 pfm_sessions.pfs_task_sessions,
1290 pfm_sessions.pfs_sys_use_dbregs,
1291 is_syswide,
1292 cpu));
1294 if (is_syswide) {
1296 * cannot mix system wide and per-task sessions
1298 if (pfm_sessions.pfs_task_sessions > 0UL) {
1299 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1300 pfm_sessions.pfs_task_sessions));
1301 goto abort;
1304 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1306 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1308 pfm_sessions.pfs_sys_session[cpu] = task;
1310 pfm_sessions.pfs_sys_sessions++ ;
1312 } else {
1313 if (pfm_sessions.pfs_sys_sessions) goto abort;
1314 pfm_sessions.pfs_task_sessions++;
1317 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1318 pfm_sessions.pfs_sys_sessions,
1319 pfm_sessions.pfs_task_sessions,
1320 pfm_sessions.pfs_sys_use_dbregs,
1321 is_syswide,
1322 cpu));
1325 * disable default_idle() to go to PAL_HALT
1327 update_pal_halt_status(0);
1329 UNLOCK_PFS(flags);
1331 return 0;
1333 error_conflict:
1334 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1335 pfm_sessions.pfs_sys_session[cpu]->pid,
1336 cpu));
1337 abort:
1338 UNLOCK_PFS(flags);
1340 return -EBUSY;
1344 static int
1345 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1347 unsigned long flags;
1349 * validy checks on cpu_mask have been done upstream
1351 LOCK_PFS(flags);
1353 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1354 pfm_sessions.pfs_sys_sessions,
1355 pfm_sessions.pfs_task_sessions,
1356 pfm_sessions.pfs_sys_use_dbregs,
1357 is_syswide,
1358 cpu));
1361 if (is_syswide) {
1362 pfm_sessions.pfs_sys_session[cpu] = NULL;
1364 * would not work with perfmon+more than one bit in cpu_mask
1366 if (ctx && ctx->ctx_fl_using_dbreg) {
1367 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1368 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1369 } else {
1370 pfm_sessions.pfs_sys_use_dbregs--;
1373 pfm_sessions.pfs_sys_sessions--;
1374 } else {
1375 pfm_sessions.pfs_task_sessions--;
1377 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1378 pfm_sessions.pfs_sys_sessions,
1379 pfm_sessions.pfs_task_sessions,
1380 pfm_sessions.pfs_sys_use_dbregs,
1381 is_syswide,
1382 cpu));
1385 * if possible, enable default_idle() to go into PAL_HALT
1387 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1388 update_pal_halt_status(1);
1390 UNLOCK_PFS(flags);
1392 return 0;
1396 * removes virtual mapping of the sampling buffer.
1397 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1398 * a PROTECT_CTX() section.
1400 static int
1401 pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1403 int r;
1405 /* sanity checks */
1406 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1407 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
1408 return -EINVAL;
1411 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1414 * does the actual unmapping
1416 down_write(&task->mm->mmap_sem);
1418 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1420 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1422 up_write(&task->mm->mmap_sem);
1423 if (r !=0) {
1424 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
1427 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1429 return 0;
1433 * free actual physical storage used by sampling buffer
1435 #if 0
1436 static int
1437 pfm_free_smpl_buffer(pfm_context_t *ctx)
1439 pfm_buffer_fmt_t *fmt;
1441 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1444 * we won't use the buffer format anymore
1446 fmt = ctx->ctx_buf_fmt;
1448 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1449 ctx->ctx_smpl_hdr,
1450 ctx->ctx_smpl_size,
1451 ctx->ctx_smpl_vaddr));
1453 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1456 * free the buffer
1458 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1460 ctx->ctx_smpl_hdr = NULL;
1461 ctx->ctx_smpl_size = 0UL;
1463 return 0;
1465 invalid_free:
1466 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
1467 return -EINVAL;
1469 #endif
1471 static inline void
1472 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1474 if (fmt == NULL) return;
1476 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1481 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1482 * no real gain from having the whole whorehouse mounted. So we don't need
1483 * any operations on the root directory. However, we need a non-trivial
1484 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1486 static struct vfsmount *pfmfs_mnt;
1488 static int __init
1489 init_pfm_fs(void)
1491 int err = register_filesystem(&pfm_fs_type);
1492 if (!err) {
1493 pfmfs_mnt = kern_mount(&pfm_fs_type);
1494 err = PTR_ERR(pfmfs_mnt);
1495 if (IS_ERR(pfmfs_mnt))
1496 unregister_filesystem(&pfm_fs_type);
1497 else
1498 err = 0;
1500 return err;
1503 static void __exit
1504 exit_pfm_fs(void)
1506 unregister_filesystem(&pfm_fs_type);
1507 mntput(pfmfs_mnt);
1510 static ssize_t
1511 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1513 pfm_context_t *ctx;
1514 pfm_msg_t *msg;
1515 ssize_t ret;
1516 unsigned long flags;
1517 DECLARE_WAITQUEUE(wait, current);
1518 if (PFM_IS_FILE(filp) == 0) {
1519 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1520 return -EINVAL;
1523 ctx = (pfm_context_t *)filp->private_data;
1524 if (ctx == NULL) {
1525 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
1526 return -EINVAL;
1530 * check even when there is no message
1532 if (size < sizeof(pfm_msg_t)) {
1533 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1534 return -EINVAL;
1537 PROTECT_CTX(ctx, flags);
1540 * put ourselves on the wait queue
1542 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1545 for(;;) {
1547 * check wait queue
1550 set_current_state(TASK_INTERRUPTIBLE);
1552 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1554 ret = 0;
1555 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1557 UNPROTECT_CTX(ctx, flags);
1560 * check non-blocking read
1562 ret = -EAGAIN;
1563 if(filp->f_flags & O_NONBLOCK) break;
1566 * check pending signals
1568 if(signal_pending(current)) {
1569 ret = -EINTR;
1570 break;
1573 * no message, so wait
1575 schedule();
1577 PROTECT_CTX(ctx, flags);
1579 DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
1580 set_current_state(TASK_RUNNING);
1581 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1583 if (ret < 0) goto abort;
1585 ret = -EINVAL;
1586 msg = pfm_get_next_msg(ctx);
1587 if (msg == NULL) {
1588 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
1589 goto abort_locked;
1592 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1594 ret = -EFAULT;
1595 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1597 abort_locked:
1598 UNPROTECT_CTX(ctx, flags);
1599 abort:
1600 return ret;
1603 static ssize_t
1604 pfm_write(struct file *file, const char __user *ubuf,
1605 size_t size, loff_t *ppos)
1607 DPRINT(("pfm_write called\n"));
1608 return -EINVAL;
1611 static unsigned int
1612 pfm_poll(struct file *filp, poll_table * wait)
1614 pfm_context_t *ctx;
1615 unsigned long flags;
1616 unsigned int mask = 0;
1618 if (PFM_IS_FILE(filp) == 0) {
1619 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1620 return 0;
1623 ctx = (pfm_context_t *)filp->private_data;
1624 if (ctx == NULL) {
1625 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
1626 return 0;
1630 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1632 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1634 PROTECT_CTX(ctx, flags);
1636 if (PFM_CTXQ_EMPTY(ctx) == 0)
1637 mask = POLLIN | POLLRDNORM;
1639 UNPROTECT_CTX(ctx, flags);
1641 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1643 return mask;
1646 static int
1647 pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1649 DPRINT(("pfm_ioctl called\n"));
1650 return -EINVAL;
1654 * interrupt cannot be masked when coming here
1656 static inline int
1657 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1659 int ret;
1661 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1663 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1664 current->pid,
1667 ctx->ctx_async_queue, ret));
1669 return ret;
1672 static int
1673 pfm_fasync(int fd, struct file *filp, int on)
1675 pfm_context_t *ctx;
1676 int ret;
1678 if (PFM_IS_FILE(filp) == 0) {
1679 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
1680 return -EBADF;
1683 ctx = (pfm_context_t *)filp->private_data;
1684 if (ctx == NULL) {
1685 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
1686 return -EBADF;
1689 * we cannot mask interrupts during this call because this may
1690 * may go to sleep if memory is not readily avalaible.
1692 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1693 * done in caller. Serialization of this function is ensured by caller.
1695 ret = pfm_do_fasync(fd, filp, ctx, on);
1698 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1701 ctx->ctx_async_queue, ret));
1703 return ret;
1706 #ifdef CONFIG_SMP
1708 * this function is exclusively called from pfm_close().
1709 * The context is not protected at that time, nor are interrupts
1710 * on the remote CPU. That's necessary to avoid deadlocks.
1712 static void
1713 pfm_syswide_force_stop(void *info)
1715 pfm_context_t *ctx = (pfm_context_t *)info;
1716 struct pt_regs *regs = task_pt_regs(current);
1717 struct task_struct *owner;
1718 unsigned long flags;
1719 int ret;
1721 if (ctx->ctx_cpu != smp_processor_id()) {
1722 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1723 ctx->ctx_cpu,
1724 smp_processor_id());
1725 return;
1727 owner = GET_PMU_OWNER();
1728 if (owner != ctx->ctx_task) {
1729 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1730 smp_processor_id(),
1731 owner->pid, ctx->ctx_task->pid);
1732 return;
1734 if (GET_PMU_CTX() != ctx) {
1735 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1736 smp_processor_id(),
1737 GET_PMU_CTX(), ctx);
1738 return;
1741 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
1743 * the context is already protected in pfm_close(), we simply
1744 * need to mask interrupts to avoid a PMU interrupt race on
1745 * this CPU
1747 local_irq_save(flags);
1749 ret = pfm_context_unload(ctx, NULL, 0, regs);
1750 if (ret) {
1751 DPRINT(("context_unload returned %d\n", ret));
1755 * unmask interrupts, PMU interrupts are now spurious here
1757 local_irq_restore(flags);
1760 static void
1761 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1763 int ret;
1765 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1766 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
1767 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1769 #endif /* CONFIG_SMP */
1772 * called for each close(). Partially free resources.
1773 * When caller is self-monitoring, the context is unloaded.
1775 static int
1776 pfm_flush(struct file *filp)
1778 pfm_context_t *ctx;
1779 struct task_struct *task;
1780 struct pt_regs *regs;
1781 unsigned long flags;
1782 unsigned long smpl_buf_size = 0UL;
1783 void *smpl_buf_vaddr = NULL;
1784 int state, is_system;
1786 if (PFM_IS_FILE(filp) == 0) {
1787 DPRINT(("bad magic for\n"));
1788 return -EBADF;
1791 ctx = (pfm_context_t *)filp->private_data;
1792 if (ctx == NULL) {
1793 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
1794 return -EBADF;
1798 * remove our file from the async queue, if we use this mode.
1799 * This can be done without the context being protected. We come
1800 * here when the context has become unreacheable by other tasks.
1802 * We may still have active monitoring at this point and we may
1803 * end up in pfm_overflow_handler(). However, fasync_helper()
1804 * operates with interrupts disabled and it cleans up the
1805 * queue. If the PMU handler is called prior to entering
1806 * fasync_helper() then it will send a signal. If it is
1807 * invoked after, it will find an empty queue and no
1808 * signal will be sent. In both case, we are safe
1810 if (filp->f_flags & FASYNC) {
1811 DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
1812 pfm_do_fasync (-1, filp, ctx, 0);
1815 PROTECT_CTX(ctx, flags);
1817 state = ctx->ctx_state;
1818 is_system = ctx->ctx_fl_system;
1820 task = PFM_CTX_TASK(ctx);
1821 regs = task_pt_regs(task);
1823 DPRINT(("ctx_state=%d is_current=%d\n",
1824 state,
1825 task == current ? 1 : 0));
1828 * if state == UNLOADED, then task is NULL
1832 * we must stop and unload because we are losing access to the context.
1834 if (task == current) {
1835 #ifdef CONFIG_SMP
1837 * the task IS the owner but it migrated to another CPU: that's bad
1838 * but we must handle this cleanly. Unfortunately, the kernel does
1839 * not provide a mechanism to block migration (while the context is loaded).
1841 * We need to release the resource on the ORIGINAL cpu.
1843 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1845 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1847 * keep context protected but unmask interrupt for IPI
1849 local_irq_restore(flags);
1851 pfm_syswide_cleanup_other_cpu(ctx);
1854 * restore interrupt masking
1856 local_irq_save(flags);
1859 * context is unloaded at this point
1861 } else
1862 #endif /* CONFIG_SMP */
1865 DPRINT(("forcing unload\n"));
1867 * stop and unload, returning with state UNLOADED
1868 * and session unreserved.
1870 pfm_context_unload(ctx, NULL, 0, regs);
1872 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1877 * remove virtual mapping, if any, for the calling task.
1878 * cannot reset ctx field until last user is calling close().
1880 * ctx_smpl_vaddr must never be cleared because it is needed
1881 * by every task with access to the context
1883 * When called from do_exit(), the mm context is gone already, therefore
1884 * mm is NULL, i.e., the VMA is already gone and we do not have to
1885 * do anything here
1887 if (ctx->ctx_smpl_vaddr && current->mm) {
1888 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1889 smpl_buf_size = ctx->ctx_smpl_size;
1892 UNPROTECT_CTX(ctx, flags);
1895 * if there was a mapping, then we systematically remove it
1896 * at this point. Cannot be done inside critical section
1897 * because some VM function reenables interrupts.
1900 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1902 return 0;
1905 * called either on explicit close() or from exit_files().
1906 * Only the LAST user of the file gets to this point, i.e., it is
1907 * called only ONCE.
1909 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1910 * (fput()),i.e, last task to access the file. Nobody else can access the
1911 * file at this point.
1913 * When called from exit_files(), the VMA has been freed because exit_mm()
1914 * is executed before exit_files().
1916 * When called from exit_files(), the current task is not yet ZOMBIE but we
1917 * flush the PMU state to the context.
1919 static int
1920 pfm_close(struct inode *inode, struct file *filp)
1922 pfm_context_t *ctx;
1923 struct task_struct *task;
1924 struct pt_regs *regs;
1925 DECLARE_WAITQUEUE(wait, current);
1926 unsigned long flags;
1927 unsigned long smpl_buf_size = 0UL;
1928 void *smpl_buf_addr = NULL;
1929 int free_possible = 1;
1930 int state, is_system;
1932 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1934 if (PFM_IS_FILE(filp) == 0) {
1935 DPRINT(("bad magic\n"));
1936 return -EBADF;
1939 ctx = (pfm_context_t *)filp->private_data;
1940 if (ctx == NULL) {
1941 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
1942 return -EBADF;
1945 PROTECT_CTX(ctx, flags);
1947 state = ctx->ctx_state;
1948 is_system = ctx->ctx_fl_system;
1950 task = PFM_CTX_TASK(ctx);
1951 regs = task_pt_regs(task);
1953 DPRINT(("ctx_state=%d is_current=%d\n",
1954 state,
1955 task == current ? 1 : 0));
1958 * if task == current, then pfm_flush() unloaded the context
1960 if (state == PFM_CTX_UNLOADED) goto doit;
1963 * context is loaded/masked and task != current, we need to
1964 * either force an unload or go zombie
1968 * The task is currently blocked or will block after an overflow.
1969 * we must force it to wakeup to get out of the
1970 * MASKED state and transition to the unloaded state by itself.
1972 * This situation is only possible for per-task mode
1974 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
1977 * set a "partial" zombie state to be checked
1978 * upon return from down() in pfm_handle_work().
1980 * We cannot use the ZOMBIE state, because it is checked
1981 * by pfm_load_regs() which is called upon wakeup from down().
1982 * In such case, it would free the context and then we would
1983 * return to pfm_handle_work() which would access the
1984 * stale context. Instead, we set a flag invisible to pfm_load_regs()
1985 * but visible to pfm_handle_work().
1987 * For some window of time, we have a zombie context with
1988 * ctx_state = MASKED and not ZOMBIE
1990 ctx->ctx_fl_going_zombie = 1;
1993 * force task to wake up from MASKED state
1995 complete(&ctx->ctx_restart_done);
1997 DPRINT(("waking up ctx_state=%d\n", state));
2000 * put ourself to sleep waiting for the other
2001 * task to report completion
2003 * the context is protected by mutex, therefore there
2004 * is no risk of being notified of completion before
2005 * begin actually on the waitq.
2007 set_current_state(TASK_INTERRUPTIBLE);
2008 add_wait_queue(&ctx->ctx_zombieq, &wait);
2010 UNPROTECT_CTX(ctx, flags);
2013 * XXX: check for signals :
2014 * - ok for explicit close
2015 * - not ok when coming from exit_files()
2017 schedule();
2020 PROTECT_CTX(ctx, flags);
2023 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2024 set_current_state(TASK_RUNNING);
2027 * context is unloaded at this point
2029 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2031 else if (task != current) {
2032 #ifdef CONFIG_SMP
2034 * switch context to zombie state
2036 ctx->ctx_state = PFM_CTX_ZOMBIE;
2038 DPRINT(("zombie ctx for [%d]\n", task->pid));
2040 * cannot free the context on the spot. deferred until
2041 * the task notices the ZOMBIE state
2043 free_possible = 0;
2044 #else
2045 pfm_context_unload(ctx, NULL, 0, regs);
2046 #endif
2049 doit:
2050 /* reload state, may have changed during opening of critical section */
2051 state = ctx->ctx_state;
2054 * the context is still attached to a task (possibly current)
2055 * we cannot destroy it right now
2059 * we must free the sampling buffer right here because
2060 * we cannot rely on it being cleaned up later by the
2061 * monitored task. It is not possible to free vmalloc'ed
2062 * memory in pfm_load_regs(). Instead, we remove the buffer
2063 * now. should there be subsequent PMU overflow originally
2064 * meant for sampling, the will be converted to spurious
2065 * and that's fine because the monitoring tools is gone anyway.
2067 if (ctx->ctx_smpl_hdr) {
2068 smpl_buf_addr = ctx->ctx_smpl_hdr;
2069 smpl_buf_size = ctx->ctx_smpl_size;
2070 /* no more sampling */
2071 ctx->ctx_smpl_hdr = NULL;
2072 ctx->ctx_fl_is_sampling = 0;
2075 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2076 state,
2077 free_possible,
2078 smpl_buf_addr,
2079 smpl_buf_size));
2081 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2084 * UNLOADED that the session has already been unreserved.
2086 if (state == PFM_CTX_ZOMBIE) {
2087 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2091 * disconnect file descriptor from context must be done
2092 * before we unlock.
2094 filp->private_data = NULL;
2097 * if we free on the spot, the context is now completely unreacheable
2098 * from the callers side. The monitored task side is also cut, so we
2099 * can freely cut.
2101 * If we have a deferred free, only the caller side is disconnected.
2103 UNPROTECT_CTX(ctx, flags);
2106 * All memory free operations (especially for vmalloc'ed memory)
2107 * MUST be done with interrupts ENABLED.
2109 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2112 * return the memory used by the context
2114 if (free_possible) pfm_context_free(ctx);
2116 return 0;
2119 static int
2120 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2122 DPRINT(("pfm_no_open called\n"));
2123 return -ENXIO;
2128 static struct file_operations pfm_file_ops = {
2129 .llseek = no_llseek,
2130 .read = pfm_read,
2131 .write = pfm_write,
2132 .poll = pfm_poll,
2133 .ioctl = pfm_ioctl,
2134 .open = pfm_no_open, /* special open code to disallow open via /proc */
2135 .fasync = pfm_fasync,
2136 .release = pfm_close,
2137 .flush = pfm_flush
2140 static int
2141 pfmfs_delete_dentry(struct dentry *dentry)
2143 return 1;
2146 static struct dentry_operations pfmfs_dentry_operations = {
2147 .d_delete = pfmfs_delete_dentry,
2151 static int
2152 pfm_alloc_fd(struct file **cfile)
2154 int fd, ret = 0;
2155 struct file *file = NULL;
2156 struct inode * inode;
2157 char name[32];
2158 struct qstr this;
2160 fd = get_unused_fd();
2161 if (fd < 0) return -ENFILE;
2163 ret = -ENFILE;
2165 file = get_empty_filp();
2166 if (!file) goto out;
2169 * allocate a new inode
2171 inode = new_inode(pfmfs_mnt->mnt_sb);
2172 if (!inode) goto out;
2174 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2176 inode->i_mode = S_IFCHR|S_IRUGO;
2177 inode->i_uid = current->fsuid;
2178 inode->i_gid = current->fsgid;
2180 sprintf(name, "[%lu]", inode->i_ino);
2181 this.name = name;
2182 this.len = strlen(name);
2183 this.hash = inode->i_ino;
2185 ret = -ENOMEM;
2188 * allocate a new dcache entry
2190 file->f_dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2191 if (!file->f_dentry) goto out;
2193 file->f_dentry->d_op = &pfmfs_dentry_operations;
2195 d_add(file->f_dentry, inode);
2196 file->f_vfsmnt = mntget(pfmfs_mnt);
2197 file->f_mapping = inode->i_mapping;
2199 file->f_op = &pfm_file_ops;
2200 file->f_mode = FMODE_READ;
2201 file->f_flags = O_RDONLY;
2202 file->f_pos = 0;
2205 * may have to delay until context is attached?
2207 fd_install(fd, file);
2210 * the file structure we will use
2212 *cfile = file;
2214 return fd;
2215 out:
2216 if (file) put_filp(file);
2217 put_unused_fd(fd);
2218 return ret;
2221 static void
2222 pfm_free_fd(int fd, struct file *file)
2224 struct files_struct *files = current->files;
2225 struct fdtable *fdt;
2228 * there ie no fd_uninstall(), so we do it here
2230 spin_lock(&files->file_lock);
2231 fdt = files_fdtable(files);
2232 rcu_assign_pointer(fdt->fd[fd], NULL);
2233 spin_unlock(&files->file_lock);
2235 if (file)
2236 put_filp(file);
2237 put_unused_fd(fd);
2240 static int
2241 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2243 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2245 while (size > 0) {
2246 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2249 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2250 return -ENOMEM;
2252 addr += PAGE_SIZE;
2253 buf += PAGE_SIZE;
2254 size -= PAGE_SIZE;
2256 return 0;
2260 * allocate a sampling buffer and remaps it into the user address space of the task
2262 static int
2263 pfm_smpl_buffer_alloc(struct task_struct *task, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2265 struct mm_struct *mm = task->mm;
2266 struct vm_area_struct *vma = NULL;
2267 unsigned long size;
2268 void *smpl_buf;
2272 * the fixed header + requested size and align to page boundary
2274 size = PAGE_ALIGN(rsize);
2276 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2279 * check requested size to avoid Denial-of-service attacks
2280 * XXX: may have to refine this test
2281 * Check against address space limit.
2283 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2284 * return -ENOMEM;
2286 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2287 return -ENOMEM;
2290 * We do the easy to undo allocations first.
2292 * pfm_rvmalloc(), clears the buffer, so there is no leak
2294 smpl_buf = pfm_rvmalloc(size);
2295 if (smpl_buf == NULL) {
2296 DPRINT(("Can't allocate sampling buffer\n"));
2297 return -ENOMEM;
2300 DPRINT(("smpl_buf @%p\n", smpl_buf));
2302 /* allocate vma */
2303 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2304 if (!vma) {
2305 DPRINT(("Cannot allocate vma\n"));
2306 goto error_kmem;
2308 memset(vma, 0, sizeof(*vma));
2311 * partially initialize the vma for the sampling buffer
2313 vma->vm_mm = mm;
2314 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2315 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2318 * Now we have everything we need and we can initialize
2319 * and connect all the data structures
2322 ctx->ctx_smpl_hdr = smpl_buf;
2323 ctx->ctx_smpl_size = size; /* aligned size */
2326 * Let's do the difficult operations next.
2328 * now we atomically find some area in the address space and
2329 * remap the buffer in it.
2331 down_write(&task->mm->mmap_sem);
2333 /* find some free area in address space, must have mmap sem held */
2334 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2335 if (vma->vm_start == 0UL) {
2336 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2337 up_write(&task->mm->mmap_sem);
2338 goto error;
2340 vma->vm_end = vma->vm_start + size;
2341 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2343 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2345 /* can only be applied to current task, need to have the mm semaphore held when called */
2346 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2347 DPRINT(("Can't remap buffer\n"));
2348 up_write(&task->mm->mmap_sem);
2349 goto error;
2353 * now insert the vma in the vm list for the process, must be
2354 * done with mmap lock held
2356 insert_vm_struct(mm, vma);
2358 mm->total_vm += size >> PAGE_SHIFT;
2359 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2360 vma_pages(vma));
2361 up_write(&task->mm->mmap_sem);
2364 * keep track of user level virtual address
2366 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2367 *(unsigned long *)user_vaddr = vma->vm_start;
2369 return 0;
2371 error:
2372 kmem_cache_free(vm_area_cachep, vma);
2373 error_kmem:
2374 pfm_rvfree(smpl_buf, size);
2376 return -ENOMEM;
2380 * XXX: do something better here
2382 static int
2383 pfm_bad_permissions(struct task_struct *task)
2385 /* inspired by ptrace_attach() */
2386 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2387 current->uid,
2388 current->gid,
2389 task->euid,
2390 task->suid,
2391 task->uid,
2392 task->egid,
2393 task->sgid));
2395 return ((current->uid != task->euid)
2396 || (current->uid != task->suid)
2397 || (current->uid != task->uid)
2398 || (current->gid != task->egid)
2399 || (current->gid != task->sgid)
2400 || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
2403 static int
2404 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2406 int ctx_flags;
2408 /* valid signal */
2410 ctx_flags = pfx->ctx_flags;
2412 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2415 * cannot block in this mode
2417 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2418 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2419 return -EINVAL;
2421 } else {
2423 /* probably more to add here */
2425 return 0;
2428 static int
2429 pfm_setup_buffer_fmt(struct task_struct *task, pfm_context_t *ctx, unsigned int ctx_flags,
2430 unsigned int cpu, pfarg_context_t *arg)
2432 pfm_buffer_fmt_t *fmt = NULL;
2433 unsigned long size = 0UL;
2434 void *uaddr = NULL;
2435 void *fmt_arg = NULL;
2436 int ret = 0;
2437 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2439 /* invoke and lock buffer format, if found */
2440 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2441 if (fmt == NULL) {
2442 DPRINT(("[%d] cannot find buffer format\n", task->pid));
2443 return -EINVAL;
2447 * buffer argument MUST be contiguous to pfarg_context_t
2449 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2451 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2453 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
2455 if (ret) goto error;
2457 /* link buffer format and context */
2458 ctx->ctx_buf_fmt = fmt;
2461 * check if buffer format wants to use perfmon buffer allocation/mapping service
2463 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2464 if (ret) goto error;
2466 if (size) {
2468 * buffer is always remapped into the caller's address space
2470 ret = pfm_smpl_buffer_alloc(current, ctx, size, &uaddr);
2471 if (ret) goto error;
2473 /* keep track of user address of buffer */
2474 arg->ctx_smpl_vaddr = uaddr;
2476 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2478 error:
2479 return ret;
2482 static void
2483 pfm_reset_pmu_state(pfm_context_t *ctx)
2485 int i;
2488 * install reset values for PMC.
2490 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2491 if (PMC_IS_IMPL(i) == 0) continue;
2492 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2493 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2496 * PMD registers are set to 0UL when the context in memset()
2500 * On context switched restore, we must restore ALL pmc and ALL pmd even
2501 * when they are not actively used by the task. In UP, the incoming process
2502 * may otherwise pick up left over PMC, PMD state from the previous process.
2503 * As opposed to PMD, stale PMC can cause harm to the incoming
2504 * process because they may change what is being measured.
2505 * Therefore, we must systematically reinstall the entire
2506 * PMC state. In SMP, the same thing is possible on the
2507 * same CPU but also on between 2 CPUs.
2509 * The problem with PMD is information leaking especially
2510 * to user level when psr.sp=0
2512 * There is unfortunately no easy way to avoid this problem
2513 * on either UP or SMP. This definitively slows down the
2514 * pfm_load_regs() function.
2518 * bitmask of all PMCs accessible to this context
2520 * PMC0 is treated differently.
2522 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2525 * bitmask of all PMDs that are accesible to this context
2527 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2529 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2532 * useful in case of re-enable after disable
2534 ctx->ctx_used_ibrs[0] = 0UL;
2535 ctx->ctx_used_dbrs[0] = 0UL;
2538 static int
2539 pfm_ctx_getsize(void *arg, size_t *sz)
2541 pfarg_context_t *req = (pfarg_context_t *)arg;
2542 pfm_buffer_fmt_t *fmt;
2544 *sz = 0;
2546 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2548 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2549 if (fmt == NULL) {
2550 DPRINT(("cannot find buffer format\n"));
2551 return -EINVAL;
2553 /* get just enough to copy in user parameters */
2554 *sz = fmt->fmt_arg_size;
2555 DPRINT(("arg_size=%lu\n", *sz));
2557 return 0;
2563 * cannot attach if :
2564 * - kernel task
2565 * - task not owned by caller
2566 * - task incompatible with context mode
2568 static int
2569 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2572 * no kernel task or task not owner by caller
2574 if (task->mm == NULL) {
2575 DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
2576 return -EPERM;
2578 if (pfm_bad_permissions(task)) {
2579 DPRINT(("no permission to attach to [%d]\n", task->pid));
2580 return -EPERM;
2583 * cannot block in self-monitoring mode
2585 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2586 DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
2587 return -EINVAL;
2590 if (task->exit_state == EXIT_ZOMBIE) {
2591 DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
2592 return -EBUSY;
2596 * always ok for self
2598 if (task == current) return 0;
2600 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
2601 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
2602 return -EBUSY;
2605 * make sure the task is off any CPU
2607 wait_task_inactive(task);
2609 /* more to come... */
2611 return 0;
2614 static int
2615 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2617 struct task_struct *p = current;
2618 int ret;
2620 /* XXX: need to add more checks here */
2621 if (pid < 2) return -EPERM;
2623 if (pid != current->pid) {
2625 read_lock(&tasklist_lock);
2627 p = find_task_by_pid(pid);
2629 /* make sure task cannot go away while we operate on it */
2630 if (p) get_task_struct(p);
2632 read_unlock(&tasklist_lock);
2634 if (p == NULL) return -ESRCH;
2637 ret = pfm_task_incompatible(ctx, p);
2638 if (ret == 0) {
2639 *task = p;
2640 } else if (p != current) {
2641 pfm_put_task(p);
2643 return ret;
2648 static int
2649 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2651 pfarg_context_t *req = (pfarg_context_t *)arg;
2652 struct file *filp;
2653 int ctx_flags;
2654 int ret;
2656 /* let's check the arguments first */
2657 ret = pfarg_is_sane(current, req);
2658 if (ret < 0) return ret;
2660 ctx_flags = req->ctx_flags;
2662 ret = -ENOMEM;
2664 ctx = pfm_context_alloc();
2665 if (!ctx) goto error;
2667 ret = pfm_alloc_fd(&filp);
2668 if (ret < 0) goto error_file;
2670 req->ctx_fd = ctx->ctx_fd = ret;
2673 * attach context to file
2675 filp->private_data = ctx;
2678 * does the user want to sample?
2680 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2681 ret = pfm_setup_buffer_fmt(current, ctx, ctx_flags, 0, req);
2682 if (ret) goto buffer_error;
2686 * init context protection lock
2688 spin_lock_init(&ctx->ctx_lock);
2691 * context is unloaded
2693 ctx->ctx_state = PFM_CTX_UNLOADED;
2696 * initialization of context's flags
2698 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
2699 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
2700 ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
2701 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
2703 * will move to set properties
2704 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2708 * init restart semaphore to locked
2710 init_completion(&ctx->ctx_restart_done);
2713 * activation is used in SMP only
2715 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
2716 SET_LAST_CPU(ctx, -1);
2719 * initialize notification message queue
2721 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
2722 init_waitqueue_head(&ctx->ctx_msgq_wait);
2723 init_waitqueue_head(&ctx->ctx_zombieq);
2725 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2726 ctx,
2727 ctx_flags,
2728 ctx->ctx_fl_system,
2729 ctx->ctx_fl_block,
2730 ctx->ctx_fl_excl_idle,
2731 ctx->ctx_fl_no_msg,
2732 ctx->ctx_fd));
2735 * initialize soft PMU state
2737 pfm_reset_pmu_state(ctx);
2739 return 0;
2741 buffer_error:
2742 pfm_free_fd(ctx->ctx_fd, filp);
2744 if (ctx->ctx_buf_fmt) {
2745 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2747 error_file:
2748 pfm_context_free(ctx);
2750 error:
2751 return ret;
2754 static inline unsigned long
2755 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2757 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2758 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2759 extern unsigned long carta_random32 (unsigned long seed);
2761 if (reg->flags & PFM_REGFL_RANDOM) {
2762 new_seed = carta_random32(old_seed);
2763 val -= (old_seed & mask); /* counter values are negative numbers! */
2764 if ((mask >> 32) != 0)
2765 /* construct a full 64-bit random value: */
2766 new_seed |= carta_random32(old_seed >> 32) << 32;
2767 reg->seed = new_seed;
2769 reg->lval = val;
2770 return val;
2773 static void
2774 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2776 unsigned long mask = ovfl_regs[0];
2777 unsigned long reset_others = 0UL;
2778 unsigned long val;
2779 int i;
2782 * now restore reset value on sampling overflowed counters
2784 mask >>= PMU_FIRST_COUNTER;
2785 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2787 if ((mask & 0x1UL) == 0UL) continue;
2789 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2790 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2792 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2796 * Now take care of resetting the other registers
2798 for(i = 0; reset_others; i++, reset_others >>= 1) {
2800 if ((reset_others & 0x1) == 0) continue;
2802 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2804 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2805 is_long_reset ? "long" : "short", i, val));
2809 static void
2810 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2812 unsigned long mask = ovfl_regs[0];
2813 unsigned long reset_others = 0UL;
2814 unsigned long val;
2815 int i;
2817 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2819 if (ctx->ctx_state == PFM_CTX_MASKED) {
2820 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2821 return;
2825 * now restore reset value on sampling overflowed counters
2827 mask >>= PMU_FIRST_COUNTER;
2828 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2830 if ((mask & 0x1UL) == 0UL) continue;
2832 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2833 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2835 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2837 pfm_write_soft_counter(ctx, i, val);
2841 * Now take care of resetting the other registers
2843 for(i = 0; reset_others; i++, reset_others >>= 1) {
2845 if ((reset_others & 0x1) == 0) continue;
2847 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2849 if (PMD_IS_COUNTING(i)) {
2850 pfm_write_soft_counter(ctx, i, val);
2851 } else {
2852 ia64_set_pmd(i, val);
2854 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2855 is_long_reset ? "long" : "short", i, val));
2857 ia64_srlz_d();
2860 static int
2861 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2863 struct thread_struct *thread = NULL;
2864 struct task_struct *task;
2865 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2866 unsigned long value, pmc_pm;
2867 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2868 unsigned int cnum, reg_flags, flags, pmc_type;
2869 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2870 int is_monitor, is_counting, state;
2871 int ret = -EINVAL;
2872 pfm_reg_check_t wr_func;
2873 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2875 state = ctx->ctx_state;
2876 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2877 is_system = ctx->ctx_fl_system;
2878 task = ctx->ctx_task;
2879 impl_pmds = pmu_conf->impl_pmds[0];
2881 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2883 if (is_loaded) {
2884 thread = &task->thread;
2886 * In system wide and when the context is loaded, access can only happen
2887 * when the caller is running on the CPU being monitored by the session.
2888 * It does not have to be the owner (ctx_task) of the context per se.
2890 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2891 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2892 return -EBUSY;
2894 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2896 expert_mode = pfm_sysctl.expert_mode;
2898 for (i = 0; i < count; i++, req++) {
2900 cnum = req->reg_num;
2901 reg_flags = req->reg_flags;
2902 value = req->reg_value;
2903 smpl_pmds = req->reg_smpl_pmds[0];
2904 reset_pmds = req->reg_reset_pmds[0];
2905 flags = 0;
2908 if (cnum >= PMU_MAX_PMCS) {
2909 DPRINT(("pmc%u is invalid\n", cnum));
2910 goto error;
2913 pmc_type = pmu_conf->pmc_desc[cnum].type;
2914 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2915 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2916 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2919 * we reject all non implemented PMC as well
2920 * as attempts to modify PMC[0-3] which are used
2921 * as status registers by the PMU
2923 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2924 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2925 goto error;
2927 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2929 * If the PMC is a monitor, then if the value is not the default:
2930 * - system-wide session: PMCx.pm=1 (privileged monitor)
2931 * - per-task : PMCx.pm=0 (user monitor)
2933 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2934 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2935 cnum,
2936 pmc_pm,
2937 is_system));
2938 goto error;
2941 if (is_counting) {
2943 * enforce generation of overflow interrupt. Necessary on all
2944 * CPUs.
2946 value |= 1 << PMU_PMC_OI;
2948 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2949 flags |= PFM_REGFL_OVFL_NOTIFY;
2952 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2954 /* verify validity of smpl_pmds */
2955 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2956 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2957 goto error;
2960 /* verify validity of reset_pmds */
2961 if ((reset_pmds & impl_pmds) != reset_pmds) {
2962 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2963 goto error;
2965 } else {
2966 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2967 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2968 goto error;
2970 /* eventid on non-counting monitors are ignored */
2974 * execute write checker, if any
2976 if (likely(expert_mode == 0 && wr_func)) {
2977 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2978 if (ret) goto error;
2979 ret = -EINVAL;
2983 * no error on this register
2985 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2988 * Now we commit the changes to the software state
2992 * update overflow information
2994 if (is_counting) {
2996 * full flag update each time a register is programmed
2998 ctx->ctx_pmds[cnum].flags = flags;
3000 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
3001 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
3002 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
3005 * Mark all PMDS to be accessed as used.
3007 * We do not keep track of PMC because we have to
3008 * systematically restore ALL of them.
3010 * We do not update the used_monitors mask, because
3011 * if we have not programmed them, then will be in
3012 * a quiescent state, therefore we will not need to
3013 * mask/restore then when context is MASKED.
3015 CTX_USED_PMD(ctx, reset_pmds);
3016 CTX_USED_PMD(ctx, smpl_pmds);
3018 * make sure we do not try to reset on
3019 * restart because we have established new values
3021 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3024 * Needed in case the user does not initialize the equivalent
3025 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3026 * possible leak here.
3028 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3031 * keep track of the monitor PMC that we are using.
3032 * we save the value of the pmc in ctx_pmcs[] and if
3033 * the monitoring is not stopped for the context we also
3034 * place it in the saved state area so that it will be
3035 * picked up later by the context switch code.
3037 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3039 * The value in thread->pmcs[] may be modified on overflow, i.e., when
3040 * monitoring needs to be stopped.
3042 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3045 * update context state
3047 ctx->ctx_pmcs[cnum] = value;
3049 if (is_loaded) {
3051 * write thread state
3053 if (is_system == 0) thread->pmcs[cnum] = value;
3056 * write hardware register if we can
3058 if (can_access_pmu) {
3059 ia64_set_pmc(cnum, value);
3061 #ifdef CONFIG_SMP
3062 else {
3064 * per-task SMP only here
3066 * we are guaranteed that the task is not running on the other CPU,
3067 * we indicate that this PMD will need to be reloaded if the task
3068 * is rescheduled on the CPU it ran last on.
3070 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3072 #endif
3075 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3076 cnum,
3077 value,
3078 is_loaded,
3079 can_access_pmu,
3080 flags,
3081 ctx->ctx_all_pmcs[0],
3082 ctx->ctx_used_pmds[0],
3083 ctx->ctx_pmds[cnum].eventid,
3084 smpl_pmds,
3085 reset_pmds,
3086 ctx->ctx_reload_pmcs[0],
3087 ctx->ctx_used_monitors[0],
3088 ctx->ctx_ovfl_regs[0]));
3092 * make sure the changes are visible
3094 if (can_access_pmu) ia64_srlz_d();
3096 return 0;
3097 error:
3098 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3099 return ret;
3102 static int
3103 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3105 struct thread_struct *thread = NULL;
3106 struct task_struct *task;
3107 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3108 unsigned long value, hw_value, ovfl_mask;
3109 unsigned int cnum;
3110 int i, can_access_pmu = 0, state;
3111 int is_counting, is_loaded, is_system, expert_mode;
3112 int ret = -EINVAL;
3113 pfm_reg_check_t wr_func;
3116 state = ctx->ctx_state;
3117 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3118 is_system = ctx->ctx_fl_system;
3119 ovfl_mask = pmu_conf->ovfl_val;
3120 task = ctx->ctx_task;
3122 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3125 * on both UP and SMP, we can only write to the PMC when the task is
3126 * the owner of the local PMU.
3128 if (likely(is_loaded)) {
3129 thread = &task->thread;
3131 * In system wide and when the context is loaded, access can only happen
3132 * when the caller is running on the CPU being monitored by the session.
3133 * It does not have to be the owner (ctx_task) of the context per se.
3135 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3136 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3137 return -EBUSY;
3139 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3141 expert_mode = pfm_sysctl.expert_mode;
3143 for (i = 0; i < count; i++, req++) {
3145 cnum = req->reg_num;
3146 value = req->reg_value;
3148 if (!PMD_IS_IMPL(cnum)) {
3149 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3150 goto abort_mission;
3152 is_counting = PMD_IS_COUNTING(cnum);
3153 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3156 * execute write checker, if any
3158 if (unlikely(expert_mode == 0 && wr_func)) {
3159 unsigned long v = value;
3161 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3162 if (ret) goto abort_mission;
3164 value = v;
3165 ret = -EINVAL;
3169 * no error on this register
3171 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3174 * now commit changes to software state
3176 hw_value = value;
3179 * update virtualized (64bits) counter
3181 if (is_counting) {
3183 * write context state
3185 ctx->ctx_pmds[cnum].lval = value;
3188 * when context is load we use the split value
3190 if (is_loaded) {
3191 hw_value = value & ovfl_mask;
3192 value = value & ~ovfl_mask;
3196 * update reset values (not just for counters)
3198 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3199 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3202 * update randomization parameters (not just for counters)
3204 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3205 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3208 * update context value
3210 ctx->ctx_pmds[cnum].val = value;
3213 * Keep track of what we use
3215 * We do not keep track of PMC because we have to
3216 * systematically restore ALL of them.
3218 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3221 * mark this PMD register used as well
3223 CTX_USED_PMD(ctx, RDEP(cnum));
3226 * make sure we do not try to reset on
3227 * restart because we have established new values
3229 if (is_counting && state == PFM_CTX_MASKED) {
3230 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3233 if (is_loaded) {
3235 * write thread state
3237 if (is_system == 0) thread->pmds[cnum] = hw_value;
3240 * write hardware register if we can
3242 if (can_access_pmu) {
3243 ia64_set_pmd(cnum, hw_value);
3244 } else {
3245 #ifdef CONFIG_SMP
3247 * we are guaranteed that the task is not running on the other CPU,
3248 * we indicate that this PMD will need to be reloaded if the task
3249 * is rescheduled on the CPU it ran last on.
3251 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3252 #endif
3256 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3257 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3258 cnum,
3259 value,
3260 is_loaded,
3261 can_access_pmu,
3262 hw_value,
3263 ctx->ctx_pmds[cnum].val,
3264 ctx->ctx_pmds[cnum].short_reset,
3265 ctx->ctx_pmds[cnum].long_reset,
3266 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3267 ctx->ctx_pmds[cnum].seed,
3268 ctx->ctx_pmds[cnum].mask,
3269 ctx->ctx_used_pmds[0],
3270 ctx->ctx_pmds[cnum].reset_pmds[0],
3271 ctx->ctx_reload_pmds[0],
3272 ctx->ctx_all_pmds[0],
3273 ctx->ctx_ovfl_regs[0]));
3277 * make changes visible
3279 if (can_access_pmu) ia64_srlz_d();
3281 return 0;
3283 abort_mission:
3285 * for now, we have only one possibility for error
3287 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3288 return ret;
3292 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3293 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3294 * interrupt is delivered during the call, it will be kept pending until we leave, making
3295 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3296 * guaranteed to return consistent data to the user, it may simply be old. It is not
3297 * trivial to treat the overflow while inside the call because you may end up in
3298 * some module sampling buffer code causing deadlocks.
3300 static int
3301 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3303 struct thread_struct *thread = NULL;
3304 struct task_struct *task;
3305 unsigned long val = 0UL, lval, ovfl_mask, sval;
3306 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3307 unsigned int cnum, reg_flags = 0;
3308 int i, can_access_pmu = 0, state;
3309 int is_loaded, is_system, is_counting, expert_mode;
3310 int ret = -EINVAL;
3311 pfm_reg_check_t rd_func;
3314 * access is possible when loaded only for
3315 * self-monitoring tasks or in UP mode
3318 state = ctx->ctx_state;
3319 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3320 is_system = ctx->ctx_fl_system;
3321 ovfl_mask = pmu_conf->ovfl_val;
3322 task = ctx->ctx_task;
3324 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3326 if (likely(is_loaded)) {
3327 thread = &task->thread;
3329 * In system wide and when the context is loaded, access can only happen
3330 * when the caller is running on the CPU being monitored by the session.
3331 * It does not have to be the owner (ctx_task) of the context per se.
3333 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3334 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3335 return -EBUSY;
3338 * this can be true when not self-monitoring only in UP
3340 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3342 if (can_access_pmu) ia64_srlz_d();
3344 expert_mode = pfm_sysctl.expert_mode;
3346 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3347 is_loaded,
3348 can_access_pmu,
3349 state));
3352 * on both UP and SMP, we can only read the PMD from the hardware register when
3353 * the task is the owner of the local PMU.
3356 for (i = 0; i < count; i++, req++) {
3358 cnum = req->reg_num;
3359 reg_flags = req->reg_flags;
3361 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3363 * we can only read the register that we use. That includes
3364 * the one we explicitely initialize AND the one we want included
3365 * in the sampling buffer (smpl_regs).
3367 * Having this restriction allows optimization in the ctxsw routine
3368 * without compromising security (leaks)
3370 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3372 sval = ctx->ctx_pmds[cnum].val;
3373 lval = ctx->ctx_pmds[cnum].lval;
3374 is_counting = PMD_IS_COUNTING(cnum);
3377 * If the task is not the current one, then we check if the
3378 * PMU state is still in the local live register due to lazy ctxsw.
3379 * If true, then we read directly from the registers.
3381 if (can_access_pmu){
3382 val = ia64_get_pmd(cnum);
3383 } else {
3385 * context has been saved
3386 * if context is zombie, then task does not exist anymore.
3387 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3389 val = is_loaded ? thread->pmds[cnum] : 0UL;
3391 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3393 if (is_counting) {
3395 * XXX: need to check for overflow when loaded
3397 val &= ovfl_mask;
3398 val += sval;
3402 * execute read checker, if any
3404 if (unlikely(expert_mode == 0 && rd_func)) {
3405 unsigned long v = val;
3406 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3407 if (ret) goto error;
3408 val = v;
3409 ret = -EINVAL;
3412 PFM_REG_RETFLAG_SET(reg_flags, 0);
3414 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3417 * update register return value, abort all if problem during copy.
3418 * we only modify the reg_flags field. no check mode is fine because
3419 * access has been verified upfront in sys_perfmonctl().
3421 req->reg_value = val;
3422 req->reg_flags = reg_flags;
3423 req->reg_last_reset_val = lval;
3426 return 0;
3428 error:
3429 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3430 return ret;
3434 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3436 pfm_context_t *ctx;
3438 if (req == NULL) return -EINVAL;
3440 ctx = GET_PMU_CTX();
3442 if (ctx == NULL) return -EINVAL;
3445 * for now limit to current task, which is enough when calling
3446 * from overflow handler
3448 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3450 return pfm_write_pmcs(ctx, req, nreq, regs);
3452 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3455 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3457 pfm_context_t *ctx;
3459 if (req == NULL) return -EINVAL;
3461 ctx = GET_PMU_CTX();
3463 if (ctx == NULL) return -EINVAL;
3466 * for now limit to current task, which is enough when calling
3467 * from overflow handler
3469 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3471 return pfm_read_pmds(ctx, req, nreq, regs);
3473 EXPORT_SYMBOL(pfm_mod_read_pmds);
3476 * Only call this function when a process it trying to
3477 * write the debug registers (reading is always allowed)
3480 pfm_use_debug_registers(struct task_struct *task)
3482 pfm_context_t *ctx = task->thread.pfm_context;
3483 unsigned long flags;
3484 int ret = 0;
3486 if (pmu_conf->use_rr_dbregs == 0) return 0;
3488 DPRINT(("called for [%d]\n", task->pid));
3491 * do it only once
3493 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3496 * Even on SMP, we do not need to use an atomic here because
3497 * the only way in is via ptrace() and this is possible only when the
3498 * process is stopped. Even in the case where the ctxsw out is not totally
3499 * completed by the time we come here, there is no way the 'stopped' process
3500 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3501 * So this is always safe.
3503 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3505 LOCK_PFS(flags);
3508 * We cannot allow setting breakpoints when system wide monitoring
3509 * sessions are using the debug registers.
3511 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3512 ret = -1;
3513 else
3514 pfm_sessions.pfs_ptrace_use_dbregs++;
3516 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3517 pfm_sessions.pfs_ptrace_use_dbregs,
3518 pfm_sessions.pfs_sys_use_dbregs,
3519 task->pid, ret));
3521 UNLOCK_PFS(flags);
3523 return ret;
3527 * This function is called for every task that exits with the
3528 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3529 * able to use the debug registers for debugging purposes via
3530 * ptrace(). Therefore we know it was not using them for
3531 * perfmormance monitoring, so we only decrement the number
3532 * of "ptraced" debug register users to keep the count up to date
3535 pfm_release_debug_registers(struct task_struct *task)
3537 unsigned long flags;
3538 int ret;
3540 if (pmu_conf->use_rr_dbregs == 0) return 0;
3542 LOCK_PFS(flags);
3543 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3544 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
3545 ret = -1;
3546 } else {
3547 pfm_sessions.pfs_ptrace_use_dbregs--;
3548 ret = 0;
3550 UNLOCK_PFS(flags);
3552 return ret;
3555 static int
3556 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3558 struct task_struct *task;
3559 pfm_buffer_fmt_t *fmt;
3560 pfm_ovfl_ctrl_t rst_ctrl;
3561 int state, is_system;
3562 int ret = 0;
3564 state = ctx->ctx_state;
3565 fmt = ctx->ctx_buf_fmt;
3566 is_system = ctx->ctx_fl_system;
3567 task = PFM_CTX_TASK(ctx);
3569 switch(state) {
3570 case PFM_CTX_MASKED:
3571 break;
3572 case PFM_CTX_LOADED:
3573 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3574 /* fall through */
3575 case PFM_CTX_UNLOADED:
3576 case PFM_CTX_ZOMBIE:
3577 DPRINT(("invalid state=%d\n", state));
3578 return -EBUSY;
3579 default:
3580 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3581 return -EINVAL;
3585 * In system wide and when the context is loaded, access can only happen
3586 * when the caller is running on the CPU being monitored by the session.
3587 * It does not have to be the owner (ctx_task) of the context per se.
3589 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3590 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3591 return -EBUSY;
3594 /* sanity check */
3595 if (unlikely(task == NULL)) {
3596 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
3597 return -EINVAL;
3600 if (task == current || is_system) {
3602 fmt = ctx->ctx_buf_fmt;
3604 DPRINT(("restarting self %d ovfl=0x%lx\n",
3605 task->pid,
3606 ctx->ctx_ovfl_regs[0]));
3608 if (CTX_HAS_SMPL(ctx)) {
3610 prefetch(ctx->ctx_smpl_hdr);
3612 rst_ctrl.bits.mask_monitoring = 0;
3613 rst_ctrl.bits.reset_ovfl_pmds = 0;
3615 if (state == PFM_CTX_LOADED)
3616 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3617 else
3618 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3619 } else {
3620 rst_ctrl.bits.mask_monitoring = 0;
3621 rst_ctrl.bits.reset_ovfl_pmds = 1;
3624 if (ret == 0) {
3625 if (rst_ctrl.bits.reset_ovfl_pmds)
3626 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3628 if (rst_ctrl.bits.mask_monitoring == 0) {
3629 DPRINT(("resuming monitoring for [%d]\n", task->pid));
3631 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3632 } else {
3633 DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
3635 // cannot use pfm_stop_monitoring(task, regs);
3639 * clear overflowed PMD mask to remove any stale information
3641 ctx->ctx_ovfl_regs[0] = 0UL;
3644 * back to LOADED state
3646 ctx->ctx_state = PFM_CTX_LOADED;
3649 * XXX: not really useful for self monitoring
3651 ctx->ctx_fl_can_restart = 0;
3653 return 0;
3657 * restart another task
3661 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3662 * one is seen by the task.
3664 if (state == PFM_CTX_MASKED) {
3665 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3667 * will prevent subsequent restart before this one is
3668 * seen by other task
3670 ctx->ctx_fl_can_restart = 0;
3674 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3675 * the task is blocked or on its way to block. That's the normal
3676 * restart path. If the monitoring is not masked, then the task
3677 * can be actively monitoring and we cannot directly intervene.
3678 * Therefore we use the trap mechanism to catch the task and
3679 * force it to reset the buffer/reset PMDs.
3681 * if non-blocking, then we ensure that the task will go into
3682 * pfm_handle_work() before returning to user mode.
3684 * We cannot explicitely reset another task, it MUST always
3685 * be done by the task itself. This works for system wide because
3686 * the tool that is controlling the session is logically doing
3687 * "self-monitoring".
3689 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3690 DPRINT(("unblocking [%d] \n", task->pid));
3691 complete(&ctx->ctx_restart_done);
3692 } else {
3693 DPRINT(("[%d] armed exit trap\n", task->pid));
3695 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3697 PFM_SET_WORK_PENDING(task, 1);
3699 pfm_set_task_notify(task);
3702 * XXX: send reschedule if task runs on another CPU
3705 return 0;
3708 static int
3709 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3711 unsigned int m = *(unsigned int *)arg;
3713 pfm_sysctl.debug = m == 0 ? 0 : 1;
3715 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3717 if (m == 0) {
3718 memset(pfm_stats, 0, sizeof(pfm_stats));
3719 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3721 return 0;
3725 * arg can be NULL and count can be zero for this function
3727 static int
3728 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3730 struct thread_struct *thread = NULL;
3731 struct task_struct *task;
3732 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3733 unsigned long flags;
3734 dbreg_t dbreg;
3735 unsigned int rnum;
3736 int first_time;
3737 int ret = 0, state;
3738 int i, can_access_pmu = 0;
3739 int is_system, is_loaded;
3741 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3743 state = ctx->ctx_state;
3744 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3745 is_system = ctx->ctx_fl_system;
3746 task = ctx->ctx_task;
3748 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3751 * on both UP and SMP, we can only write to the PMC when the task is
3752 * the owner of the local PMU.
3754 if (is_loaded) {
3755 thread = &task->thread;
3757 * In system wide and when the context is loaded, access can only happen
3758 * when the caller is running on the CPU being monitored by the session.
3759 * It does not have to be the owner (ctx_task) of the context per se.
3761 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3762 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3763 return -EBUSY;
3765 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3769 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3770 * ensuring that no real breakpoint can be installed via this call.
3772 * IMPORTANT: regs can be NULL in this function
3775 first_time = ctx->ctx_fl_using_dbreg == 0;
3778 * don't bother if we are loaded and task is being debugged
3780 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3781 DPRINT(("debug registers already in use for [%d]\n", task->pid));
3782 return -EBUSY;
3786 * check for debug registers in system wide mode
3788 * If though a check is done in pfm_context_load(),
3789 * we must repeat it here, in case the registers are
3790 * written after the context is loaded
3792 if (is_loaded) {
3793 LOCK_PFS(flags);
3795 if (first_time && is_system) {
3796 if (pfm_sessions.pfs_ptrace_use_dbregs)
3797 ret = -EBUSY;
3798 else
3799 pfm_sessions.pfs_sys_use_dbregs++;
3801 UNLOCK_PFS(flags);
3804 if (ret != 0) return ret;
3807 * mark ourself as user of the debug registers for
3808 * perfmon purposes.
3810 ctx->ctx_fl_using_dbreg = 1;
3813 * clear hardware registers to make sure we don't
3814 * pick up stale state.
3816 * for a system wide session, we do not use
3817 * thread.dbr, thread.ibr because this process
3818 * never leaves the current CPU and the state
3819 * is shared by all processes running on it
3821 if (first_time && can_access_pmu) {
3822 DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
3823 for (i=0; i < pmu_conf->num_ibrs; i++) {
3824 ia64_set_ibr(i, 0UL);
3825 ia64_dv_serialize_instruction();
3827 ia64_srlz_i();
3828 for (i=0; i < pmu_conf->num_dbrs; i++) {
3829 ia64_set_dbr(i, 0UL);
3830 ia64_dv_serialize_data();
3832 ia64_srlz_d();
3836 * Now install the values into the registers
3838 for (i = 0; i < count; i++, req++) {
3840 rnum = req->dbreg_num;
3841 dbreg.val = req->dbreg_value;
3843 ret = -EINVAL;
3845 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3846 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3847 rnum, dbreg.val, mode, i, count));
3849 goto abort_mission;
3853 * make sure we do not install enabled breakpoint
3855 if (rnum & 0x1) {
3856 if (mode == PFM_CODE_RR)
3857 dbreg.ibr.ibr_x = 0;
3858 else
3859 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3862 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3865 * Debug registers, just like PMC, can only be modified
3866 * by a kernel call. Moreover, perfmon() access to those
3867 * registers are centralized in this routine. The hardware
3868 * does not modify the value of these registers, therefore,
3869 * if we save them as they are written, we can avoid having
3870 * to save them on context switch out. This is made possible
3871 * by the fact that when perfmon uses debug registers, ptrace()
3872 * won't be able to modify them concurrently.
3874 if (mode == PFM_CODE_RR) {
3875 CTX_USED_IBR(ctx, rnum);
3877 if (can_access_pmu) {
3878 ia64_set_ibr(rnum, dbreg.val);
3879 ia64_dv_serialize_instruction();
3882 ctx->ctx_ibrs[rnum] = dbreg.val;
3884 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3885 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3886 } else {
3887 CTX_USED_DBR(ctx, rnum);
3889 if (can_access_pmu) {
3890 ia64_set_dbr(rnum, dbreg.val);
3891 ia64_dv_serialize_data();
3893 ctx->ctx_dbrs[rnum] = dbreg.val;
3895 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3896 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3900 return 0;
3902 abort_mission:
3904 * in case it was our first attempt, we undo the global modifications
3906 if (first_time) {
3907 LOCK_PFS(flags);
3908 if (ctx->ctx_fl_system) {
3909 pfm_sessions.pfs_sys_use_dbregs--;
3911 UNLOCK_PFS(flags);
3912 ctx->ctx_fl_using_dbreg = 0;
3915 * install error return flag
3917 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3919 return ret;
3922 static int
3923 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3925 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3928 static int
3929 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3931 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3935 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3937 pfm_context_t *ctx;
3939 if (req == NULL) return -EINVAL;
3941 ctx = GET_PMU_CTX();
3943 if (ctx == NULL) return -EINVAL;
3946 * for now limit to current task, which is enough when calling
3947 * from overflow handler
3949 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3951 return pfm_write_ibrs(ctx, req, nreq, regs);
3953 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3956 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3958 pfm_context_t *ctx;
3960 if (req == NULL) return -EINVAL;
3962 ctx = GET_PMU_CTX();
3964 if (ctx == NULL) return -EINVAL;
3967 * for now limit to current task, which is enough when calling
3968 * from overflow handler
3970 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3972 return pfm_write_dbrs(ctx, req, nreq, regs);
3974 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3977 static int
3978 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3980 pfarg_features_t *req = (pfarg_features_t *)arg;
3982 req->ft_version = PFM_VERSION;
3983 return 0;
3986 static int
3987 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3989 struct pt_regs *tregs;
3990 struct task_struct *task = PFM_CTX_TASK(ctx);
3991 int state, is_system;
3993 state = ctx->ctx_state;
3994 is_system = ctx->ctx_fl_system;
3997 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3999 if (state == PFM_CTX_UNLOADED) return -EINVAL;
4002 * In system wide and when the context is loaded, access can only happen
4003 * when the caller is running on the CPU being monitored by the session.
4004 * It does not have to be the owner (ctx_task) of the context per se.
4006 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4007 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4008 return -EBUSY;
4010 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4011 PFM_CTX_TASK(ctx)->pid,
4012 state,
4013 is_system));
4015 * in system mode, we need to update the PMU directly
4016 * and the user level state of the caller, which may not
4017 * necessarily be the creator of the context.
4019 if (is_system) {
4021 * Update local PMU first
4023 * disable dcr pp
4025 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4026 ia64_srlz_i();
4029 * update local cpuinfo
4031 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4034 * stop monitoring, does srlz.i
4036 pfm_clear_psr_pp();
4039 * stop monitoring in the caller
4041 ia64_psr(regs)->pp = 0;
4043 return 0;
4046 * per-task mode
4049 if (task == current) {
4050 /* stop monitoring at kernel level */
4051 pfm_clear_psr_up();
4054 * stop monitoring at the user level
4056 ia64_psr(regs)->up = 0;
4057 } else {
4058 tregs = task_pt_regs(task);
4061 * stop monitoring at the user level
4063 ia64_psr(tregs)->up = 0;
4066 * monitoring disabled in kernel at next reschedule
4068 ctx->ctx_saved_psr_up = 0;
4069 DPRINT(("task=[%d]\n", task->pid));
4071 return 0;
4075 static int
4076 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4078 struct pt_regs *tregs;
4079 int state, is_system;
4081 state = ctx->ctx_state;
4082 is_system = ctx->ctx_fl_system;
4084 if (state != PFM_CTX_LOADED) return -EINVAL;
4087 * In system wide and when the context is loaded, access can only happen
4088 * when the caller is running on the CPU being monitored by the session.
4089 * It does not have to be the owner (ctx_task) of the context per se.
4091 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4092 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4093 return -EBUSY;
4097 * in system mode, we need to update the PMU directly
4098 * and the user level state of the caller, which may not
4099 * necessarily be the creator of the context.
4101 if (is_system) {
4104 * set user level psr.pp for the caller
4106 ia64_psr(regs)->pp = 1;
4109 * now update the local PMU and cpuinfo
4111 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4114 * start monitoring at kernel level
4116 pfm_set_psr_pp();
4118 /* enable dcr pp */
4119 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4120 ia64_srlz_i();
4122 return 0;
4126 * per-process mode
4129 if (ctx->ctx_task == current) {
4131 /* start monitoring at kernel level */
4132 pfm_set_psr_up();
4135 * activate monitoring at user level
4137 ia64_psr(regs)->up = 1;
4139 } else {
4140 tregs = task_pt_regs(ctx->ctx_task);
4143 * start monitoring at the kernel level the next
4144 * time the task is scheduled
4146 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4149 * activate monitoring at user level
4151 ia64_psr(tregs)->up = 1;
4153 return 0;
4156 static int
4157 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4159 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4160 unsigned int cnum;
4161 int i;
4162 int ret = -EINVAL;
4164 for (i = 0; i < count; i++, req++) {
4166 cnum = req->reg_num;
4168 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4170 req->reg_value = PMC_DFL_VAL(cnum);
4172 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4174 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4176 return 0;
4178 abort_mission:
4179 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4180 return ret;
4183 static int
4184 pfm_check_task_exist(pfm_context_t *ctx)
4186 struct task_struct *g, *t;
4187 int ret = -ESRCH;
4189 read_lock(&tasklist_lock);
4191 do_each_thread (g, t) {
4192 if (t->thread.pfm_context == ctx) {
4193 ret = 0;
4194 break;
4196 } while_each_thread (g, t);
4198 read_unlock(&tasklist_lock);
4200 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4202 return ret;
4205 static int
4206 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4208 struct task_struct *task;
4209 struct thread_struct *thread;
4210 struct pfm_context_t *old;
4211 unsigned long flags;
4212 #ifndef CONFIG_SMP
4213 struct task_struct *owner_task = NULL;
4214 #endif
4215 pfarg_load_t *req = (pfarg_load_t *)arg;
4216 unsigned long *pmcs_source, *pmds_source;
4217 int the_cpu;
4218 int ret = 0;
4219 int state, is_system, set_dbregs = 0;
4221 state = ctx->ctx_state;
4222 is_system = ctx->ctx_fl_system;
4224 * can only load from unloaded or terminated state
4226 if (state != PFM_CTX_UNLOADED) {
4227 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4228 req->load_pid,
4229 ctx->ctx_state));
4230 return -EBUSY;
4233 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4235 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4236 DPRINT(("cannot use blocking mode on self\n"));
4237 return -EINVAL;
4240 ret = pfm_get_task(ctx, req->load_pid, &task);
4241 if (ret) {
4242 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4243 return ret;
4246 ret = -EINVAL;
4249 * system wide is self monitoring only
4251 if (is_system && task != current) {
4252 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4253 req->load_pid));
4254 goto error;
4257 thread = &task->thread;
4259 ret = 0;
4261 * cannot load a context which is using range restrictions,
4262 * into a task that is being debugged.
4264 if (ctx->ctx_fl_using_dbreg) {
4265 if (thread->flags & IA64_THREAD_DBG_VALID) {
4266 ret = -EBUSY;
4267 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4268 goto error;
4270 LOCK_PFS(flags);
4272 if (is_system) {
4273 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4274 DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
4275 ret = -EBUSY;
4276 } else {
4277 pfm_sessions.pfs_sys_use_dbregs++;
4278 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
4279 set_dbregs = 1;
4283 UNLOCK_PFS(flags);
4285 if (ret) goto error;
4289 * SMP system-wide monitoring implies self-monitoring.
4291 * The programming model expects the task to
4292 * be pinned on a CPU throughout the session.
4293 * Here we take note of the current CPU at the
4294 * time the context is loaded. No call from
4295 * another CPU will be allowed.
4297 * The pinning via shed_setaffinity()
4298 * must be done by the calling task prior
4299 * to this call.
4301 * systemwide: keep track of CPU this session is supposed to run on
4303 the_cpu = ctx->ctx_cpu = smp_processor_id();
4305 ret = -EBUSY;
4307 * now reserve the session
4309 ret = pfm_reserve_session(current, is_system, the_cpu);
4310 if (ret) goto error;
4313 * task is necessarily stopped at this point.
4315 * If the previous context was zombie, then it got removed in
4316 * pfm_save_regs(). Therefore we should not see it here.
4317 * If we see a context, then this is an active context
4319 * XXX: needs to be atomic
4321 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4322 thread->pfm_context, ctx));
4324 ret = -EBUSY;
4325 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4326 if (old != NULL) {
4327 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4328 goto error_unres;
4331 pfm_reset_msgq(ctx);
4333 ctx->ctx_state = PFM_CTX_LOADED;
4336 * link context to task
4338 ctx->ctx_task = task;
4340 if (is_system) {
4342 * we load as stopped
4344 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4345 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4347 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4348 } else {
4349 thread->flags |= IA64_THREAD_PM_VALID;
4353 * propagate into thread-state
4355 pfm_copy_pmds(task, ctx);
4356 pfm_copy_pmcs(task, ctx);
4358 pmcs_source = thread->pmcs;
4359 pmds_source = thread->pmds;
4362 * always the case for system-wide
4364 if (task == current) {
4366 if (is_system == 0) {
4368 /* allow user level control */
4369 ia64_psr(regs)->sp = 0;
4370 DPRINT(("clearing psr.sp for [%d]\n", task->pid));
4372 SET_LAST_CPU(ctx, smp_processor_id());
4373 INC_ACTIVATION();
4374 SET_ACTIVATION(ctx);
4375 #ifndef CONFIG_SMP
4377 * push the other task out, if any
4379 owner_task = GET_PMU_OWNER();
4380 if (owner_task) pfm_lazy_save_regs(owner_task);
4381 #endif
4384 * load all PMD from ctx to PMU (as opposed to thread state)
4385 * restore all PMC from ctx to PMU
4387 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4388 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4390 ctx->ctx_reload_pmcs[0] = 0UL;
4391 ctx->ctx_reload_pmds[0] = 0UL;
4394 * guaranteed safe by earlier check against DBG_VALID
4396 if (ctx->ctx_fl_using_dbreg) {
4397 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4398 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4401 * set new ownership
4403 SET_PMU_OWNER(task, ctx);
4405 DPRINT(("context loaded on PMU for [%d]\n", task->pid));
4406 } else {
4408 * when not current, task MUST be stopped, so this is safe
4410 regs = task_pt_regs(task);
4412 /* force a full reload */
4413 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4414 SET_LAST_CPU(ctx, -1);
4416 /* initial saved psr (stopped) */
4417 ctx->ctx_saved_psr_up = 0UL;
4418 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4421 ret = 0;
4423 error_unres:
4424 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4425 error:
4427 * we must undo the dbregs setting (for system-wide)
4429 if (ret && set_dbregs) {
4430 LOCK_PFS(flags);
4431 pfm_sessions.pfs_sys_use_dbregs--;
4432 UNLOCK_PFS(flags);
4435 * release task, there is now a link with the context
4437 if (is_system == 0 && task != current) {
4438 pfm_put_task(task);
4440 if (ret == 0) {
4441 ret = pfm_check_task_exist(ctx);
4442 if (ret) {
4443 ctx->ctx_state = PFM_CTX_UNLOADED;
4444 ctx->ctx_task = NULL;
4448 return ret;
4452 * in this function, we do not need to increase the use count
4453 * for the task via get_task_struct(), because we hold the
4454 * context lock. If the task were to disappear while having
4455 * a context attached, it would go through pfm_exit_thread()
4456 * which also grabs the context lock and would therefore be blocked
4457 * until we are here.
4459 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4461 static int
4462 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4464 struct task_struct *task = PFM_CTX_TASK(ctx);
4465 struct pt_regs *tregs;
4466 int prev_state, is_system;
4467 int ret;
4469 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
4471 prev_state = ctx->ctx_state;
4472 is_system = ctx->ctx_fl_system;
4475 * unload only when necessary
4477 if (prev_state == PFM_CTX_UNLOADED) {
4478 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4479 return 0;
4483 * clear psr and dcr bits
4485 ret = pfm_stop(ctx, NULL, 0, regs);
4486 if (ret) return ret;
4488 ctx->ctx_state = PFM_CTX_UNLOADED;
4491 * in system mode, we need to update the PMU directly
4492 * and the user level state of the caller, which may not
4493 * necessarily be the creator of the context.
4495 if (is_system) {
4498 * Update cpuinfo
4500 * local PMU is taken care of in pfm_stop()
4502 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4503 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4506 * save PMDs in context
4507 * release ownership
4509 pfm_flush_pmds(current, ctx);
4512 * at this point we are done with the PMU
4513 * so we can unreserve the resource.
4515 if (prev_state != PFM_CTX_ZOMBIE)
4516 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4519 * disconnect context from task
4521 task->thread.pfm_context = NULL;
4523 * disconnect task from context
4525 ctx->ctx_task = NULL;
4528 * There is nothing more to cleanup here.
4530 return 0;
4534 * per-task mode
4536 tregs = task == current ? regs : task_pt_regs(task);
4538 if (task == current) {
4540 * cancel user level control
4542 ia64_psr(regs)->sp = 1;
4544 DPRINT(("setting psr.sp for [%d]\n", task->pid));
4547 * save PMDs to context
4548 * release ownership
4550 pfm_flush_pmds(task, ctx);
4553 * at this point we are done with the PMU
4554 * so we can unreserve the resource.
4556 * when state was ZOMBIE, we have already unreserved.
4558 if (prev_state != PFM_CTX_ZOMBIE)
4559 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4562 * reset activation counter and psr
4564 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4565 SET_LAST_CPU(ctx, -1);
4568 * PMU state will not be restored
4570 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4573 * break links between context and task
4575 task->thread.pfm_context = NULL;
4576 ctx->ctx_task = NULL;
4578 PFM_SET_WORK_PENDING(task, 0);
4580 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4581 ctx->ctx_fl_can_restart = 0;
4582 ctx->ctx_fl_going_zombie = 0;
4584 DPRINT(("disconnected [%d] from context\n", task->pid));
4586 return 0;
4591 * called only from exit_thread(): task == current
4592 * we come here only if current has a context attached (loaded or masked)
4594 void
4595 pfm_exit_thread(struct task_struct *task)
4597 pfm_context_t *ctx;
4598 unsigned long flags;
4599 struct pt_regs *regs = task_pt_regs(task);
4600 int ret, state;
4601 int free_ok = 0;
4603 ctx = PFM_GET_CTX(task);
4605 PROTECT_CTX(ctx, flags);
4607 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
4609 state = ctx->ctx_state;
4610 switch(state) {
4611 case PFM_CTX_UNLOADED:
4613 * only comes to thios function if pfm_context is not NULL, i.e., cannot
4614 * be in unloaded state
4616 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
4617 break;
4618 case PFM_CTX_LOADED:
4619 case PFM_CTX_MASKED:
4620 ret = pfm_context_unload(ctx, NULL, 0, regs);
4621 if (ret) {
4622 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4624 DPRINT(("ctx unloaded for current state was %d\n", state));
4626 pfm_end_notify_user(ctx);
4627 break;
4628 case PFM_CTX_ZOMBIE:
4629 ret = pfm_context_unload(ctx, NULL, 0, regs);
4630 if (ret) {
4631 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4633 free_ok = 1;
4634 break;
4635 default:
4636 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
4637 break;
4639 UNPROTECT_CTX(ctx, flags);
4641 { u64 psr = pfm_get_psr();
4642 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4643 BUG_ON(GET_PMU_OWNER());
4644 BUG_ON(ia64_psr(regs)->up);
4645 BUG_ON(ia64_psr(regs)->pp);
4649 * All memory free operations (especially for vmalloc'ed memory)
4650 * MUST be done with interrupts ENABLED.
4652 if (free_ok) pfm_context_free(ctx);
4656 * functions MUST be listed in the increasing order of their index (see permfon.h)
4658 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4659 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4660 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4661 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4662 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4664 static pfm_cmd_desc_t pfm_cmd_tab[]={
4665 /* 0 */PFM_CMD_NONE,
4666 /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4667 /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4668 /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4669 /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4670 /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4671 /* 6 */PFM_CMD_NONE,
4672 /* 7 */PFM_CMD_NONE,
4673 /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4674 /* 9 */PFM_CMD_NONE,
4675 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4676 /* 11 */PFM_CMD_NONE,
4677 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4678 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4679 /* 14 */PFM_CMD_NONE,
4680 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4681 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4682 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4683 /* 18 */PFM_CMD_NONE,
4684 /* 19 */PFM_CMD_NONE,
4685 /* 20 */PFM_CMD_NONE,
4686 /* 21 */PFM_CMD_NONE,
4687 /* 22 */PFM_CMD_NONE,
4688 /* 23 */PFM_CMD_NONE,
4689 /* 24 */PFM_CMD_NONE,
4690 /* 25 */PFM_CMD_NONE,
4691 /* 26 */PFM_CMD_NONE,
4692 /* 27 */PFM_CMD_NONE,
4693 /* 28 */PFM_CMD_NONE,
4694 /* 29 */PFM_CMD_NONE,
4695 /* 30 */PFM_CMD_NONE,
4696 /* 31 */PFM_CMD_NONE,
4697 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4698 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4700 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4702 static int
4703 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4705 struct task_struct *task;
4706 int state, old_state;
4708 recheck:
4709 state = ctx->ctx_state;
4710 task = ctx->ctx_task;
4712 if (task == NULL) {
4713 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4714 return 0;
4717 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4718 ctx->ctx_fd,
4719 state,
4720 task->pid,
4721 task->state, PFM_CMD_STOPPED(cmd)));
4724 * self-monitoring always ok.
4726 * for system-wide the caller can either be the creator of the
4727 * context (to one to which the context is attached to) OR
4728 * a task running on the same CPU as the session.
4730 if (task == current || ctx->ctx_fl_system) return 0;
4733 * we are monitoring another thread
4735 switch(state) {
4736 case PFM_CTX_UNLOADED:
4738 * if context is UNLOADED we are safe to go
4740 return 0;
4741 case PFM_CTX_ZOMBIE:
4743 * no command can operate on a zombie context
4745 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4746 return -EINVAL;
4747 case PFM_CTX_MASKED:
4749 * PMU state has been saved to software even though
4750 * the thread may still be running.
4752 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4756 * context is LOADED or MASKED. Some commands may need to have
4757 * the task stopped.
4759 * We could lift this restriction for UP but it would mean that
4760 * the user has no guarantee the task would not run between
4761 * two successive calls to perfmonctl(). That's probably OK.
4762 * If this user wants to ensure the task does not run, then
4763 * the task must be stopped.
4765 if (PFM_CMD_STOPPED(cmd)) {
4766 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
4767 DPRINT(("[%d] task not in stopped state\n", task->pid));
4768 return -EBUSY;
4771 * task is now stopped, wait for ctxsw out
4773 * This is an interesting point in the code.
4774 * We need to unprotect the context because
4775 * the pfm_save_regs() routines needs to grab
4776 * the same lock. There are danger in doing
4777 * this because it leaves a window open for
4778 * another task to get access to the context
4779 * and possibly change its state. The one thing
4780 * that is not possible is for the context to disappear
4781 * because we are protected by the VFS layer, i.e.,
4782 * get_fd()/put_fd().
4784 old_state = state;
4786 UNPROTECT_CTX(ctx, flags);
4788 wait_task_inactive(task);
4790 PROTECT_CTX(ctx, flags);
4793 * we must recheck to verify if state has changed
4795 if (ctx->ctx_state != old_state) {
4796 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4797 goto recheck;
4800 return 0;
4804 * system-call entry point (must return long)
4806 asmlinkage long
4807 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4809 struct file *file = NULL;
4810 pfm_context_t *ctx = NULL;
4811 unsigned long flags = 0UL;
4812 void *args_k = NULL;
4813 long ret; /* will expand int return types */
4814 size_t base_sz, sz, xtra_sz = 0;
4815 int narg, completed_args = 0, call_made = 0, cmd_flags;
4816 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4817 int (*getsize)(void *arg, size_t *sz);
4818 #define PFM_MAX_ARGSIZE 4096
4821 * reject any call if perfmon was disabled at initialization
4823 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4825 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4826 DPRINT(("invalid cmd=%d\n", cmd));
4827 return -EINVAL;
4830 func = pfm_cmd_tab[cmd].cmd_func;
4831 narg = pfm_cmd_tab[cmd].cmd_narg;
4832 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4833 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4834 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4836 if (unlikely(func == NULL)) {
4837 DPRINT(("invalid cmd=%d\n", cmd));
4838 return -EINVAL;
4841 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4842 PFM_CMD_NAME(cmd),
4843 cmd,
4844 narg,
4845 base_sz,
4846 count));
4849 * check if number of arguments matches what the command expects
4851 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4852 return -EINVAL;
4854 restart_args:
4855 sz = xtra_sz + base_sz*count;
4857 * limit abuse to min page size
4859 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4860 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
4861 return -E2BIG;
4865 * allocate default-sized argument buffer
4867 if (likely(count && args_k == NULL)) {
4868 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4869 if (args_k == NULL) return -ENOMEM;
4872 ret = -EFAULT;
4875 * copy arguments
4877 * assume sz = 0 for command without parameters
4879 if (sz && copy_from_user(args_k, arg, sz)) {
4880 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4881 goto error_args;
4885 * check if command supports extra parameters
4887 if (completed_args == 0 && getsize) {
4889 * get extra parameters size (based on main argument)
4891 ret = (*getsize)(args_k, &xtra_sz);
4892 if (ret) goto error_args;
4894 completed_args = 1;
4896 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4898 /* retry if necessary */
4899 if (likely(xtra_sz)) goto restart_args;
4902 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4904 ret = -EBADF;
4906 file = fget(fd);
4907 if (unlikely(file == NULL)) {
4908 DPRINT(("invalid fd %d\n", fd));
4909 goto error_args;
4911 if (unlikely(PFM_IS_FILE(file) == 0)) {
4912 DPRINT(("fd %d not related to perfmon\n", fd));
4913 goto error_args;
4916 ctx = (pfm_context_t *)file->private_data;
4917 if (unlikely(ctx == NULL)) {
4918 DPRINT(("no context for fd %d\n", fd));
4919 goto error_args;
4921 prefetch(&ctx->ctx_state);
4923 PROTECT_CTX(ctx, flags);
4926 * check task is stopped
4928 ret = pfm_check_task_state(ctx, cmd, flags);
4929 if (unlikely(ret)) goto abort_locked;
4931 skip_fd:
4932 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4934 call_made = 1;
4936 abort_locked:
4937 if (likely(ctx)) {
4938 DPRINT(("context unlocked\n"));
4939 UNPROTECT_CTX(ctx, flags);
4940 fput(file);
4943 /* copy argument back to user, if needed */
4944 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4946 error_args:
4947 kfree(args_k);
4949 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4951 return ret;
4954 static void
4955 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4957 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4958 pfm_ovfl_ctrl_t rst_ctrl;
4959 int state;
4960 int ret = 0;
4962 state = ctx->ctx_state;
4964 * Unlock sampling buffer and reset index atomically
4965 * XXX: not really needed when blocking
4967 if (CTX_HAS_SMPL(ctx)) {
4969 rst_ctrl.bits.mask_monitoring = 0;
4970 rst_ctrl.bits.reset_ovfl_pmds = 0;
4972 if (state == PFM_CTX_LOADED)
4973 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4974 else
4975 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4976 } else {
4977 rst_ctrl.bits.mask_monitoring = 0;
4978 rst_ctrl.bits.reset_ovfl_pmds = 1;
4981 if (ret == 0) {
4982 if (rst_ctrl.bits.reset_ovfl_pmds) {
4983 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4985 if (rst_ctrl.bits.mask_monitoring == 0) {
4986 DPRINT(("resuming monitoring\n"));
4987 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4988 } else {
4989 DPRINT(("stopping monitoring\n"));
4990 //pfm_stop_monitoring(current, regs);
4992 ctx->ctx_state = PFM_CTX_LOADED;
4997 * context MUST BE LOCKED when calling
4998 * can only be called for current
5000 static void
5001 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
5003 int ret;
5005 DPRINT(("entering for [%d]\n", current->pid));
5007 ret = pfm_context_unload(ctx, NULL, 0, regs);
5008 if (ret) {
5009 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
5013 * and wakeup controlling task, indicating we are now disconnected
5015 wake_up_interruptible(&ctx->ctx_zombieq);
5018 * given that context is still locked, the controlling
5019 * task will only get access when we return from
5020 * pfm_handle_work().
5024 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5026 * pfm_handle_work() can be called with interrupts enabled
5027 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5028 * call may sleep, therefore we must re-enable interrupts
5029 * to avoid deadlocks. It is safe to do so because this function
5030 * is called ONLY when returning to user level (PUStk=1), in which case
5031 * there is no risk of kernel stack overflow due to deep
5032 * interrupt nesting.
5034 void
5035 pfm_handle_work(void)
5037 pfm_context_t *ctx;
5038 struct pt_regs *regs;
5039 unsigned long flags, dummy_flags;
5040 unsigned long ovfl_regs;
5041 unsigned int reason;
5042 int ret;
5044 ctx = PFM_GET_CTX(current);
5045 if (ctx == NULL) {
5046 printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
5047 return;
5050 PROTECT_CTX(ctx, flags);
5052 PFM_SET_WORK_PENDING(current, 0);
5054 pfm_clear_task_notify();
5056 regs = task_pt_regs(current);
5059 * extract reason for being here and clear
5061 reason = ctx->ctx_fl_trap_reason;
5062 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5063 ovfl_regs = ctx->ctx_ovfl_regs[0];
5065 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5068 * must be done before we check for simple-reset mode
5070 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
5073 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5074 if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
5077 * restore interrupt mask to what it was on entry.
5078 * Could be enabled/diasbled.
5080 UNPROTECT_CTX(ctx, flags);
5083 * force interrupt enable because of down_interruptible()
5085 local_irq_enable();
5087 DPRINT(("before block sleeping\n"));
5090 * may go through without blocking on SMP systems
5091 * if restart has been received already by the time we call down()
5093 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5095 DPRINT(("after block sleeping ret=%d\n", ret));
5098 * lock context and mask interrupts again
5099 * We save flags into a dummy because we may have
5100 * altered interrupts mask compared to entry in this
5101 * function.
5103 PROTECT_CTX(ctx, dummy_flags);
5106 * we need to read the ovfl_regs only after wake-up
5107 * because we may have had pfm_write_pmds() in between
5108 * and that can changed PMD values and therefore
5109 * ovfl_regs is reset for these new PMD values.
5111 ovfl_regs = ctx->ctx_ovfl_regs[0];
5113 if (ctx->ctx_fl_going_zombie) {
5114 do_zombie:
5115 DPRINT(("context is zombie, bailing out\n"));
5116 pfm_context_force_terminate(ctx, regs);
5117 goto nothing_to_do;
5120 * in case of interruption of down() we don't restart anything
5122 if (ret < 0) goto nothing_to_do;
5124 skip_blocking:
5125 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5126 ctx->ctx_ovfl_regs[0] = 0UL;
5128 nothing_to_do:
5130 * restore flags as they were upon entry
5132 UNPROTECT_CTX(ctx, flags);
5135 static int
5136 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5138 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5139 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5140 return 0;
5143 DPRINT(("waking up somebody\n"));
5145 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5148 * safe, we are not in intr handler, nor in ctxsw when
5149 * we come here
5151 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5153 return 0;
5156 static int
5157 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5159 pfm_msg_t *msg = NULL;
5161 if (ctx->ctx_fl_no_msg == 0) {
5162 msg = pfm_get_new_msg(ctx);
5163 if (msg == NULL) {
5164 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5165 return -1;
5168 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5169 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5170 msg->pfm_ovfl_msg.msg_active_set = 0;
5171 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5172 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5173 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5174 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5175 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5178 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5179 msg,
5180 ctx->ctx_fl_no_msg,
5181 ctx->ctx_fd,
5182 ovfl_pmds));
5184 return pfm_notify_user(ctx, msg);
5187 static int
5188 pfm_end_notify_user(pfm_context_t *ctx)
5190 pfm_msg_t *msg;
5192 msg = pfm_get_new_msg(ctx);
5193 if (msg == NULL) {
5194 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5195 return -1;
5197 /* no leak */
5198 memset(msg, 0, sizeof(*msg));
5200 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5201 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5202 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5204 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5205 msg,
5206 ctx->ctx_fl_no_msg,
5207 ctx->ctx_fd));
5209 return pfm_notify_user(ctx, msg);
5213 * main overflow processing routine.
5214 * it can be called from the interrupt path or explicitely during the context switch code
5216 static void
5217 pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5219 pfm_ovfl_arg_t *ovfl_arg;
5220 unsigned long mask;
5221 unsigned long old_val, ovfl_val, new_val;
5222 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5223 unsigned long tstamp;
5224 pfm_ovfl_ctrl_t ovfl_ctrl;
5225 unsigned int i, has_smpl;
5226 int must_notify = 0;
5228 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5231 * sanity test. Should never happen
5233 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5235 tstamp = ia64_get_itc();
5236 mask = pmc0 >> PMU_FIRST_COUNTER;
5237 ovfl_val = pmu_conf->ovfl_val;
5238 has_smpl = CTX_HAS_SMPL(ctx);
5240 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5241 "used_pmds=0x%lx\n",
5242 pmc0,
5243 task ? task->pid: -1,
5244 (regs ? regs->cr_iip : 0),
5245 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5246 ctx->ctx_used_pmds[0]));
5250 * first we update the virtual counters
5251 * assume there was a prior ia64_srlz_d() issued
5253 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5255 /* skip pmd which did not overflow */
5256 if ((mask & 0x1) == 0) continue;
5259 * Note that the pmd is not necessarily 0 at this point as qualified events
5260 * may have happened before the PMU was frozen. The residual count is not
5261 * taken into consideration here but will be with any read of the pmd via
5262 * pfm_read_pmds().
5264 old_val = new_val = ctx->ctx_pmds[i].val;
5265 new_val += 1 + ovfl_val;
5266 ctx->ctx_pmds[i].val = new_val;
5269 * check for overflow condition
5271 if (likely(old_val > new_val)) {
5272 ovfl_pmds |= 1UL << i;
5273 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5276 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5278 new_val,
5279 old_val,
5280 ia64_get_pmd(i) & ovfl_val,
5281 ovfl_pmds,
5282 ovfl_notify));
5286 * there was no 64-bit overflow, nothing else to do
5288 if (ovfl_pmds == 0UL) return;
5291 * reset all control bits
5293 ovfl_ctrl.val = 0;
5294 reset_pmds = 0UL;
5297 * if a sampling format module exists, then we "cache" the overflow by
5298 * calling the module's handler() routine.
5300 if (has_smpl) {
5301 unsigned long start_cycles, end_cycles;
5302 unsigned long pmd_mask;
5303 int j, k, ret = 0;
5304 int this_cpu = smp_processor_id();
5306 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5307 ovfl_arg = &ctx->ctx_ovfl_arg;
5309 prefetch(ctx->ctx_smpl_hdr);
5311 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5313 mask = 1UL << i;
5315 if ((pmd_mask & 0x1) == 0) continue;
5317 ovfl_arg->ovfl_pmd = (unsigned char )i;
5318 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5319 ovfl_arg->active_set = 0;
5320 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5321 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5323 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5324 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5325 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5328 * copy values of pmds of interest. Sampling format may copy them
5329 * into sampling buffer.
5331 if (smpl_pmds) {
5332 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5333 if ((smpl_pmds & 0x1) == 0) continue;
5334 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5335 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5339 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5341 start_cycles = ia64_get_itc();
5344 * call custom buffer format record (handler) routine
5346 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5348 end_cycles = ia64_get_itc();
5351 * For those controls, we take the union because they have
5352 * an all or nothing behavior.
5354 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5355 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5356 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5358 * build the bitmask of pmds to reset now
5360 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5362 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5365 * when the module cannot handle the rest of the overflows, we abort right here
5367 if (ret && pmd_mask) {
5368 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5369 pmd_mask<<PMU_FIRST_COUNTER));
5372 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5374 ovfl_pmds &= ~reset_pmds;
5375 } else {
5377 * when no sampling module is used, then the default
5378 * is to notify on overflow if requested by user
5380 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5381 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5382 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5383 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5385 * if needed, we reset all overflowed pmds
5387 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5390 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5393 * reset the requested PMD registers using the short reset values
5395 if (reset_pmds) {
5396 unsigned long bm = reset_pmds;
5397 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5400 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5402 * keep track of what to reset when unblocking
5404 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5407 * check for blocking context
5409 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5411 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5414 * set the perfmon specific checking pending work for the task
5416 PFM_SET_WORK_PENDING(task, 1);
5419 * when coming from ctxsw, current still points to the
5420 * previous task, therefore we must work with task and not current.
5422 pfm_set_task_notify(task);
5425 * defer until state is changed (shorten spin window). the context is locked
5426 * anyway, so the signal receiver would come spin for nothing.
5428 must_notify = 1;
5431 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5432 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
5433 PFM_GET_WORK_PENDING(task),
5434 ctx->ctx_fl_trap_reason,
5435 ovfl_pmds,
5436 ovfl_notify,
5437 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5439 * in case monitoring must be stopped, we toggle the psr bits
5441 if (ovfl_ctrl.bits.mask_monitoring) {
5442 pfm_mask_monitoring(task);
5443 ctx->ctx_state = PFM_CTX_MASKED;
5444 ctx->ctx_fl_can_restart = 1;
5448 * send notification now
5450 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5452 return;
5454 sanity_check:
5455 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5456 smp_processor_id(),
5457 task ? task->pid : -1,
5458 pmc0);
5459 return;
5461 stop_monitoring:
5463 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5464 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5465 * come here as zombie only if the task is the current task. In which case, we
5466 * can access the PMU hardware directly.
5468 * Note that zombies do have PM_VALID set. So here we do the minimal.
5470 * In case the context was zombified it could not be reclaimed at the time
5471 * the monitoring program exited. At this point, the PMU reservation has been
5472 * returned, the sampiing buffer has been freed. We must convert this call
5473 * into a spurious interrupt. However, we must also avoid infinite overflows
5474 * by stopping monitoring for this task. We can only come here for a per-task
5475 * context. All we need to do is to stop monitoring using the psr bits which
5476 * are always task private. By re-enabling secure montioring, we ensure that
5477 * the monitored task will not be able to re-activate monitoring.
5478 * The task will eventually be context switched out, at which point the context
5479 * will be reclaimed (that includes releasing ownership of the PMU).
5481 * So there might be a window of time where the number of per-task session is zero
5482 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5483 * context. This is safe because if a per-task session comes in, it will push this one
5484 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5485 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5486 * also push our zombie context out.
5488 * Overall pretty hairy stuff....
5490 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
5491 pfm_clear_psr_up();
5492 ia64_psr(regs)->up = 0;
5493 ia64_psr(regs)->sp = 1;
5494 return;
5497 static int
5498 pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5500 struct task_struct *task;
5501 pfm_context_t *ctx;
5502 unsigned long flags;
5503 u64 pmc0;
5504 int this_cpu = smp_processor_id();
5505 int retval = 0;
5507 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5510 * srlz.d done before arriving here
5512 pmc0 = ia64_get_pmc(0);
5514 task = GET_PMU_OWNER();
5515 ctx = GET_PMU_CTX();
5518 * if we have some pending bits set
5519 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5521 if (PMC0_HAS_OVFL(pmc0) && task) {
5523 * we assume that pmc0.fr is always set here
5526 /* sanity check */
5527 if (!ctx) goto report_spurious1;
5529 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5530 goto report_spurious2;
5532 PROTECT_CTX_NOPRINT(ctx, flags);
5534 pfm_overflow_handler(task, ctx, pmc0, regs);
5536 UNPROTECT_CTX_NOPRINT(ctx, flags);
5538 } else {
5539 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5540 retval = -1;
5543 * keep it unfrozen at all times
5545 pfm_unfreeze_pmu();
5547 return retval;
5549 report_spurious1:
5550 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5551 this_cpu, task->pid);
5552 pfm_unfreeze_pmu();
5553 return -1;
5554 report_spurious2:
5555 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5556 this_cpu,
5557 task->pid);
5558 pfm_unfreeze_pmu();
5559 return -1;
5562 static irqreturn_t
5563 pfm_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5565 unsigned long start_cycles, total_cycles;
5566 unsigned long min, max;
5567 int this_cpu;
5568 int ret;
5570 this_cpu = get_cpu();
5571 if (likely(!pfm_alt_intr_handler)) {
5572 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5573 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5575 start_cycles = ia64_get_itc();
5577 ret = pfm_do_interrupt_handler(irq, arg, regs);
5579 total_cycles = ia64_get_itc();
5582 * don't measure spurious interrupts
5584 if (likely(ret == 0)) {
5585 total_cycles -= start_cycles;
5587 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5588 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5590 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5593 else {
5594 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5597 put_cpu_no_resched();
5598 return IRQ_HANDLED;
5602 * /proc/perfmon interface, for debug only
5605 #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5607 static void *
5608 pfm_proc_start(struct seq_file *m, loff_t *pos)
5610 if (*pos == 0) {
5611 return PFM_PROC_SHOW_HEADER;
5614 while (*pos <= NR_CPUS) {
5615 if (cpu_online(*pos - 1)) {
5616 return (void *)*pos;
5618 ++*pos;
5620 return NULL;
5623 static void *
5624 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5626 ++*pos;
5627 return pfm_proc_start(m, pos);
5630 static void
5631 pfm_proc_stop(struct seq_file *m, void *v)
5635 static void
5636 pfm_proc_show_header(struct seq_file *m)
5638 struct list_head * pos;
5639 pfm_buffer_fmt_t * entry;
5640 unsigned long flags;
5642 seq_printf(m,
5643 "perfmon version : %u.%u\n"
5644 "model : %s\n"
5645 "fastctxsw : %s\n"
5646 "expert mode : %s\n"
5647 "ovfl_mask : 0x%lx\n"
5648 "PMU flags : 0x%x\n",
5649 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5650 pmu_conf->pmu_name,
5651 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5652 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5653 pmu_conf->ovfl_val,
5654 pmu_conf->flags);
5656 LOCK_PFS(flags);
5658 seq_printf(m,
5659 "proc_sessions : %u\n"
5660 "sys_sessions : %u\n"
5661 "sys_use_dbregs : %u\n"
5662 "ptrace_use_dbregs : %u\n",
5663 pfm_sessions.pfs_task_sessions,
5664 pfm_sessions.pfs_sys_sessions,
5665 pfm_sessions.pfs_sys_use_dbregs,
5666 pfm_sessions.pfs_ptrace_use_dbregs);
5668 UNLOCK_PFS(flags);
5670 spin_lock(&pfm_buffer_fmt_lock);
5672 list_for_each(pos, &pfm_buffer_fmt_list) {
5673 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5674 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5675 entry->fmt_uuid[0],
5676 entry->fmt_uuid[1],
5677 entry->fmt_uuid[2],
5678 entry->fmt_uuid[3],
5679 entry->fmt_uuid[4],
5680 entry->fmt_uuid[5],
5681 entry->fmt_uuid[6],
5682 entry->fmt_uuid[7],
5683 entry->fmt_uuid[8],
5684 entry->fmt_uuid[9],
5685 entry->fmt_uuid[10],
5686 entry->fmt_uuid[11],
5687 entry->fmt_uuid[12],
5688 entry->fmt_uuid[13],
5689 entry->fmt_uuid[14],
5690 entry->fmt_uuid[15],
5691 entry->fmt_name);
5693 spin_unlock(&pfm_buffer_fmt_lock);
5697 static int
5698 pfm_proc_show(struct seq_file *m, void *v)
5700 unsigned long psr;
5701 unsigned int i;
5702 int cpu;
5704 if (v == PFM_PROC_SHOW_HEADER) {
5705 pfm_proc_show_header(m);
5706 return 0;
5709 /* show info for CPU (v - 1) */
5711 cpu = (long)v - 1;
5712 seq_printf(m,
5713 "CPU%-2d overflow intrs : %lu\n"
5714 "CPU%-2d overflow cycles : %lu\n"
5715 "CPU%-2d overflow min : %lu\n"
5716 "CPU%-2d overflow max : %lu\n"
5717 "CPU%-2d smpl handler calls : %lu\n"
5718 "CPU%-2d smpl handler cycles : %lu\n"
5719 "CPU%-2d spurious intrs : %lu\n"
5720 "CPU%-2d replay intrs : %lu\n"
5721 "CPU%-2d syst_wide : %d\n"
5722 "CPU%-2d dcr_pp : %d\n"
5723 "CPU%-2d exclude idle : %d\n"
5724 "CPU%-2d owner : %d\n"
5725 "CPU%-2d context : %p\n"
5726 "CPU%-2d activations : %lu\n",
5727 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5728 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5729 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5730 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5731 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5732 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5733 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5734 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5735 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5736 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5737 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5738 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5739 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5740 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5742 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5744 psr = pfm_get_psr();
5746 ia64_srlz_d();
5748 seq_printf(m,
5749 "CPU%-2d psr : 0x%lx\n"
5750 "CPU%-2d pmc0 : 0x%lx\n",
5751 cpu, psr,
5752 cpu, ia64_get_pmc(0));
5754 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5755 if (PMC_IS_COUNTING(i) == 0) continue;
5756 seq_printf(m,
5757 "CPU%-2d pmc%u : 0x%lx\n"
5758 "CPU%-2d pmd%u : 0x%lx\n",
5759 cpu, i, ia64_get_pmc(i),
5760 cpu, i, ia64_get_pmd(i));
5763 return 0;
5766 struct seq_operations pfm_seq_ops = {
5767 .start = pfm_proc_start,
5768 .next = pfm_proc_next,
5769 .stop = pfm_proc_stop,
5770 .show = pfm_proc_show
5773 static int
5774 pfm_proc_open(struct inode *inode, struct file *file)
5776 return seq_open(file, &pfm_seq_ops);
5781 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5782 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5783 * is active or inactive based on mode. We must rely on the value in
5784 * local_cpu_data->pfm_syst_info
5786 void
5787 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5789 struct pt_regs *regs;
5790 unsigned long dcr;
5791 unsigned long dcr_pp;
5793 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5796 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5797 * on every CPU, so we can rely on the pid to identify the idle task.
5799 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5800 regs = task_pt_regs(task);
5801 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5802 return;
5805 * if monitoring has started
5807 if (dcr_pp) {
5808 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5810 * context switching in?
5812 if (is_ctxswin) {
5813 /* mask monitoring for the idle task */
5814 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5815 pfm_clear_psr_pp();
5816 ia64_srlz_i();
5817 return;
5820 * context switching out
5821 * restore monitoring for next task
5823 * Due to inlining this odd if-then-else construction generates
5824 * better code.
5826 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5827 pfm_set_psr_pp();
5828 ia64_srlz_i();
5832 #ifdef CONFIG_SMP
5834 static void
5835 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5837 struct task_struct *task = ctx->ctx_task;
5839 ia64_psr(regs)->up = 0;
5840 ia64_psr(regs)->sp = 1;
5842 if (GET_PMU_OWNER() == task) {
5843 DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
5844 SET_PMU_OWNER(NULL, NULL);
5848 * disconnect the task from the context and vice-versa
5850 PFM_SET_WORK_PENDING(task, 0);
5852 task->thread.pfm_context = NULL;
5853 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5855 DPRINT(("force cleanup for [%d]\n", task->pid));
5860 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5862 void
5863 pfm_save_regs(struct task_struct *task)
5865 pfm_context_t *ctx;
5866 struct thread_struct *t;
5867 unsigned long flags;
5868 u64 psr;
5871 ctx = PFM_GET_CTX(task);
5872 if (ctx == NULL) return;
5873 t = &task->thread;
5876 * we always come here with interrupts ALREADY disabled by
5877 * the scheduler. So we simply need to protect against concurrent
5878 * access, not CPU concurrency.
5880 flags = pfm_protect_ctx_ctxsw(ctx);
5882 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5883 struct pt_regs *regs = task_pt_regs(task);
5885 pfm_clear_psr_up();
5887 pfm_force_cleanup(ctx, regs);
5889 BUG_ON(ctx->ctx_smpl_hdr);
5891 pfm_unprotect_ctx_ctxsw(ctx, flags);
5893 pfm_context_free(ctx);
5894 return;
5898 * save current PSR: needed because we modify it
5900 ia64_srlz_d();
5901 psr = pfm_get_psr();
5903 BUG_ON(psr & (IA64_PSR_I));
5906 * stop monitoring:
5907 * This is the last instruction which may generate an overflow
5909 * We do not need to set psr.sp because, it is irrelevant in kernel.
5910 * It will be restored from ipsr when going back to user level
5912 pfm_clear_psr_up();
5915 * keep a copy of psr.up (for reload)
5917 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5920 * release ownership of this PMU.
5921 * PM interrupts are masked, so nothing
5922 * can happen.
5924 SET_PMU_OWNER(NULL, NULL);
5927 * we systematically save the PMD as we have no
5928 * guarantee we will be schedule at that same
5929 * CPU again.
5931 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
5934 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5935 * we will need it on the restore path to check
5936 * for pending overflow.
5938 t->pmcs[0] = ia64_get_pmc(0);
5941 * unfreeze PMU if had pending overflows
5943 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5946 * finally, allow context access.
5947 * interrupts will still be masked after this call.
5949 pfm_unprotect_ctx_ctxsw(ctx, flags);
5952 #else /* !CONFIG_SMP */
5953 void
5954 pfm_save_regs(struct task_struct *task)
5956 pfm_context_t *ctx;
5957 u64 psr;
5959 ctx = PFM_GET_CTX(task);
5960 if (ctx == NULL) return;
5963 * save current PSR: needed because we modify it
5965 psr = pfm_get_psr();
5967 BUG_ON(psr & (IA64_PSR_I));
5970 * stop monitoring:
5971 * This is the last instruction which may generate an overflow
5973 * We do not need to set psr.sp because, it is irrelevant in kernel.
5974 * It will be restored from ipsr when going back to user level
5976 pfm_clear_psr_up();
5979 * keep a copy of psr.up (for reload)
5981 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5984 static void
5985 pfm_lazy_save_regs (struct task_struct *task)
5987 pfm_context_t *ctx;
5988 struct thread_struct *t;
5989 unsigned long flags;
5991 { u64 psr = pfm_get_psr();
5992 BUG_ON(psr & IA64_PSR_UP);
5995 ctx = PFM_GET_CTX(task);
5996 t = &task->thread;
5999 * we need to mask PMU overflow here to
6000 * make sure that we maintain pmc0 until
6001 * we save it. overflow interrupts are
6002 * treated as spurious if there is no
6003 * owner.
6005 * XXX: I don't think this is necessary
6007 PROTECT_CTX(ctx,flags);
6010 * release ownership of this PMU.
6011 * must be done before we save the registers.
6013 * after this call any PMU interrupt is treated
6014 * as spurious.
6016 SET_PMU_OWNER(NULL, NULL);
6019 * save all the pmds we use
6021 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
6024 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6025 * it is needed to check for pended overflow
6026 * on the restore path
6028 t->pmcs[0] = ia64_get_pmc(0);
6031 * unfreeze PMU if had pending overflows
6033 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6036 * now get can unmask PMU interrupts, they will
6037 * be treated as purely spurious and we will not
6038 * lose any information
6040 UNPROTECT_CTX(ctx,flags);
6042 #endif /* CONFIG_SMP */
6044 #ifdef CONFIG_SMP
6046 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6048 void
6049 pfm_load_regs (struct task_struct *task)
6051 pfm_context_t *ctx;
6052 struct thread_struct *t;
6053 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6054 unsigned long flags;
6055 u64 psr, psr_up;
6056 int need_irq_resend;
6058 ctx = PFM_GET_CTX(task);
6059 if (unlikely(ctx == NULL)) return;
6061 BUG_ON(GET_PMU_OWNER());
6063 t = &task->thread;
6065 * possible on unload
6067 if (unlikely((t->flags & IA64_THREAD_PM_VALID) == 0)) return;
6070 * we always come here with interrupts ALREADY disabled by
6071 * the scheduler. So we simply need to protect against concurrent
6072 * access, not CPU concurrency.
6074 flags = pfm_protect_ctx_ctxsw(ctx);
6075 psr = pfm_get_psr();
6077 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6079 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6080 BUG_ON(psr & IA64_PSR_I);
6082 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6083 struct pt_regs *regs = task_pt_regs(task);
6085 BUG_ON(ctx->ctx_smpl_hdr);
6087 pfm_force_cleanup(ctx, regs);
6089 pfm_unprotect_ctx_ctxsw(ctx, flags);
6092 * this one (kmalloc'ed) is fine with interrupts disabled
6094 pfm_context_free(ctx);
6096 return;
6100 * we restore ALL the debug registers to avoid picking up
6101 * stale state.
6103 if (ctx->ctx_fl_using_dbreg) {
6104 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6105 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6108 * retrieve saved psr.up
6110 psr_up = ctx->ctx_saved_psr_up;
6113 * if we were the last user of the PMU on that CPU,
6114 * then nothing to do except restore psr
6116 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6119 * retrieve partial reload masks (due to user modifications)
6121 pmc_mask = ctx->ctx_reload_pmcs[0];
6122 pmd_mask = ctx->ctx_reload_pmds[0];
6124 } else {
6126 * To avoid leaking information to the user level when psr.sp=0,
6127 * we must reload ALL implemented pmds (even the ones we don't use).
6128 * In the kernel we only allow PFM_READ_PMDS on registers which
6129 * we initialized or requested (sampling) so there is no risk there.
6131 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6134 * ALL accessible PMCs are systematically reloaded, unused registers
6135 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6136 * up stale configuration.
6138 * PMC0 is never in the mask. It is always restored separately.
6140 pmc_mask = ctx->ctx_all_pmcs[0];
6143 * when context is MASKED, we will restore PMC with plm=0
6144 * and PMD with stale information, but that's ok, nothing
6145 * will be captured.
6147 * XXX: optimize here
6149 if (pmd_mask) pfm_restore_pmds(t->pmds, pmd_mask);
6150 if (pmc_mask) pfm_restore_pmcs(t->pmcs, pmc_mask);
6153 * check for pending overflow at the time the state
6154 * was saved.
6156 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6158 * reload pmc0 with the overflow information
6159 * On McKinley PMU, this will trigger a PMU interrupt
6161 ia64_set_pmc(0, t->pmcs[0]);
6162 ia64_srlz_d();
6163 t->pmcs[0] = 0UL;
6166 * will replay the PMU interrupt
6168 if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
6170 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6174 * we just did a reload, so we reset the partial reload fields
6176 ctx->ctx_reload_pmcs[0] = 0UL;
6177 ctx->ctx_reload_pmds[0] = 0UL;
6179 SET_LAST_CPU(ctx, smp_processor_id());
6182 * dump activation value for this PMU
6184 INC_ACTIVATION();
6186 * record current activation for this context
6188 SET_ACTIVATION(ctx);
6191 * establish new ownership.
6193 SET_PMU_OWNER(task, ctx);
6196 * restore the psr.up bit. measurement
6197 * is active again.
6198 * no PMU interrupt can happen at this point
6199 * because we still have interrupts disabled.
6201 if (likely(psr_up)) pfm_set_psr_up();
6204 * allow concurrent access to context
6206 pfm_unprotect_ctx_ctxsw(ctx, flags);
6208 #else /* !CONFIG_SMP */
6210 * reload PMU state for UP kernels
6211 * in 2.5 we come here with interrupts disabled
6213 void
6214 pfm_load_regs (struct task_struct *task)
6216 struct thread_struct *t;
6217 pfm_context_t *ctx;
6218 struct task_struct *owner;
6219 unsigned long pmd_mask, pmc_mask;
6220 u64 psr, psr_up;
6221 int need_irq_resend;
6223 owner = GET_PMU_OWNER();
6224 ctx = PFM_GET_CTX(task);
6225 t = &task->thread;
6226 psr = pfm_get_psr();
6228 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6229 BUG_ON(psr & IA64_PSR_I);
6232 * we restore ALL the debug registers to avoid picking up
6233 * stale state.
6235 * This must be done even when the task is still the owner
6236 * as the registers may have been modified via ptrace()
6237 * (not perfmon) by the previous task.
6239 if (ctx->ctx_fl_using_dbreg) {
6240 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6241 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6245 * retrieved saved psr.up
6247 psr_up = ctx->ctx_saved_psr_up;
6248 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6251 * short path, our state is still there, just
6252 * need to restore psr and we go
6254 * we do not touch either PMC nor PMD. the psr is not touched
6255 * by the overflow_handler. So we are safe w.r.t. to interrupt
6256 * concurrency even without interrupt masking.
6258 if (likely(owner == task)) {
6259 if (likely(psr_up)) pfm_set_psr_up();
6260 return;
6264 * someone else is still using the PMU, first push it out and
6265 * then we'll be able to install our stuff !
6267 * Upon return, there will be no owner for the current PMU
6269 if (owner) pfm_lazy_save_regs(owner);
6272 * To avoid leaking information to the user level when psr.sp=0,
6273 * we must reload ALL implemented pmds (even the ones we don't use).
6274 * In the kernel we only allow PFM_READ_PMDS on registers which
6275 * we initialized or requested (sampling) so there is no risk there.
6277 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6280 * ALL accessible PMCs are systematically reloaded, unused registers
6281 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6282 * up stale configuration.
6284 * PMC0 is never in the mask. It is always restored separately
6286 pmc_mask = ctx->ctx_all_pmcs[0];
6288 pfm_restore_pmds(t->pmds, pmd_mask);
6289 pfm_restore_pmcs(t->pmcs, pmc_mask);
6292 * check for pending overflow at the time the state
6293 * was saved.
6295 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6297 * reload pmc0 with the overflow information
6298 * On McKinley PMU, this will trigger a PMU interrupt
6300 ia64_set_pmc(0, t->pmcs[0]);
6301 ia64_srlz_d();
6303 t->pmcs[0] = 0UL;
6306 * will replay the PMU interrupt
6308 if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
6310 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6314 * establish new ownership.
6316 SET_PMU_OWNER(task, ctx);
6319 * restore the psr.up bit. measurement
6320 * is active again.
6321 * no PMU interrupt can happen at this point
6322 * because we still have interrupts disabled.
6324 if (likely(psr_up)) pfm_set_psr_up();
6326 #endif /* CONFIG_SMP */
6329 * this function assumes monitoring is stopped
6331 static void
6332 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6334 u64 pmc0;
6335 unsigned long mask2, val, pmd_val, ovfl_val;
6336 int i, can_access_pmu = 0;
6337 int is_self;
6340 * is the caller the task being monitored (or which initiated the
6341 * session for system wide measurements)
6343 is_self = ctx->ctx_task == task ? 1 : 0;
6346 * can access PMU is task is the owner of the PMU state on the current CPU
6347 * or if we are running on the CPU bound to the context in system-wide mode
6348 * (that is not necessarily the task the context is attached to in this mode).
6349 * In system-wide we always have can_access_pmu true because a task running on an
6350 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6352 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6353 if (can_access_pmu) {
6355 * Mark the PMU as not owned
6356 * This will cause the interrupt handler to do nothing in case an overflow
6357 * interrupt was in-flight
6358 * This also guarantees that pmc0 will contain the final state
6359 * It virtually gives us full control on overflow processing from that point
6360 * on.
6362 SET_PMU_OWNER(NULL, NULL);
6363 DPRINT(("releasing ownership\n"));
6366 * read current overflow status:
6368 * we are guaranteed to read the final stable state
6370 ia64_srlz_d();
6371 pmc0 = ia64_get_pmc(0); /* slow */
6374 * reset freeze bit, overflow status information destroyed
6376 pfm_unfreeze_pmu();
6377 } else {
6378 pmc0 = task->thread.pmcs[0];
6380 * clear whatever overflow status bits there were
6382 task->thread.pmcs[0] = 0;
6384 ovfl_val = pmu_conf->ovfl_val;
6386 * we save all the used pmds
6387 * we take care of overflows for counting PMDs
6389 * XXX: sampling situation is not taken into account here
6391 mask2 = ctx->ctx_used_pmds[0];
6393 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6395 for (i = 0; mask2; i++, mask2>>=1) {
6397 /* skip non used pmds */
6398 if ((mask2 & 0x1) == 0) continue;
6401 * can access PMU always true in system wide mode
6403 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : task->thread.pmds[i];
6405 if (PMD_IS_COUNTING(i)) {
6406 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6407 task->pid,
6409 ctx->ctx_pmds[i].val,
6410 val & ovfl_val));
6413 * we rebuild the full 64 bit value of the counter
6415 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6418 * now everything is in ctx_pmds[] and we need
6419 * to clear the saved context from save_regs() such that
6420 * pfm_read_pmds() gets the correct value
6422 pmd_val = 0UL;
6425 * take care of overflow inline
6427 if (pmc0 & (1UL << i)) {
6428 val += 1 + ovfl_val;
6429 DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
6433 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
6435 if (is_self) task->thread.pmds[i] = pmd_val;
6437 ctx->ctx_pmds[i].val = val;
6441 static struct irqaction perfmon_irqaction = {
6442 .handler = pfm_interrupt_handler,
6443 .flags = SA_INTERRUPT,
6444 .name = "perfmon"
6447 static void
6448 pfm_alt_save_pmu_state(void *data)
6450 struct pt_regs *regs;
6452 regs = task_pt_regs(current);
6454 DPRINT(("called\n"));
6457 * should not be necessary but
6458 * let's take not risk
6460 pfm_clear_psr_up();
6461 pfm_clear_psr_pp();
6462 ia64_psr(regs)->pp = 0;
6465 * This call is required
6466 * May cause a spurious interrupt on some processors
6468 pfm_freeze_pmu();
6470 ia64_srlz_d();
6473 void
6474 pfm_alt_restore_pmu_state(void *data)
6476 struct pt_regs *regs;
6478 regs = task_pt_regs(current);
6480 DPRINT(("called\n"));
6483 * put PMU back in state expected
6484 * by perfmon
6486 pfm_clear_psr_up();
6487 pfm_clear_psr_pp();
6488 ia64_psr(regs)->pp = 0;
6491 * perfmon runs with PMU unfrozen at all times
6493 pfm_unfreeze_pmu();
6495 ia64_srlz_d();
6499 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6501 int ret, i;
6502 int reserve_cpu;
6504 /* some sanity checks */
6505 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6507 /* do the easy test first */
6508 if (pfm_alt_intr_handler) return -EBUSY;
6510 /* one at a time in the install or remove, just fail the others */
6511 if (!spin_trylock(&pfm_alt_install_check)) {
6512 return -EBUSY;
6515 /* reserve our session */
6516 for_each_online_cpu(reserve_cpu) {
6517 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6518 if (ret) goto cleanup_reserve;
6521 /* save the current system wide pmu states */
6522 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
6523 if (ret) {
6524 DPRINT(("on_each_cpu() failed: %d\n", ret));
6525 goto cleanup_reserve;
6528 /* officially change to the alternate interrupt handler */
6529 pfm_alt_intr_handler = hdl;
6531 spin_unlock(&pfm_alt_install_check);
6533 return 0;
6535 cleanup_reserve:
6536 for_each_online_cpu(i) {
6537 /* don't unreserve more than we reserved */
6538 if (i >= reserve_cpu) break;
6540 pfm_unreserve_session(NULL, 1, i);
6543 spin_unlock(&pfm_alt_install_check);
6545 return ret;
6547 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6550 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6552 int i;
6553 int ret;
6555 if (hdl == NULL) return -EINVAL;
6557 /* cannot remove someone else's handler! */
6558 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6560 /* one at a time in the install or remove, just fail the others */
6561 if (!spin_trylock(&pfm_alt_install_check)) {
6562 return -EBUSY;
6565 pfm_alt_intr_handler = NULL;
6567 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
6568 if (ret) {
6569 DPRINT(("on_each_cpu() failed: %d\n", ret));
6572 for_each_online_cpu(i) {
6573 pfm_unreserve_session(NULL, 1, i);
6576 spin_unlock(&pfm_alt_install_check);
6578 return 0;
6580 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6583 * perfmon initialization routine, called from the initcall() table
6585 static int init_pfm_fs(void);
6587 static int __init
6588 pfm_probe_pmu(void)
6590 pmu_config_t **p;
6591 int family;
6593 family = local_cpu_data->family;
6594 p = pmu_confs;
6596 while(*p) {
6597 if ((*p)->probe) {
6598 if ((*p)->probe() == 0) goto found;
6599 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6600 goto found;
6602 p++;
6604 return -1;
6605 found:
6606 pmu_conf = *p;
6607 return 0;
6610 static struct file_operations pfm_proc_fops = {
6611 .open = pfm_proc_open,
6612 .read = seq_read,
6613 .llseek = seq_lseek,
6614 .release = seq_release,
6617 int __init
6618 pfm_init(void)
6620 unsigned int n, n_counters, i;
6622 printk("perfmon: version %u.%u IRQ %u\n",
6623 PFM_VERSION_MAJ,
6624 PFM_VERSION_MIN,
6625 IA64_PERFMON_VECTOR);
6627 if (pfm_probe_pmu()) {
6628 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6629 local_cpu_data->family);
6630 return -ENODEV;
6634 * compute the number of implemented PMD/PMC from the
6635 * description tables
6637 n = 0;
6638 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6639 if (PMC_IS_IMPL(i) == 0) continue;
6640 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6641 n++;
6643 pmu_conf->num_pmcs = n;
6645 n = 0; n_counters = 0;
6646 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6647 if (PMD_IS_IMPL(i) == 0) continue;
6648 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6649 n++;
6650 if (PMD_IS_COUNTING(i)) n_counters++;
6652 pmu_conf->num_pmds = n;
6653 pmu_conf->num_counters = n_counters;
6656 * sanity checks on the number of debug registers
6658 if (pmu_conf->use_rr_dbregs) {
6659 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6660 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6661 pmu_conf = NULL;
6662 return -1;
6664 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6665 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6666 pmu_conf = NULL;
6667 return -1;
6671 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6672 pmu_conf->pmu_name,
6673 pmu_conf->num_pmcs,
6674 pmu_conf->num_pmds,
6675 pmu_conf->num_counters,
6676 ffz(pmu_conf->ovfl_val));
6678 /* sanity check */
6679 if (pmu_conf->num_pmds >= IA64_NUM_PMD_REGS || pmu_conf->num_pmcs >= IA64_NUM_PMC_REGS) {
6680 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6681 pmu_conf = NULL;
6682 return -1;
6686 * create /proc/perfmon (mostly for debugging purposes)
6688 perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
6689 if (perfmon_dir == NULL) {
6690 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6691 pmu_conf = NULL;
6692 return -1;
6695 * install customized file operations for /proc/perfmon entry
6697 perfmon_dir->proc_fops = &pfm_proc_fops;
6700 * create /proc/sys/kernel/perfmon (for debugging purposes)
6702 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root, 0);
6705 * initialize all our spinlocks
6707 spin_lock_init(&pfm_sessions.pfs_lock);
6708 spin_lock_init(&pfm_buffer_fmt_lock);
6710 init_pfm_fs();
6712 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6714 return 0;
6717 __initcall(pfm_init);
6720 * this function is called before pfm_init()
6722 void
6723 pfm_init_percpu (void)
6725 static int first_time=1;
6727 * make sure no measurement is active
6728 * (may inherit programmed PMCs from EFI).
6730 pfm_clear_psr_pp();
6731 pfm_clear_psr_up();
6734 * we run with the PMU not frozen at all times
6736 pfm_unfreeze_pmu();
6738 if (first_time) {
6739 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6740 first_time=0;
6743 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6744 ia64_srlz_d();
6748 * used for debug purposes only
6750 void
6751 dump_pmu_state(const char *from)
6753 struct task_struct *task;
6754 struct thread_struct *t;
6755 struct pt_regs *regs;
6756 pfm_context_t *ctx;
6757 unsigned long psr, dcr, info, flags;
6758 int i, this_cpu;
6760 local_irq_save(flags);
6762 this_cpu = smp_processor_id();
6763 regs = task_pt_regs(current);
6764 info = PFM_CPUINFO_GET();
6765 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6767 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6768 local_irq_restore(flags);
6769 return;
6772 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6773 this_cpu,
6774 from,
6775 current->pid,
6776 regs->cr_iip,
6777 current->comm);
6779 task = GET_PMU_OWNER();
6780 ctx = GET_PMU_CTX();
6782 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
6784 psr = pfm_get_psr();
6786 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6787 this_cpu,
6788 ia64_get_pmc(0),
6789 psr & IA64_PSR_PP ? 1 : 0,
6790 psr & IA64_PSR_UP ? 1 : 0,
6791 dcr & IA64_DCR_PP ? 1 : 0,
6792 info,
6793 ia64_psr(regs)->up,
6794 ia64_psr(regs)->pp);
6796 ia64_psr(regs)->up = 0;
6797 ia64_psr(regs)->pp = 0;
6799 t = &current->thread;
6801 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6802 if (PMC_IS_IMPL(i) == 0) continue;
6803 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, t->pmcs[i]);
6806 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6807 if (PMD_IS_IMPL(i) == 0) continue;
6808 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, t->pmds[i]);
6811 if (ctx) {
6812 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6813 this_cpu,
6814 ctx->ctx_state,
6815 ctx->ctx_smpl_vaddr,
6816 ctx->ctx_smpl_hdr,
6817 ctx->ctx_msgq_head,
6818 ctx->ctx_msgq_tail,
6819 ctx->ctx_saved_psr_up);
6821 local_irq_restore(flags);
6825 * called from process.c:copy_thread(). task is new child.
6827 void
6828 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6830 struct thread_struct *thread;
6832 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
6834 thread = &task->thread;
6837 * cut links inherited from parent (current)
6839 thread->pfm_context = NULL;
6841 PFM_SET_WORK_PENDING(task, 0);
6844 * the psr bits are already set properly in copy_threads()
6847 #else /* !CONFIG_PERFMON */
6848 asmlinkage long
6849 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6851 return -ENOSYS;
6853 #endif /* CONFIG_PERFMON */