2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/config.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <linux/interrupt.h>
27 #include <linux/smp_lock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
33 #include <linux/sysctl.h>
34 #include <linux/list.h>
35 #include <linux/file.h>
36 #include <linux/poll.h>
37 #include <linux/vfs.h>
38 #include <linux/pagemap.h>
39 #include <linux/mount.h>
40 #include <linux/bitops.h>
41 #include <linux/capability.h>
42 #include <linux/rcupdate.h>
43 #include <linux/completion.h>
45 #include <asm/errno.h>
46 #include <asm/intrinsics.h>
48 #include <asm/perfmon.h>
49 #include <asm/processor.h>
50 #include <asm/signal.h>
51 #include <asm/system.h>
52 #include <asm/uaccess.h>
53 #include <asm/delay.h>
57 * perfmon context state
59 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
60 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
61 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
62 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
64 #define PFM_INVALID_ACTIVATION (~0UL)
67 * depth of message queue
69 #define PFM_MAX_MSGS 32
70 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
73 * type of a PMU register (bitmask).
75 * bit0 : register implemented
78 * bit4 : pmc has pmc.pm
79 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
80 * bit6-7 : register type
83 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
84 #define PFM_REG_IMPL 0x1 /* register implemented */
85 #define PFM_REG_END 0x2 /* end marker */
86 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
87 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
88 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
89 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
90 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
92 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
93 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
95 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
97 /* i assumed unsigned */
98 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
99 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
101 /* XXX: these assume that register i is implemented */
102 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
103 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
104 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
105 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
107 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
108 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
109 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
110 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
112 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
113 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
115 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
116 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
117 #define PFM_CTX_TASK(h) (h)->ctx_task
119 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
121 /* XXX: does not support more than 64 PMDs */
122 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
123 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
125 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
127 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
128 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
129 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
130 #define PFM_CODE_RR 0 /* requesting code range restriction */
131 #define PFM_DATA_RR 1 /* requestion data range restriction */
133 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
134 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
135 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
137 #define RDEP(x) (1UL<<(x))
140 * context protection macros
142 * - we need to protect against CPU concurrency (spin_lock)
143 * - we need to protect against PMU overflow interrupts (local_irq_disable)
145 * - we need to protect against PMU overflow interrupts (local_irq_disable)
147 * spin_lock_irqsave()/spin_lock_irqrestore():
148 * in SMP: local_irq_disable + spin_lock
149 * in UP : local_irq_disable
151 * spin_lock()/spin_lock():
152 * in UP : removed automatically
153 * in SMP: protect against context accesses from other CPU. interrupts
154 * are not masked. This is useful for the PMU interrupt handler
155 * because we know we will not get PMU concurrency in that code.
157 #define PROTECT_CTX(c, f) \
159 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
160 spin_lock_irqsave(&(c)->ctx_lock, f); \
161 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
164 #define UNPROTECT_CTX(c, f) \
166 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
167 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
170 #define PROTECT_CTX_NOPRINT(c, f) \
172 spin_lock_irqsave(&(c)->ctx_lock, f); \
176 #define UNPROTECT_CTX_NOPRINT(c, f) \
178 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
182 #define PROTECT_CTX_NOIRQ(c) \
184 spin_lock(&(c)->ctx_lock); \
187 #define UNPROTECT_CTX_NOIRQ(c) \
189 spin_unlock(&(c)->ctx_lock); \
195 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
196 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
197 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
199 #else /* !CONFIG_SMP */
200 #define SET_ACTIVATION(t) do {} while(0)
201 #define GET_ACTIVATION(t) do {} while(0)
202 #define INC_ACTIVATION(t) do {} while(0)
203 #endif /* CONFIG_SMP */
205 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
206 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
207 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
209 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
210 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
212 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
215 * cmp0 must be the value of pmc0
217 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
219 #define PFMFS_MAGIC 0xa0b4d889
224 #define PFM_DEBUGGING 1
228 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
231 #define DPRINT_ovfl(a) \
233 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
238 * 64-bit software counter structure
240 * the next_reset_type is applied to the next call to pfm_reset_regs()
243 unsigned long val
; /* virtual 64bit counter value */
244 unsigned long lval
; /* last reset value */
245 unsigned long long_reset
; /* reset value on sampling overflow */
246 unsigned long short_reset
; /* reset value on overflow */
247 unsigned long reset_pmds
[4]; /* which other pmds to reset when this counter overflows */
248 unsigned long smpl_pmds
[4]; /* which pmds are accessed when counter overflow */
249 unsigned long seed
; /* seed for random-number generator */
250 unsigned long mask
; /* mask for random-number generator */
251 unsigned int flags
; /* notify/do not notify */
252 unsigned long eventid
; /* overflow event identifier */
259 unsigned int block
:1; /* when 1, task will blocked on user notifications */
260 unsigned int system
:1; /* do system wide monitoring */
261 unsigned int using_dbreg
:1; /* using range restrictions (debug registers) */
262 unsigned int is_sampling
:1; /* true if using a custom format */
263 unsigned int excl_idle
:1; /* exclude idle task in system wide session */
264 unsigned int going_zombie
:1; /* context is zombie (MASKED+blocking) */
265 unsigned int trap_reason
:2; /* reason for going into pfm_handle_work() */
266 unsigned int no_msg
:1; /* no message sent on overflow */
267 unsigned int can_restart
:1; /* allowed to issue a PFM_RESTART */
268 unsigned int reserved
:22;
269 } pfm_context_flags_t
;
271 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
272 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
273 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
277 * perfmon context: encapsulates all the state of a monitoring session
280 typedef struct pfm_context
{
281 spinlock_t ctx_lock
; /* context protection */
283 pfm_context_flags_t ctx_flags
; /* bitmask of flags (block reason incl.) */
284 unsigned int ctx_state
; /* state: active/inactive (no bitfield) */
286 struct task_struct
*ctx_task
; /* task to which context is attached */
288 unsigned long ctx_ovfl_regs
[4]; /* which registers overflowed (notification) */
290 struct completion ctx_restart_done
; /* use for blocking notification mode */
292 unsigned long ctx_used_pmds
[4]; /* bitmask of PMD used */
293 unsigned long ctx_all_pmds
[4]; /* bitmask of all accessible PMDs */
294 unsigned long ctx_reload_pmds
[4]; /* bitmask of force reload PMD on ctxsw in */
296 unsigned long ctx_all_pmcs
[4]; /* bitmask of all accessible PMCs */
297 unsigned long ctx_reload_pmcs
[4]; /* bitmask of force reload PMC on ctxsw in */
298 unsigned long ctx_used_monitors
[4]; /* bitmask of monitor PMC being used */
300 unsigned long ctx_pmcs
[IA64_NUM_PMC_REGS
]; /* saved copies of PMC values */
302 unsigned int ctx_used_ibrs
[1]; /* bitmask of used IBR (speedup ctxsw in) */
303 unsigned int ctx_used_dbrs
[1]; /* bitmask of used DBR (speedup ctxsw in) */
304 unsigned long ctx_dbrs
[IA64_NUM_DBG_REGS
]; /* DBR values (cache) when not loaded */
305 unsigned long ctx_ibrs
[IA64_NUM_DBG_REGS
]; /* IBR values (cache) when not loaded */
307 pfm_counter_t ctx_pmds
[IA64_NUM_PMD_REGS
]; /* software state for PMDS */
309 u64 ctx_saved_psr_up
; /* only contains psr.up value */
311 unsigned long ctx_last_activation
; /* context last activation number for last_cpu */
312 unsigned int ctx_last_cpu
; /* CPU id of current or last CPU used (SMP only) */
313 unsigned int ctx_cpu
; /* cpu to which perfmon is applied (system wide) */
315 int ctx_fd
; /* file descriptor used my this context */
316 pfm_ovfl_arg_t ctx_ovfl_arg
; /* argument to custom buffer format handler */
318 pfm_buffer_fmt_t
*ctx_buf_fmt
; /* buffer format callbacks */
319 void *ctx_smpl_hdr
; /* points to sampling buffer header kernel vaddr */
320 unsigned long ctx_smpl_size
; /* size of sampling buffer */
321 void *ctx_smpl_vaddr
; /* user level virtual address of smpl buffer */
323 wait_queue_head_t ctx_msgq_wait
;
324 pfm_msg_t ctx_msgq
[PFM_MAX_MSGS
];
327 struct fasync_struct
*ctx_async_queue
;
329 wait_queue_head_t ctx_zombieq
; /* termination cleanup wait queue */
333 * magic number used to verify that structure is really
336 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
338 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
341 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
342 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
344 #define SET_LAST_CPU(ctx, v) do {} while(0)
345 #define GET_LAST_CPU(ctx) do {} while(0)
349 #define ctx_fl_block ctx_flags.block
350 #define ctx_fl_system ctx_flags.system
351 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
352 #define ctx_fl_is_sampling ctx_flags.is_sampling
353 #define ctx_fl_excl_idle ctx_flags.excl_idle
354 #define ctx_fl_going_zombie ctx_flags.going_zombie
355 #define ctx_fl_trap_reason ctx_flags.trap_reason
356 #define ctx_fl_no_msg ctx_flags.no_msg
357 #define ctx_fl_can_restart ctx_flags.can_restart
359 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
360 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
363 * global information about all sessions
364 * mostly used to synchronize between system wide and per-process
367 spinlock_t pfs_lock
; /* lock the structure */
369 unsigned int pfs_task_sessions
; /* number of per task sessions */
370 unsigned int pfs_sys_sessions
; /* number of per system wide sessions */
371 unsigned int pfs_sys_use_dbregs
; /* incremented when a system wide session uses debug regs */
372 unsigned int pfs_ptrace_use_dbregs
; /* incremented when a process uses debug regs */
373 struct task_struct
*pfs_sys_session
[NR_CPUS
]; /* point to task owning a system-wide session */
377 * information about a PMC or PMD.
378 * dep_pmd[]: a bitmask of dependent PMD registers
379 * dep_pmc[]: a bitmask of dependent PMC registers
381 typedef int (*pfm_reg_check_t
)(struct task_struct
*task
, pfm_context_t
*ctx
, unsigned int cnum
, unsigned long *val
, struct pt_regs
*regs
);
385 unsigned long default_value
; /* power-on default value */
386 unsigned long reserved_mask
; /* bitmask of reserved bits */
387 pfm_reg_check_t read_check
;
388 pfm_reg_check_t write_check
;
389 unsigned long dep_pmd
[4];
390 unsigned long dep_pmc
[4];
393 /* assume cnum is a valid monitor */
394 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
397 * This structure is initialized at boot time and contains
398 * a description of the PMU main characteristics.
400 * If the probe function is defined, detection is based
401 * on its return value:
402 * - 0 means recognized PMU
403 * - anything else means not supported
404 * When the probe function is not defined, then the pmu_family field
405 * is used and it must match the host CPU family such that:
406 * - cpu->family & config->pmu_family != 0
409 unsigned long ovfl_val
; /* overflow value for counters */
411 pfm_reg_desc_t
*pmc_desc
; /* detailed PMC register dependencies descriptions */
412 pfm_reg_desc_t
*pmd_desc
; /* detailed PMD register dependencies descriptions */
414 unsigned int num_pmcs
; /* number of PMCS: computed at init time */
415 unsigned int num_pmds
; /* number of PMDS: computed at init time */
416 unsigned long impl_pmcs
[4]; /* bitmask of implemented PMCS */
417 unsigned long impl_pmds
[4]; /* bitmask of implemented PMDS */
419 char *pmu_name
; /* PMU family name */
420 unsigned int pmu_family
; /* cpuid family pattern used to identify pmu */
421 unsigned int flags
; /* pmu specific flags */
422 unsigned int num_ibrs
; /* number of IBRS: computed at init time */
423 unsigned int num_dbrs
; /* number of DBRS: computed at init time */
424 unsigned int num_counters
; /* PMC/PMD counting pairs : computed at init time */
425 int (*probe
)(void); /* customized probe routine */
426 unsigned int use_rr_dbregs
:1; /* set if debug registers used for range restriction */
431 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
434 * debug register related type definitions
437 unsigned long ibr_mask
:56;
438 unsigned long ibr_plm
:4;
439 unsigned long ibr_ig
:3;
440 unsigned long ibr_x
:1;
444 unsigned long dbr_mask
:56;
445 unsigned long dbr_plm
:4;
446 unsigned long dbr_ig
:2;
447 unsigned long dbr_w
:1;
448 unsigned long dbr_r
:1;
459 * perfmon command descriptions
462 int (*cmd_func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
465 unsigned int cmd_narg
;
467 int (*cmd_getsize
)(void *arg
, size_t *sz
);
470 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
471 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
472 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
473 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
476 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
477 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
478 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
479 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
480 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
482 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
485 unsigned long pfm_spurious_ovfl_intr_count
; /* keep track of spurious ovfl interrupts */
486 unsigned long pfm_replay_ovfl_intr_count
; /* keep track of replayed ovfl interrupts */
487 unsigned long pfm_ovfl_intr_count
; /* keep track of ovfl interrupts */
488 unsigned long pfm_ovfl_intr_cycles
; /* cycles spent processing ovfl interrupts */
489 unsigned long pfm_ovfl_intr_cycles_min
; /* min cycles spent processing ovfl interrupts */
490 unsigned long pfm_ovfl_intr_cycles_max
; /* max cycles spent processing ovfl interrupts */
491 unsigned long pfm_smpl_handler_calls
;
492 unsigned long pfm_smpl_handler_cycles
;
493 char pad
[SMP_CACHE_BYTES
] ____cacheline_aligned
;
497 * perfmon internal variables
499 static pfm_stats_t pfm_stats
[NR_CPUS
];
500 static pfm_session_t pfm_sessions
; /* global sessions information */
502 static DEFINE_SPINLOCK(pfm_alt_install_check
);
503 static pfm_intr_handler_desc_t
*pfm_alt_intr_handler
;
505 static struct proc_dir_entry
*perfmon_dir
;
506 static pfm_uuid_t pfm_null_uuid
= {0,};
508 static spinlock_t pfm_buffer_fmt_lock
;
509 static LIST_HEAD(pfm_buffer_fmt_list
);
511 static pmu_config_t
*pmu_conf
;
513 /* sysctl() controls */
514 pfm_sysctl_t pfm_sysctl
;
515 EXPORT_SYMBOL(pfm_sysctl
);
517 static ctl_table pfm_ctl_table
[]={
518 {1, "debug", &pfm_sysctl
.debug
, sizeof(int), 0666, NULL
, &proc_dointvec
, NULL
,},
519 {2, "debug_ovfl", &pfm_sysctl
.debug_ovfl
, sizeof(int), 0666, NULL
, &proc_dointvec
, NULL
,},
520 {3, "fastctxsw", &pfm_sysctl
.fastctxsw
, sizeof(int), 0600, NULL
, &proc_dointvec
, NULL
,},
521 {4, "expert_mode", &pfm_sysctl
.expert_mode
, sizeof(int), 0600, NULL
, &proc_dointvec
, NULL
,},
524 static ctl_table pfm_sysctl_dir
[] = {
525 {1, "perfmon", NULL
, 0, 0755, pfm_ctl_table
, },
528 static ctl_table pfm_sysctl_root
[] = {
529 {1, "kernel", NULL
, 0, 0755, pfm_sysctl_dir
, },
532 static struct ctl_table_header
*pfm_sysctl_header
;
534 static int pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
535 static int pfm_flush(struct file
*filp
);
537 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
538 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
541 pfm_put_task(struct task_struct
*task
)
543 if (task
!= current
) put_task_struct(task
);
547 pfm_set_task_notify(struct task_struct
*task
)
549 struct thread_info
*info
;
551 info
= (struct thread_info
*) ((char *) task
+ IA64_TASK_SIZE
);
552 set_bit(TIF_NOTIFY_RESUME
, &info
->flags
);
556 pfm_clear_task_notify(void)
558 clear_thread_flag(TIF_NOTIFY_RESUME
);
562 pfm_reserve_page(unsigned long a
)
564 SetPageReserved(vmalloc_to_page((void *)a
));
567 pfm_unreserve_page(unsigned long a
)
569 ClearPageReserved(vmalloc_to_page((void*)a
));
572 static inline unsigned long
573 pfm_protect_ctx_ctxsw(pfm_context_t
*x
)
575 spin_lock(&(x
)->ctx_lock
);
580 pfm_unprotect_ctx_ctxsw(pfm_context_t
*x
, unsigned long f
)
582 spin_unlock(&(x
)->ctx_lock
);
585 static inline unsigned int
586 pfm_do_munmap(struct mm_struct
*mm
, unsigned long addr
, size_t len
, int acct
)
588 return do_munmap(mm
, addr
, len
);
591 static inline unsigned long
592 pfm_get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
, unsigned long pgoff
, unsigned long flags
, unsigned long exec
)
594 return get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
598 static struct super_block
*
599 pfmfs_get_sb(struct file_system_type
*fs_type
, int flags
, const char *dev_name
, void *data
)
601 return get_sb_pseudo(fs_type
, "pfm:", NULL
, PFMFS_MAGIC
);
604 static struct file_system_type pfm_fs_type
= {
606 .get_sb
= pfmfs_get_sb
,
607 .kill_sb
= kill_anon_super
,
610 DEFINE_PER_CPU(unsigned long, pfm_syst_info
);
611 DEFINE_PER_CPU(struct task_struct
*, pmu_owner
);
612 DEFINE_PER_CPU(pfm_context_t
*, pmu_ctx
);
613 DEFINE_PER_CPU(unsigned long, pmu_activation_number
);
614 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info
);
617 /* forward declaration */
618 static struct file_operations pfm_file_ops
;
621 * forward declarations
624 static void pfm_lazy_save_regs (struct task_struct
*ta
);
627 void dump_pmu_state(const char *);
628 static int pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
630 #include "perfmon_itanium.h"
631 #include "perfmon_mckinley.h"
632 #include "perfmon_montecito.h"
633 #include "perfmon_generic.h"
635 static pmu_config_t
*pmu_confs
[]={
639 &pmu_conf_gen
, /* must be last */
644 static int pfm_end_notify_user(pfm_context_t
*ctx
);
647 pfm_clear_psr_pp(void)
649 ia64_rsm(IA64_PSR_PP
);
656 ia64_ssm(IA64_PSR_PP
);
661 pfm_clear_psr_up(void)
663 ia64_rsm(IA64_PSR_UP
);
670 ia64_ssm(IA64_PSR_UP
);
674 static inline unsigned long
678 tmp
= ia64_getreg(_IA64_REG_PSR
);
684 pfm_set_psr_l(unsigned long val
)
686 ia64_setreg(_IA64_REG_PSR_L
, val
);
698 pfm_unfreeze_pmu(void)
705 pfm_restore_ibrs(unsigned long *ibrs
, unsigned int nibrs
)
709 for (i
=0; i
< nibrs
; i
++) {
710 ia64_set_ibr(i
, ibrs
[i
]);
711 ia64_dv_serialize_instruction();
717 pfm_restore_dbrs(unsigned long *dbrs
, unsigned int ndbrs
)
721 for (i
=0; i
< ndbrs
; i
++) {
722 ia64_set_dbr(i
, dbrs
[i
]);
723 ia64_dv_serialize_data();
729 * PMD[i] must be a counter. no check is made
731 static inline unsigned long
732 pfm_read_soft_counter(pfm_context_t
*ctx
, int i
)
734 return ctx
->ctx_pmds
[i
].val
+ (ia64_get_pmd(i
) & pmu_conf
->ovfl_val
);
738 * PMD[i] must be a counter. no check is made
741 pfm_write_soft_counter(pfm_context_t
*ctx
, int i
, unsigned long val
)
743 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
745 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
747 * writing to unimplemented part is ignore, so we do not need to
750 ia64_set_pmd(i
, val
& ovfl_val
);
754 pfm_get_new_msg(pfm_context_t
*ctx
)
758 next
= (ctx
->ctx_msgq_tail
+1) % PFM_MAX_MSGS
;
760 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
761 if (next
== ctx
->ctx_msgq_head
) return NULL
;
763 idx
= ctx
->ctx_msgq_tail
;
764 ctx
->ctx_msgq_tail
= next
;
766 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, idx
));
768 return ctx
->ctx_msgq
+idx
;
772 pfm_get_next_msg(pfm_context_t
*ctx
)
776 DPRINT(("ctx=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
778 if (PFM_CTXQ_EMPTY(ctx
)) return NULL
;
783 msg
= ctx
->ctx_msgq
+ctx
->ctx_msgq_head
;
788 ctx
->ctx_msgq_head
= (ctx
->ctx_msgq_head
+1) % PFM_MAX_MSGS
;
790 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, msg
->pfm_gen_msg
.msg_type
));
796 pfm_reset_msgq(pfm_context_t
*ctx
)
798 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
799 DPRINT(("ctx=%p msgq reset\n", ctx
));
803 pfm_rvmalloc(unsigned long size
)
808 size
= PAGE_ALIGN(size
);
811 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
812 memset(mem
, 0, size
);
813 addr
= (unsigned long)mem
;
815 pfm_reserve_page(addr
);
824 pfm_rvfree(void *mem
, unsigned long size
)
829 DPRINT(("freeing physical buffer @%p size=%lu\n", mem
, size
));
830 addr
= (unsigned long) mem
;
831 while ((long) size
> 0) {
832 pfm_unreserve_page(addr
);
841 static pfm_context_t
*
842 pfm_context_alloc(void)
847 * allocate context descriptor
848 * must be able to free with interrupts disabled
850 ctx
= kmalloc(sizeof(pfm_context_t
), GFP_KERNEL
);
852 memset(ctx
, 0, sizeof(pfm_context_t
));
853 DPRINT(("alloc ctx @%p\n", ctx
));
859 pfm_context_free(pfm_context_t
*ctx
)
862 DPRINT(("free ctx @%p\n", ctx
));
868 pfm_mask_monitoring(struct task_struct
*task
)
870 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
871 struct thread_struct
*th
= &task
->thread
;
872 unsigned long mask
, val
, ovfl_mask
;
875 DPRINT_ovfl(("masking monitoring for [%d]\n", task
->pid
));
877 ovfl_mask
= pmu_conf
->ovfl_val
;
879 * monitoring can only be masked as a result of a valid
880 * counter overflow. In UP, it means that the PMU still
881 * has an owner. Note that the owner can be different
882 * from the current task. However the PMU state belongs
884 * In SMP, a valid overflow only happens when task is
885 * current. Therefore if we come here, we know that
886 * the PMU state belongs to the current task, therefore
887 * we can access the live registers.
889 * So in both cases, the live register contains the owner's
890 * state. We can ONLY touch the PMU registers and NOT the PSR.
892 * As a consequence to this call, the thread->pmds[] array
893 * contains stale information which must be ignored
894 * when context is reloaded AND monitoring is active (see
897 mask
= ctx
->ctx_used_pmds
[0];
898 for (i
= 0; mask
; i
++, mask
>>=1) {
899 /* skip non used pmds */
900 if ((mask
& 0x1) == 0) continue;
901 val
= ia64_get_pmd(i
);
903 if (PMD_IS_COUNTING(i
)) {
905 * we rebuild the full 64 bit value of the counter
907 ctx
->ctx_pmds
[i
].val
+= (val
& ovfl_mask
);
909 ctx
->ctx_pmds
[i
].val
= val
;
911 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
913 ctx
->ctx_pmds
[i
].val
,
917 * mask monitoring by setting the privilege level to 0
918 * we cannot use psr.pp/psr.up for this, it is controlled by
921 * if task is current, modify actual registers, otherwise modify
922 * thread save state, i.e., what will be restored in pfm_load_regs()
924 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
925 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
926 if ((mask
& 0x1) == 0UL) continue;
927 ia64_set_pmc(i
, th
->pmcs
[i
] & ~0xfUL
);
928 th
->pmcs
[i
] &= ~0xfUL
;
929 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i
, th
->pmcs
[i
]));
932 * make all of this visible
938 * must always be done with task == current
940 * context must be in MASKED state when calling
943 pfm_restore_monitoring(struct task_struct
*task
)
945 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
946 struct thread_struct
*th
= &task
->thread
;
947 unsigned long mask
, ovfl_mask
;
948 unsigned long psr
, val
;
951 is_system
= ctx
->ctx_fl_system
;
952 ovfl_mask
= pmu_conf
->ovfl_val
;
954 if (task
!= current
) {
955 printk(KERN_ERR
"perfmon.%d: invalid task[%d] current[%d]\n", __LINE__
, task
->pid
, current
->pid
);
958 if (ctx
->ctx_state
!= PFM_CTX_MASKED
) {
959 printk(KERN_ERR
"perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__
,
960 task
->pid
, current
->pid
, ctx
->ctx_state
);
965 * monitoring is masked via the PMC.
966 * As we restore their value, we do not want each counter to
967 * restart right away. We stop monitoring using the PSR,
968 * restore the PMC (and PMD) and then re-establish the psr
969 * as it was. Note that there can be no pending overflow at
970 * this point, because monitoring was MASKED.
972 * system-wide session are pinned and self-monitoring
974 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
976 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
982 * first, we restore the PMD
984 mask
= ctx
->ctx_used_pmds
[0];
985 for (i
= 0; mask
; i
++, mask
>>=1) {
986 /* skip non used pmds */
987 if ((mask
& 0x1) == 0) continue;
989 if (PMD_IS_COUNTING(i
)) {
991 * we split the 64bit value according to
994 val
= ctx
->ctx_pmds
[i
].val
& ovfl_mask
;
995 ctx
->ctx_pmds
[i
].val
&= ~ovfl_mask
;
997 val
= ctx
->ctx_pmds
[i
].val
;
999 ia64_set_pmd(i
, val
);
1001 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1003 ctx
->ctx_pmds
[i
].val
,
1009 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
1010 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
1011 if ((mask
& 0x1) == 0UL) continue;
1012 th
->pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1013 ia64_set_pmc(i
, th
->pmcs
[i
]);
1014 DPRINT(("[%d] pmc[%d]=0x%lx\n", task
->pid
, i
, th
->pmcs
[i
]));
1019 * must restore DBR/IBR because could be modified while masked
1020 * XXX: need to optimize
1022 if (ctx
->ctx_fl_using_dbreg
) {
1023 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
1024 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
1030 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1032 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
1039 pfm_save_pmds(unsigned long *pmds
, unsigned long mask
)
1045 for (i
=0; mask
; i
++, mask
>>=1) {
1046 if (mask
& 0x1) pmds
[i
] = ia64_get_pmd(i
);
1051 * reload from thread state (used for ctxw only)
1054 pfm_restore_pmds(unsigned long *pmds
, unsigned long mask
)
1057 unsigned long val
, ovfl_val
= pmu_conf
->ovfl_val
;
1059 for (i
=0; mask
; i
++, mask
>>=1) {
1060 if ((mask
& 0x1) == 0) continue;
1061 val
= PMD_IS_COUNTING(i
) ? pmds
[i
] & ovfl_val
: pmds
[i
];
1062 ia64_set_pmd(i
, val
);
1068 * propagate PMD from context to thread-state
1071 pfm_copy_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
1073 struct thread_struct
*thread
= &task
->thread
;
1074 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
1075 unsigned long mask
= ctx
->ctx_all_pmds
[0];
1079 DPRINT(("mask=0x%lx\n", mask
));
1081 for (i
=0; mask
; i
++, mask
>>=1) {
1083 val
= ctx
->ctx_pmds
[i
].val
;
1086 * We break up the 64 bit value into 2 pieces
1087 * the lower bits go to the machine state in the
1088 * thread (will be reloaded on ctxsw in).
1089 * The upper part stays in the soft-counter.
1091 if (PMD_IS_COUNTING(i
)) {
1092 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
1095 thread
->pmds
[i
] = val
;
1097 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1100 ctx
->ctx_pmds
[i
].val
));
1105 * propagate PMC from context to thread-state
1108 pfm_copy_pmcs(struct task_struct
*task
, pfm_context_t
*ctx
)
1110 struct thread_struct
*thread
= &task
->thread
;
1111 unsigned long mask
= ctx
->ctx_all_pmcs
[0];
1114 DPRINT(("mask=0x%lx\n", mask
));
1116 for (i
=0; mask
; i
++, mask
>>=1) {
1117 /* masking 0 with ovfl_val yields 0 */
1118 thread
->pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1119 DPRINT(("pmc[%d]=0x%lx\n", i
, thread
->pmcs
[i
]));
1126 pfm_restore_pmcs(unsigned long *pmcs
, unsigned long mask
)
1130 for (i
=0; mask
; i
++, mask
>>=1) {
1131 if ((mask
& 0x1) == 0) continue;
1132 ia64_set_pmc(i
, pmcs
[i
]);
1138 pfm_uuid_cmp(pfm_uuid_t a
, pfm_uuid_t b
)
1140 return memcmp(a
, b
, sizeof(pfm_uuid_t
));
1144 pfm_buf_fmt_exit(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, struct pt_regs
*regs
)
1147 if (fmt
->fmt_exit
) ret
= (*fmt
->fmt_exit
)(task
, buf
, regs
);
1152 pfm_buf_fmt_getsize(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
, int cpu
, void *arg
, unsigned long *size
)
1155 if (fmt
->fmt_getsize
) ret
= (*fmt
->fmt_getsize
)(task
, flags
, cpu
, arg
, size
);
1161 pfm_buf_fmt_validate(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
,
1165 if (fmt
->fmt_validate
) ret
= (*fmt
->fmt_validate
)(task
, flags
, cpu
, arg
);
1170 pfm_buf_fmt_init(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, unsigned int flags
,
1174 if (fmt
->fmt_init
) ret
= (*fmt
->fmt_init
)(task
, buf
, flags
, cpu
, arg
);
1179 pfm_buf_fmt_restart(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1182 if (fmt
->fmt_restart
) ret
= (*fmt
->fmt_restart
)(task
, ctrl
, buf
, regs
);
1187 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1190 if (fmt
->fmt_restart_active
) ret
= (*fmt
->fmt_restart_active
)(task
, ctrl
, buf
, regs
);
1194 static pfm_buffer_fmt_t
*
1195 __pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1197 struct list_head
* pos
;
1198 pfm_buffer_fmt_t
* entry
;
1200 list_for_each(pos
, &pfm_buffer_fmt_list
) {
1201 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
1202 if (pfm_uuid_cmp(uuid
, entry
->fmt_uuid
) == 0)
1209 * find a buffer format based on its uuid
1211 static pfm_buffer_fmt_t
*
1212 pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1214 pfm_buffer_fmt_t
* fmt
;
1215 spin_lock(&pfm_buffer_fmt_lock
);
1216 fmt
= __pfm_find_buffer_fmt(uuid
);
1217 spin_unlock(&pfm_buffer_fmt_lock
);
1222 pfm_register_buffer_fmt(pfm_buffer_fmt_t
*fmt
)
1226 /* some sanity checks */
1227 if (fmt
== NULL
|| fmt
->fmt_name
== NULL
) return -EINVAL
;
1229 /* we need at least a handler */
1230 if (fmt
->fmt_handler
== NULL
) return -EINVAL
;
1233 * XXX: need check validity of fmt_arg_size
1236 spin_lock(&pfm_buffer_fmt_lock
);
1238 if (__pfm_find_buffer_fmt(fmt
->fmt_uuid
)) {
1239 printk(KERN_ERR
"perfmon: duplicate sampling format: %s\n", fmt
->fmt_name
);
1243 list_add(&fmt
->fmt_list
, &pfm_buffer_fmt_list
);
1244 printk(KERN_INFO
"perfmon: added sampling format %s\n", fmt
->fmt_name
);
1247 spin_unlock(&pfm_buffer_fmt_lock
);
1250 EXPORT_SYMBOL(pfm_register_buffer_fmt
);
1253 pfm_unregister_buffer_fmt(pfm_uuid_t uuid
)
1255 pfm_buffer_fmt_t
*fmt
;
1258 spin_lock(&pfm_buffer_fmt_lock
);
1260 fmt
= __pfm_find_buffer_fmt(uuid
);
1262 printk(KERN_ERR
"perfmon: cannot unregister format, not found\n");
1266 list_del_init(&fmt
->fmt_list
);
1267 printk(KERN_INFO
"perfmon: removed sampling format: %s\n", fmt
->fmt_name
);
1270 spin_unlock(&pfm_buffer_fmt_lock
);
1274 EXPORT_SYMBOL(pfm_unregister_buffer_fmt
);
1276 extern void update_pal_halt_status(int);
1279 pfm_reserve_session(struct task_struct
*task
, int is_syswide
, unsigned int cpu
)
1281 unsigned long flags
;
1283 * validy checks on cpu_mask have been done upstream
1287 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1288 pfm_sessions
.pfs_sys_sessions
,
1289 pfm_sessions
.pfs_task_sessions
,
1290 pfm_sessions
.pfs_sys_use_dbregs
,
1296 * cannot mix system wide and per-task sessions
1298 if (pfm_sessions
.pfs_task_sessions
> 0UL) {
1299 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1300 pfm_sessions
.pfs_task_sessions
));
1304 if (pfm_sessions
.pfs_sys_session
[cpu
]) goto error_conflict
;
1306 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu
, smp_processor_id()));
1308 pfm_sessions
.pfs_sys_session
[cpu
] = task
;
1310 pfm_sessions
.pfs_sys_sessions
++ ;
1313 if (pfm_sessions
.pfs_sys_sessions
) goto abort
;
1314 pfm_sessions
.pfs_task_sessions
++;
1317 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1318 pfm_sessions
.pfs_sys_sessions
,
1319 pfm_sessions
.pfs_task_sessions
,
1320 pfm_sessions
.pfs_sys_use_dbregs
,
1325 * disable default_idle() to go to PAL_HALT
1327 update_pal_halt_status(0);
1334 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1335 pfm_sessions
.pfs_sys_session
[cpu
]->pid
,
1345 pfm_unreserve_session(pfm_context_t
*ctx
, int is_syswide
, unsigned int cpu
)
1347 unsigned long flags
;
1349 * validy checks on cpu_mask have been done upstream
1353 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1354 pfm_sessions
.pfs_sys_sessions
,
1355 pfm_sessions
.pfs_task_sessions
,
1356 pfm_sessions
.pfs_sys_use_dbregs
,
1362 pfm_sessions
.pfs_sys_session
[cpu
] = NULL
;
1364 * would not work with perfmon+more than one bit in cpu_mask
1366 if (ctx
&& ctx
->ctx_fl_using_dbreg
) {
1367 if (pfm_sessions
.pfs_sys_use_dbregs
== 0) {
1368 printk(KERN_ERR
"perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx
);
1370 pfm_sessions
.pfs_sys_use_dbregs
--;
1373 pfm_sessions
.pfs_sys_sessions
--;
1375 pfm_sessions
.pfs_task_sessions
--;
1377 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1378 pfm_sessions
.pfs_sys_sessions
,
1379 pfm_sessions
.pfs_task_sessions
,
1380 pfm_sessions
.pfs_sys_use_dbregs
,
1385 * if possible, enable default_idle() to go into PAL_HALT
1387 if (pfm_sessions
.pfs_task_sessions
== 0 && pfm_sessions
.pfs_sys_sessions
== 0)
1388 update_pal_halt_status(1);
1396 * removes virtual mapping of the sampling buffer.
1397 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1398 * a PROTECT_CTX() section.
1401 pfm_remove_smpl_mapping(struct task_struct
*task
, void *vaddr
, unsigned long size
)
1406 if (task
->mm
== NULL
|| size
== 0UL || vaddr
== NULL
) {
1407 printk(KERN_ERR
"perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task
->pid
, task
->mm
);
1411 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr
, size
));
1414 * does the actual unmapping
1416 down_write(&task
->mm
->mmap_sem
);
1418 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr
, size
));
1420 r
= pfm_do_munmap(task
->mm
, (unsigned long)vaddr
, size
, 0);
1422 up_write(&task
->mm
->mmap_sem
);
1424 printk(KERN_ERR
"perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task
->pid
, vaddr
, size
);
1427 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr
, size
, r
));
1433 * free actual physical storage used by sampling buffer
1437 pfm_free_smpl_buffer(pfm_context_t
*ctx
)
1439 pfm_buffer_fmt_t
*fmt
;
1441 if (ctx
->ctx_smpl_hdr
== NULL
) goto invalid_free
;
1444 * we won't use the buffer format anymore
1446 fmt
= ctx
->ctx_buf_fmt
;
1448 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1451 ctx
->ctx_smpl_vaddr
));
1453 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1458 pfm_rvfree(ctx
->ctx_smpl_hdr
, ctx
->ctx_smpl_size
);
1460 ctx
->ctx_smpl_hdr
= NULL
;
1461 ctx
->ctx_smpl_size
= 0UL;
1466 printk(KERN_ERR
"perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current
->pid
);
1472 pfm_exit_smpl_buffer(pfm_buffer_fmt_t
*fmt
)
1474 if (fmt
== NULL
) return;
1476 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1481 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1482 * no real gain from having the whole whorehouse mounted. So we don't need
1483 * any operations on the root directory. However, we need a non-trivial
1484 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1486 static struct vfsmount
*pfmfs_mnt
;
1491 int err
= register_filesystem(&pfm_fs_type
);
1493 pfmfs_mnt
= kern_mount(&pfm_fs_type
);
1494 err
= PTR_ERR(pfmfs_mnt
);
1495 if (IS_ERR(pfmfs_mnt
))
1496 unregister_filesystem(&pfm_fs_type
);
1506 unregister_filesystem(&pfm_fs_type
);
1511 pfm_read(struct file
*filp
, char __user
*buf
, size_t size
, loff_t
*ppos
)
1516 unsigned long flags
;
1517 DECLARE_WAITQUEUE(wait
, current
);
1518 if (PFM_IS_FILE(filp
) == 0) {
1519 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", current
->pid
);
1523 ctx
= (pfm_context_t
*)filp
->private_data
;
1525 printk(KERN_ERR
"perfmon: pfm_read: NULL ctx [%d]\n", current
->pid
);
1530 * check even when there is no message
1532 if (size
< sizeof(pfm_msg_t
)) {
1533 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx
, sizeof(pfm_msg_t
)));
1537 PROTECT_CTX(ctx
, flags
);
1540 * put ourselves on the wait queue
1542 add_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1550 set_current_state(TASK_INTERRUPTIBLE
);
1552 DPRINT(("head=%d tail=%d\n", ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
1555 if(PFM_CTXQ_EMPTY(ctx
) == 0) break;
1557 UNPROTECT_CTX(ctx
, flags
);
1560 * check non-blocking read
1563 if(filp
->f_flags
& O_NONBLOCK
) break;
1566 * check pending signals
1568 if(signal_pending(current
)) {
1573 * no message, so wait
1577 PROTECT_CTX(ctx
, flags
);
1579 DPRINT(("[%d] back to running ret=%ld\n", current
->pid
, ret
));
1580 set_current_state(TASK_RUNNING
);
1581 remove_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1583 if (ret
< 0) goto abort
;
1586 msg
= pfm_get_next_msg(ctx
);
1588 printk(KERN_ERR
"perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx
, current
->pid
);
1592 DPRINT(("fd=%d type=%d\n", msg
->pfm_gen_msg
.msg_ctx_fd
, msg
->pfm_gen_msg
.msg_type
));
1595 if(copy_to_user(buf
, msg
, sizeof(pfm_msg_t
)) == 0) ret
= sizeof(pfm_msg_t
);
1598 UNPROTECT_CTX(ctx
, flags
);
1604 pfm_write(struct file
*file
, const char __user
*ubuf
,
1605 size_t size
, loff_t
*ppos
)
1607 DPRINT(("pfm_write called\n"));
1612 pfm_poll(struct file
*filp
, poll_table
* wait
)
1615 unsigned long flags
;
1616 unsigned int mask
= 0;
1618 if (PFM_IS_FILE(filp
) == 0) {
1619 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", current
->pid
);
1623 ctx
= (pfm_context_t
*)filp
->private_data
;
1625 printk(KERN_ERR
"perfmon: pfm_poll: NULL ctx [%d]\n", current
->pid
);
1630 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx
->ctx_fd
));
1632 poll_wait(filp
, &ctx
->ctx_msgq_wait
, wait
);
1634 PROTECT_CTX(ctx
, flags
);
1636 if (PFM_CTXQ_EMPTY(ctx
) == 0)
1637 mask
= POLLIN
| POLLRDNORM
;
1639 UNPROTECT_CTX(ctx
, flags
);
1641 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx
->ctx_fd
, mask
));
1647 pfm_ioctl(struct inode
*inode
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
1649 DPRINT(("pfm_ioctl called\n"));
1654 * interrupt cannot be masked when coming here
1657 pfm_do_fasync(int fd
, struct file
*filp
, pfm_context_t
*ctx
, int on
)
1661 ret
= fasync_helper (fd
, filp
, on
, &ctx
->ctx_async_queue
);
1663 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1667 ctx
->ctx_async_queue
, ret
));
1673 pfm_fasync(int fd
, struct file
*filp
, int on
)
1678 if (PFM_IS_FILE(filp
) == 0) {
1679 printk(KERN_ERR
"perfmon: pfm_fasync bad magic [%d]\n", current
->pid
);
1683 ctx
= (pfm_context_t
*)filp
->private_data
;
1685 printk(KERN_ERR
"perfmon: pfm_fasync NULL ctx [%d]\n", current
->pid
);
1689 * we cannot mask interrupts during this call because this may
1690 * may go to sleep if memory is not readily avalaible.
1692 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1693 * done in caller. Serialization of this function is ensured by caller.
1695 ret
= pfm_do_fasync(fd
, filp
, ctx
, on
);
1698 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1701 ctx
->ctx_async_queue
, ret
));
1708 * this function is exclusively called from pfm_close().
1709 * The context is not protected at that time, nor are interrupts
1710 * on the remote CPU. That's necessary to avoid deadlocks.
1713 pfm_syswide_force_stop(void *info
)
1715 pfm_context_t
*ctx
= (pfm_context_t
*)info
;
1716 struct pt_regs
*regs
= task_pt_regs(current
);
1717 struct task_struct
*owner
;
1718 unsigned long flags
;
1721 if (ctx
->ctx_cpu
!= smp_processor_id()) {
1722 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1724 smp_processor_id());
1727 owner
= GET_PMU_OWNER();
1728 if (owner
!= ctx
->ctx_task
) {
1729 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1731 owner
->pid
, ctx
->ctx_task
->pid
);
1734 if (GET_PMU_CTX() != ctx
) {
1735 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1737 GET_PMU_CTX(), ctx
);
1741 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx
->ctx_task
->pid
));
1743 * the context is already protected in pfm_close(), we simply
1744 * need to mask interrupts to avoid a PMU interrupt race on
1747 local_irq_save(flags
);
1749 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
1751 DPRINT(("context_unload returned %d\n", ret
));
1755 * unmask interrupts, PMU interrupts are now spurious here
1757 local_irq_restore(flags
);
1761 pfm_syswide_cleanup_other_cpu(pfm_context_t
*ctx
)
1765 DPRINT(("calling CPU%d for cleanup\n", ctx
->ctx_cpu
));
1766 ret
= smp_call_function_single(ctx
->ctx_cpu
, pfm_syswide_force_stop
, ctx
, 0, 1);
1767 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx
->ctx_cpu
, ret
));
1769 #endif /* CONFIG_SMP */
1772 * called for each close(). Partially free resources.
1773 * When caller is self-monitoring, the context is unloaded.
1776 pfm_flush(struct file
*filp
)
1779 struct task_struct
*task
;
1780 struct pt_regs
*regs
;
1781 unsigned long flags
;
1782 unsigned long smpl_buf_size
= 0UL;
1783 void *smpl_buf_vaddr
= NULL
;
1784 int state
, is_system
;
1786 if (PFM_IS_FILE(filp
) == 0) {
1787 DPRINT(("bad magic for\n"));
1791 ctx
= (pfm_context_t
*)filp
->private_data
;
1793 printk(KERN_ERR
"perfmon: pfm_flush: NULL ctx [%d]\n", current
->pid
);
1798 * remove our file from the async queue, if we use this mode.
1799 * This can be done without the context being protected. We come
1800 * here when the context has become unreacheable by other tasks.
1802 * We may still have active monitoring at this point and we may
1803 * end up in pfm_overflow_handler(). However, fasync_helper()
1804 * operates with interrupts disabled and it cleans up the
1805 * queue. If the PMU handler is called prior to entering
1806 * fasync_helper() then it will send a signal. If it is
1807 * invoked after, it will find an empty queue and no
1808 * signal will be sent. In both case, we are safe
1810 if (filp
->f_flags
& FASYNC
) {
1811 DPRINT(("cleaning up async_queue=%p\n", ctx
->ctx_async_queue
));
1812 pfm_do_fasync (-1, filp
, ctx
, 0);
1815 PROTECT_CTX(ctx
, flags
);
1817 state
= ctx
->ctx_state
;
1818 is_system
= ctx
->ctx_fl_system
;
1820 task
= PFM_CTX_TASK(ctx
);
1821 regs
= task_pt_regs(task
);
1823 DPRINT(("ctx_state=%d is_current=%d\n",
1825 task
== current
? 1 : 0));
1828 * if state == UNLOADED, then task is NULL
1832 * we must stop and unload because we are losing access to the context.
1834 if (task
== current
) {
1837 * the task IS the owner but it migrated to another CPU: that's bad
1838 * but we must handle this cleanly. Unfortunately, the kernel does
1839 * not provide a mechanism to block migration (while the context is loaded).
1841 * We need to release the resource on the ORIGINAL cpu.
1843 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
1845 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
1847 * keep context protected but unmask interrupt for IPI
1849 local_irq_restore(flags
);
1851 pfm_syswide_cleanup_other_cpu(ctx
);
1854 * restore interrupt masking
1856 local_irq_save(flags
);
1859 * context is unloaded at this point
1862 #endif /* CONFIG_SMP */
1865 DPRINT(("forcing unload\n"));
1867 * stop and unload, returning with state UNLOADED
1868 * and session unreserved.
1870 pfm_context_unload(ctx
, NULL
, 0, regs
);
1872 DPRINT(("ctx_state=%d\n", ctx
->ctx_state
));
1877 * remove virtual mapping, if any, for the calling task.
1878 * cannot reset ctx field until last user is calling close().
1880 * ctx_smpl_vaddr must never be cleared because it is needed
1881 * by every task with access to the context
1883 * When called from do_exit(), the mm context is gone already, therefore
1884 * mm is NULL, i.e., the VMA is already gone and we do not have to
1887 if (ctx
->ctx_smpl_vaddr
&& current
->mm
) {
1888 smpl_buf_vaddr
= ctx
->ctx_smpl_vaddr
;
1889 smpl_buf_size
= ctx
->ctx_smpl_size
;
1892 UNPROTECT_CTX(ctx
, flags
);
1895 * if there was a mapping, then we systematically remove it
1896 * at this point. Cannot be done inside critical section
1897 * because some VM function reenables interrupts.
1900 if (smpl_buf_vaddr
) pfm_remove_smpl_mapping(current
, smpl_buf_vaddr
, smpl_buf_size
);
1905 * called either on explicit close() or from exit_files().
1906 * Only the LAST user of the file gets to this point, i.e., it is
1909 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1910 * (fput()),i.e, last task to access the file. Nobody else can access the
1911 * file at this point.
1913 * When called from exit_files(), the VMA has been freed because exit_mm()
1914 * is executed before exit_files().
1916 * When called from exit_files(), the current task is not yet ZOMBIE but we
1917 * flush the PMU state to the context.
1920 pfm_close(struct inode
*inode
, struct file
*filp
)
1923 struct task_struct
*task
;
1924 struct pt_regs
*regs
;
1925 DECLARE_WAITQUEUE(wait
, current
);
1926 unsigned long flags
;
1927 unsigned long smpl_buf_size
= 0UL;
1928 void *smpl_buf_addr
= NULL
;
1929 int free_possible
= 1;
1930 int state
, is_system
;
1932 DPRINT(("pfm_close called private=%p\n", filp
->private_data
));
1934 if (PFM_IS_FILE(filp
) == 0) {
1935 DPRINT(("bad magic\n"));
1939 ctx
= (pfm_context_t
*)filp
->private_data
;
1941 printk(KERN_ERR
"perfmon: pfm_close: NULL ctx [%d]\n", current
->pid
);
1945 PROTECT_CTX(ctx
, flags
);
1947 state
= ctx
->ctx_state
;
1948 is_system
= ctx
->ctx_fl_system
;
1950 task
= PFM_CTX_TASK(ctx
);
1951 regs
= task_pt_regs(task
);
1953 DPRINT(("ctx_state=%d is_current=%d\n",
1955 task
== current
? 1 : 0));
1958 * if task == current, then pfm_flush() unloaded the context
1960 if (state
== PFM_CTX_UNLOADED
) goto doit
;
1963 * context is loaded/masked and task != current, we need to
1964 * either force an unload or go zombie
1968 * The task is currently blocked or will block after an overflow.
1969 * we must force it to wakeup to get out of the
1970 * MASKED state and transition to the unloaded state by itself.
1972 * This situation is only possible for per-task mode
1974 if (state
== PFM_CTX_MASKED
&& CTX_OVFL_NOBLOCK(ctx
) == 0) {
1977 * set a "partial" zombie state to be checked
1978 * upon return from down() in pfm_handle_work().
1980 * We cannot use the ZOMBIE state, because it is checked
1981 * by pfm_load_regs() which is called upon wakeup from down().
1982 * In such case, it would free the context and then we would
1983 * return to pfm_handle_work() which would access the
1984 * stale context. Instead, we set a flag invisible to pfm_load_regs()
1985 * but visible to pfm_handle_work().
1987 * For some window of time, we have a zombie context with
1988 * ctx_state = MASKED and not ZOMBIE
1990 ctx
->ctx_fl_going_zombie
= 1;
1993 * force task to wake up from MASKED state
1995 complete(&ctx
->ctx_restart_done
);
1997 DPRINT(("waking up ctx_state=%d\n", state
));
2000 * put ourself to sleep waiting for the other
2001 * task to report completion
2003 * the context is protected by mutex, therefore there
2004 * is no risk of being notified of completion before
2005 * begin actually on the waitq.
2007 set_current_state(TASK_INTERRUPTIBLE
);
2008 add_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2010 UNPROTECT_CTX(ctx
, flags
);
2013 * XXX: check for signals :
2014 * - ok for explicit close
2015 * - not ok when coming from exit_files()
2020 PROTECT_CTX(ctx
, flags
);
2023 remove_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2024 set_current_state(TASK_RUNNING
);
2027 * context is unloaded at this point
2029 DPRINT(("after zombie wakeup ctx_state=%d for\n", state
));
2031 else if (task
!= current
) {
2034 * switch context to zombie state
2036 ctx
->ctx_state
= PFM_CTX_ZOMBIE
;
2038 DPRINT(("zombie ctx for [%d]\n", task
->pid
));
2040 * cannot free the context on the spot. deferred until
2041 * the task notices the ZOMBIE state
2045 pfm_context_unload(ctx
, NULL
, 0, regs
);
2050 /* reload state, may have changed during opening of critical section */
2051 state
= ctx
->ctx_state
;
2054 * the context is still attached to a task (possibly current)
2055 * we cannot destroy it right now
2059 * we must free the sampling buffer right here because
2060 * we cannot rely on it being cleaned up later by the
2061 * monitored task. It is not possible to free vmalloc'ed
2062 * memory in pfm_load_regs(). Instead, we remove the buffer
2063 * now. should there be subsequent PMU overflow originally
2064 * meant for sampling, the will be converted to spurious
2065 * and that's fine because the monitoring tools is gone anyway.
2067 if (ctx
->ctx_smpl_hdr
) {
2068 smpl_buf_addr
= ctx
->ctx_smpl_hdr
;
2069 smpl_buf_size
= ctx
->ctx_smpl_size
;
2070 /* no more sampling */
2071 ctx
->ctx_smpl_hdr
= NULL
;
2072 ctx
->ctx_fl_is_sampling
= 0;
2075 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2081 if (smpl_buf_addr
) pfm_exit_smpl_buffer(ctx
->ctx_buf_fmt
);
2084 * UNLOADED that the session has already been unreserved.
2086 if (state
== PFM_CTX_ZOMBIE
) {
2087 pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, ctx
->ctx_cpu
);
2091 * disconnect file descriptor from context must be done
2094 filp
->private_data
= NULL
;
2097 * if we free on the spot, the context is now completely unreacheable
2098 * from the callers side. The monitored task side is also cut, so we
2101 * If we have a deferred free, only the caller side is disconnected.
2103 UNPROTECT_CTX(ctx
, flags
);
2106 * All memory free operations (especially for vmalloc'ed memory)
2107 * MUST be done with interrupts ENABLED.
2109 if (smpl_buf_addr
) pfm_rvfree(smpl_buf_addr
, smpl_buf_size
);
2112 * return the memory used by the context
2114 if (free_possible
) pfm_context_free(ctx
);
2120 pfm_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
2122 DPRINT(("pfm_no_open called\n"));
2128 static struct file_operations pfm_file_ops
= {
2129 .llseek
= no_llseek
,
2134 .open
= pfm_no_open
, /* special open code to disallow open via /proc */
2135 .fasync
= pfm_fasync
,
2136 .release
= pfm_close
,
2141 pfmfs_delete_dentry(struct dentry
*dentry
)
2146 static struct dentry_operations pfmfs_dentry_operations
= {
2147 .d_delete
= pfmfs_delete_dentry
,
2152 pfm_alloc_fd(struct file
**cfile
)
2155 struct file
*file
= NULL
;
2156 struct inode
* inode
;
2160 fd
= get_unused_fd();
2161 if (fd
< 0) return -ENFILE
;
2165 file
= get_empty_filp();
2166 if (!file
) goto out
;
2169 * allocate a new inode
2171 inode
= new_inode(pfmfs_mnt
->mnt_sb
);
2172 if (!inode
) goto out
;
2174 DPRINT(("new inode ino=%ld @%p\n", inode
->i_ino
, inode
));
2176 inode
->i_mode
= S_IFCHR
|S_IRUGO
;
2177 inode
->i_uid
= current
->fsuid
;
2178 inode
->i_gid
= current
->fsgid
;
2180 sprintf(name
, "[%lu]", inode
->i_ino
);
2182 this.len
= strlen(name
);
2183 this.hash
= inode
->i_ino
;
2188 * allocate a new dcache entry
2190 file
->f_dentry
= d_alloc(pfmfs_mnt
->mnt_sb
->s_root
, &this);
2191 if (!file
->f_dentry
) goto out
;
2193 file
->f_dentry
->d_op
= &pfmfs_dentry_operations
;
2195 d_add(file
->f_dentry
, inode
);
2196 file
->f_vfsmnt
= mntget(pfmfs_mnt
);
2197 file
->f_mapping
= inode
->i_mapping
;
2199 file
->f_op
= &pfm_file_ops
;
2200 file
->f_mode
= FMODE_READ
;
2201 file
->f_flags
= O_RDONLY
;
2205 * may have to delay until context is attached?
2207 fd_install(fd
, file
);
2210 * the file structure we will use
2216 if (file
) put_filp(file
);
2222 pfm_free_fd(int fd
, struct file
*file
)
2224 struct files_struct
*files
= current
->files
;
2225 struct fdtable
*fdt
;
2228 * there ie no fd_uninstall(), so we do it here
2230 spin_lock(&files
->file_lock
);
2231 fdt
= files_fdtable(files
);
2232 rcu_assign_pointer(fdt
->fd
[fd
], NULL
);
2233 spin_unlock(&files
->file_lock
);
2241 pfm_remap_buffer(struct vm_area_struct
*vma
, unsigned long buf
, unsigned long addr
, unsigned long size
)
2243 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf
, addr
, size
));
2246 unsigned long pfn
= ia64_tpa(buf
) >> PAGE_SHIFT
;
2249 if (remap_pfn_range(vma
, addr
, pfn
, PAGE_SIZE
, PAGE_READONLY
))
2260 * allocate a sampling buffer and remaps it into the user address space of the task
2263 pfm_smpl_buffer_alloc(struct task_struct
*task
, pfm_context_t
*ctx
, unsigned long rsize
, void **user_vaddr
)
2265 struct mm_struct
*mm
= task
->mm
;
2266 struct vm_area_struct
*vma
= NULL
;
2272 * the fixed header + requested size and align to page boundary
2274 size
= PAGE_ALIGN(rsize
);
2276 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize
, size
));
2279 * check requested size to avoid Denial-of-service attacks
2280 * XXX: may have to refine this test
2281 * Check against address space limit.
2283 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2286 if (size
> task
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
)
2290 * We do the easy to undo allocations first.
2292 * pfm_rvmalloc(), clears the buffer, so there is no leak
2294 smpl_buf
= pfm_rvmalloc(size
);
2295 if (smpl_buf
== NULL
) {
2296 DPRINT(("Can't allocate sampling buffer\n"));
2300 DPRINT(("smpl_buf @%p\n", smpl_buf
));
2303 vma
= kmem_cache_alloc(vm_area_cachep
, SLAB_KERNEL
);
2305 DPRINT(("Cannot allocate vma\n"));
2308 memset(vma
, 0, sizeof(*vma
));
2311 * partially initialize the vma for the sampling buffer
2314 vma
->vm_flags
= VM_READ
| VM_MAYREAD
|VM_RESERVED
;
2315 vma
->vm_page_prot
= PAGE_READONLY
; /* XXX may need to change */
2318 * Now we have everything we need and we can initialize
2319 * and connect all the data structures
2322 ctx
->ctx_smpl_hdr
= smpl_buf
;
2323 ctx
->ctx_smpl_size
= size
; /* aligned size */
2326 * Let's do the difficult operations next.
2328 * now we atomically find some area in the address space and
2329 * remap the buffer in it.
2331 down_write(&task
->mm
->mmap_sem
);
2333 /* find some free area in address space, must have mmap sem held */
2334 vma
->vm_start
= pfm_get_unmapped_area(NULL
, 0, size
, 0, MAP_PRIVATE
|MAP_ANONYMOUS
, 0);
2335 if (vma
->vm_start
== 0UL) {
2336 DPRINT(("Cannot find unmapped area for size %ld\n", size
));
2337 up_write(&task
->mm
->mmap_sem
);
2340 vma
->vm_end
= vma
->vm_start
+ size
;
2341 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2343 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size
, ctx
->ctx_smpl_hdr
, vma
->vm_start
));
2345 /* can only be applied to current task, need to have the mm semaphore held when called */
2346 if (pfm_remap_buffer(vma
, (unsigned long)smpl_buf
, vma
->vm_start
, size
)) {
2347 DPRINT(("Can't remap buffer\n"));
2348 up_write(&task
->mm
->mmap_sem
);
2353 * now insert the vma in the vm list for the process, must be
2354 * done with mmap lock held
2356 insert_vm_struct(mm
, vma
);
2358 mm
->total_vm
+= size
>> PAGE_SHIFT
;
2359 vm_stat_account(vma
->vm_mm
, vma
->vm_flags
, vma
->vm_file
,
2361 up_write(&task
->mm
->mmap_sem
);
2364 * keep track of user level virtual address
2366 ctx
->ctx_smpl_vaddr
= (void *)vma
->vm_start
;
2367 *(unsigned long *)user_vaddr
= vma
->vm_start
;
2372 kmem_cache_free(vm_area_cachep
, vma
);
2374 pfm_rvfree(smpl_buf
, size
);
2380 * XXX: do something better here
2383 pfm_bad_permissions(struct task_struct
*task
)
2385 /* inspired by ptrace_attach() */
2386 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2395 return ((current
->uid
!= task
->euid
)
2396 || (current
->uid
!= task
->suid
)
2397 || (current
->uid
!= task
->uid
)
2398 || (current
->gid
!= task
->egid
)
2399 || (current
->gid
!= task
->sgid
)
2400 || (current
->gid
!= task
->gid
)) && !capable(CAP_SYS_PTRACE
);
2404 pfarg_is_sane(struct task_struct
*task
, pfarg_context_t
*pfx
)
2410 ctx_flags
= pfx
->ctx_flags
;
2412 if (ctx_flags
& PFM_FL_SYSTEM_WIDE
) {
2415 * cannot block in this mode
2417 if (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) {
2418 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2423 /* probably more to add here */
2429 pfm_setup_buffer_fmt(struct task_struct
*task
, pfm_context_t
*ctx
, unsigned int ctx_flags
,
2430 unsigned int cpu
, pfarg_context_t
*arg
)
2432 pfm_buffer_fmt_t
*fmt
= NULL
;
2433 unsigned long size
= 0UL;
2435 void *fmt_arg
= NULL
;
2437 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2439 /* invoke and lock buffer format, if found */
2440 fmt
= pfm_find_buffer_fmt(arg
->ctx_smpl_buf_id
);
2442 DPRINT(("[%d] cannot find buffer format\n", task
->pid
));
2447 * buffer argument MUST be contiguous to pfarg_context_t
2449 if (fmt
->fmt_arg_size
) fmt_arg
= PFM_CTXARG_BUF_ARG(arg
);
2451 ret
= pfm_buf_fmt_validate(fmt
, task
, ctx_flags
, cpu
, fmt_arg
);
2453 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task
->pid
, ctx_flags
, cpu
, fmt_arg
, ret
));
2455 if (ret
) goto error
;
2457 /* link buffer format and context */
2458 ctx
->ctx_buf_fmt
= fmt
;
2461 * check if buffer format wants to use perfmon buffer allocation/mapping service
2463 ret
= pfm_buf_fmt_getsize(fmt
, task
, ctx_flags
, cpu
, fmt_arg
, &size
);
2464 if (ret
) goto error
;
2468 * buffer is always remapped into the caller's address space
2470 ret
= pfm_smpl_buffer_alloc(current
, ctx
, size
, &uaddr
);
2471 if (ret
) goto error
;
2473 /* keep track of user address of buffer */
2474 arg
->ctx_smpl_vaddr
= uaddr
;
2476 ret
= pfm_buf_fmt_init(fmt
, task
, ctx
->ctx_smpl_hdr
, ctx_flags
, cpu
, fmt_arg
);
2483 pfm_reset_pmu_state(pfm_context_t
*ctx
)
2488 * install reset values for PMC.
2490 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
2491 if (PMC_IS_IMPL(i
) == 0) continue;
2492 ctx
->ctx_pmcs
[i
] = PMC_DFL_VAL(i
);
2493 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->ctx_pmcs
[i
]));
2496 * PMD registers are set to 0UL when the context in memset()
2500 * On context switched restore, we must restore ALL pmc and ALL pmd even
2501 * when they are not actively used by the task. In UP, the incoming process
2502 * may otherwise pick up left over PMC, PMD state from the previous process.
2503 * As opposed to PMD, stale PMC can cause harm to the incoming
2504 * process because they may change what is being measured.
2505 * Therefore, we must systematically reinstall the entire
2506 * PMC state. In SMP, the same thing is possible on the
2507 * same CPU but also on between 2 CPUs.
2509 * The problem with PMD is information leaking especially
2510 * to user level when psr.sp=0
2512 * There is unfortunately no easy way to avoid this problem
2513 * on either UP or SMP. This definitively slows down the
2514 * pfm_load_regs() function.
2518 * bitmask of all PMCs accessible to this context
2520 * PMC0 is treated differently.
2522 ctx
->ctx_all_pmcs
[0] = pmu_conf
->impl_pmcs
[0] & ~0x1;
2525 * bitmask of all PMDs that are accesible to this context
2527 ctx
->ctx_all_pmds
[0] = pmu_conf
->impl_pmds
[0];
2529 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx
->ctx_fd
, ctx
->ctx_all_pmcs
[0],ctx
->ctx_all_pmds
[0]));
2532 * useful in case of re-enable after disable
2534 ctx
->ctx_used_ibrs
[0] = 0UL;
2535 ctx
->ctx_used_dbrs
[0] = 0UL;
2539 pfm_ctx_getsize(void *arg
, size_t *sz
)
2541 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2542 pfm_buffer_fmt_t
*fmt
;
2546 if (!pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) return 0;
2548 fmt
= pfm_find_buffer_fmt(req
->ctx_smpl_buf_id
);
2550 DPRINT(("cannot find buffer format\n"));
2553 /* get just enough to copy in user parameters */
2554 *sz
= fmt
->fmt_arg_size
;
2555 DPRINT(("arg_size=%lu\n", *sz
));
2563 * cannot attach if :
2565 * - task not owned by caller
2566 * - task incompatible with context mode
2569 pfm_task_incompatible(pfm_context_t
*ctx
, struct task_struct
*task
)
2572 * no kernel task or task not owner by caller
2574 if (task
->mm
== NULL
) {
2575 DPRINT(("task [%d] has not memory context (kernel thread)\n", task
->pid
));
2578 if (pfm_bad_permissions(task
)) {
2579 DPRINT(("no permission to attach to [%d]\n", task
->pid
));
2583 * cannot block in self-monitoring mode
2585 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && task
== current
) {
2586 DPRINT(("cannot load a blocking context on self for [%d]\n", task
->pid
));
2590 if (task
->exit_state
== EXIT_ZOMBIE
) {
2591 DPRINT(("cannot attach to zombie task [%d]\n", task
->pid
));
2596 * always ok for self
2598 if (task
== current
) return 0;
2600 if ((task
->state
!= TASK_STOPPED
) && (task
->state
!= TASK_TRACED
)) {
2601 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task
->pid
, task
->state
));
2605 * make sure the task is off any CPU
2607 wait_task_inactive(task
);
2609 /* more to come... */
2615 pfm_get_task(pfm_context_t
*ctx
, pid_t pid
, struct task_struct
**task
)
2617 struct task_struct
*p
= current
;
2620 /* XXX: need to add more checks here */
2621 if (pid
< 2) return -EPERM
;
2623 if (pid
!= current
->pid
) {
2625 read_lock(&tasklist_lock
);
2627 p
= find_task_by_pid(pid
);
2629 /* make sure task cannot go away while we operate on it */
2630 if (p
) get_task_struct(p
);
2632 read_unlock(&tasklist_lock
);
2634 if (p
== NULL
) return -ESRCH
;
2637 ret
= pfm_task_incompatible(ctx
, p
);
2640 } else if (p
!= current
) {
2649 pfm_context_create(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2651 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2656 /* let's check the arguments first */
2657 ret
= pfarg_is_sane(current
, req
);
2658 if (ret
< 0) return ret
;
2660 ctx_flags
= req
->ctx_flags
;
2664 ctx
= pfm_context_alloc();
2665 if (!ctx
) goto error
;
2667 ret
= pfm_alloc_fd(&filp
);
2668 if (ret
< 0) goto error_file
;
2670 req
->ctx_fd
= ctx
->ctx_fd
= ret
;
2673 * attach context to file
2675 filp
->private_data
= ctx
;
2678 * does the user want to sample?
2680 if (pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) {
2681 ret
= pfm_setup_buffer_fmt(current
, ctx
, ctx_flags
, 0, req
);
2682 if (ret
) goto buffer_error
;
2686 * init context protection lock
2688 spin_lock_init(&ctx
->ctx_lock
);
2691 * context is unloaded
2693 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
2696 * initialization of context's flags
2698 ctx
->ctx_fl_block
= (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) ? 1 : 0;
2699 ctx
->ctx_fl_system
= (ctx_flags
& PFM_FL_SYSTEM_WIDE
) ? 1: 0;
2700 ctx
->ctx_fl_is_sampling
= ctx
->ctx_buf_fmt
? 1 : 0; /* assume record() is defined */
2701 ctx
->ctx_fl_no_msg
= (ctx_flags
& PFM_FL_OVFL_NO_MSG
) ? 1: 0;
2703 * will move to set properties
2704 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2708 * init restart semaphore to locked
2710 init_completion(&ctx
->ctx_restart_done
);
2713 * activation is used in SMP only
2715 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
2716 SET_LAST_CPU(ctx
, -1);
2719 * initialize notification message queue
2721 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
2722 init_waitqueue_head(&ctx
->ctx_msgq_wait
);
2723 init_waitqueue_head(&ctx
->ctx_zombieq
);
2725 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2730 ctx
->ctx_fl_excl_idle
,
2735 * initialize soft PMU state
2737 pfm_reset_pmu_state(ctx
);
2742 pfm_free_fd(ctx
->ctx_fd
, filp
);
2744 if (ctx
->ctx_buf_fmt
) {
2745 pfm_buf_fmt_exit(ctx
->ctx_buf_fmt
, current
, NULL
, regs
);
2748 pfm_context_free(ctx
);
2754 static inline unsigned long
2755 pfm_new_counter_value (pfm_counter_t
*reg
, int is_long_reset
)
2757 unsigned long val
= is_long_reset
? reg
->long_reset
: reg
->short_reset
;
2758 unsigned long new_seed
, old_seed
= reg
->seed
, mask
= reg
->mask
;
2759 extern unsigned long carta_random32 (unsigned long seed
);
2761 if (reg
->flags
& PFM_REGFL_RANDOM
) {
2762 new_seed
= carta_random32(old_seed
);
2763 val
-= (old_seed
& mask
); /* counter values are negative numbers! */
2764 if ((mask
>> 32) != 0)
2765 /* construct a full 64-bit random value: */
2766 new_seed
|= carta_random32(old_seed
>> 32) << 32;
2767 reg
->seed
= new_seed
;
2774 pfm_reset_regs_masked(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2776 unsigned long mask
= ovfl_regs
[0];
2777 unsigned long reset_others
= 0UL;
2782 * now restore reset value on sampling overflowed counters
2784 mask
>>= PMU_FIRST_COUNTER
;
2785 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2787 if ((mask
& 0x1UL
) == 0UL) continue;
2789 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2790 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2792 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2796 * Now take care of resetting the other registers
2798 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2800 if ((reset_others
& 0x1) == 0) continue;
2802 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2804 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2805 is_long_reset
? "long" : "short", i
, val
));
2810 pfm_reset_regs(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2812 unsigned long mask
= ovfl_regs
[0];
2813 unsigned long reset_others
= 0UL;
2817 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs
[0], is_long_reset
));
2819 if (ctx
->ctx_state
== PFM_CTX_MASKED
) {
2820 pfm_reset_regs_masked(ctx
, ovfl_regs
, is_long_reset
);
2825 * now restore reset value on sampling overflowed counters
2827 mask
>>= PMU_FIRST_COUNTER
;
2828 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2830 if ((mask
& 0x1UL
) == 0UL) continue;
2832 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2833 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2835 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2837 pfm_write_soft_counter(ctx
, i
, val
);
2841 * Now take care of resetting the other registers
2843 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2845 if ((reset_others
& 0x1) == 0) continue;
2847 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2849 if (PMD_IS_COUNTING(i
)) {
2850 pfm_write_soft_counter(ctx
, i
, val
);
2852 ia64_set_pmd(i
, val
);
2854 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2855 is_long_reset
? "long" : "short", i
, val
));
2861 pfm_write_pmcs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2863 struct thread_struct
*thread
= NULL
;
2864 struct task_struct
*task
;
2865 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
2866 unsigned long value
, pmc_pm
;
2867 unsigned long smpl_pmds
, reset_pmds
, impl_pmds
;
2868 unsigned int cnum
, reg_flags
, flags
, pmc_type
;
2869 int i
, can_access_pmu
= 0, is_loaded
, is_system
, expert_mode
;
2870 int is_monitor
, is_counting
, state
;
2872 pfm_reg_check_t wr_func
;
2873 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2875 state
= ctx
->ctx_state
;
2876 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
2877 is_system
= ctx
->ctx_fl_system
;
2878 task
= ctx
->ctx_task
;
2879 impl_pmds
= pmu_conf
->impl_pmds
[0];
2881 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
2884 thread
= &task
->thread
;
2886 * In system wide and when the context is loaded, access can only happen
2887 * when the caller is running on the CPU being monitored by the session.
2888 * It does not have to be the owner (ctx_task) of the context per se.
2890 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
2891 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
2894 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
2896 expert_mode
= pfm_sysctl
.expert_mode
;
2898 for (i
= 0; i
< count
; i
++, req
++) {
2900 cnum
= req
->reg_num
;
2901 reg_flags
= req
->reg_flags
;
2902 value
= req
->reg_value
;
2903 smpl_pmds
= req
->reg_smpl_pmds
[0];
2904 reset_pmds
= req
->reg_reset_pmds
[0];
2908 if (cnum
>= PMU_MAX_PMCS
) {
2909 DPRINT(("pmc%u is invalid\n", cnum
));
2913 pmc_type
= pmu_conf
->pmc_desc
[cnum
].type
;
2914 pmc_pm
= (value
>> pmu_conf
->pmc_desc
[cnum
].pm_pos
) & 0x1;
2915 is_counting
= (pmc_type
& PFM_REG_COUNTING
) == PFM_REG_COUNTING
? 1 : 0;
2916 is_monitor
= (pmc_type
& PFM_REG_MONITOR
) == PFM_REG_MONITOR
? 1 : 0;
2919 * we reject all non implemented PMC as well
2920 * as attempts to modify PMC[0-3] which are used
2921 * as status registers by the PMU
2923 if ((pmc_type
& PFM_REG_IMPL
) == 0 || (pmc_type
& PFM_REG_CONTROL
) == PFM_REG_CONTROL
) {
2924 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum
, pmc_type
));
2927 wr_func
= pmu_conf
->pmc_desc
[cnum
].write_check
;
2929 * If the PMC is a monitor, then if the value is not the default:
2930 * - system-wide session: PMCx.pm=1 (privileged monitor)
2931 * - per-task : PMCx.pm=0 (user monitor)
2933 if (is_monitor
&& value
!= PMC_DFL_VAL(cnum
) && is_system
^ pmc_pm
) {
2934 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2943 * enforce generation of overflow interrupt. Necessary on all
2946 value
|= 1 << PMU_PMC_OI
;
2948 if (reg_flags
& PFM_REGFL_OVFL_NOTIFY
) {
2949 flags
|= PFM_REGFL_OVFL_NOTIFY
;
2952 if (reg_flags
& PFM_REGFL_RANDOM
) flags
|= PFM_REGFL_RANDOM
;
2954 /* verify validity of smpl_pmds */
2955 if ((smpl_pmds
& impl_pmds
) != smpl_pmds
) {
2956 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds
, cnum
));
2960 /* verify validity of reset_pmds */
2961 if ((reset_pmds
& impl_pmds
) != reset_pmds
) {
2962 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds
, cnum
));
2966 if (reg_flags
& (PFM_REGFL_OVFL_NOTIFY
|PFM_REGFL_RANDOM
)) {
2967 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum
));
2970 /* eventid on non-counting monitors are ignored */
2974 * execute write checker, if any
2976 if (likely(expert_mode
== 0 && wr_func
)) {
2977 ret
= (*wr_func
)(task
, ctx
, cnum
, &value
, regs
);
2978 if (ret
) goto error
;
2983 * no error on this register
2985 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
2988 * Now we commit the changes to the software state
2992 * update overflow information
2996 * full flag update each time a register is programmed
2998 ctx
->ctx_pmds
[cnum
].flags
= flags
;
3000 ctx
->ctx_pmds
[cnum
].reset_pmds
[0] = reset_pmds
;
3001 ctx
->ctx_pmds
[cnum
].smpl_pmds
[0] = smpl_pmds
;
3002 ctx
->ctx_pmds
[cnum
].eventid
= req
->reg_smpl_eventid
;
3005 * Mark all PMDS to be accessed as used.
3007 * We do not keep track of PMC because we have to
3008 * systematically restore ALL of them.
3010 * We do not update the used_monitors mask, because
3011 * if we have not programmed them, then will be in
3012 * a quiescent state, therefore we will not need to
3013 * mask/restore then when context is MASKED.
3015 CTX_USED_PMD(ctx
, reset_pmds
);
3016 CTX_USED_PMD(ctx
, smpl_pmds
);
3018 * make sure we do not try to reset on
3019 * restart because we have established new values
3021 if (state
== PFM_CTX_MASKED
) ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
3024 * Needed in case the user does not initialize the equivalent
3025 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3026 * possible leak here.
3028 CTX_USED_PMD(ctx
, pmu_conf
->pmc_desc
[cnum
].dep_pmd
[0]);
3031 * keep track of the monitor PMC that we are using.
3032 * we save the value of the pmc in ctx_pmcs[] and if
3033 * the monitoring is not stopped for the context we also
3034 * place it in the saved state area so that it will be
3035 * picked up later by the context switch code.
3037 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3039 * The value in thread->pmcs[] may be modified on overflow, i.e., when
3040 * monitoring needs to be stopped.
3042 if (is_monitor
) CTX_USED_MONITOR(ctx
, 1UL << cnum
);
3045 * update context state
3047 ctx
->ctx_pmcs
[cnum
] = value
;
3051 * write thread state
3053 if (is_system
== 0) thread
->pmcs
[cnum
] = value
;
3056 * write hardware register if we can
3058 if (can_access_pmu
) {
3059 ia64_set_pmc(cnum
, value
);
3064 * per-task SMP only here
3066 * we are guaranteed that the task is not running on the other CPU,
3067 * we indicate that this PMD will need to be reloaded if the task
3068 * is rescheduled on the CPU it ran last on.
3070 ctx
->ctx_reload_pmcs
[0] |= 1UL << cnum
;
3075 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3081 ctx
->ctx_all_pmcs
[0],
3082 ctx
->ctx_used_pmds
[0],
3083 ctx
->ctx_pmds
[cnum
].eventid
,
3086 ctx
->ctx_reload_pmcs
[0],
3087 ctx
->ctx_used_monitors
[0],
3088 ctx
->ctx_ovfl_regs
[0]));
3092 * make sure the changes are visible
3094 if (can_access_pmu
) ia64_srlz_d();
3098 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3103 pfm_write_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3105 struct thread_struct
*thread
= NULL
;
3106 struct task_struct
*task
;
3107 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3108 unsigned long value
, hw_value
, ovfl_mask
;
3110 int i
, can_access_pmu
= 0, state
;
3111 int is_counting
, is_loaded
, is_system
, expert_mode
;
3113 pfm_reg_check_t wr_func
;
3116 state
= ctx
->ctx_state
;
3117 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3118 is_system
= ctx
->ctx_fl_system
;
3119 ovfl_mask
= pmu_conf
->ovfl_val
;
3120 task
= ctx
->ctx_task
;
3122 if (unlikely(state
== PFM_CTX_ZOMBIE
)) return -EINVAL
;
3125 * on both UP and SMP, we can only write to the PMC when the task is
3126 * the owner of the local PMU.
3128 if (likely(is_loaded
)) {
3129 thread
= &task
->thread
;
3131 * In system wide and when the context is loaded, access can only happen
3132 * when the caller is running on the CPU being monitored by the session.
3133 * It does not have to be the owner (ctx_task) of the context per se.
3135 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3136 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3139 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3141 expert_mode
= pfm_sysctl
.expert_mode
;
3143 for (i
= 0; i
< count
; i
++, req
++) {
3145 cnum
= req
->reg_num
;
3146 value
= req
->reg_value
;
3148 if (!PMD_IS_IMPL(cnum
)) {
3149 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum
));
3152 is_counting
= PMD_IS_COUNTING(cnum
);
3153 wr_func
= pmu_conf
->pmd_desc
[cnum
].write_check
;
3156 * execute write checker, if any
3158 if (unlikely(expert_mode
== 0 && wr_func
)) {
3159 unsigned long v
= value
;
3161 ret
= (*wr_func
)(task
, ctx
, cnum
, &v
, regs
);
3162 if (ret
) goto abort_mission
;
3169 * no error on this register
3171 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
3174 * now commit changes to software state
3179 * update virtualized (64bits) counter
3183 * write context state
3185 ctx
->ctx_pmds
[cnum
].lval
= value
;
3188 * when context is load we use the split value
3191 hw_value
= value
& ovfl_mask
;
3192 value
= value
& ~ovfl_mask
;
3196 * update reset values (not just for counters)
3198 ctx
->ctx_pmds
[cnum
].long_reset
= req
->reg_long_reset
;
3199 ctx
->ctx_pmds
[cnum
].short_reset
= req
->reg_short_reset
;
3202 * update randomization parameters (not just for counters)
3204 ctx
->ctx_pmds
[cnum
].seed
= req
->reg_random_seed
;
3205 ctx
->ctx_pmds
[cnum
].mask
= req
->reg_random_mask
;
3208 * update context value
3210 ctx
->ctx_pmds
[cnum
].val
= value
;
3213 * Keep track of what we use
3215 * We do not keep track of PMC because we have to
3216 * systematically restore ALL of them.
3218 CTX_USED_PMD(ctx
, PMD_PMD_DEP(cnum
));
3221 * mark this PMD register used as well
3223 CTX_USED_PMD(ctx
, RDEP(cnum
));
3226 * make sure we do not try to reset on
3227 * restart because we have established new values
3229 if (is_counting
&& state
== PFM_CTX_MASKED
) {
3230 ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
3235 * write thread state
3237 if (is_system
== 0) thread
->pmds
[cnum
] = hw_value
;
3240 * write hardware register if we can
3242 if (can_access_pmu
) {
3243 ia64_set_pmd(cnum
, hw_value
);
3247 * we are guaranteed that the task is not running on the other CPU,
3248 * we indicate that this PMD will need to be reloaded if the task
3249 * is rescheduled on the CPU it ran last on.
3251 ctx
->ctx_reload_pmds
[0] |= 1UL << cnum
;
3256 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3257 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3263 ctx
->ctx_pmds
[cnum
].val
,
3264 ctx
->ctx_pmds
[cnum
].short_reset
,
3265 ctx
->ctx_pmds
[cnum
].long_reset
,
3266 PMC_OVFL_NOTIFY(ctx
, cnum
) ? 'Y':'N',
3267 ctx
->ctx_pmds
[cnum
].seed
,
3268 ctx
->ctx_pmds
[cnum
].mask
,
3269 ctx
->ctx_used_pmds
[0],
3270 ctx
->ctx_pmds
[cnum
].reset_pmds
[0],
3271 ctx
->ctx_reload_pmds
[0],
3272 ctx
->ctx_all_pmds
[0],
3273 ctx
->ctx_ovfl_regs
[0]));
3277 * make changes visible
3279 if (can_access_pmu
) ia64_srlz_d();
3285 * for now, we have only one possibility for error
3287 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3292 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3293 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3294 * interrupt is delivered during the call, it will be kept pending until we leave, making
3295 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3296 * guaranteed to return consistent data to the user, it may simply be old. It is not
3297 * trivial to treat the overflow while inside the call because you may end up in
3298 * some module sampling buffer code causing deadlocks.
3301 pfm_read_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3303 struct thread_struct
*thread
= NULL
;
3304 struct task_struct
*task
;
3305 unsigned long val
= 0UL, lval
, ovfl_mask
, sval
;
3306 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3307 unsigned int cnum
, reg_flags
= 0;
3308 int i
, can_access_pmu
= 0, state
;
3309 int is_loaded
, is_system
, is_counting
, expert_mode
;
3311 pfm_reg_check_t rd_func
;
3314 * access is possible when loaded only for
3315 * self-monitoring tasks or in UP mode
3318 state
= ctx
->ctx_state
;
3319 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3320 is_system
= ctx
->ctx_fl_system
;
3321 ovfl_mask
= pmu_conf
->ovfl_val
;
3322 task
= ctx
->ctx_task
;
3324 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3326 if (likely(is_loaded
)) {
3327 thread
= &task
->thread
;
3329 * In system wide and when the context is loaded, access can only happen
3330 * when the caller is running on the CPU being monitored by the session.
3331 * It does not have to be the owner (ctx_task) of the context per se.
3333 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3334 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3338 * this can be true when not self-monitoring only in UP
3340 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3342 if (can_access_pmu
) ia64_srlz_d();
3344 expert_mode
= pfm_sysctl
.expert_mode
;
3346 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3352 * on both UP and SMP, we can only read the PMD from the hardware register when
3353 * the task is the owner of the local PMU.
3356 for (i
= 0; i
< count
; i
++, req
++) {
3358 cnum
= req
->reg_num
;
3359 reg_flags
= req
->reg_flags
;
3361 if (unlikely(!PMD_IS_IMPL(cnum
))) goto error
;
3363 * we can only read the register that we use. That includes
3364 * the one we explicitely initialize AND the one we want included
3365 * in the sampling buffer (smpl_regs).
3367 * Having this restriction allows optimization in the ctxsw routine
3368 * without compromising security (leaks)
3370 if (unlikely(!CTX_IS_USED_PMD(ctx
, cnum
))) goto error
;
3372 sval
= ctx
->ctx_pmds
[cnum
].val
;
3373 lval
= ctx
->ctx_pmds
[cnum
].lval
;
3374 is_counting
= PMD_IS_COUNTING(cnum
);
3377 * If the task is not the current one, then we check if the
3378 * PMU state is still in the local live register due to lazy ctxsw.
3379 * If true, then we read directly from the registers.
3381 if (can_access_pmu
){
3382 val
= ia64_get_pmd(cnum
);
3385 * context has been saved
3386 * if context is zombie, then task does not exist anymore.
3387 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3389 val
= is_loaded
? thread
->pmds
[cnum
] : 0UL;
3391 rd_func
= pmu_conf
->pmd_desc
[cnum
].read_check
;
3395 * XXX: need to check for overflow when loaded
3402 * execute read checker, if any
3404 if (unlikely(expert_mode
== 0 && rd_func
)) {
3405 unsigned long v
= val
;
3406 ret
= (*rd_func
)(ctx
->ctx_task
, ctx
, cnum
, &v
, regs
);
3407 if (ret
) goto error
;
3412 PFM_REG_RETFLAG_SET(reg_flags
, 0);
3414 DPRINT(("pmd[%u]=0x%lx\n", cnum
, val
));
3417 * update register return value, abort all if problem during copy.
3418 * we only modify the reg_flags field. no check mode is fine because
3419 * access has been verified upfront in sys_perfmonctl().
3421 req
->reg_value
= val
;
3422 req
->reg_flags
= reg_flags
;
3423 req
->reg_last_reset_val
= lval
;
3429 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3434 pfm_mod_write_pmcs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3438 if (req
== NULL
) return -EINVAL
;
3440 ctx
= GET_PMU_CTX();
3442 if (ctx
== NULL
) return -EINVAL
;
3445 * for now limit to current task, which is enough when calling
3446 * from overflow handler
3448 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3450 return pfm_write_pmcs(ctx
, req
, nreq
, regs
);
3452 EXPORT_SYMBOL(pfm_mod_write_pmcs
);
3455 pfm_mod_read_pmds(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3459 if (req
== NULL
) return -EINVAL
;
3461 ctx
= GET_PMU_CTX();
3463 if (ctx
== NULL
) return -EINVAL
;
3466 * for now limit to current task, which is enough when calling
3467 * from overflow handler
3469 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3471 return pfm_read_pmds(ctx
, req
, nreq
, regs
);
3473 EXPORT_SYMBOL(pfm_mod_read_pmds
);
3476 * Only call this function when a process it trying to
3477 * write the debug registers (reading is always allowed)
3480 pfm_use_debug_registers(struct task_struct
*task
)
3482 pfm_context_t
*ctx
= task
->thread
.pfm_context
;
3483 unsigned long flags
;
3486 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3488 DPRINT(("called for [%d]\n", task
->pid
));
3493 if (task
->thread
.flags
& IA64_THREAD_DBG_VALID
) return 0;
3496 * Even on SMP, we do not need to use an atomic here because
3497 * the only way in is via ptrace() and this is possible only when the
3498 * process is stopped. Even in the case where the ctxsw out is not totally
3499 * completed by the time we come here, there is no way the 'stopped' process
3500 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3501 * So this is always safe.
3503 if (ctx
&& ctx
->ctx_fl_using_dbreg
== 1) return -1;
3508 * We cannot allow setting breakpoints when system wide monitoring
3509 * sessions are using the debug registers.
3511 if (pfm_sessions
.pfs_sys_use_dbregs
> 0)
3514 pfm_sessions
.pfs_ptrace_use_dbregs
++;
3516 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3517 pfm_sessions
.pfs_ptrace_use_dbregs
,
3518 pfm_sessions
.pfs_sys_use_dbregs
,
3527 * This function is called for every task that exits with the
3528 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3529 * able to use the debug registers for debugging purposes via
3530 * ptrace(). Therefore we know it was not using them for
3531 * perfmormance monitoring, so we only decrement the number
3532 * of "ptraced" debug register users to keep the count up to date
3535 pfm_release_debug_registers(struct task_struct
*task
)
3537 unsigned long flags
;
3540 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3543 if (pfm_sessions
.pfs_ptrace_use_dbregs
== 0) {
3544 printk(KERN_ERR
"perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task
->pid
);
3547 pfm_sessions
.pfs_ptrace_use_dbregs
--;
3556 pfm_restart(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3558 struct task_struct
*task
;
3559 pfm_buffer_fmt_t
*fmt
;
3560 pfm_ovfl_ctrl_t rst_ctrl
;
3561 int state
, is_system
;
3564 state
= ctx
->ctx_state
;
3565 fmt
= ctx
->ctx_buf_fmt
;
3566 is_system
= ctx
->ctx_fl_system
;
3567 task
= PFM_CTX_TASK(ctx
);
3570 case PFM_CTX_MASKED
:
3572 case PFM_CTX_LOADED
:
3573 if (CTX_HAS_SMPL(ctx
) && fmt
->fmt_restart_active
) break;
3575 case PFM_CTX_UNLOADED
:
3576 case PFM_CTX_ZOMBIE
:
3577 DPRINT(("invalid state=%d\n", state
));
3580 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state
));
3585 * In system wide and when the context is loaded, access can only happen
3586 * when the caller is running on the CPU being monitored by the session.
3587 * It does not have to be the owner (ctx_task) of the context per se.
3589 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3590 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3595 if (unlikely(task
== NULL
)) {
3596 printk(KERN_ERR
"perfmon: [%d] pfm_restart no task\n", current
->pid
);
3600 if (task
== current
|| is_system
) {
3602 fmt
= ctx
->ctx_buf_fmt
;
3604 DPRINT(("restarting self %d ovfl=0x%lx\n",
3606 ctx
->ctx_ovfl_regs
[0]));
3608 if (CTX_HAS_SMPL(ctx
)) {
3610 prefetch(ctx
->ctx_smpl_hdr
);
3612 rst_ctrl
.bits
.mask_monitoring
= 0;
3613 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
3615 if (state
== PFM_CTX_LOADED
)
3616 ret
= pfm_buf_fmt_restart_active(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3618 ret
= pfm_buf_fmt_restart(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3620 rst_ctrl
.bits
.mask_monitoring
= 0;
3621 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
3625 if (rst_ctrl
.bits
.reset_ovfl_pmds
)
3626 pfm_reset_regs(ctx
, ctx
->ctx_ovfl_regs
, PFM_PMD_LONG_RESET
);
3628 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
3629 DPRINT(("resuming monitoring for [%d]\n", task
->pid
));
3631 if (state
== PFM_CTX_MASKED
) pfm_restore_monitoring(task
);
3633 DPRINT(("keeping monitoring stopped for [%d]\n", task
->pid
));
3635 // cannot use pfm_stop_monitoring(task, regs);
3639 * clear overflowed PMD mask to remove any stale information
3641 ctx
->ctx_ovfl_regs
[0] = 0UL;
3644 * back to LOADED state
3646 ctx
->ctx_state
= PFM_CTX_LOADED
;
3649 * XXX: not really useful for self monitoring
3651 ctx
->ctx_fl_can_restart
= 0;
3657 * restart another task
3661 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3662 * one is seen by the task.
3664 if (state
== PFM_CTX_MASKED
) {
3665 if (ctx
->ctx_fl_can_restart
== 0) return -EINVAL
;
3667 * will prevent subsequent restart before this one is
3668 * seen by other task
3670 ctx
->ctx_fl_can_restart
= 0;
3674 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3675 * the task is blocked or on its way to block. That's the normal
3676 * restart path. If the monitoring is not masked, then the task
3677 * can be actively monitoring and we cannot directly intervene.
3678 * Therefore we use the trap mechanism to catch the task and
3679 * force it to reset the buffer/reset PMDs.
3681 * if non-blocking, then we ensure that the task will go into
3682 * pfm_handle_work() before returning to user mode.
3684 * We cannot explicitely reset another task, it MUST always
3685 * be done by the task itself. This works for system wide because
3686 * the tool that is controlling the session is logically doing
3687 * "self-monitoring".
3689 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && state
== PFM_CTX_MASKED
) {
3690 DPRINT(("unblocking [%d] \n", task
->pid
));
3691 complete(&ctx
->ctx_restart_done
);
3693 DPRINT(("[%d] armed exit trap\n", task
->pid
));
3695 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_RESET
;
3697 PFM_SET_WORK_PENDING(task
, 1);
3699 pfm_set_task_notify(task
);
3702 * XXX: send reschedule if task runs on another CPU
3709 pfm_debug(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3711 unsigned int m
= *(unsigned int *)arg
;
3713 pfm_sysctl
.debug
= m
== 0 ? 0 : 1;
3715 printk(KERN_INFO
"perfmon debugging %s (timing reset)\n", pfm_sysctl
.debug
? "on" : "off");
3718 memset(pfm_stats
, 0, sizeof(pfm_stats
));
3719 for(m
=0; m
< NR_CPUS
; m
++) pfm_stats
[m
].pfm_ovfl_intr_cycles_min
= ~0UL;
3725 * arg can be NULL and count can be zero for this function
3728 pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3730 struct thread_struct
*thread
= NULL
;
3731 struct task_struct
*task
;
3732 pfarg_dbreg_t
*req
= (pfarg_dbreg_t
*)arg
;
3733 unsigned long flags
;
3738 int i
, can_access_pmu
= 0;
3739 int is_system
, is_loaded
;
3741 if (pmu_conf
->use_rr_dbregs
== 0) return -EINVAL
;
3743 state
= ctx
->ctx_state
;
3744 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3745 is_system
= ctx
->ctx_fl_system
;
3746 task
= ctx
->ctx_task
;
3748 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3751 * on both UP and SMP, we can only write to the PMC when the task is
3752 * the owner of the local PMU.
3755 thread
= &task
->thread
;
3757 * In system wide and when the context is loaded, access can only happen
3758 * when the caller is running on the CPU being monitored by the session.
3759 * It does not have to be the owner (ctx_task) of the context per se.
3761 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3762 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3765 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3769 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3770 * ensuring that no real breakpoint can be installed via this call.
3772 * IMPORTANT: regs can be NULL in this function
3775 first_time
= ctx
->ctx_fl_using_dbreg
== 0;
3778 * don't bother if we are loaded and task is being debugged
3780 if (is_loaded
&& (thread
->flags
& IA64_THREAD_DBG_VALID
) != 0) {
3781 DPRINT(("debug registers already in use for [%d]\n", task
->pid
));
3786 * check for debug registers in system wide mode
3788 * If though a check is done in pfm_context_load(),
3789 * we must repeat it here, in case the registers are
3790 * written after the context is loaded
3795 if (first_time
&& is_system
) {
3796 if (pfm_sessions
.pfs_ptrace_use_dbregs
)
3799 pfm_sessions
.pfs_sys_use_dbregs
++;
3804 if (ret
!= 0) return ret
;
3807 * mark ourself as user of the debug registers for
3810 ctx
->ctx_fl_using_dbreg
= 1;
3813 * clear hardware registers to make sure we don't
3814 * pick up stale state.
3816 * for a system wide session, we do not use
3817 * thread.dbr, thread.ibr because this process
3818 * never leaves the current CPU and the state
3819 * is shared by all processes running on it
3821 if (first_time
&& can_access_pmu
) {
3822 DPRINT(("[%d] clearing ibrs, dbrs\n", task
->pid
));
3823 for (i
=0; i
< pmu_conf
->num_ibrs
; i
++) {
3824 ia64_set_ibr(i
, 0UL);
3825 ia64_dv_serialize_instruction();
3828 for (i
=0; i
< pmu_conf
->num_dbrs
; i
++) {
3829 ia64_set_dbr(i
, 0UL);
3830 ia64_dv_serialize_data();
3836 * Now install the values into the registers
3838 for (i
= 0; i
< count
; i
++, req
++) {
3840 rnum
= req
->dbreg_num
;
3841 dbreg
.val
= req
->dbreg_value
;
3845 if ((mode
== PFM_CODE_RR
&& rnum
>= PFM_NUM_IBRS
) || ((mode
== PFM_DATA_RR
) && rnum
>= PFM_NUM_DBRS
)) {
3846 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3847 rnum
, dbreg
.val
, mode
, i
, count
));
3853 * make sure we do not install enabled breakpoint
3856 if (mode
== PFM_CODE_RR
)
3857 dbreg
.ibr
.ibr_x
= 0;
3859 dbreg
.dbr
.dbr_r
= dbreg
.dbr
.dbr_w
= 0;
3862 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, 0);
3865 * Debug registers, just like PMC, can only be modified
3866 * by a kernel call. Moreover, perfmon() access to those
3867 * registers are centralized in this routine. The hardware
3868 * does not modify the value of these registers, therefore,
3869 * if we save them as they are written, we can avoid having
3870 * to save them on context switch out. This is made possible
3871 * by the fact that when perfmon uses debug registers, ptrace()
3872 * won't be able to modify them concurrently.
3874 if (mode
== PFM_CODE_RR
) {
3875 CTX_USED_IBR(ctx
, rnum
);
3877 if (can_access_pmu
) {
3878 ia64_set_ibr(rnum
, dbreg
.val
);
3879 ia64_dv_serialize_instruction();
3882 ctx
->ctx_ibrs
[rnum
] = dbreg
.val
;
3884 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3885 rnum
, dbreg
.val
, ctx
->ctx_used_ibrs
[0], is_loaded
, can_access_pmu
));
3887 CTX_USED_DBR(ctx
, rnum
);
3889 if (can_access_pmu
) {
3890 ia64_set_dbr(rnum
, dbreg
.val
);
3891 ia64_dv_serialize_data();
3893 ctx
->ctx_dbrs
[rnum
] = dbreg
.val
;
3895 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3896 rnum
, dbreg
.val
, ctx
->ctx_used_dbrs
[0], is_loaded
, can_access_pmu
));
3904 * in case it was our first attempt, we undo the global modifications
3908 if (ctx
->ctx_fl_system
) {
3909 pfm_sessions
.pfs_sys_use_dbregs
--;
3912 ctx
->ctx_fl_using_dbreg
= 0;
3915 * install error return flag
3917 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, PFM_REG_RETFL_EINVAL
);
3923 pfm_write_ibrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3925 return pfm_write_ibr_dbr(PFM_CODE_RR
, ctx
, arg
, count
, regs
);
3929 pfm_write_dbrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3931 return pfm_write_ibr_dbr(PFM_DATA_RR
, ctx
, arg
, count
, regs
);
3935 pfm_mod_write_ibrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3939 if (req
== NULL
) return -EINVAL
;
3941 ctx
= GET_PMU_CTX();
3943 if (ctx
== NULL
) return -EINVAL
;
3946 * for now limit to current task, which is enough when calling
3947 * from overflow handler
3949 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3951 return pfm_write_ibrs(ctx
, req
, nreq
, regs
);
3953 EXPORT_SYMBOL(pfm_mod_write_ibrs
);
3956 pfm_mod_write_dbrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3960 if (req
== NULL
) return -EINVAL
;
3962 ctx
= GET_PMU_CTX();
3964 if (ctx
== NULL
) return -EINVAL
;
3967 * for now limit to current task, which is enough when calling
3968 * from overflow handler
3970 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3972 return pfm_write_dbrs(ctx
, req
, nreq
, regs
);
3974 EXPORT_SYMBOL(pfm_mod_write_dbrs
);
3978 pfm_get_features(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3980 pfarg_features_t
*req
= (pfarg_features_t
*)arg
;
3982 req
->ft_version
= PFM_VERSION
;
3987 pfm_stop(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3989 struct pt_regs
*tregs
;
3990 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
3991 int state
, is_system
;
3993 state
= ctx
->ctx_state
;
3994 is_system
= ctx
->ctx_fl_system
;
3997 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3999 if (state
== PFM_CTX_UNLOADED
) return -EINVAL
;
4002 * In system wide and when the context is loaded, access can only happen
4003 * when the caller is running on the CPU being monitored by the session.
4004 * It does not have to be the owner (ctx_task) of the context per se.
4006 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
4007 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
4010 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4011 PFM_CTX_TASK(ctx
)->pid
,
4015 * in system mode, we need to update the PMU directly
4016 * and the user level state of the caller, which may not
4017 * necessarily be the creator of the context.
4021 * Update local PMU first
4025 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
4029 * update local cpuinfo
4031 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4034 * stop monitoring, does srlz.i
4039 * stop monitoring in the caller
4041 ia64_psr(regs
)->pp
= 0;
4049 if (task
== current
) {
4050 /* stop monitoring at kernel level */
4054 * stop monitoring at the user level
4056 ia64_psr(regs
)->up
= 0;
4058 tregs
= task_pt_regs(task
);
4061 * stop monitoring at the user level
4063 ia64_psr(tregs
)->up
= 0;
4066 * monitoring disabled in kernel at next reschedule
4068 ctx
->ctx_saved_psr_up
= 0;
4069 DPRINT(("task=[%d]\n", task
->pid
));
4076 pfm_start(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4078 struct pt_regs
*tregs
;
4079 int state
, is_system
;
4081 state
= ctx
->ctx_state
;
4082 is_system
= ctx
->ctx_fl_system
;
4084 if (state
!= PFM_CTX_LOADED
) return -EINVAL
;
4087 * In system wide and when the context is loaded, access can only happen
4088 * when the caller is running on the CPU being monitored by the session.
4089 * It does not have to be the owner (ctx_task) of the context per se.
4091 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
4092 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
4097 * in system mode, we need to update the PMU directly
4098 * and the user level state of the caller, which may not
4099 * necessarily be the creator of the context.
4104 * set user level psr.pp for the caller
4106 ia64_psr(regs
)->pp
= 1;
4109 * now update the local PMU and cpuinfo
4111 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP
);
4114 * start monitoring at kernel level
4119 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
4129 if (ctx
->ctx_task
== current
) {
4131 /* start monitoring at kernel level */
4135 * activate monitoring at user level
4137 ia64_psr(regs
)->up
= 1;
4140 tregs
= task_pt_regs(ctx
->ctx_task
);
4143 * start monitoring at the kernel level the next
4144 * time the task is scheduled
4146 ctx
->ctx_saved_psr_up
= IA64_PSR_UP
;
4149 * activate monitoring at user level
4151 ia64_psr(tregs
)->up
= 1;
4157 pfm_get_pmc_reset(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4159 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
4164 for (i
= 0; i
< count
; i
++, req
++) {
4166 cnum
= req
->reg_num
;
4168 if (!PMC_IS_IMPL(cnum
)) goto abort_mission
;
4170 req
->reg_value
= PMC_DFL_VAL(cnum
);
4172 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
4174 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum
, req
->reg_value
));
4179 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
4184 pfm_check_task_exist(pfm_context_t
*ctx
)
4186 struct task_struct
*g
, *t
;
4189 read_lock(&tasklist_lock
);
4191 do_each_thread (g
, t
) {
4192 if (t
->thread
.pfm_context
== ctx
) {
4196 } while_each_thread (g
, t
);
4198 read_unlock(&tasklist_lock
);
4200 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret
, ctx
));
4206 pfm_context_load(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4208 struct task_struct
*task
;
4209 struct thread_struct
*thread
;
4210 struct pfm_context_t
*old
;
4211 unsigned long flags
;
4213 struct task_struct
*owner_task
= NULL
;
4215 pfarg_load_t
*req
= (pfarg_load_t
*)arg
;
4216 unsigned long *pmcs_source
, *pmds_source
;
4219 int state
, is_system
, set_dbregs
= 0;
4221 state
= ctx
->ctx_state
;
4222 is_system
= ctx
->ctx_fl_system
;
4224 * can only load from unloaded or terminated state
4226 if (state
!= PFM_CTX_UNLOADED
) {
4227 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4233 DPRINT(("load_pid [%d] using_dbreg=%d\n", req
->load_pid
, ctx
->ctx_fl_using_dbreg
));
4235 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && req
->load_pid
== current
->pid
) {
4236 DPRINT(("cannot use blocking mode on self\n"));
4240 ret
= pfm_get_task(ctx
, req
->load_pid
, &task
);
4242 DPRINT(("load_pid [%d] get_task=%d\n", req
->load_pid
, ret
));
4249 * system wide is self monitoring only
4251 if (is_system
&& task
!= current
) {
4252 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4257 thread
= &task
->thread
;
4261 * cannot load a context which is using range restrictions,
4262 * into a task that is being debugged.
4264 if (ctx
->ctx_fl_using_dbreg
) {
4265 if (thread
->flags
& IA64_THREAD_DBG_VALID
) {
4267 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req
->load_pid
));
4273 if (pfm_sessions
.pfs_ptrace_use_dbregs
) {
4274 DPRINT(("cannot load [%d] dbregs in use\n", task
->pid
));
4277 pfm_sessions
.pfs_sys_use_dbregs
++;
4278 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task
->pid
, pfm_sessions
.pfs_sys_use_dbregs
));
4285 if (ret
) goto error
;
4289 * SMP system-wide monitoring implies self-monitoring.
4291 * The programming model expects the task to
4292 * be pinned on a CPU throughout the session.
4293 * Here we take note of the current CPU at the
4294 * time the context is loaded. No call from
4295 * another CPU will be allowed.
4297 * The pinning via shed_setaffinity()
4298 * must be done by the calling task prior
4301 * systemwide: keep track of CPU this session is supposed to run on
4303 the_cpu
= ctx
->ctx_cpu
= smp_processor_id();
4307 * now reserve the session
4309 ret
= pfm_reserve_session(current
, is_system
, the_cpu
);
4310 if (ret
) goto error
;
4313 * task is necessarily stopped at this point.
4315 * If the previous context was zombie, then it got removed in
4316 * pfm_save_regs(). Therefore we should not see it here.
4317 * If we see a context, then this is an active context
4319 * XXX: needs to be atomic
4321 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4322 thread
->pfm_context
, ctx
));
4325 old
= ia64_cmpxchg(acq
, &thread
->pfm_context
, NULL
, ctx
, sizeof(pfm_context_t
*));
4327 DPRINT(("load_pid [%d] already has a context\n", req
->load_pid
));
4331 pfm_reset_msgq(ctx
);
4333 ctx
->ctx_state
= PFM_CTX_LOADED
;
4336 * link context to task
4338 ctx
->ctx_task
= task
;
4342 * we load as stopped
4344 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE
);
4345 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4347 if (ctx
->ctx_fl_excl_idle
) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE
);
4349 thread
->flags
|= IA64_THREAD_PM_VALID
;
4353 * propagate into thread-state
4355 pfm_copy_pmds(task
, ctx
);
4356 pfm_copy_pmcs(task
, ctx
);
4358 pmcs_source
= thread
->pmcs
;
4359 pmds_source
= thread
->pmds
;
4362 * always the case for system-wide
4364 if (task
== current
) {
4366 if (is_system
== 0) {
4368 /* allow user level control */
4369 ia64_psr(regs
)->sp
= 0;
4370 DPRINT(("clearing psr.sp for [%d]\n", task
->pid
));
4372 SET_LAST_CPU(ctx
, smp_processor_id());
4374 SET_ACTIVATION(ctx
);
4377 * push the other task out, if any
4379 owner_task
= GET_PMU_OWNER();
4380 if (owner_task
) pfm_lazy_save_regs(owner_task
);
4384 * load all PMD from ctx to PMU (as opposed to thread state)
4385 * restore all PMC from ctx to PMU
4387 pfm_restore_pmds(pmds_source
, ctx
->ctx_all_pmds
[0]);
4388 pfm_restore_pmcs(pmcs_source
, ctx
->ctx_all_pmcs
[0]);
4390 ctx
->ctx_reload_pmcs
[0] = 0UL;
4391 ctx
->ctx_reload_pmds
[0] = 0UL;
4394 * guaranteed safe by earlier check against DBG_VALID
4396 if (ctx
->ctx_fl_using_dbreg
) {
4397 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
4398 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
4403 SET_PMU_OWNER(task
, ctx
);
4405 DPRINT(("context loaded on PMU for [%d]\n", task
->pid
));
4408 * when not current, task MUST be stopped, so this is safe
4410 regs
= task_pt_regs(task
);
4412 /* force a full reload */
4413 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4414 SET_LAST_CPU(ctx
, -1);
4416 /* initial saved psr (stopped) */
4417 ctx
->ctx_saved_psr_up
= 0UL;
4418 ia64_psr(regs
)->up
= ia64_psr(regs
)->pp
= 0;
4424 if (ret
) pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, the_cpu
);
4427 * we must undo the dbregs setting (for system-wide)
4429 if (ret
&& set_dbregs
) {
4431 pfm_sessions
.pfs_sys_use_dbregs
--;
4435 * release task, there is now a link with the context
4437 if (is_system
== 0 && task
!= current
) {
4441 ret
= pfm_check_task_exist(ctx
);
4443 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4444 ctx
->ctx_task
= NULL
;
4452 * in this function, we do not need to increase the use count
4453 * for the task via get_task_struct(), because we hold the
4454 * context lock. If the task were to disappear while having
4455 * a context attached, it would go through pfm_exit_thread()
4456 * which also grabs the context lock and would therefore be blocked
4457 * until we are here.
4459 static void pfm_flush_pmds(struct task_struct
*, pfm_context_t
*ctx
);
4462 pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4464 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
4465 struct pt_regs
*tregs
;
4466 int prev_state
, is_system
;
4469 DPRINT(("ctx_state=%d task [%d]\n", ctx
->ctx_state
, task
? task
->pid
: -1));
4471 prev_state
= ctx
->ctx_state
;
4472 is_system
= ctx
->ctx_fl_system
;
4475 * unload only when necessary
4477 if (prev_state
== PFM_CTX_UNLOADED
) {
4478 DPRINT(("ctx_state=%d, nothing to do\n", prev_state
));
4483 * clear psr and dcr bits
4485 ret
= pfm_stop(ctx
, NULL
, 0, regs
);
4486 if (ret
) return ret
;
4488 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4491 * in system mode, we need to update the PMU directly
4492 * and the user level state of the caller, which may not
4493 * necessarily be the creator of the context.
4500 * local PMU is taken care of in pfm_stop()
4502 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE
);
4503 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE
);
4506 * save PMDs in context
4509 pfm_flush_pmds(current
, ctx
);
4512 * at this point we are done with the PMU
4513 * so we can unreserve the resource.
4515 if (prev_state
!= PFM_CTX_ZOMBIE
)
4516 pfm_unreserve_session(ctx
, 1 , ctx
->ctx_cpu
);
4519 * disconnect context from task
4521 task
->thread
.pfm_context
= NULL
;
4523 * disconnect task from context
4525 ctx
->ctx_task
= NULL
;
4528 * There is nothing more to cleanup here.
4536 tregs
= task
== current
? regs
: task_pt_regs(task
);
4538 if (task
== current
) {
4540 * cancel user level control
4542 ia64_psr(regs
)->sp
= 1;
4544 DPRINT(("setting psr.sp for [%d]\n", task
->pid
));
4547 * save PMDs to context
4550 pfm_flush_pmds(task
, ctx
);
4553 * at this point we are done with the PMU
4554 * so we can unreserve the resource.
4556 * when state was ZOMBIE, we have already unreserved.
4558 if (prev_state
!= PFM_CTX_ZOMBIE
)
4559 pfm_unreserve_session(ctx
, 0 , ctx
->ctx_cpu
);
4562 * reset activation counter and psr
4564 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4565 SET_LAST_CPU(ctx
, -1);
4568 * PMU state will not be restored
4570 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
4573 * break links between context and task
4575 task
->thread
.pfm_context
= NULL
;
4576 ctx
->ctx_task
= NULL
;
4578 PFM_SET_WORK_PENDING(task
, 0);
4580 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
4581 ctx
->ctx_fl_can_restart
= 0;
4582 ctx
->ctx_fl_going_zombie
= 0;
4584 DPRINT(("disconnected [%d] from context\n", task
->pid
));
4591 * called only from exit_thread(): task == current
4592 * we come here only if current has a context attached (loaded or masked)
4595 pfm_exit_thread(struct task_struct
*task
)
4598 unsigned long flags
;
4599 struct pt_regs
*regs
= task_pt_regs(task
);
4603 ctx
= PFM_GET_CTX(task
);
4605 PROTECT_CTX(ctx
, flags
);
4607 DPRINT(("state=%d task [%d]\n", ctx
->ctx_state
, task
->pid
));
4609 state
= ctx
->ctx_state
;
4611 case PFM_CTX_UNLOADED
:
4613 * only comes to thios function if pfm_context is not NULL, i.e., cannot
4614 * be in unloaded state
4616 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] ctx unloaded\n", task
->pid
);
4618 case PFM_CTX_LOADED
:
4619 case PFM_CTX_MASKED
:
4620 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4622 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task
->pid
, state
, ret
);
4624 DPRINT(("ctx unloaded for current state was %d\n", state
));
4626 pfm_end_notify_user(ctx
);
4628 case PFM_CTX_ZOMBIE
:
4629 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4631 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task
->pid
, state
, ret
);
4636 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task
->pid
, state
);
4639 UNPROTECT_CTX(ctx
, flags
);
4641 { u64 psr
= pfm_get_psr();
4642 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
4643 BUG_ON(GET_PMU_OWNER());
4644 BUG_ON(ia64_psr(regs
)->up
);
4645 BUG_ON(ia64_psr(regs
)->pp
);
4649 * All memory free operations (especially for vmalloc'ed memory)
4650 * MUST be done with interrupts ENABLED.
4652 if (free_ok
) pfm_context_free(ctx
);
4656 * functions MUST be listed in the increasing order of their index (see permfon.h)
4658 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4659 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4660 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4661 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4662 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4664 static pfm_cmd_desc_t pfm_cmd_tab
[]={
4665 /* 0 */PFM_CMD_NONE
,
4666 /* 1 */PFM_CMD(pfm_write_pmcs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4667 /* 2 */PFM_CMD(pfm_write_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4668 /* 3 */PFM_CMD(pfm_read_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4669 /* 4 */PFM_CMD_S(pfm_stop
, PFM_CMD_PCLRWS
),
4670 /* 5 */PFM_CMD_S(pfm_start
, PFM_CMD_PCLRWS
),
4671 /* 6 */PFM_CMD_NONE
,
4672 /* 7 */PFM_CMD_NONE
,
4673 /* 8 */PFM_CMD(pfm_context_create
, PFM_CMD_ARG_RW
, 1, pfarg_context_t
, pfm_ctx_getsize
),
4674 /* 9 */PFM_CMD_NONE
,
4675 /* 10 */PFM_CMD_S(pfm_restart
, PFM_CMD_PCLRW
),
4676 /* 11 */PFM_CMD_NONE
,
4677 /* 12 */PFM_CMD(pfm_get_features
, PFM_CMD_ARG_RW
, 1, pfarg_features_t
, NULL
),
4678 /* 13 */PFM_CMD(pfm_debug
, 0, 1, unsigned int, NULL
),
4679 /* 14 */PFM_CMD_NONE
,
4680 /* 15 */PFM_CMD(pfm_get_pmc_reset
, PFM_CMD_ARG_RW
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4681 /* 16 */PFM_CMD(pfm_context_load
, PFM_CMD_PCLRWS
, 1, pfarg_load_t
, NULL
),
4682 /* 17 */PFM_CMD_S(pfm_context_unload
, PFM_CMD_PCLRWS
),
4683 /* 18 */PFM_CMD_NONE
,
4684 /* 19 */PFM_CMD_NONE
,
4685 /* 20 */PFM_CMD_NONE
,
4686 /* 21 */PFM_CMD_NONE
,
4687 /* 22 */PFM_CMD_NONE
,
4688 /* 23 */PFM_CMD_NONE
,
4689 /* 24 */PFM_CMD_NONE
,
4690 /* 25 */PFM_CMD_NONE
,
4691 /* 26 */PFM_CMD_NONE
,
4692 /* 27 */PFM_CMD_NONE
,
4693 /* 28 */PFM_CMD_NONE
,
4694 /* 29 */PFM_CMD_NONE
,
4695 /* 30 */PFM_CMD_NONE
,
4696 /* 31 */PFM_CMD_NONE
,
4697 /* 32 */PFM_CMD(pfm_write_ibrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
),
4698 /* 33 */PFM_CMD(pfm_write_dbrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
)
4700 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4703 pfm_check_task_state(pfm_context_t
*ctx
, int cmd
, unsigned long flags
)
4705 struct task_struct
*task
;
4706 int state
, old_state
;
4709 state
= ctx
->ctx_state
;
4710 task
= ctx
->ctx_task
;
4713 DPRINT(("context %d no task, state=%d\n", ctx
->ctx_fd
, state
));
4717 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4721 task
->state
, PFM_CMD_STOPPED(cmd
)));
4724 * self-monitoring always ok.
4726 * for system-wide the caller can either be the creator of the
4727 * context (to one to which the context is attached to) OR
4728 * a task running on the same CPU as the session.
4730 if (task
== current
|| ctx
->ctx_fl_system
) return 0;
4733 * we are monitoring another thread
4736 case PFM_CTX_UNLOADED
:
4738 * if context is UNLOADED we are safe to go
4741 case PFM_CTX_ZOMBIE
:
4743 * no command can operate on a zombie context
4745 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd
));
4747 case PFM_CTX_MASKED
:
4749 * PMU state has been saved to software even though
4750 * the thread may still be running.
4752 if (cmd
!= PFM_UNLOAD_CONTEXT
) return 0;
4756 * context is LOADED or MASKED. Some commands may need to have
4759 * We could lift this restriction for UP but it would mean that
4760 * the user has no guarantee the task would not run between
4761 * two successive calls to perfmonctl(). That's probably OK.
4762 * If this user wants to ensure the task does not run, then
4763 * the task must be stopped.
4765 if (PFM_CMD_STOPPED(cmd
)) {
4766 if ((task
->state
!= TASK_STOPPED
) && (task
->state
!= TASK_TRACED
)) {
4767 DPRINT(("[%d] task not in stopped state\n", task
->pid
));
4771 * task is now stopped, wait for ctxsw out
4773 * This is an interesting point in the code.
4774 * We need to unprotect the context because
4775 * the pfm_save_regs() routines needs to grab
4776 * the same lock. There are danger in doing
4777 * this because it leaves a window open for
4778 * another task to get access to the context
4779 * and possibly change its state. The one thing
4780 * that is not possible is for the context to disappear
4781 * because we are protected by the VFS layer, i.e.,
4782 * get_fd()/put_fd().
4786 UNPROTECT_CTX(ctx
, flags
);
4788 wait_task_inactive(task
);
4790 PROTECT_CTX(ctx
, flags
);
4793 * we must recheck to verify if state has changed
4795 if (ctx
->ctx_state
!= old_state
) {
4796 DPRINT(("old_state=%d new_state=%d\n", old_state
, ctx
->ctx_state
));
4804 * system-call entry point (must return long)
4807 sys_perfmonctl (int fd
, int cmd
, void __user
*arg
, int count
)
4809 struct file
*file
= NULL
;
4810 pfm_context_t
*ctx
= NULL
;
4811 unsigned long flags
= 0UL;
4812 void *args_k
= NULL
;
4813 long ret
; /* will expand int return types */
4814 size_t base_sz
, sz
, xtra_sz
= 0;
4815 int narg
, completed_args
= 0, call_made
= 0, cmd_flags
;
4816 int (*func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
4817 int (*getsize
)(void *arg
, size_t *sz
);
4818 #define PFM_MAX_ARGSIZE 4096
4821 * reject any call if perfmon was disabled at initialization
4823 if (unlikely(pmu_conf
== NULL
)) return -ENOSYS
;
4825 if (unlikely(cmd
< 0 || cmd
>= PFM_CMD_COUNT
)) {
4826 DPRINT(("invalid cmd=%d\n", cmd
));
4830 func
= pfm_cmd_tab
[cmd
].cmd_func
;
4831 narg
= pfm_cmd_tab
[cmd
].cmd_narg
;
4832 base_sz
= pfm_cmd_tab
[cmd
].cmd_argsize
;
4833 getsize
= pfm_cmd_tab
[cmd
].cmd_getsize
;
4834 cmd_flags
= pfm_cmd_tab
[cmd
].cmd_flags
;
4836 if (unlikely(func
== NULL
)) {
4837 DPRINT(("invalid cmd=%d\n", cmd
));
4841 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4849 * check if number of arguments matches what the command expects
4851 if (unlikely((narg
== PFM_CMD_ARG_MANY
&& count
<= 0) || (narg
> 0 && narg
!= count
)))
4855 sz
= xtra_sz
+ base_sz
*count
;
4857 * limit abuse to min page size
4859 if (unlikely(sz
> PFM_MAX_ARGSIZE
)) {
4860 printk(KERN_ERR
"perfmon: [%d] argument too big %lu\n", current
->pid
, sz
);
4865 * allocate default-sized argument buffer
4867 if (likely(count
&& args_k
== NULL
)) {
4868 args_k
= kmalloc(PFM_MAX_ARGSIZE
, GFP_KERNEL
);
4869 if (args_k
== NULL
) return -ENOMEM
;
4877 * assume sz = 0 for command without parameters
4879 if (sz
&& copy_from_user(args_k
, arg
, sz
)) {
4880 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz
, arg
));
4885 * check if command supports extra parameters
4887 if (completed_args
== 0 && getsize
) {
4889 * get extra parameters size (based on main argument)
4891 ret
= (*getsize
)(args_k
, &xtra_sz
);
4892 if (ret
) goto error_args
;
4896 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz
, xtra_sz
));
4898 /* retry if necessary */
4899 if (likely(xtra_sz
)) goto restart_args
;
4902 if (unlikely((cmd_flags
& PFM_CMD_FD
) == 0)) goto skip_fd
;
4907 if (unlikely(file
== NULL
)) {
4908 DPRINT(("invalid fd %d\n", fd
));
4911 if (unlikely(PFM_IS_FILE(file
) == 0)) {
4912 DPRINT(("fd %d not related to perfmon\n", fd
));
4916 ctx
= (pfm_context_t
*)file
->private_data
;
4917 if (unlikely(ctx
== NULL
)) {
4918 DPRINT(("no context for fd %d\n", fd
));
4921 prefetch(&ctx
->ctx_state
);
4923 PROTECT_CTX(ctx
, flags
);
4926 * check task is stopped
4928 ret
= pfm_check_task_state(ctx
, cmd
, flags
);
4929 if (unlikely(ret
)) goto abort_locked
;
4932 ret
= (*func
)(ctx
, args_k
, count
, task_pt_regs(current
));
4938 DPRINT(("context unlocked\n"));
4939 UNPROTECT_CTX(ctx
, flags
);
4943 /* copy argument back to user, if needed */
4944 if (call_made
&& PFM_CMD_RW_ARG(cmd
) && copy_to_user(arg
, args_k
, base_sz
*count
)) ret
= -EFAULT
;
4949 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd
), ret
));
4955 pfm_resume_after_ovfl(pfm_context_t
*ctx
, unsigned long ovfl_regs
, struct pt_regs
*regs
)
4957 pfm_buffer_fmt_t
*fmt
= ctx
->ctx_buf_fmt
;
4958 pfm_ovfl_ctrl_t rst_ctrl
;
4962 state
= ctx
->ctx_state
;
4964 * Unlock sampling buffer and reset index atomically
4965 * XXX: not really needed when blocking
4967 if (CTX_HAS_SMPL(ctx
)) {
4969 rst_ctrl
.bits
.mask_monitoring
= 0;
4970 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
4972 if (state
== PFM_CTX_LOADED
)
4973 ret
= pfm_buf_fmt_restart_active(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4975 ret
= pfm_buf_fmt_restart(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4977 rst_ctrl
.bits
.mask_monitoring
= 0;
4978 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
4982 if (rst_ctrl
.bits
.reset_ovfl_pmds
) {
4983 pfm_reset_regs(ctx
, &ovfl_regs
, PFM_PMD_LONG_RESET
);
4985 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
4986 DPRINT(("resuming monitoring\n"));
4987 if (ctx
->ctx_state
== PFM_CTX_MASKED
) pfm_restore_monitoring(current
);
4989 DPRINT(("stopping monitoring\n"));
4990 //pfm_stop_monitoring(current, regs);
4992 ctx
->ctx_state
= PFM_CTX_LOADED
;
4997 * context MUST BE LOCKED when calling
4998 * can only be called for current
5001 pfm_context_force_terminate(pfm_context_t
*ctx
, struct pt_regs
*regs
)
5005 DPRINT(("entering for [%d]\n", current
->pid
));
5007 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
5009 printk(KERN_ERR
"pfm_context_force_terminate: [%d] unloaded failed with %d\n", current
->pid
, ret
);
5013 * and wakeup controlling task, indicating we are now disconnected
5015 wake_up_interruptible(&ctx
->ctx_zombieq
);
5018 * given that context is still locked, the controlling
5019 * task will only get access when we return from
5020 * pfm_handle_work().
5024 static int pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
);
5026 * pfm_handle_work() can be called with interrupts enabled
5027 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5028 * call may sleep, therefore we must re-enable interrupts
5029 * to avoid deadlocks. It is safe to do so because this function
5030 * is called ONLY when returning to user level (PUStk=1), in which case
5031 * there is no risk of kernel stack overflow due to deep
5032 * interrupt nesting.
5035 pfm_handle_work(void)
5038 struct pt_regs
*regs
;
5039 unsigned long flags
, dummy_flags
;
5040 unsigned long ovfl_regs
;
5041 unsigned int reason
;
5044 ctx
= PFM_GET_CTX(current
);
5046 printk(KERN_ERR
"perfmon: [%d] has no PFM context\n", current
->pid
);
5050 PROTECT_CTX(ctx
, flags
);
5052 PFM_SET_WORK_PENDING(current
, 0);
5054 pfm_clear_task_notify();
5056 regs
= task_pt_regs(current
);
5059 * extract reason for being here and clear
5061 reason
= ctx
->ctx_fl_trap_reason
;
5062 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
5063 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5065 DPRINT(("reason=%d state=%d\n", reason
, ctx
->ctx_state
));
5068 * must be done before we check for simple-reset mode
5070 if (ctx
->ctx_fl_going_zombie
|| ctx
->ctx_state
== PFM_CTX_ZOMBIE
) goto do_zombie
;
5073 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5074 if (reason
== PFM_TRAP_REASON_RESET
) goto skip_blocking
;
5077 * restore interrupt mask to what it was on entry.
5078 * Could be enabled/diasbled.
5080 UNPROTECT_CTX(ctx
, flags
);
5083 * force interrupt enable because of down_interruptible()
5087 DPRINT(("before block sleeping\n"));
5090 * may go through without blocking on SMP systems
5091 * if restart has been received already by the time we call down()
5093 ret
= wait_for_completion_interruptible(&ctx
->ctx_restart_done
);
5095 DPRINT(("after block sleeping ret=%d\n", ret
));
5098 * lock context and mask interrupts again
5099 * We save flags into a dummy because we may have
5100 * altered interrupts mask compared to entry in this
5103 PROTECT_CTX(ctx
, dummy_flags
);
5106 * we need to read the ovfl_regs only after wake-up
5107 * because we may have had pfm_write_pmds() in between
5108 * and that can changed PMD values and therefore
5109 * ovfl_regs is reset for these new PMD values.
5111 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5113 if (ctx
->ctx_fl_going_zombie
) {
5115 DPRINT(("context is zombie, bailing out\n"));
5116 pfm_context_force_terminate(ctx
, regs
);
5120 * in case of interruption of down() we don't restart anything
5122 if (ret
< 0) goto nothing_to_do
;
5125 pfm_resume_after_ovfl(ctx
, ovfl_regs
, regs
);
5126 ctx
->ctx_ovfl_regs
[0] = 0UL;
5130 * restore flags as they were upon entry
5132 UNPROTECT_CTX(ctx
, flags
);
5136 pfm_notify_user(pfm_context_t
*ctx
, pfm_msg_t
*msg
)
5138 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5139 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5143 DPRINT(("waking up somebody\n"));
5145 if (msg
) wake_up_interruptible(&ctx
->ctx_msgq_wait
);
5148 * safe, we are not in intr handler, nor in ctxsw when
5151 kill_fasync (&ctx
->ctx_async_queue
, SIGIO
, POLL_IN
);
5157 pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
)
5159 pfm_msg_t
*msg
= NULL
;
5161 if (ctx
->ctx_fl_no_msg
== 0) {
5162 msg
= pfm_get_new_msg(ctx
);
5164 printk(KERN_ERR
"perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5168 msg
->pfm_ovfl_msg
.msg_type
= PFM_MSG_OVFL
;
5169 msg
->pfm_ovfl_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5170 msg
->pfm_ovfl_msg
.msg_active_set
= 0;
5171 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[0] = ovfl_pmds
;
5172 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[1] = 0UL;
5173 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[2] = 0UL;
5174 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[3] = 0UL;
5175 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5178 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5184 return pfm_notify_user(ctx
, msg
);
5188 pfm_end_notify_user(pfm_context_t
*ctx
)
5192 msg
= pfm_get_new_msg(ctx
);
5194 printk(KERN_ERR
"perfmon: pfm_end_notify_user no more notification msgs\n");
5198 memset(msg
, 0, sizeof(*msg
));
5200 msg
->pfm_end_msg
.msg_type
= PFM_MSG_END
;
5201 msg
->pfm_end_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5202 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5204 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5209 return pfm_notify_user(ctx
, msg
);
5213 * main overflow processing routine.
5214 * it can be called from the interrupt path or explicitely during the context switch code
5217 pfm_overflow_handler(struct task_struct
*task
, pfm_context_t
*ctx
, u64 pmc0
, struct pt_regs
*regs
)
5219 pfm_ovfl_arg_t
*ovfl_arg
;
5221 unsigned long old_val
, ovfl_val
, new_val
;
5222 unsigned long ovfl_notify
= 0UL, ovfl_pmds
= 0UL, smpl_pmds
= 0UL, reset_pmds
;
5223 unsigned long tstamp
;
5224 pfm_ovfl_ctrl_t ovfl_ctrl
;
5225 unsigned int i
, has_smpl
;
5226 int must_notify
= 0;
5228 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) goto stop_monitoring
;
5231 * sanity test. Should never happen
5233 if (unlikely((pmc0
& 0x1) == 0)) goto sanity_check
;
5235 tstamp
= ia64_get_itc();
5236 mask
= pmc0
>> PMU_FIRST_COUNTER
;
5237 ovfl_val
= pmu_conf
->ovfl_val
;
5238 has_smpl
= CTX_HAS_SMPL(ctx
);
5240 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5241 "used_pmds=0x%lx\n",
5243 task
? task
->pid
: -1,
5244 (regs
? regs
->cr_iip
: 0),
5245 CTX_OVFL_NOBLOCK(ctx
) ? "nonblocking" : "blocking",
5246 ctx
->ctx_used_pmds
[0]));
5250 * first we update the virtual counters
5251 * assume there was a prior ia64_srlz_d() issued
5253 for (i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
5255 /* skip pmd which did not overflow */
5256 if ((mask
& 0x1) == 0) continue;
5259 * Note that the pmd is not necessarily 0 at this point as qualified events
5260 * may have happened before the PMU was frozen. The residual count is not
5261 * taken into consideration here but will be with any read of the pmd via
5264 old_val
= new_val
= ctx
->ctx_pmds
[i
].val
;
5265 new_val
+= 1 + ovfl_val
;
5266 ctx
->ctx_pmds
[i
].val
= new_val
;
5269 * check for overflow condition
5271 if (likely(old_val
> new_val
)) {
5272 ovfl_pmds
|= 1UL << i
;
5273 if (PMC_OVFL_NOTIFY(ctx
, i
)) ovfl_notify
|= 1UL << i
;
5276 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5280 ia64_get_pmd(i
) & ovfl_val
,
5286 * there was no 64-bit overflow, nothing else to do
5288 if (ovfl_pmds
== 0UL) return;
5291 * reset all control bits
5297 * if a sampling format module exists, then we "cache" the overflow by
5298 * calling the module's handler() routine.
5301 unsigned long start_cycles
, end_cycles
;
5302 unsigned long pmd_mask
;
5304 int this_cpu
= smp_processor_id();
5306 pmd_mask
= ovfl_pmds
>> PMU_FIRST_COUNTER
;
5307 ovfl_arg
= &ctx
->ctx_ovfl_arg
;
5309 prefetch(ctx
->ctx_smpl_hdr
);
5311 for(i
=PMU_FIRST_COUNTER
; pmd_mask
&& ret
== 0; i
++, pmd_mask
>>=1) {
5315 if ((pmd_mask
& 0x1) == 0) continue;
5317 ovfl_arg
->ovfl_pmd
= (unsigned char )i
;
5318 ovfl_arg
->ovfl_notify
= ovfl_notify
& mask
? 1 : 0;
5319 ovfl_arg
->active_set
= 0;
5320 ovfl_arg
->ovfl_ctrl
.val
= 0; /* module must fill in all fields */
5321 ovfl_arg
->smpl_pmds
[0] = smpl_pmds
= ctx
->ctx_pmds
[i
].smpl_pmds
[0];
5323 ovfl_arg
->pmd_value
= ctx
->ctx_pmds
[i
].val
;
5324 ovfl_arg
->pmd_last_reset
= ctx
->ctx_pmds
[i
].lval
;
5325 ovfl_arg
->pmd_eventid
= ctx
->ctx_pmds
[i
].eventid
;
5328 * copy values of pmds of interest. Sampling format may copy them
5329 * into sampling buffer.
5332 for(j
=0, k
=0; smpl_pmds
; j
++, smpl_pmds
>>=1) {
5333 if ((smpl_pmds
& 0x1) == 0) continue;
5334 ovfl_arg
->smpl_pmds_values
[k
++] = PMD_IS_COUNTING(j
) ? pfm_read_soft_counter(ctx
, j
) : ia64_get_pmd(j
);
5335 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k
-1, j
, ovfl_arg
->smpl_pmds_values
[k
-1]));
5339 pfm_stats
[this_cpu
].pfm_smpl_handler_calls
++;
5341 start_cycles
= ia64_get_itc();
5344 * call custom buffer format record (handler) routine
5346 ret
= (*ctx
->ctx_buf_fmt
->fmt_handler
)(task
, ctx
->ctx_smpl_hdr
, ovfl_arg
, regs
, tstamp
);
5348 end_cycles
= ia64_get_itc();
5351 * For those controls, we take the union because they have
5352 * an all or nothing behavior.
5354 ovfl_ctrl
.bits
.notify_user
|= ovfl_arg
->ovfl_ctrl
.bits
.notify_user
;
5355 ovfl_ctrl
.bits
.block_task
|= ovfl_arg
->ovfl_ctrl
.bits
.block_task
;
5356 ovfl_ctrl
.bits
.mask_monitoring
|= ovfl_arg
->ovfl_ctrl
.bits
.mask_monitoring
;
5358 * build the bitmask of pmds to reset now
5360 if (ovfl_arg
->ovfl_ctrl
.bits
.reset_ovfl_pmds
) reset_pmds
|= mask
;
5362 pfm_stats
[this_cpu
].pfm_smpl_handler_cycles
+= end_cycles
- start_cycles
;
5365 * when the module cannot handle the rest of the overflows, we abort right here
5367 if (ret
&& pmd_mask
) {
5368 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5369 pmd_mask
<<PMU_FIRST_COUNTER
));
5372 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5374 ovfl_pmds
&= ~reset_pmds
;
5377 * when no sampling module is used, then the default
5378 * is to notify on overflow if requested by user
5380 ovfl_ctrl
.bits
.notify_user
= ovfl_notify
? 1 : 0;
5381 ovfl_ctrl
.bits
.block_task
= ovfl_notify
? 1 : 0;
5382 ovfl_ctrl
.bits
.mask_monitoring
= ovfl_notify
? 1 : 0; /* XXX: change for saturation */
5383 ovfl_ctrl
.bits
.reset_ovfl_pmds
= ovfl_notify
? 0 : 1;
5385 * if needed, we reset all overflowed pmds
5387 if (ovfl_notify
== 0) reset_pmds
= ovfl_pmds
;
5390 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds
, reset_pmds
));
5393 * reset the requested PMD registers using the short reset values
5396 unsigned long bm
= reset_pmds
;
5397 pfm_reset_regs(ctx
, &bm
, PFM_PMD_SHORT_RESET
);
5400 if (ovfl_notify
&& ovfl_ctrl
.bits
.notify_user
) {
5402 * keep track of what to reset when unblocking
5404 ctx
->ctx_ovfl_regs
[0] = ovfl_pmds
;
5407 * check for blocking context
5409 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && ovfl_ctrl
.bits
.block_task
) {
5411 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_BLOCK
;
5414 * set the perfmon specific checking pending work for the task
5416 PFM_SET_WORK_PENDING(task
, 1);
5419 * when coming from ctxsw, current still points to the
5420 * previous task, therefore we must work with task and not current.
5422 pfm_set_task_notify(task
);
5425 * defer until state is changed (shorten spin window). the context is locked
5426 * anyway, so the signal receiver would come spin for nothing.
5431 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5432 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid
: -1,
5433 PFM_GET_WORK_PENDING(task
),
5434 ctx
->ctx_fl_trap_reason
,
5437 ovfl_ctrl
.bits
.mask_monitoring
? 1 : 0));
5439 * in case monitoring must be stopped, we toggle the psr bits
5441 if (ovfl_ctrl
.bits
.mask_monitoring
) {
5442 pfm_mask_monitoring(task
);
5443 ctx
->ctx_state
= PFM_CTX_MASKED
;
5444 ctx
->ctx_fl_can_restart
= 1;
5448 * send notification now
5450 if (must_notify
) pfm_ovfl_notify_user(ctx
, ovfl_notify
);
5455 printk(KERN_ERR
"perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5457 task
? task
->pid
: -1,
5463 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5464 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5465 * come here as zombie only if the task is the current task. In which case, we
5466 * can access the PMU hardware directly.
5468 * Note that zombies do have PM_VALID set. So here we do the minimal.
5470 * In case the context was zombified it could not be reclaimed at the time
5471 * the monitoring program exited. At this point, the PMU reservation has been
5472 * returned, the sampiing buffer has been freed. We must convert this call
5473 * into a spurious interrupt. However, we must also avoid infinite overflows
5474 * by stopping monitoring for this task. We can only come here for a per-task
5475 * context. All we need to do is to stop monitoring using the psr bits which
5476 * are always task private. By re-enabling secure montioring, we ensure that
5477 * the monitored task will not be able to re-activate monitoring.
5478 * The task will eventually be context switched out, at which point the context
5479 * will be reclaimed (that includes releasing ownership of the PMU).
5481 * So there might be a window of time where the number of per-task session is zero
5482 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5483 * context. This is safe because if a per-task session comes in, it will push this one
5484 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5485 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5486 * also push our zombie context out.
5488 * Overall pretty hairy stuff....
5490 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task
? task
->pid
: -1));
5492 ia64_psr(regs
)->up
= 0;
5493 ia64_psr(regs
)->sp
= 1;
5498 pfm_do_interrupt_handler(int irq
, void *arg
, struct pt_regs
*regs
)
5500 struct task_struct
*task
;
5502 unsigned long flags
;
5504 int this_cpu
= smp_processor_id();
5507 pfm_stats
[this_cpu
].pfm_ovfl_intr_count
++;
5510 * srlz.d done before arriving here
5512 pmc0
= ia64_get_pmc(0);
5514 task
= GET_PMU_OWNER();
5515 ctx
= GET_PMU_CTX();
5518 * if we have some pending bits set
5519 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5521 if (PMC0_HAS_OVFL(pmc0
) && task
) {
5523 * we assume that pmc0.fr is always set here
5527 if (!ctx
) goto report_spurious1
;
5529 if (ctx
->ctx_fl_system
== 0 && (task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)
5530 goto report_spurious2
;
5532 PROTECT_CTX_NOPRINT(ctx
, flags
);
5534 pfm_overflow_handler(task
, ctx
, pmc0
, regs
);
5536 UNPROTECT_CTX_NOPRINT(ctx
, flags
);
5539 pfm_stats
[this_cpu
].pfm_spurious_ovfl_intr_count
++;
5543 * keep it unfrozen at all times
5550 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5551 this_cpu
, task
->pid
);
5555 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5563 pfm_interrupt_handler(int irq
, void *arg
, struct pt_regs
*regs
)
5565 unsigned long start_cycles
, total_cycles
;
5566 unsigned long min
, max
;
5570 this_cpu
= get_cpu();
5571 if (likely(!pfm_alt_intr_handler
)) {
5572 min
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
;
5573 max
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
;
5575 start_cycles
= ia64_get_itc();
5577 ret
= pfm_do_interrupt_handler(irq
, arg
, regs
);
5579 total_cycles
= ia64_get_itc();
5582 * don't measure spurious interrupts
5584 if (likely(ret
== 0)) {
5585 total_cycles
-= start_cycles
;
5587 if (total_cycles
< min
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
= total_cycles
;
5588 if (total_cycles
> max
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
= total_cycles
;
5590 pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles
+= total_cycles
;
5594 (*pfm_alt_intr_handler
->handler
)(irq
, arg
, regs
);
5597 put_cpu_no_resched();
5602 * /proc/perfmon interface, for debug only
5605 #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5608 pfm_proc_start(struct seq_file
*m
, loff_t
*pos
)
5611 return PFM_PROC_SHOW_HEADER
;
5614 while (*pos
<= NR_CPUS
) {
5615 if (cpu_online(*pos
- 1)) {
5616 return (void *)*pos
;
5624 pfm_proc_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
5627 return pfm_proc_start(m
, pos
);
5631 pfm_proc_stop(struct seq_file
*m
, void *v
)
5636 pfm_proc_show_header(struct seq_file
*m
)
5638 struct list_head
* pos
;
5639 pfm_buffer_fmt_t
* entry
;
5640 unsigned long flags
;
5643 "perfmon version : %u.%u\n"
5646 "expert mode : %s\n"
5647 "ovfl_mask : 0x%lx\n"
5648 "PMU flags : 0x%x\n",
5649 PFM_VERSION_MAJ
, PFM_VERSION_MIN
,
5651 pfm_sysctl
.fastctxsw
> 0 ? "Yes": "No",
5652 pfm_sysctl
.expert_mode
> 0 ? "Yes": "No",
5659 "proc_sessions : %u\n"
5660 "sys_sessions : %u\n"
5661 "sys_use_dbregs : %u\n"
5662 "ptrace_use_dbregs : %u\n",
5663 pfm_sessions
.pfs_task_sessions
,
5664 pfm_sessions
.pfs_sys_sessions
,
5665 pfm_sessions
.pfs_sys_use_dbregs
,
5666 pfm_sessions
.pfs_ptrace_use_dbregs
);
5670 spin_lock(&pfm_buffer_fmt_lock
);
5672 list_for_each(pos
, &pfm_buffer_fmt_list
) {
5673 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
5674 seq_printf(m
, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5685 entry
->fmt_uuid
[10],
5686 entry
->fmt_uuid
[11],
5687 entry
->fmt_uuid
[12],
5688 entry
->fmt_uuid
[13],
5689 entry
->fmt_uuid
[14],
5690 entry
->fmt_uuid
[15],
5693 spin_unlock(&pfm_buffer_fmt_lock
);
5698 pfm_proc_show(struct seq_file
*m
, void *v
)
5704 if (v
== PFM_PROC_SHOW_HEADER
) {
5705 pfm_proc_show_header(m
);
5709 /* show info for CPU (v - 1) */
5713 "CPU%-2d overflow intrs : %lu\n"
5714 "CPU%-2d overflow cycles : %lu\n"
5715 "CPU%-2d overflow min : %lu\n"
5716 "CPU%-2d overflow max : %lu\n"
5717 "CPU%-2d smpl handler calls : %lu\n"
5718 "CPU%-2d smpl handler cycles : %lu\n"
5719 "CPU%-2d spurious intrs : %lu\n"
5720 "CPU%-2d replay intrs : %lu\n"
5721 "CPU%-2d syst_wide : %d\n"
5722 "CPU%-2d dcr_pp : %d\n"
5723 "CPU%-2d exclude idle : %d\n"
5724 "CPU%-2d owner : %d\n"
5725 "CPU%-2d context : %p\n"
5726 "CPU%-2d activations : %lu\n",
5727 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_count
,
5728 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles
,
5729 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_min
,
5730 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_max
,
5731 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_calls
,
5732 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_cycles
,
5733 cpu
, pfm_stats
[cpu
].pfm_spurious_ovfl_intr_count
,
5734 cpu
, pfm_stats
[cpu
].pfm_replay_ovfl_intr_count
,
5735 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_SYST_WIDE
? 1 : 0,
5736 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_DCR_PP
? 1 : 0,
5737 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_EXCL_IDLE
? 1 : 0,
5738 cpu
, pfm_get_cpu_data(pmu_owner
, cpu
) ? pfm_get_cpu_data(pmu_owner
, cpu
)->pid
: -1,
5739 cpu
, pfm_get_cpu_data(pmu_ctx
, cpu
),
5740 cpu
, pfm_get_cpu_data(pmu_activation_number
, cpu
));
5742 if (num_online_cpus() == 1 && pfm_sysctl
.debug
> 0) {
5744 psr
= pfm_get_psr();
5749 "CPU%-2d psr : 0x%lx\n"
5750 "CPU%-2d pmc0 : 0x%lx\n",
5752 cpu
, ia64_get_pmc(0));
5754 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
5755 if (PMC_IS_COUNTING(i
) == 0) continue;
5757 "CPU%-2d pmc%u : 0x%lx\n"
5758 "CPU%-2d pmd%u : 0x%lx\n",
5759 cpu
, i
, ia64_get_pmc(i
),
5760 cpu
, i
, ia64_get_pmd(i
));
5766 struct seq_operations pfm_seq_ops
= {
5767 .start
= pfm_proc_start
,
5768 .next
= pfm_proc_next
,
5769 .stop
= pfm_proc_stop
,
5770 .show
= pfm_proc_show
5774 pfm_proc_open(struct inode
*inode
, struct file
*file
)
5776 return seq_open(file
, &pfm_seq_ops
);
5781 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5782 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5783 * is active or inactive based on mode. We must rely on the value in
5784 * local_cpu_data->pfm_syst_info
5787 pfm_syst_wide_update_task(struct task_struct
*task
, unsigned long info
, int is_ctxswin
)
5789 struct pt_regs
*regs
;
5791 unsigned long dcr_pp
;
5793 dcr_pp
= info
& PFM_CPUINFO_DCR_PP
? 1 : 0;
5796 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5797 * on every CPU, so we can rely on the pid to identify the idle task.
5799 if ((info
& PFM_CPUINFO_EXCL_IDLE
) == 0 || task
->pid
) {
5800 regs
= task_pt_regs(task
);
5801 ia64_psr(regs
)->pp
= is_ctxswin
? dcr_pp
: 0;
5805 * if monitoring has started
5808 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
5810 * context switching in?
5813 /* mask monitoring for the idle task */
5814 ia64_setreg(_IA64_REG_CR_DCR
, dcr
& ~IA64_DCR_PP
);
5820 * context switching out
5821 * restore monitoring for next task
5823 * Due to inlining this odd if-then-else construction generates
5826 ia64_setreg(_IA64_REG_CR_DCR
, dcr
|IA64_DCR_PP
);
5835 pfm_force_cleanup(pfm_context_t
*ctx
, struct pt_regs
*regs
)
5837 struct task_struct
*task
= ctx
->ctx_task
;
5839 ia64_psr(regs
)->up
= 0;
5840 ia64_psr(regs
)->sp
= 1;
5842 if (GET_PMU_OWNER() == task
) {
5843 DPRINT(("cleared ownership for [%d]\n", ctx
->ctx_task
->pid
));
5844 SET_PMU_OWNER(NULL
, NULL
);
5848 * disconnect the task from the context and vice-versa
5850 PFM_SET_WORK_PENDING(task
, 0);
5852 task
->thread
.pfm_context
= NULL
;
5853 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
5855 DPRINT(("force cleanup for [%d]\n", task
->pid
));
5860 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5863 pfm_save_regs(struct task_struct
*task
)
5866 struct thread_struct
*t
;
5867 unsigned long flags
;
5871 ctx
= PFM_GET_CTX(task
);
5872 if (ctx
== NULL
) return;
5876 * we always come here with interrupts ALREADY disabled by
5877 * the scheduler. So we simply need to protect against concurrent
5878 * access, not CPU concurrency.
5880 flags
= pfm_protect_ctx_ctxsw(ctx
);
5882 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5883 struct pt_regs
*regs
= task_pt_regs(task
);
5887 pfm_force_cleanup(ctx
, regs
);
5889 BUG_ON(ctx
->ctx_smpl_hdr
);
5891 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5893 pfm_context_free(ctx
);
5898 * save current PSR: needed because we modify it
5901 psr
= pfm_get_psr();
5903 BUG_ON(psr
& (IA64_PSR_I
));
5907 * This is the last instruction which may generate an overflow
5909 * We do not need to set psr.sp because, it is irrelevant in kernel.
5910 * It will be restored from ipsr when going back to user level
5915 * keep a copy of psr.up (for reload)
5917 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5920 * release ownership of this PMU.
5921 * PM interrupts are masked, so nothing
5924 SET_PMU_OWNER(NULL
, NULL
);
5927 * we systematically save the PMD as we have no
5928 * guarantee we will be schedule at that same
5931 pfm_save_pmds(t
->pmds
, ctx
->ctx_used_pmds
[0]);
5934 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5935 * we will need it on the restore path to check
5936 * for pending overflow.
5938 t
->pmcs
[0] = ia64_get_pmc(0);
5941 * unfreeze PMU if had pending overflows
5943 if (t
->pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
5946 * finally, allow context access.
5947 * interrupts will still be masked after this call.
5949 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5952 #else /* !CONFIG_SMP */
5954 pfm_save_regs(struct task_struct
*task
)
5959 ctx
= PFM_GET_CTX(task
);
5960 if (ctx
== NULL
) return;
5963 * save current PSR: needed because we modify it
5965 psr
= pfm_get_psr();
5967 BUG_ON(psr
& (IA64_PSR_I
));
5971 * This is the last instruction which may generate an overflow
5973 * We do not need to set psr.sp because, it is irrelevant in kernel.
5974 * It will be restored from ipsr when going back to user level
5979 * keep a copy of psr.up (for reload)
5981 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5985 pfm_lazy_save_regs (struct task_struct
*task
)
5988 struct thread_struct
*t
;
5989 unsigned long flags
;
5991 { u64 psr
= pfm_get_psr();
5992 BUG_ON(psr
& IA64_PSR_UP
);
5995 ctx
= PFM_GET_CTX(task
);
5999 * we need to mask PMU overflow here to
6000 * make sure that we maintain pmc0 until
6001 * we save it. overflow interrupts are
6002 * treated as spurious if there is no
6005 * XXX: I don't think this is necessary
6007 PROTECT_CTX(ctx
,flags
);
6010 * release ownership of this PMU.
6011 * must be done before we save the registers.
6013 * after this call any PMU interrupt is treated
6016 SET_PMU_OWNER(NULL
, NULL
);
6019 * save all the pmds we use
6021 pfm_save_pmds(t
->pmds
, ctx
->ctx_used_pmds
[0]);
6024 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6025 * it is needed to check for pended overflow
6026 * on the restore path
6028 t
->pmcs
[0] = ia64_get_pmc(0);
6031 * unfreeze PMU if had pending overflows
6033 if (t
->pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
6036 * now get can unmask PMU interrupts, they will
6037 * be treated as purely spurious and we will not
6038 * lose any information
6040 UNPROTECT_CTX(ctx
,flags
);
6042 #endif /* CONFIG_SMP */
6046 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6049 pfm_load_regs (struct task_struct
*task
)
6052 struct thread_struct
*t
;
6053 unsigned long pmc_mask
= 0UL, pmd_mask
= 0UL;
6054 unsigned long flags
;
6056 int need_irq_resend
;
6058 ctx
= PFM_GET_CTX(task
);
6059 if (unlikely(ctx
== NULL
)) return;
6061 BUG_ON(GET_PMU_OWNER());
6065 * possible on unload
6067 if (unlikely((t
->flags
& IA64_THREAD_PM_VALID
) == 0)) return;
6070 * we always come here with interrupts ALREADY disabled by
6071 * the scheduler. So we simply need to protect against concurrent
6072 * access, not CPU concurrency.
6074 flags
= pfm_protect_ctx_ctxsw(ctx
);
6075 psr
= pfm_get_psr();
6077 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6079 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6080 BUG_ON(psr
& IA64_PSR_I
);
6082 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) {
6083 struct pt_regs
*regs
= task_pt_regs(task
);
6085 BUG_ON(ctx
->ctx_smpl_hdr
);
6087 pfm_force_cleanup(ctx
, regs
);
6089 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6092 * this one (kmalloc'ed) is fine with interrupts disabled
6094 pfm_context_free(ctx
);
6100 * we restore ALL the debug registers to avoid picking up
6103 if (ctx
->ctx_fl_using_dbreg
) {
6104 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6105 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6108 * retrieve saved psr.up
6110 psr_up
= ctx
->ctx_saved_psr_up
;
6113 * if we were the last user of the PMU on that CPU,
6114 * then nothing to do except restore psr
6116 if (GET_LAST_CPU(ctx
) == smp_processor_id() && ctx
->ctx_last_activation
== GET_ACTIVATION()) {
6119 * retrieve partial reload masks (due to user modifications)
6121 pmc_mask
= ctx
->ctx_reload_pmcs
[0];
6122 pmd_mask
= ctx
->ctx_reload_pmds
[0];
6126 * To avoid leaking information to the user level when psr.sp=0,
6127 * we must reload ALL implemented pmds (even the ones we don't use).
6128 * In the kernel we only allow PFM_READ_PMDS on registers which
6129 * we initialized or requested (sampling) so there is no risk there.
6131 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6134 * ALL accessible PMCs are systematically reloaded, unused registers
6135 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6136 * up stale configuration.
6138 * PMC0 is never in the mask. It is always restored separately.
6140 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6143 * when context is MASKED, we will restore PMC with plm=0
6144 * and PMD with stale information, but that's ok, nothing
6147 * XXX: optimize here
6149 if (pmd_mask
) pfm_restore_pmds(t
->pmds
, pmd_mask
);
6150 if (pmc_mask
) pfm_restore_pmcs(t
->pmcs
, pmc_mask
);
6153 * check for pending overflow at the time the state
6156 if (unlikely(PMC0_HAS_OVFL(t
->pmcs
[0]))) {
6158 * reload pmc0 with the overflow information
6159 * On McKinley PMU, this will trigger a PMU interrupt
6161 ia64_set_pmc(0, t
->pmcs
[0]);
6166 * will replay the PMU interrupt
6168 if (need_irq_resend
) hw_resend_irq(NULL
, IA64_PERFMON_VECTOR
);
6170 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6174 * we just did a reload, so we reset the partial reload fields
6176 ctx
->ctx_reload_pmcs
[0] = 0UL;
6177 ctx
->ctx_reload_pmds
[0] = 0UL;
6179 SET_LAST_CPU(ctx
, smp_processor_id());
6182 * dump activation value for this PMU
6186 * record current activation for this context
6188 SET_ACTIVATION(ctx
);
6191 * establish new ownership.
6193 SET_PMU_OWNER(task
, ctx
);
6196 * restore the psr.up bit. measurement
6198 * no PMU interrupt can happen at this point
6199 * because we still have interrupts disabled.
6201 if (likely(psr_up
)) pfm_set_psr_up();
6204 * allow concurrent access to context
6206 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6208 #else /* !CONFIG_SMP */
6210 * reload PMU state for UP kernels
6211 * in 2.5 we come here with interrupts disabled
6214 pfm_load_regs (struct task_struct
*task
)
6216 struct thread_struct
*t
;
6218 struct task_struct
*owner
;
6219 unsigned long pmd_mask
, pmc_mask
;
6221 int need_irq_resend
;
6223 owner
= GET_PMU_OWNER();
6224 ctx
= PFM_GET_CTX(task
);
6226 psr
= pfm_get_psr();
6228 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6229 BUG_ON(psr
& IA64_PSR_I
);
6232 * we restore ALL the debug registers to avoid picking up
6235 * This must be done even when the task is still the owner
6236 * as the registers may have been modified via ptrace()
6237 * (not perfmon) by the previous task.
6239 if (ctx
->ctx_fl_using_dbreg
) {
6240 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6241 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6245 * retrieved saved psr.up
6247 psr_up
= ctx
->ctx_saved_psr_up
;
6248 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6251 * short path, our state is still there, just
6252 * need to restore psr and we go
6254 * we do not touch either PMC nor PMD. the psr is not touched
6255 * by the overflow_handler. So we are safe w.r.t. to interrupt
6256 * concurrency even without interrupt masking.
6258 if (likely(owner
== task
)) {
6259 if (likely(psr_up
)) pfm_set_psr_up();
6264 * someone else is still using the PMU, first push it out and
6265 * then we'll be able to install our stuff !
6267 * Upon return, there will be no owner for the current PMU
6269 if (owner
) pfm_lazy_save_regs(owner
);
6272 * To avoid leaking information to the user level when psr.sp=0,
6273 * we must reload ALL implemented pmds (even the ones we don't use).
6274 * In the kernel we only allow PFM_READ_PMDS on registers which
6275 * we initialized or requested (sampling) so there is no risk there.
6277 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6280 * ALL accessible PMCs are systematically reloaded, unused registers
6281 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6282 * up stale configuration.
6284 * PMC0 is never in the mask. It is always restored separately
6286 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6288 pfm_restore_pmds(t
->pmds
, pmd_mask
);
6289 pfm_restore_pmcs(t
->pmcs
, pmc_mask
);
6292 * check for pending overflow at the time the state
6295 if (unlikely(PMC0_HAS_OVFL(t
->pmcs
[0]))) {
6297 * reload pmc0 with the overflow information
6298 * On McKinley PMU, this will trigger a PMU interrupt
6300 ia64_set_pmc(0, t
->pmcs
[0]);
6306 * will replay the PMU interrupt
6308 if (need_irq_resend
) hw_resend_irq(NULL
, IA64_PERFMON_VECTOR
);
6310 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6314 * establish new ownership.
6316 SET_PMU_OWNER(task
, ctx
);
6319 * restore the psr.up bit. measurement
6321 * no PMU interrupt can happen at this point
6322 * because we still have interrupts disabled.
6324 if (likely(psr_up
)) pfm_set_psr_up();
6326 #endif /* CONFIG_SMP */
6329 * this function assumes monitoring is stopped
6332 pfm_flush_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
6335 unsigned long mask2
, val
, pmd_val
, ovfl_val
;
6336 int i
, can_access_pmu
= 0;
6340 * is the caller the task being monitored (or which initiated the
6341 * session for system wide measurements)
6343 is_self
= ctx
->ctx_task
== task
? 1 : 0;
6346 * can access PMU is task is the owner of the PMU state on the current CPU
6347 * or if we are running on the CPU bound to the context in system-wide mode
6348 * (that is not necessarily the task the context is attached to in this mode).
6349 * In system-wide we always have can_access_pmu true because a task running on an
6350 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6352 can_access_pmu
= (GET_PMU_OWNER() == task
) || (ctx
->ctx_fl_system
&& ctx
->ctx_cpu
== smp_processor_id());
6353 if (can_access_pmu
) {
6355 * Mark the PMU as not owned
6356 * This will cause the interrupt handler to do nothing in case an overflow
6357 * interrupt was in-flight
6358 * This also guarantees that pmc0 will contain the final state
6359 * It virtually gives us full control on overflow processing from that point
6362 SET_PMU_OWNER(NULL
, NULL
);
6363 DPRINT(("releasing ownership\n"));
6366 * read current overflow status:
6368 * we are guaranteed to read the final stable state
6371 pmc0
= ia64_get_pmc(0); /* slow */
6374 * reset freeze bit, overflow status information destroyed
6378 pmc0
= task
->thread
.pmcs
[0];
6380 * clear whatever overflow status bits there were
6382 task
->thread
.pmcs
[0] = 0;
6384 ovfl_val
= pmu_conf
->ovfl_val
;
6386 * we save all the used pmds
6387 * we take care of overflows for counting PMDs
6389 * XXX: sampling situation is not taken into account here
6391 mask2
= ctx
->ctx_used_pmds
[0];
6393 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self
, ovfl_val
, mask2
));
6395 for (i
= 0; mask2
; i
++, mask2
>>=1) {
6397 /* skip non used pmds */
6398 if ((mask2
& 0x1) == 0) continue;
6401 * can access PMU always true in system wide mode
6403 val
= pmd_val
= can_access_pmu
? ia64_get_pmd(i
) : task
->thread
.pmds
[i
];
6405 if (PMD_IS_COUNTING(i
)) {
6406 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6409 ctx
->ctx_pmds
[i
].val
,
6413 * we rebuild the full 64 bit value of the counter
6415 val
= ctx
->ctx_pmds
[i
].val
+ (val
& ovfl_val
);
6418 * now everything is in ctx_pmds[] and we need
6419 * to clear the saved context from save_regs() such that
6420 * pfm_read_pmds() gets the correct value
6425 * take care of overflow inline
6427 if (pmc0
& (1UL << i
)) {
6428 val
+= 1 + ovfl_val
;
6429 DPRINT(("[%d] pmd[%d] overflowed\n", task
->pid
, i
));
6433 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task
->pid
, i
, val
, pmd_val
));
6435 if (is_self
) task
->thread
.pmds
[i
] = pmd_val
;
6437 ctx
->ctx_pmds
[i
].val
= val
;
6441 static struct irqaction perfmon_irqaction
= {
6442 .handler
= pfm_interrupt_handler
,
6443 .flags
= SA_INTERRUPT
,
6448 pfm_alt_save_pmu_state(void *data
)
6450 struct pt_regs
*regs
;
6452 regs
= task_pt_regs(current
);
6454 DPRINT(("called\n"));
6457 * should not be necessary but
6458 * let's take not risk
6462 ia64_psr(regs
)->pp
= 0;
6465 * This call is required
6466 * May cause a spurious interrupt on some processors
6474 pfm_alt_restore_pmu_state(void *data
)
6476 struct pt_regs
*regs
;
6478 regs
= task_pt_regs(current
);
6480 DPRINT(("called\n"));
6483 * put PMU back in state expected
6488 ia64_psr(regs
)->pp
= 0;
6491 * perfmon runs with PMU unfrozen at all times
6499 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6504 /* some sanity checks */
6505 if (hdl
== NULL
|| hdl
->handler
== NULL
) return -EINVAL
;
6507 /* do the easy test first */
6508 if (pfm_alt_intr_handler
) return -EBUSY
;
6510 /* one at a time in the install or remove, just fail the others */
6511 if (!spin_trylock(&pfm_alt_install_check
)) {
6515 /* reserve our session */
6516 for_each_online_cpu(reserve_cpu
) {
6517 ret
= pfm_reserve_session(NULL
, 1, reserve_cpu
);
6518 if (ret
) goto cleanup_reserve
;
6521 /* save the current system wide pmu states */
6522 ret
= on_each_cpu(pfm_alt_save_pmu_state
, NULL
, 0, 1);
6524 DPRINT(("on_each_cpu() failed: %d\n", ret
));
6525 goto cleanup_reserve
;
6528 /* officially change to the alternate interrupt handler */
6529 pfm_alt_intr_handler
= hdl
;
6531 spin_unlock(&pfm_alt_install_check
);
6536 for_each_online_cpu(i
) {
6537 /* don't unreserve more than we reserved */
6538 if (i
>= reserve_cpu
) break;
6540 pfm_unreserve_session(NULL
, 1, i
);
6543 spin_unlock(&pfm_alt_install_check
);
6547 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt
);
6550 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6555 if (hdl
== NULL
) return -EINVAL
;
6557 /* cannot remove someone else's handler! */
6558 if (pfm_alt_intr_handler
!= hdl
) return -EINVAL
;
6560 /* one at a time in the install or remove, just fail the others */
6561 if (!spin_trylock(&pfm_alt_install_check
)) {
6565 pfm_alt_intr_handler
= NULL
;
6567 ret
= on_each_cpu(pfm_alt_restore_pmu_state
, NULL
, 0, 1);
6569 DPRINT(("on_each_cpu() failed: %d\n", ret
));
6572 for_each_online_cpu(i
) {
6573 pfm_unreserve_session(NULL
, 1, i
);
6576 spin_unlock(&pfm_alt_install_check
);
6580 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt
);
6583 * perfmon initialization routine, called from the initcall() table
6585 static int init_pfm_fs(void);
6593 family
= local_cpu_data
->family
;
6598 if ((*p
)->probe() == 0) goto found
;
6599 } else if ((*p
)->pmu_family
== family
|| (*p
)->pmu_family
== 0xff) {
6610 static struct file_operations pfm_proc_fops
= {
6611 .open
= pfm_proc_open
,
6613 .llseek
= seq_lseek
,
6614 .release
= seq_release
,
6620 unsigned int n
, n_counters
, i
;
6622 printk("perfmon: version %u.%u IRQ %u\n",
6625 IA64_PERFMON_VECTOR
);
6627 if (pfm_probe_pmu()) {
6628 printk(KERN_INFO
"perfmon: disabled, there is no support for processor family %d\n",
6629 local_cpu_data
->family
);
6634 * compute the number of implemented PMD/PMC from the
6635 * description tables
6638 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
6639 if (PMC_IS_IMPL(i
) == 0) continue;
6640 pmu_conf
->impl_pmcs
[i
>>6] |= 1UL << (i
&63);
6643 pmu_conf
->num_pmcs
= n
;
6645 n
= 0; n_counters
= 0;
6646 for (i
=0; PMD_IS_LAST(i
) == 0; i
++) {
6647 if (PMD_IS_IMPL(i
) == 0) continue;
6648 pmu_conf
->impl_pmds
[i
>>6] |= 1UL << (i
&63);
6650 if (PMD_IS_COUNTING(i
)) n_counters
++;
6652 pmu_conf
->num_pmds
= n
;
6653 pmu_conf
->num_counters
= n_counters
;
6656 * sanity checks on the number of debug registers
6658 if (pmu_conf
->use_rr_dbregs
) {
6659 if (pmu_conf
->num_ibrs
> IA64_NUM_DBG_REGS
) {
6660 printk(KERN_INFO
"perfmon: unsupported number of code debug registers (%u)\n", pmu_conf
->num_ibrs
);
6664 if (pmu_conf
->num_dbrs
> IA64_NUM_DBG_REGS
) {
6665 printk(KERN_INFO
"perfmon: unsupported number of data debug registers (%u)\n", pmu_conf
->num_ibrs
);
6671 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6675 pmu_conf
->num_counters
,
6676 ffz(pmu_conf
->ovfl_val
));
6679 if (pmu_conf
->num_pmds
>= IA64_NUM_PMD_REGS
|| pmu_conf
->num_pmcs
>= IA64_NUM_PMC_REGS
) {
6680 printk(KERN_ERR
"perfmon: not enough pmc/pmd, perfmon disabled\n");
6686 * create /proc/perfmon (mostly for debugging purposes)
6688 perfmon_dir
= create_proc_entry("perfmon", S_IRUGO
, NULL
);
6689 if (perfmon_dir
== NULL
) {
6690 printk(KERN_ERR
"perfmon: cannot create /proc entry, perfmon disabled\n");
6695 * install customized file operations for /proc/perfmon entry
6697 perfmon_dir
->proc_fops
= &pfm_proc_fops
;
6700 * create /proc/sys/kernel/perfmon (for debugging purposes)
6702 pfm_sysctl_header
= register_sysctl_table(pfm_sysctl_root
, 0);
6705 * initialize all our spinlocks
6707 spin_lock_init(&pfm_sessions
.pfs_lock
);
6708 spin_lock_init(&pfm_buffer_fmt_lock
);
6712 for(i
=0; i
< NR_CPUS
; i
++) pfm_stats
[i
].pfm_ovfl_intr_cycles_min
= ~0UL;
6717 __initcall(pfm_init
);
6720 * this function is called before pfm_init()
6723 pfm_init_percpu (void)
6725 static int first_time
=1;
6727 * make sure no measurement is active
6728 * (may inherit programmed PMCs from EFI).
6734 * we run with the PMU not frozen at all times
6739 register_percpu_irq(IA64_PERFMON_VECTOR
, &perfmon_irqaction
);
6743 ia64_setreg(_IA64_REG_CR_PMV
, IA64_PERFMON_VECTOR
);
6748 * used for debug purposes only
6751 dump_pmu_state(const char *from
)
6753 struct task_struct
*task
;
6754 struct thread_struct
*t
;
6755 struct pt_regs
*regs
;
6757 unsigned long psr
, dcr
, info
, flags
;
6760 local_irq_save(flags
);
6762 this_cpu
= smp_processor_id();
6763 regs
= task_pt_regs(current
);
6764 info
= PFM_CPUINFO_GET();
6765 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
6767 if (info
== 0 && ia64_psr(regs
)->pp
== 0 && (dcr
& IA64_DCR_PP
) == 0) {
6768 local_irq_restore(flags
);
6772 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6779 task
= GET_PMU_OWNER();
6780 ctx
= GET_PMU_CTX();
6782 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu
, task
? task
->pid
: -1, ctx
);
6784 psr
= pfm_get_psr();
6786 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6789 psr
& IA64_PSR_PP
? 1 : 0,
6790 psr
& IA64_PSR_UP
? 1 : 0,
6791 dcr
& IA64_DCR_PP
? 1 : 0,
6794 ia64_psr(regs
)->pp
);
6796 ia64_psr(regs
)->up
= 0;
6797 ia64_psr(regs
)->pp
= 0;
6799 t
= ¤t
->thread
;
6801 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
6802 if (PMC_IS_IMPL(i
) == 0) continue;
6803 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmc(i
), i
, t
->pmcs
[i
]);
6806 for (i
=1; PMD_IS_LAST(i
) == 0; i
++) {
6807 if (PMD_IS_IMPL(i
) == 0) continue;
6808 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmd(i
), i
, t
->pmds
[i
]);
6812 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6815 ctx
->ctx_smpl_vaddr
,
6819 ctx
->ctx_saved_psr_up
);
6821 local_irq_restore(flags
);
6825 * called from process.c:copy_thread(). task is new child.
6828 pfm_inherit(struct task_struct
*task
, struct pt_regs
*regs
)
6830 struct thread_struct
*thread
;
6832 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task
->pid
));
6834 thread
= &task
->thread
;
6837 * cut links inherited from parent (current)
6839 thread
->pfm_context
= NULL
;
6841 PFM_SET_WORK_PENDING(task
, 0);
6844 * the psr bits are already set properly in copy_threads()
6847 #else /* !CONFIG_PERFMON */
6849 sys_perfmonctl (int fd
, int cmd
, void *arg
, int count
)
6853 #endif /* CONFIG_PERFMON */