[libata] mark certain hardware (or drivers) with a no-atapi flag
[linux-2.6/zen-sources.git] / drivers / scsi / sata_mv.c
blob9321cdf45680cb35c0c92d570c6e7fd3fe77ee3c
1 /*
2 * sata_mv.c - Marvell SATA support
4 * Copyright 2005: EMC Corporation, all rights reserved.
5 * Copyright 2005 Red Hat, Inc. All rights reserved.
7 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/init.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/sched.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_cmnd.h>
36 #include <linux/libata.h>
37 #include <asm/io.h>
39 #define DRV_NAME "sata_mv"
40 #define DRV_VERSION "0.5"
42 enum {
43 /* BAR's are enumerated in terms of pci_resource_start() terms */
44 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
45 MV_IO_BAR = 2, /* offset 0x18: IO space */
46 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
48 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
49 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
51 MV_PCI_REG_BASE = 0,
52 MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
53 MV_SATAHC0_REG_BASE = 0x20000,
54 MV_FLASH_CTL = 0x1046c,
55 MV_GPIO_PORT_CTL = 0x104f0,
56 MV_RESET_CFG = 0x180d8,
58 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
59 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
60 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
61 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
63 MV_USE_Q_DEPTH = ATA_DEF_QUEUE,
65 MV_MAX_Q_DEPTH = 32,
66 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
68 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
69 * CRPB needs alignment on a 256B boundary. Size == 256B
70 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
71 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
73 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
74 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
75 MV_MAX_SG_CT = 176,
76 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
77 MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),
79 MV_PORTS_PER_HC = 4,
80 /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
81 MV_PORT_HC_SHIFT = 2,
82 /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
83 MV_PORT_MASK = 3,
85 /* Host Flags */
86 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
87 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
88 MV_COMMON_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
89 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO |
90 ATA_FLAG_NO_ATAPI),
91 MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
93 CRQB_FLAG_READ = (1 << 0),
94 CRQB_TAG_SHIFT = 1,
95 CRQB_CMD_ADDR_SHIFT = 8,
96 CRQB_CMD_CS = (0x2 << 11),
97 CRQB_CMD_LAST = (1 << 15),
99 CRPB_FLAG_STATUS_SHIFT = 8,
101 EPRD_FLAG_END_OF_TBL = (1 << 31),
103 /* PCI interface registers */
105 PCI_COMMAND_OFS = 0xc00,
107 PCI_MAIN_CMD_STS_OFS = 0xd30,
108 STOP_PCI_MASTER = (1 << 2),
109 PCI_MASTER_EMPTY = (1 << 3),
110 GLOB_SFT_RST = (1 << 4),
112 MV_PCI_MODE = 0xd00,
113 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
114 MV_PCI_DISC_TIMER = 0xd04,
115 MV_PCI_MSI_TRIGGER = 0xc38,
116 MV_PCI_SERR_MASK = 0xc28,
117 MV_PCI_XBAR_TMOUT = 0x1d04,
118 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
119 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
120 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
121 MV_PCI_ERR_COMMAND = 0x1d50,
123 PCI_IRQ_CAUSE_OFS = 0x1d58,
124 PCI_IRQ_MASK_OFS = 0x1d5c,
125 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
127 HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
128 HC_MAIN_IRQ_MASK_OFS = 0x1d64,
129 PORT0_ERR = (1 << 0), /* shift by port # */
130 PORT0_DONE = (1 << 1), /* shift by port # */
131 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
132 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
133 PCI_ERR = (1 << 18),
134 TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
135 TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
136 PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
137 GPIO_INT = (1 << 22),
138 SELF_INT = (1 << 23),
139 TWSI_INT = (1 << 24),
140 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
141 HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
142 PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
143 HC_MAIN_RSVD),
145 /* SATAHC registers */
146 HC_CFG_OFS = 0,
148 HC_IRQ_CAUSE_OFS = 0x14,
149 CRPB_DMA_DONE = (1 << 0), /* shift by port # */
150 HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
151 DEV_IRQ = (1 << 8), /* shift by port # */
153 /* Shadow block registers */
154 SHD_BLK_OFS = 0x100,
155 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
157 /* SATA registers */
158 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
159 SATA_ACTIVE_OFS = 0x350,
160 PHY_MODE3 = 0x310,
161 PHY_MODE4 = 0x314,
162 PHY_MODE2 = 0x330,
163 MV5_PHY_MODE = 0x74,
164 MV5_LT_MODE = 0x30,
165 MV5_PHY_CTL = 0x0C,
166 SATA_INTERFACE_CTL = 0x050,
168 MV_M2_PREAMP_MASK = 0x7e0,
170 /* Port registers */
171 EDMA_CFG_OFS = 0,
172 EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */
173 EDMA_CFG_NCQ = (1 << 5),
174 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
175 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
176 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
178 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
179 EDMA_ERR_IRQ_MASK_OFS = 0xc,
180 EDMA_ERR_D_PAR = (1 << 0),
181 EDMA_ERR_PRD_PAR = (1 << 1),
182 EDMA_ERR_DEV = (1 << 2),
183 EDMA_ERR_DEV_DCON = (1 << 3),
184 EDMA_ERR_DEV_CON = (1 << 4),
185 EDMA_ERR_SERR = (1 << 5),
186 EDMA_ERR_SELF_DIS = (1 << 7),
187 EDMA_ERR_BIST_ASYNC = (1 << 8),
188 EDMA_ERR_CRBQ_PAR = (1 << 9),
189 EDMA_ERR_CRPB_PAR = (1 << 10),
190 EDMA_ERR_INTRL_PAR = (1 << 11),
191 EDMA_ERR_IORDY = (1 << 12),
192 EDMA_ERR_LNK_CTRL_RX = (0xf << 13),
193 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15),
194 EDMA_ERR_LNK_DATA_RX = (0xf << 17),
195 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21),
196 EDMA_ERR_LNK_DATA_TX = (0x1f << 26),
197 EDMA_ERR_TRANS_PROTO = (1 << 31),
198 EDMA_ERR_FATAL = (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
199 EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR |
200 EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR |
201 EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 |
202 EDMA_ERR_LNK_DATA_RX |
203 EDMA_ERR_LNK_DATA_TX |
204 EDMA_ERR_TRANS_PROTO),
206 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
207 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
209 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
210 EDMA_REQ_Q_PTR_SHIFT = 5,
212 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
213 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
214 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
215 EDMA_RSP_Q_PTR_SHIFT = 3,
217 EDMA_CMD_OFS = 0x28,
218 EDMA_EN = (1 << 0),
219 EDMA_DS = (1 << 1),
220 ATA_RST = (1 << 2),
222 EDMA_IORDY_TMOUT = 0x34,
223 EDMA_ARB_CFG = 0x38,
225 /* Host private flags (hp_flags) */
226 MV_HP_FLAG_MSI = (1 << 0),
227 MV_HP_ERRATA_50XXB0 = (1 << 1),
228 MV_HP_ERRATA_50XXB2 = (1 << 2),
229 MV_HP_ERRATA_60X1B2 = (1 << 3),
230 MV_HP_ERRATA_60X1C0 = (1 << 4),
231 MV_HP_50XX = (1 << 5),
233 /* Port private flags (pp_flags) */
234 MV_PP_FLAG_EDMA_EN = (1 << 0),
235 MV_PP_FLAG_EDMA_DS_ACT = (1 << 1),
238 #define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX)
239 #define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0)
241 enum {
242 /* Our DMA boundary is determined by an ePRD being unable to handle
243 * anything larger than 64KB
245 MV_DMA_BOUNDARY = 0xffffU,
247 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
249 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
252 enum chip_type {
253 chip_504x,
254 chip_508x,
255 chip_5080,
256 chip_604x,
257 chip_608x,
260 /* Command ReQuest Block: 32B */
261 struct mv_crqb {
262 u32 sg_addr;
263 u32 sg_addr_hi;
264 u16 ctrl_flags;
265 u16 ata_cmd[11];
268 /* Command ResPonse Block: 8B */
269 struct mv_crpb {
270 u16 id;
271 u16 flags;
272 u32 tmstmp;
275 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
276 struct mv_sg {
277 u32 addr;
278 u32 flags_size;
279 u32 addr_hi;
280 u32 reserved;
283 struct mv_port_priv {
284 struct mv_crqb *crqb;
285 dma_addr_t crqb_dma;
286 struct mv_crpb *crpb;
287 dma_addr_t crpb_dma;
288 struct mv_sg *sg_tbl;
289 dma_addr_t sg_tbl_dma;
291 unsigned req_producer; /* cp of req_in_ptr */
292 unsigned rsp_consumer; /* cp of rsp_out_ptr */
293 u32 pp_flags;
296 struct mv_port_signal {
297 u32 amps;
298 u32 pre;
301 struct mv_host_priv;
302 struct mv_hw_ops {
303 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
304 unsigned int port);
305 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
306 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
307 void __iomem *mmio);
308 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
309 unsigned int n_hc);
310 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
311 void (*reset_bus)(struct pci_dev *pdev, void __iomem *mmio);
314 struct mv_host_priv {
315 u32 hp_flags;
316 struct mv_port_signal signal[8];
317 const struct mv_hw_ops *ops;
320 static void mv_irq_clear(struct ata_port *ap);
321 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
322 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
323 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
324 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
325 static void mv_phy_reset(struct ata_port *ap);
326 static void __mv_phy_reset(struct ata_port *ap, int can_sleep);
327 static void mv_host_stop(struct ata_host_set *host_set);
328 static int mv_port_start(struct ata_port *ap);
329 static void mv_port_stop(struct ata_port *ap);
330 static void mv_qc_prep(struct ata_queued_cmd *qc);
331 static int mv_qc_issue(struct ata_queued_cmd *qc);
332 static irqreturn_t mv_interrupt(int irq, void *dev_instance,
333 struct pt_regs *regs);
334 static void mv_eng_timeout(struct ata_port *ap);
335 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
337 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
338 unsigned int port);
339 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
340 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
341 void __iomem *mmio);
342 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
343 unsigned int n_hc);
344 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
345 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio);
347 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
348 unsigned int port);
349 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
350 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
351 void __iomem *mmio);
352 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
353 unsigned int n_hc);
354 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
355 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio);
356 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
357 unsigned int port_no);
358 static void mv_stop_and_reset(struct ata_port *ap);
360 static struct scsi_host_template mv_sht = {
361 .module = THIS_MODULE,
362 .name = DRV_NAME,
363 .ioctl = ata_scsi_ioctl,
364 .queuecommand = ata_scsi_queuecmd,
365 .eh_strategy_handler = ata_scsi_error,
366 .can_queue = MV_USE_Q_DEPTH,
367 .this_id = ATA_SHT_THIS_ID,
368 .sg_tablesize = MV_MAX_SG_CT / 2,
369 .max_sectors = ATA_MAX_SECTORS,
370 .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
371 .emulated = ATA_SHT_EMULATED,
372 .use_clustering = ATA_SHT_USE_CLUSTERING,
373 .proc_name = DRV_NAME,
374 .dma_boundary = MV_DMA_BOUNDARY,
375 .slave_configure = ata_scsi_slave_config,
376 .bios_param = ata_std_bios_param,
377 .ordered_flush = 1,
380 static const struct ata_port_operations mv5_ops = {
381 .port_disable = ata_port_disable,
383 .tf_load = ata_tf_load,
384 .tf_read = ata_tf_read,
385 .check_status = ata_check_status,
386 .exec_command = ata_exec_command,
387 .dev_select = ata_std_dev_select,
389 .phy_reset = mv_phy_reset,
391 .qc_prep = mv_qc_prep,
392 .qc_issue = mv_qc_issue,
394 .eng_timeout = mv_eng_timeout,
396 .irq_handler = mv_interrupt,
397 .irq_clear = mv_irq_clear,
399 .scr_read = mv5_scr_read,
400 .scr_write = mv5_scr_write,
402 .port_start = mv_port_start,
403 .port_stop = mv_port_stop,
404 .host_stop = mv_host_stop,
407 static const struct ata_port_operations mv6_ops = {
408 .port_disable = ata_port_disable,
410 .tf_load = ata_tf_load,
411 .tf_read = ata_tf_read,
412 .check_status = ata_check_status,
413 .exec_command = ata_exec_command,
414 .dev_select = ata_std_dev_select,
416 .phy_reset = mv_phy_reset,
418 .qc_prep = mv_qc_prep,
419 .qc_issue = mv_qc_issue,
421 .eng_timeout = mv_eng_timeout,
423 .irq_handler = mv_interrupt,
424 .irq_clear = mv_irq_clear,
426 .scr_read = mv_scr_read,
427 .scr_write = mv_scr_write,
429 .port_start = mv_port_start,
430 .port_stop = mv_port_stop,
431 .host_stop = mv_host_stop,
434 static struct ata_port_info mv_port_info[] = {
435 { /* chip_504x */
436 .sht = &mv_sht,
437 .host_flags = MV_COMMON_FLAGS,
438 .pio_mask = 0x1f, /* pio0-4 */
439 .udma_mask = 0x7f, /* udma0-6 */
440 .port_ops = &mv5_ops,
442 { /* chip_508x */
443 .sht = &mv_sht,
444 .host_flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
445 .pio_mask = 0x1f, /* pio0-4 */
446 .udma_mask = 0x7f, /* udma0-6 */
447 .port_ops = &mv5_ops,
449 { /* chip_5080 */
450 .sht = &mv_sht,
451 .host_flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
452 .pio_mask = 0x1f, /* pio0-4 */
453 .udma_mask = 0x7f, /* udma0-6 */
454 .port_ops = &mv5_ops,
456 { /* chip_604x */
457 .sht = &mv_sht,
458 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
459 .pio_mask = 0x1f, /* pio0-4 */
460 .udma_mask = 0x7f, /* udma0-6 */
461 .port_ops = &mv6_ops,
463 { /* chip_608x */
464 .sht = &mv_sht,
465 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
466 MV_FLAG_DUAL_HC),
467 .pio_mask = 0x1f, /* pio0-4 */
468 .udma_mask = 0x7f, /* udma0-6 */
469 .port_ops = &mv6_ops,
473 static const struct pci_device_id mv_pci_tbl[] = {
474 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5040), 0, 0, chip_504x},
475 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5041), 0, 0, chip_504x},
476 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5080), 0, 0, chip_5080},
477 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5081), 0, 0, chip_508x},
479 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6040), 0, 0, chip_604x},
480 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6041), 0, 0, chip_604x},
481 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6080), 0, 0, chip_608x},
482 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6081), 0, 0, chip_608x},
484 {PCI_DEVICE(PCI_VENDOR_ID_ADAPTEC2, 0x0241), 0, 0, chip_604x},
485 {} /* terminate list */
488 static struct pci_driver mv_pci_driver = {
489 .name = DRV_NAME,
490 .id_table = mv_pci_tbl,
491 .probe = mv_init_one,
492 .remove = ata_pci_remove_one,
495 static const struct mv_hw_ops mv5xxx_ops = {
496 .phy_errata = mv5_phy_errata,
497 .enable_leds = mv5_enable_leds,
498 .read_preamp = mv5_read_preamp,
499 .reset_hc = mv5_reset_hc,
500 .reset_flash = mv5_reset_flash,
501 .reset_bus = mv5_reset_bus,
504 static const struct mv_hw_ops mv6xxx_ops = {
505 .phy_errata = mv6_phy_errata,
506 .enable_leds = mv6_enable_leds,
507 .read_preamp = mv6_read_preamp,
508 .reset_hc = mv6_reset_hc,
509 .reset_flash = mv6_reset_flash,
510 .reset_bus = mv_reset_pci_bus,
514 * Functions
517 static inline void writelfl(unsigned long data, void __iomem *addr)
519 writel(data, addr);
520 (void) readl(addr); /* flush to avoid PCI posted write */
523 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
525 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
528 static inline unsigned int mv_hc_from_port(unsigned int port)
530 return port >> MV_PORT_HC_SHIFT;
533 static inline unsigned int mv_hardport_from_port(unsigned int port)
535 return port & MV_PORT_MASK;
538 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
539 unsigned int port)
541 return mv_hc_base(base, mv_hc_from_port(port));
544 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
546 return mv_hc_base_from_port(base, port) +
547 MV_SATAHC_ARBTR_REG_SZ +
548 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
551 static inline void __iomem *mv_ap_base(struct ata_port *ap)
553 return mv_port_base(ap->host_set->mmio_base, ap->port_no);
556 static inline int mv_get_hc_count(unsigned long host_flags)
558 return ((host_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
561 static void mv_irq_clear(struct ata_port *ap)
566 * mv_start_dma - Enable eDMA engine
567 * @base: port base address
568 * @pp: port private data
570 * Verify the local cache of the eDMA state is accurate with an
571 * assert.
573 * LOCKING:
574 * Inherited from caller.
576 static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
578 if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
579 writelfl(EDMA_EN, base + EDMA_CMD_OFS);
580 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
582 assert(EDMA_EN & readl(base + EDMA_CMD_OFS));
586 * mv_stop_dma - Disable eDMA engine
587 * @ap: ATA channel to manipulate
589 * Verify the local cache of the eDMA state is accurate with an
590 * assert.
592 * LOCKING:
593 * Inherited from caller.
595 static void mv_stop_dma(struct ata_port *ap)
597 void __iomem *port_mmio = mv_ap_base(ap);
598 struct mv_port_priv *pp = ap->private_data;
599 u32 reg;
600 int i;
602 if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
603 /* Disable EDMA if active. The disable bit auto clears.
605 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
606 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
607 } else {
608 assert(!(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS)));
611 /* now properly wait for the eDMA to stop */
612 for (i = 1000; i > 0; i--) {
613 reg = readl(port_mmio + EDMA_CMD_OFS);
614 if (!(EDMA_EN & reg)) {
615 break;
617 udelay(100);
620 if (EDMA_EN & reg) {
621 printk(KERN_ERR "ata%u: Unable to stop eDMA\n", ap->id);
622 /* FIXME: Consider doing a reset here to recover */
626 #ifdef ATA_DEBUG
627 static void mv_dump_mem(void __iomem *start, unsigned bytes)
629 int b, w;
630 for (b = 0; b < bytes; ) {
631 DPRINTK("%p: ", start + b);
632 for (w = 0; b < bytes && w < 4; w++) {
633 printk("%08x ",readl(start + b));
634 b += sizeof(u32);
636 printk("\n");
639 #endif
641 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
643 #ifdef ATA_DEBUG
644 int b, w;
645 u32 dw;
646 for (b = 0; b < bytes; ) {
647 DPRINTK("%02x: ", b);
648 for (w = 0; b < bytes && w < 4; w++) {
649 (void) pci_read_config_dword(pdev,b,&dw);
650 printk("%08x ",dw);
651 b += sizeof(u32);
653 printk("\n");
655 #endif
657 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
658 struct pci_dev *pdev)
660 #ifdef ATA_DEBUG
661 void __iomem *hc_base = mv_hc_base(mmio_base,
662 port >> MV_PORT_HC_SHIFT);
663 void __iomem *port_base;
664 int start_port, num_ports, p, start_hc, num_hcs, hc;
666 if (0 > port) {
667 start_hc = start_port = 0;
668 num_ports = 8; /* shld be benign for 4 port devs */
669 num_hcs = 2;
670 } else {
671 start_hc = port >> MV_PORT_HC_SHIFT;
672 start_port = port;
673 num_ports = num_hcs = 1;
675 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
676 num_ports > 1 ? num_ports - 1 : start_port);
678 if (NULL != pdev) {
679 DPRINTK("PCI config space regs:\n");
680 mv_dump_pci_cfg(pdev, 0x68);
682 DPRINTK("PCI regs:\n");
683 mv_dump_mem(mmio_base+0xc00, 0x3c);
684 mv_dump_mem(mmio_base+0xd00, 0x34);
685 mv_dump_mem(mmio_base+0xf00, 0x4);
686 mv_dump_mem(mmio_base+0x1d00, 0x6c);
687 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
688 hc_base = mv_hc_base(mmio_base, port >> MV_PORT_HC_SHIFT);
689 DPRINTK("HC regs (HC %i):\n", hc);
690 mv_dump_mem(hc_base, 0x1c);
692 for (p = start_port; p < start_port + num_ports; p++) {
693 port_base = mv_port_base(mmio_base, p);
694 DPRINTK("EDMA regs (port %i):\n",p);
695 mv_dump_mem(port_base, 0x54);
696 DPRINTK("SATA regs (port %i):\n",p);
697 mv_dump_mem(port_base+0x300, 0x60);
699 #endif
702 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
704 unsigned int ofs;
706 switch (sc_reg_in) {
707 case SCR_STATUS:
708 case SCR_CONTROL:
709 case SCR_ERROR:
710 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
711 break;
712 case SCR_ACTIVE:
713 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
714 break;
715 default:
716 ofs = 0xffffffffU;
717 break;
719 return ofs;
722 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
724 unsigned int ofs = mv_scr_offset(sc_reg_in);
726 if (0xffffffffU != ofs) {
727 return readl(mv_ap_base(ap) + ofs);
728 } else {
729 return (u32) ofs;
733 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
735 unsigned int ofs = mv_scr_offset(sc_reg_in);
737 if (0xffffffffU != ofs) {
738 writelfl(val, mv_ap_base(ap) + ofs);
743 * mv_host_stop - Host specific cleanup/stop routine.
744 * @host_set: host data structure
746 * Disable ints, cleanup host memory, call general purpose
747 * host_stop.
749 * LOCKING:
750 * Inherited from caller.
752 static void mv_host_stop(struct ata_host_set *host_set)
754 struct mv_host_priv *hpriv = host_set->private_data;
755 struct pci_dev *pdev = to_pci_dev(host_set->dev);
757 if (hpriv->hp_flags & MV_HP_FLAG_MSI) {
758 pci_disable_msi(pdev);
759 } else {
760 pci_intx(pdev, 0);
762 kfree(hpriv);
763 ata_host_stop(host_set);
766 static inline void mv_priv_free(struct mv_port_priv *pp, struct device *dev)
768 dma_free_coherent(dev, MV_PORT_PRIV_DMA_SZ, pp->crpb, pp->crpb_dma);
772 * mv_port_start - Port specific init/start routine.
773 * @ap: ATA channel to manipulate
775 * Allocate and point to DMA memory, init port private memory,
776 * zero indices.
778 * LOCKING:
779 * Inherited from caller.
781 static int mv_port_start(struct ata_port *ap)
783 struct device *dev = ap->host_set->dev;
784 struct mv_port_priv *pp;
785 void __iomem *port_mmio = mv_ap_base(ap);
786 void *mem;
787 dma_addr_t mem_dma;
788 int rc = -ENOMEM;
790 pp = kmalloc(sizeof(*pp), GFP_KERNEL);
791 if (!pp)
792 goto err_out;
793 memset(pp, 0, sizeof(*pp));
795 mem = dma_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
796 GFP_KERNEL);
797 if (!mem)
798 goto err_out_pp;
799 memset(mem, 0, MV_PORT_PRIV_DMA_SZ);
801 rc = ata_pad_alloc(ap, dev);
802 if (rc)
803 goto err_out_priv;
805 /* First item in chunk of DMA memory:
806 * 32-slot command request table (CRQB), 32 bytes each in size
808 pp->crqb = mem;
809 pp->crqb_dma = mem_dma;
810 mem += MV_CRQB_Q_SZ;
811 mem_dma += MV_CRQB_Q_SZ;
813 /* Second item:
814 * 32-slot command response table (CRPB), 8 bytes each in size
816 pp->crpb = mem;
817 pp->crpb_dma = mem_dma;
818 mem += MV_CRPB_Q_SZ;
819 mem_dma += MV_CRPB_Q_SZ;
821 /* Third item:
822 * Table of scatter-gather descriptors (ePRD), 16 bytes each
824 pp->sg_tbl = mem;
825 pp->sg_tbl_dma = mem_dma;
827 writelfl(EDMA_CFG_Q_DEPTH | EDMA_CFG_RD_BRST_EXT |
828 EDMA_CFG_WR_BUFF_LEN, port_mmio + EDMA_CFG_OFS);
830 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
831 writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
832 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
834 writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
835 writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
837 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
838 writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
839 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
841 pp->req_producer = pp->rsp_consumer = 0;
843 /* Don't turn on EDMA here...do it before DMA commands only. Else
844 * we'll be unable to send non-data, PIO, etc due to restricted access
845 * to shadow regs.
847 ap->private_data = pp;
848 return 0;
850 err_out_priv:
851 mv_priv_free(pp, dev);
852 err_out_pp:
853 kfree(pp);
854 err_out:
855 return rc;
859 * mv_port_stop - Port specific cleanup/stop routine.
860 * @ap: ATA channel to manipulate
862 * Stop DMA, cleanup port memory.
864 * LOCKING:
865 * This routine uses the host_set lock to protect the DMA stop.
867 static void mv_port_stop(struct ata_port *ap)
869 struct device *dev = ap->host_set->dev;
870 struct mv_port_priv *pp = ap->private_data;
871 unsigned long flags;
873 spin_lock_irqsave(&ap->host_set->lock, flags);
874 mv_stop_dma(ap);
875 spin_unlock_irqrestore(&ap->host_set->lock, flags);
877 ap->private_data = NULL;
878 ata_pad_free(ap, dev);
879 mv_priv_free(pp, dev);
880 kfree(pp);
884 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
885 * @qc: queued command whose SG list to source from
887 * Populate the SG list and mark the last entry.
889 * LOCKING:
890 * Inherited from caller.
892 static void mv_fill_sg(struct ata_queued_cmd *qc)
894 struct mv_port_priv *pp = qc->ap->private_data;
895 unsigned int i = 0;
896 struct scatterlist *sg;
898 ata_for_each_sg(sg, qc) {
899 dma_addr_t addr;
900 u32 sg_len, len, offset;
902 addr = sg_dma_address(sg);
903 sg_len = sg_dma_len(sg);
905 while (sg_len) {
906 offset = addr & MV_DMA_BOUNDARY;
907 len = sg_len;
908 if ((offset + sg_len) > 0x10000)
909 len = 0x10000 - offset;
911 pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
912 pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
913 pp->sg_tbl[i].flags_size = cpu_to_le32(len);
915 sg_len -= len;
916 addr += len;
918 if (!sg_len && ata_sg_is_last(sg, qc))
919 pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
921 i++;
926 static inline unsigned mv_inc_q_index(unsigned *index)
928 *index = (*index + 1) & MV_MAX_Q_DEPTH_MASK;
929 return *index;
932 static inline void mv_crqb_pack_cmd(u16 *cmdw, u8 data, u8 addr, unsigned last)
934 *cmdw = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
935 (last ? CRQB_CMD_LAST : 0);
939 * mv_qc_prep - Host specific command preparation.
940 * @qc: queued command to prepare
942 * This routine simply redirects to the general purpose routine
943 * if command is not DMA. Else, it handles prep of the CRQB
944 * (command request block), does some sanity checking, and calls
945 * the SG load routine.
947 * LOCKING:
948 * Inherited from caller.
950 static void mv_qc_prep(struct ata_queued_cmd *qc)
952 struct ata_port *ap = qc->ap;
953 struct mv_port_priv *pp = ap->private_data;
954 u16 *cw;
955 struct ata_taskfile *tf;
956 u16 flags = 0;
958 if (ATA_PROT_DMA != qc->tf.protocol) {
959 return;
962 /* the req producer index should be the same as we remember it */
963 assert(((readl(mv_ap_base(qc->ap) + EDMA_REQ_Q_IN_PTR_OFS) >>
964 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
965 pp->req_producer);
967 /* Fill in command request block
969 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
970 flags |= CRQB_FLAG_READ;
972 assert(MV_MAX_Q_DEPTH > qc->tag);
973 flags |= qc->tag << CRQB_TAG_SHIFT;
975 pp->crqb[pp->req_producer].sg_addr =
976 cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
977 pp->crqb[pp->req_producer].sg_addr_hi =
978 cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
979 pp->crqb[pp->req_producer].ctrl_flags = cpu_to_le16(flags);
981 cw = &pp->crqb[pp->req_producer].ata_cmd[0];
982 tf = &qc->tf;
984 /* Sadly, the CRQB cannot accomodate all registers--there are
985 * only 11 bytes...so we must pick and choose required
986 * registers based on the command. So, we drop feature and
987 * hob_feature for [RW] DMA commands, but they are needed for
988 * NCQ. NCQ will drop hob_nsect.
990 switch (tf->command) {
991 case ATA_CMD_READ:
992 case ATA_CMD_READ_EXT:
993 case ATA_CMD_WRITE:
994 case ATA_CMD_WRITE_EXT:
995 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
996 break;
997 #ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
998 case ATA_CMD_FPDMA_READ:
999 case ATA_CMD_FPDMA_WRITE:
1000 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1001 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1002 break;
1003 #endif /* FIXME: remove this line when NCQ added */
1004 default:
1005 /* The only other commands EDMA supports in non-queued and
1006 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1007 * of which are defined/used by Linux. If we get here, this
1008 * driver needs work.
1010 * FIXME: modify libata to give qc_prep a return value and
1011 * return error here.
1013 BUG_ON(tf->command);
1014 break;
1016 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1017 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1018 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1019 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1020 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1021 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1022 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1023 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1024 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
1026 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) {
1027 return;
1029 mv_fill_sg(qc);
1033 * mv_qc_issue - Initiate a command to the host
1034 * @qc: queued command to start
1036 * This routine simply redirects to the general purpose routine
1037 * if command is not DMA. Else, it sanity checks our local
1038 * caches of the request producer/consumer indices then enables
1039 * DMA and bumps the request producer index.
1041 * LOCKING:
1042 * Inherited from caller.
1044 static int mv_qc_issue(struct ata_queued_cmd *qc)
1046 void __iomem *port_mmio = mv_ap_base(qc->ap);
1047 struct mv_port_priv *pp = qc->ap->private_data;
1048 u32 in_ptr;
1050 if (ATA_PROT_DMA != qc->tf.protocol) {
1051 /* We're about to send a non-EDMA capable command to the
1052 * port. Turn off EDMA so there won't be problems accessing
1053 * shadow block, etc registers.
1055 mv_stop_dma(qc->ap);
1056 return ata_qc_issue_prot(qc);
1059 in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1061 /* the req producer index should be the same as we remember it */
1062 assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
1063 pp->req_producer);
1064 /* until we do queuing, the queue should be empty at this point */
1065 assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
1066 ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS) >>
1067 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
1069 mv_inc_q_index(&pp->req_producer); /* now incr producer index */
1071 mv_start_dma(port_mmio, pp);
1073 /* and write the request in pointer to kick the EDMA to life */
1074 in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
1075 in_ptr |= pp->req_producer << EDMA_REQ_Q_PTR_SHIFT;
1076 writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1078 return 0;
1082 * mv_get_crpb_status - get status from most recently completed cmd
1083 * @ap: ATA channel to manipulate
1085 * This routine is for use when the port is in DMA mode, when it
1086 * will be using the CRPB (command response block) method of
1087 * returning command completion information. We assert indices
1088 * are good, grab status, and bump the response consumer index to
1089 * prove that we're up to date.
1091 * LOCKING:
1092 * Inherited from caller.
1094 static u8 mv_get_crpb_status(struct ata_port *ap)
1096 void __iomem *port_mmio = mv_ap_base(ap);
1097 struct mv_port_priv *pp = ap->private_data;
1098 u32 out_ptr;
1100 out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1102 /* the response consumer index should be the same as we remember it */
1103 assert(((out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
1104 pp->rsp_consumer);
1106 /* increment our consumer index... */
1107 pp->rsp_consumer = mv_inc_q_index(&pp->rsp_consumer);
1109 /* and, until we do NCQ, there should only be 1 CRPB waiting */
1110 assert(((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS) >>
1111 EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
1112 pp->rsp_consumer);
1114 /* write out our inc'd consumer index so EDMA knows we're caught up */
1115 out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
1116 out_ptr |= pp->rsp_consumer << EDMA_RSP_Q_PTR_SHIFT;
1117 writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1119 /* Return ATA status register for completed CRPB */
1120 return (pp->crpb[pp->rsp_consumer].flags >> CRPB_FLAG_STATUS_SHIFT);
1124 * mv_err_intr - Handle error interrupts on the port
1125 * @ap: ATA channel to manipulate
1127 * In most cases, just clear the interrupt and move on. However,
1128 * some cases require an eDMA reset, which is done right before
1129 * the COMRESET in mv_phy_reset(). The SERR case requires a
1130 * clear of pending errors in the SATA SERROR register. Finally,
1131 * if the port disabled DMA, update our cached copy to match.
1133 * LOCKING:
1134 * Inherited from caller.
1136 static void mv_err_intr(struct ata_port *ap)
1138 void __iomem *port_mmio = mv_ap_base(ap);
1139 u32 edma_err_cause, serr = 0;
1141 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1143 if (EDMA_ERR_SERR & edma_err_cause) {
1144 serr = scr_read(ap, SCR_ERROR);
1145 scr_write_flush(ap, SCR_ERROR, serr);
1147 if (EDMA_ERR_SELF_DIS & edma_err_cause) {
1148 struct mv_port_priv *pp = ap->private_data;
1149 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1151 DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
1152 "SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
1154 /* Clear EDMA now that SERR cleanup done */
1155 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1157 /* check for fatal here and recover if needed */
1158 if (EDMA_ERR_FATAL & edma_err_cause) {
1159 mv_stop_and_reset(ap);
1164 * mv_host_intr - Handle all interrupts on the given host controller
1165 * @host_set: host specific structure
1166 * @relevant: port error bits relevant to this host controller
1167 * @hc: which host controller we're to look at
1169 * Read then write clear the HC interrupt status then walk each
1170 * port connected to the HC and see if it needs servicing. Port
1171 * success ints are reported in the HC interrupt status reg, the
1172 * port error ints are reported in the higher level main
1173 * interrupt status register and thus are passed in via the
1174 * 'relevant' argument.
1176 * LOCKING:
1177 * Inherited from caller.
1179 static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
1180 unsigned int hc)
1182 void __iomem *mmio = host_set->mmio_base;
1183 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1184 struct ata_port *ap;
1185 struct ata_queued_cmd *qc;
1186 u32 hc_irq_cause;
1187 int shift, port, port0, hard_port, handled;
1188 unsigned int err_mask;
1189 u8 ata_status = 0;
1191 if (hc == 0) {
1192 port0 = 0;
1193 } else {
1194 port0 = MV_PORTS_PER_HC;
1197 /* we'll need the HC success int register in most cases */
1198 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
1199 if (hc_irq_cause) {
1200 writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1203 VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
1204 hc,relevant,hc_irq_cause);
1206 for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
1207 ap = host_set->ports[port];
1208 hard_port = port & MV_PORT_MASK; /* range 0-3 */
1209 handled = 0; /* ensure ata_status is set if handled++ */
1211 if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
1212 /* new CRPB on the queue; just one at a time until NCQ
1214 ata_status = mv_get_crpb_status(ap);
1215 handled++;
1216 } else if ((DEV_IRQ << hard_port) & hc_irq_cause) {
1217 /* received ATA IRQ; read the status reg to clear INTRQ
1219 ata_status = readb((void __iomem *)
1220 ap->ioaddr.status_addr);
1221 handled++;
1224 if (ap &&
1225 (ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR)))
1226 continue;
1228 err_mask = ac_err_mask(ata_status);
1230 shift = port << 1; /* (port * 2) */
1231 if (port >= MV_PORTS_PER_HC) {
1232 shift++; /* skip bit 8 in the HC Main IRQ reg */
1234 if ((PORT0_ERR << shift) & relevant) {
1235 mv_err_intr(ap);
1236 err_mask |= AC_ERR_OTHER;
1237 handled++;
1240 if (handled && ap) {
1241 qc = ata_qc_from_tag(ap, ap->active_tag);
1242 if (NULL != qc) {
1243 VPRINTK("port %u IRQ found for qc, "
1244 "ata_status 0x%x\n", port,ata_status);
1245 /* mark qc status appropriately */
1246 if (!(qc->tf.ctl & ATA_NIEN))
1247 ata_qc_complete(qc, err_mask);
1251 VPRINTK("EXIT\n");
1255 * mv_interrupt -
1256 * @irq: unused
1257 * @dev_instance: private data; in this case the host structure
1258 * @regs: unused
1260 * Read the read only register to determine if any host
1261 * controllers have pending interrupts. If so, call lower level
1262 * routine to handle. Also check for PCI errors which are only
1263 * reported here.
1265 * LOCKING:
1266 * This routine holds the host_set lock while processing pending
1267 * interrupts.
1269 static irqreturn_t mv_interrupt(int irq, void *dev_instance,
1270 struct pt_regs *regs)
1272 struct ata_host_set *host_set = dev_instance;
1273 unsigned int hc, handled = 0, n_hcs;
1274 void __iomem *mmio = host_set->mmio_base;
1275 u32 irq_stat;
1277 irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);
1279 /* check the cases where we either have nothing pending or have read
1280 * a bogus register value which can indicate HW removal or PCI fault
1282 if (!irq_stat || (0xffffffffU == irq_stat)) {
1283 return IRQ_NONE;
1286 n_hcs = mv_get_hc_count(host_set->ports[0]->flags);
1287 spin_lock(&host_set->lock);
1289 for (hc = 0; hc < n_hcs; hc++) {
1290 u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
1291 if (relevant) {
1292 mv_host_intr(host_set, relevant, hc);
1293 handled++;
1296 if (PCI_ERR & irq_stat) {
1297 printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
1298 readl(mmio + PCI_IRQ_CAUSE_OFS));
1300 DPRINTK("All regs @ PCI error\n");
1301 mv_dump_all_regs(mmio, -1, to_pci_dev(host_set->dev));
1303 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
1304 handled++;
1306 spin_unlock(&host_set->lock);
1308 return IRQ_RETVAL(handled);
1311 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
1313 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
1314 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
1316 return hc_mmio + ofs;
1319 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
1321 unsigned int ofs;
1323 switch (sc_reg_in) {
1324 case SCR_STATUS:
1325 case SCR_ERROR:
1326 case SCR_CONTROL:
1327 ofs = sc_reg_in * sizeof(u32);
1328 break;
1329 default:
1330 ofs = 0xffffffffU;
1331 break;
1333 return ofs;
1336 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
1338 void __iomem *mmio = mv5_phy_base(ap->host_set->mmio_base, ap->port_no);
1339 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1341 if (ofs != 0xffffffffU)
1342 return readl(mmio + ofs);
1343 else
1344 return (u32) ofs;
1347 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1349 void __iomem *mmio = mv5_phy_base(ap->host_set->mmio_base, ap->port_no);
1350 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1352 if (ofs != 0xffffffffU)
1353 writelfl(val, mmio + ofs);
1356 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio)
1358 u8 rev_id;
1359 int early_5080;
1361 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
1363 early_5080 = (pdev->device == 0x5080) && (rev_id == 0);
1365 if (!early_5080) {
1366 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1367 tmp |= (1 << 0);
1368 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1371 mv_reset_pci_bus(pdev, mmio);
1374 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1376 writel(0x0fcfffff, mmio + MV_FLASH_CTL);
1379 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
1380 void __iomem *mmio)
1382 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
1383 u32 tmp;
1385 tmp = readl(phy_mmio + MV5_PHY_MODE);
1387 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
1388 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
1391 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1393 u32 tmp;
1395 writel(0, mmio + MV_GPIO_PORT_CTL);
1397 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
1399 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1400 tmp |= ~(1 << 0);
1401 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1404 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1405 unsigned int port)
1407 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
1408 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
1409 u32 tmp;
1410 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
1412 if (fix_apm_sq) {
1413 tmp = readl(phy_mmio + MV5_LT_MODE);
1414 tmp |= (1 << 19);
1415 writel(tmp, phy_mmio + MV5_LT_MODE);
1417 tmp = readl(phy_mmio + MV5_PHY_CTL);
1418 tmp &= ~0x3;
1419 tmp |= 0x1;
1420 writel(tmp, phy_mmio + MV5_PHY_CTL);
1423 tmp = readl(phy_mmio + MV5_PHY_MODE);
1424 tmp &= ~mask;
1425 tmp |= hpriv->signal[port].pre;
1426 tmp |= hpriv->signal[port].amps;
1427 writel(tmp, phy_mmio + MV5_PHY_MODE);
1431 #undef ZERO
1432 #define ZERO(reg) writel(0, port_mmio + (reg))
1433 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
1434 unsigned int port)
1436 void __iomem *port_mmio = mv_port_base(mmio, port);
1438 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
1440 mv_channel_reset(hpriv, mmio, port);
1442 ZERO(0x028); /* command */
1443 writel(0x11f, port_mmio + EDMA_CFG_OFS);
1444 ZERO(0x004); /* timer */
1445 ZERO(0x008); /* irq err cause */
1446 ZERO(0x00c); /* irq err mask */
1447 ZERO(0x010); /* rq bah */
1448 ZERO(0x014); /* rq inp */
1449 ZERO(0x018); /* rq outp */
1450 ZERO(0x01c); /* respq bah */
1451 ZERO(0x024); /* respq outp */
1452 ZERO(0x020); /* respq inp */
1453 ZERO(0x02c); /* test control */
1454 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
1456 #undef ZERO
1458 #define ZERO(reg) writel(0, hc_mmio + (reg))
1459 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1460 unsigned int hc)
1462 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1463 u32 tmp;
1465 ZERO(0x00c);
1466 ZERO(0x010);
1467 ZERO(0x014);
1468 ZERO(0x018);
1470 tmp = readl(hc_mmio + 0x20);
1471 tmp &= 0x1c1c1c1c;
1472 tmp |= 0x03030303;
1473 writel(tmp, hc_mmio + 0x20);
1475 #undef ZERO
1477 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1478 unsigned int n_hc)
1480 unsigned int hc, port;
1482 for (hc = 0; hc < n_hc; hc++) {
1483 for (port = 0; port < MV_PORTS_PER_HC; port++)
1484 mv5_reset_hc_port(hpriv, mmio,
1485 (hc * MV_PORTS_PER_HC) + port);
1487 mv5_reset_one_hc(hpriv, mmio, hc);
1490 return 0;
1493 #undef ZERO
1494 #define ZERO(reg) writel(0, mmio + (reg))
1495 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio)
1497 u32 tmp;
1499 tmp = readl(mmio + MV_PCI_MODE);
1500 tmp &= 0xff00ffff;
1501 writel(tmp, mmio + MV_PCI_MODE);
1503 ZERO(MV_PCI_DISC_TIMER);
1504 ZERO(MV_PCI_MSI_TRIGGER);
1505 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
1506 ZERO(HC_MAIN_IRQ_MASK_OFS);
1507 ZERO(MV_PCI_SERR_MASK);
1508 ZERO(PCI_IRQ_CAUSE_OFS);
1509 ZERO(PCI_IRQ_MASK_OFS);
1510 ZERO(MV_PCI_ERR_LOW_ADDRESS);
1511 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
1512 ZERO(MV_PCI_ERR_ATTRIBUTE);
1513 ZERO(MV_PCI_ERR_COMMAND);
1515 #undef ZERO
1517 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1519 u32 tmp;
1521 mv5_reset_flash(hpriv, mmio);
1523 tmp = readl(mmio + MV_GPIO_PORT_CTL);
1524 tmp &= 0x3;
1525 tmp |= (1 << 5) | (1 << 6);
1526 writel(tmp, mmio + MV_GPIO_PORT_CTL);
1530 * mv6_reset_hc - Perform the 6xxx global soft reset
1531 * @mmio: base address of the HBA
1533 * This routine only applies to 6xxx parts.
1535 * LOCKING:
1536 * Inherited from caller.
1538 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1539 unsigned int n_hc)
1541 void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
1542 int i, rc = 0;
1543 u32 t;
1545 /* Following procedure defined in PCI "main command and status
1546 * register" table.
1548 t = readl(reg);
1549 writel(t | STOP_PCI_MASTER, reg);
1551 for (i = 0; i < 1000; i++) {
1552 udelay(1);
1553 t = readl(reg);
1554 if (PCI_MASTER_EMPTY & t) {
1555 break;
1558 if (!(PCI_MASTER_EMPTY & t)) {
1559 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
1560 rc = 1;
1561 goto done;
1564 /* set reset */
1565 i = 5;
1566 do {
1567 writel(t | GLOB_SFT_RST, reg);
1568 t = readl(reg);
1569 udelay(1);
1570 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
1572 if (!(GLOB_SFT_RST & t)) {
1573 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
1574 rc = 1;
1575 goto done;
1578 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
1579 i = 5;
1580 do {
1581 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
1582 t = readl(reg);
1583 udelay(1);
1584 } while ((GLOB_SFT_RST & t) && (i-- > 0));
1586 if (GLOB_SFT_RST & t) {
1587 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
1588 rc = 1;
1590 done:
1591 return rc;
1594 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
1595 void __iomem *mmio)
1597 void __iomem *port_mmio;
1598 u32 tmp;
1600 tmp = readl(mmio + MV_RESET_CFG);
1601 if ((tmp & (1 << 0)) == 0) {
1602 hpriv->signal[idx].amps = 0x7 << 8;
1603 hpriv->signal[idx].pre = 0x1 << 5;
1604 return;
1607 port_mmio = mv_port_base(mmio, idx);
1608 tmp = readl(port_mmio + PHY_MODE2);
1610 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
1611 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
1614 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1616 writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
1619 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1620 unsigned int port)
1622 void __iomem *port_mmio = mv_port_base(mmio, port);
1624 u32 hp_flags = hpriv->hp_flags;
1625 int fix_phy_mode2 =
1626 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1627 int fix_phy_mode4 =
1628 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1629 u32 m2, tmp;
1631 if (fix_phy_mode2) {
1632 m2 = readl(port_mmio + PHY_MODE2);
1633 m2 &= ~(1 << 16);
1634 m2 |= (1 << 31);
1635 writel(m2, port_mmio + PHY_MODE2);
1637 udelay(200);
1639 m2 = readl(port_mmio + PHY_MODE2);
1640 m2 &= ~((1 << 16) | (1 << 31));
1641 writel(m2, port_mmio + PHY_MODE2);
1643 udelay(200);
1646 /* who knows what this magic does */
1647 tmp = readl(port_mmio + PHY_MODE3);
1648 tmp &= ~0x7F800000;
1649 tmp |= 0x2A800000;
1650 writel(tmp, port_mmio + PHY_MODE3);
1652 if (fix_phy_mode4) {
1653 u32 m4;
1655 m4 = readl(port_mmio + PHY_MODE4);
1657 if (hp_flags & MV_HP_ERRATA_60X1B2)
1658 tmp = readl(port_mmio + 0x310);
1660 m4 = (m4 & ~(1 << 1)) | (1 << 0);
1662 writel(m4, port_mmio + PHY_MODE4);
1664 if (hp_flags & MV_HP_ERRATA_60X1B2)
1665 writel(tmp, port_mmio + 0x310);
1668 /* Revert values of pre-emphasis and signal amps to the saved ones */
1669 m2 = readl(port_mmio + PHY_MODE2);
1671 m2 &= ~MV_M2_PREAMP_MASK;
1672 m2 |= hpriv->signal[port].amps;
1673 m2 |= hpriv->signal[port].pre;
1674 m2 &= ~(1 << 16);
1676 writel(m2, port_mmio + PHY_MODE2);
1679 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
1680 unsigned int port_no)
1682 void __iomem *port_mmio = mv_port_base(mmio, port_no);
1684 writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
1686 if (IS_60XX(hpriv)) {
1687 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
1688 ifctl |= (1 << 12) | (1 << 7);
1689 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
1692 udelay(25); /* allow reset propagation */
1694 /* Spec never mentions clearing the bit. Marvell's driver does
1695 * clear the bit, however.
1697 writelfl(0, port_mmio + EDMA_CMD_OFS);
1699 hpriv->ops->phy_errata(hpriv, mmio, port_no);
1701 if (IS_50XX(hpriv))
1702 mdelay(1);
1705 static void mv_stop_and_reset(struct ata_port *ap)
1707 struct mv_host_priv *hpriv = ap->host_set->private_data;
1708 void __iomem *mmio = ap->host_set->mmio_base;
1710 mv_stop_dma(ap);
1712 mv_channel_reset(hpriv, mmio, ap->port_no);
1714 __mv_phy_reset(ap, 0);
1717 static inline void __msleep(unsigned int msec, int can_sleep)
1719 if (can_sleep)
1720 msleep(msec);
1721 else
1722 mdelay(msec);
1726 * __mv_phy_reset - Perform eDMA reset followed by COMRESET
1727 * @ap: ATA channel to manipulate
1729 * Part of this is taken from __sata_phy_reset and modified to
1730 * not sleep since this routine gets called from interrupt level.
1732 * LOCKING:
1733 * Inherited from caller. This is coded to safe to call at
1734 * interrupt level, i.e. it does not sleep.
1736 static void __mv_phy_reset(struct ata_port *ap, int can_sleep)
1738 struct mv_port_priv *pp = ap->private_data;
1739 struct mv_host_priv *hpriv = ap->host_set->private_data;
1740 void __iomem *port_mmio = mv_ap_base(ap);
1741 struct ata_taskfile tf;
1742 struct ata_device *dev = &ap->device[0];
1743 unsigned long timeout;
1744 int retry = 5;
1745 u32 sstatus;
1747 VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);
1749 DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
1750 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1751 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1753 /* Issue COMRESET via SControl */
1754 comreset_retry:
1755 scr_write_flush(ap, SCR_CONTROL, 0x301);
1756 __msleep(1, can_sleep);
1758 scr_write_flush(ap, SCR_CONTROL, 0x300);
1759 __msleep(20, can_sleep);
1761 timeout = jiffies + msecs_to_jiffies(200);
1762 do {
1763 sstatus = scr_read(ap, SCR_STATUS) & 0x3;
1764 if ((sstatus == 3) || (sstatus == 0))
1765 break;
1767 __msleep(1, can_sleep);
1768 } while (time_before(jiffies, timeout));
1770 /* work around errata */
1771 if (IS_60XX(hpriv) &&
1772 (sstatus != 0x0) && (sstatus != 0x113) && (sstatus != 0x123) &&
1773 (retry-- > 0))
1774 goto comreset_retry;
1776 DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
1777 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1778 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1780 if (sata_dev_present(ap)) {
1781 ata_port_probe(ap);
1782 } else {
1783 printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
1784 ap->id, scr_read(ap, SCR_STATUS));
1785 ata_port_disable(ap);
1786 return;
1788 ap->cbl = ATA_CBL_SATA;
1790 /* even after SStatus reflects that device is ready,
1791 * it seems to take a while for link to be fully
1792 * established (and thus Status no longer 0x80/0x7F),
1793 * so we poll a bit for that, here.
1795 retry = 20;
1796 while (1) {
1797 u8 drv_stat = ata_check_status(ap);
1798 if ((drv_stat != 0x80) && (drv_stat != 0x7f))
1799 break;
1800 __msleep(500, can_sleep);
1801 if (retry-- <= 0)
1802 break;
1805 tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr);
1806 tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr);
1807 tf.lbal = readb((void __iomem *) ap->ioaddr.lbal_addr);
1808 tf.nsect = readb((void __iomem *) ap->ioaddr.nsect_addr);
1810 dev->class = ata_dev_classify(&tf);
1811 if (!ata_dev_present(dev)) {
1812 VPRINTK("Port disabled post-sig: No device present.\n");
1813 ata_port_disable(ap);
1816 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1818 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1820 VPRINTK("EXIT\n");
1823 static void mv_phy_reset(struct ata_port *ap)
1825 __mv_phy_reset(ap, 1);
1829 * mv_eng_timeout - Routine called by libata when SCSI times out I/O
1830 * @ap: ATA channel to manipulate
1832 * Intent is to clear all pending error conditions, reset the
1833 * chip/bus, fail the command, and move on.
1835 * LOCKING:
1836 * This routine holds the host_set lock while failing the command.
1838 static void mv_eng_timeout(struct ata_port *ap)
1840 struct ata_queued_cmd *qc;
1841 unsigned long flags;
1843 printk(KERN_ERR "ata%u: Entering mv_eng_timeout\n",ap->id);
1844 DPRINTK("All regs @ start of eng_timeout\n");
1845 mv_dump_all_regs(ap->host_set->mmio_base, ap->port_no,
1846 to_pci_dev(ap->host_set->dev));
1848 qc = ata_qc_from_tag(ap, ap->active_tag);
1849 printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
1850 ap->host_set->mmio_base, ap, qc, qc->scsicmd,
1851 &qc->scsicmd->cmnd);
1853 mv_err_intr(ap);
1854 mv_stop_and_reset(ap);
1856 if (!qc) {
1857 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
1858 ap->id);
1859 } else {
1860 /* hack alert! We cannot use the supplied completion
1861 * function from inside the ->eh_strategy_handler() thread.
1862 * libata is the only user of ->eh_strategy_handler() in
1863 * any kernel, so the default scsi_done() assumes it is
1864 * not being called from the SCSI EH.
1866 spin_lock_irqsave(&ap->host_set->lock, flags);
1867 qc->scsidone = scsi_finish_command;
1868 ata_qc_complete(qc, AC_ERR_OTHER);
1869 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1874 * mv_port_init - Perform some early initialization on a single port.
1875 * @port: libata data structure storing shadow register addresses
1876 * @port_mmio: base address of the port
1878 * Initialize shadow register mmio addresses, clear outstanding
1879 * interrupts on the port, and unmask interrupts for the future
1880 * start of the port.
1882 * LOCKING:
1883 * Inherited from caller.
1885 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
1887 unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS;
1888 unsigned serr_ofs;
1890 /* PIO related setup
1892 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
1893 port->error_addr =
1894 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
1895 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
1896 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
1897 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
1898 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
1899 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
1900 port->status_addr =
1901 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
1902 /* special case: control/altstatus doesn't have ATA_REG_ address */
1903 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
1905 /* unused: */
1906 port->cmd_addr = port->bmdma_addr = port->scr_addr = 0;
1908 /* Clear any currently outstanding port interrupt conditions */
1909 serr_ofs = mv_scr_offset(SCR_ERROR);
1910 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
1911 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1913 /* unmask all EDMA error interrupts */
1914 writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
1916 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
1917 readl(port_mmio + EDMA_CFG_OFS),
1918 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
1919 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
1922 static int mv_chip_id(struct pci_dev *pdev, struct mv_host_priv *hpriv,
1923 unsigned int board_idx)
1925 u8 rev_id;
1926 u32 hp_flags = hpriv->hp_flags;
1928 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
1930 switch(board_idx) {
1931 case chip_5080:
1932 hpriv->ops = &mv5xxx_ops;
1933 hp_flags |= MV_HP_50XX;
1935 switch (rev_id) {
1936 case 0x1:
1937 hp_flags |= MV_HP_ERRATA_50XXB0;
1938 break;
1939 case 0x3:
1940 hp_flags |= MV_HP_ERRATA_50XXB2;
1941 break;
1942 default:
1943 dev_printk(KERN_WARNING, &pdev->dev,
1944 "Applying 50XXB2 workarounds to unknown rev\n");
1945 hp_flags |= MV_HP_ERRATA_50XXB2;
1946 break;
1948 break;
1950 case chip_504x:
1951 case chip_508x:
1952 hpriv->ops = &mv5xxx_ops;
1953 hp_flags |= MV_HP_50XX;
1955 switch (rev_id) {
1956 case 0x0:
1957 hp_flags |= MV_HP_ERRATA_50XXB0;
1958 break;
1959 case 0x3:
1960 hp_flags |= MV_HP_ERRATA_50XXB2;
1961 break;
1962 default:
1963 dev_printk(KERN_WARNING, &pdev->dev,
1964 "Applying B2 workarounds to unknown rev\n");
1965 hp_flags |= MV_HP_ERRATA_50XXB2;
1966 break;
1968 break;
1970 case chip_604x:
1971 case chip_608x:
1972 hpriv->ops = &mv6xxx_ops;
1974 switch (rev_id) {
1975 case 0x7:
1976 hp_flags |= MV_HP_ERRATA_60X1B2;
1977 break;
1978 case 0x9:
1979 hp_flags |= MV_HP_ERRATA_60X1C0;
1980 break;
1981 default:
1982 dev_printk(KERN_WARNING, &pdev->dev,
1983 "Applying B2 workarounds to unknown rev\n");
1984 hp_flags |= MV_HP_ERRATA_60X1B2;
1985 break;
1987 break;
1989 default:
1990 printk(KERN_ERR DRV_NAME ": BUG: invalid board index %u\n", board_idx);
1991 return 1;
1994 hpriv->hp_flags = hp_flags;
1996 return 0;
2000 * mv_init_host - Perform some early initialization of the host.
2001 * @pdev: host PCI device
2002 * @probe_ent: early data struct representing the host
2004 * If possible, do an early global reset of the host. Then do
2005 * our port init and clear/unmask all/relevant host interrupts.
2007 * LOCKING:
2008 * Inherited from caller.
2010 static int mv_init_host(struct pci_dev *pdev, struct ata_probe_ent *probe_ent,
2011 unsigned int board_idx)
2013 int rc = 0, n_hc, port, hc;
2014 void __iomem *mmio = probe_ent->mmio_base;
2015 struct mv_host_priv *hpriv = probe_ent->private_data;
2017 /* global interrupt mask */
2018 writel(0, mmio + HC_MAIN_IRQ_MASK_OFS);
2020 rc = mv_chip_id(pdev, hpriv, board_idx);
2021 if (rc)
2022 goto done;
2024 n_hc = mv_get_hc_count(probe_ent->host_flags);
2025 probe_ent->n_ports = MV_PORTS_PER_HC * n_hc;
2027 for (port = 0; port < probe_ent->n_ports; port++)
2028 hpriv->ops->read_preamp(hpriv, port, mmio);
2030 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
2031 if (rc)
2032 goto done;
2034 hpriv->ops->reset_flash(hpriv, mmio);
2035 hpriv->ops->reset_bus(pdev, mmio);
2036 hpriv->ops->enable_leds(hpriv, mmio);
2038 for (port = 0; port < probe_ent->n_ports; port++) {
2039 if (IS_60XX(hpriv)) {
2040 void __iomem *port_mmio = mv_port_base(mmio, port);
2042 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
2043 ifctl |= (1 << 12);
2044 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
2047 hpriv->ops->phy_errata(hpriv, mmio, port);
2050 for (port = 0; port < probe_ent->n_ports; port++) {
2051 void __iomem *port_mmio = mv_port_base(mmio, port);
2052 mv_port_init(&probe_ent->port[port], port_mmio);
2055 for (hc = 0; hc < n_hc; hc++) {
2056 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2058 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
2059 "(before clear)=0x%08x\n", hc,
2060 readl(hc_mmio + HC_CFG_OFS),
2061 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
2063 /* Clear any currently outstanding hc interrupt conditions */
2064 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
2067 /* Clear any currently outstanding host interrupt conditions */
2068 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
2070 /* and unmask interrupt generation for host regs */
2071 writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
2072 writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
2074 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
2075 "PCI int cause/mask=0x%08x/0x%08x\n",
2076 readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
2077 readl(mmio + HC_MAIN_IRQ_MASK_OFS),
2078 readl(mmio + PCI_IRQ_CAUSE_OFS),
2079 readl(mmio + PCI_IRQ_MASK_OFS));
2081 done:
2082 return rc;
2086 * mv_print_info - Dump key info to kernel log for perusal.
2087 * @probe_ent: early data struct representing the host
2089 * FIXME: complete this.
2091 * LOCKING:
2092 * Inherited from caller.
2094 static void mv_print_info(struct ata_probe_ent *probe_ent)
2096 struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
2097 struct mv_host_priv *hpriv = probe_ent->private_data;
2098 u8 rev_id, scc;
2099 const char *scc_s;
2101 /* Use this to determine the HW stepping of the chip so we know
2102 * what errata to workaround
2104 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2106 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
2107 if (scc == 0)
2108 scc_s = "SCSI";
2109 else if (scc == 0x01)
2110 scc_s = "RAID";
2111 else
2112 scc_s = "unknown";
2114 dev_printk(KERN_INFO, &pdev->dev,
2115 "%u slots %u ports %s mode IRQ via %s\n",
2116 (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
2117 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
2121 * mv_init_one - handle a positive probe of a Marvell host
2122 * @pdev: PCI device found
2123 * @ent: PCI device ID entry for the matched host
2125 * LOCKING:
2126 * Inherited from caller.
2128 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2130 static int printed_version = 0;
2131 struct ata_probe_ent *probe_ent = NULL;
2132 struct mv_host_priv *hpriv;
2133 unsigned int board_idx = (unsigned int)ent->driver_data;
2134 void __iomem *mmio_base;
2135 int pci_dev_busy = 0, rc;
2137 if (!printed_version++)
2138 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
2140 rc = pci_enable_device(pdev);
2141 if (rc) {
2142 return rc;
2145 rc = pci_request_regions(pdev, DRV_NAME);
2146 if (rc) {
2147 pci_dev_busy = 1;
2148 goto err_out;
2151 probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
2152 if (probe_ent == NULL) {
2153 rc = -ENOMEM;
2154 goto err_out_regions;
2157 memset(probe_ent, 0, sizeof(*probe_ent));
2158 probe_ent->dev = pci_dev_to_dev(pdev);
2159 INIT_LIST_HEAD(&probe_ent->node);
2161 mmio_base = pci_iomap(pdev, MV_PRIMARY_BAR, 0);
2162 if (mmio_base == NULL) {
2163 rc = -ENOMEM;
2164 goto err_out_free_ent;
2167 hpriv = kmalloc(sizeof(*hpriv), GFP_KERNEL);
2168 if (!hpriv) {
2169 rc = -ENOMEM;
2170 goto err_out_iounmap;
2172 memset(hpriv, 0, sizeof(*hpriv));
2174 probe_ent->sht = mv_port_info[board_idx].sht;
2175 probe_ent->host_flags = mv_port_info[board_idx].host_flags;
2176 probe_ent->pio_mask = mv_port_info[board_idx].pio_mask;
2177 probe_ent->udma_mask = mv_port_info[board_idx].udma_mask;
2178 probe_ent->port_ops = mv_port_info[board_idx].port_ops;
2180 probe_ent->irq = pdev->irq;
2181 probe_ent->irq_flags = SA_SHIRQ;
2182 probe_ent->mmio_base = mmio_base;
2183 probe_ent->private_data = hpriv;
2185 /* initialize adapter */
2186 rc = mv_init_host(pdev, probe_ent, board_idx);
2187 if (rc) {
2188 goto err_out_hpriv;
2191 /* Enable interrupts */
2192 if (pci_enable_msi(pdev) == 0) {
2193 hpriv->hp_flags |= MV_HP_FLAG_MSI;
2194 } else {
2195 pci_intx(pdev, 1);
2198 mv_dump_pci_cfg(pdev, 0x68);
2199 mv_print_info(probe_ent);
2201 if (ata_device_add(probe_ent) == 0) {
2202 rc = -ENODEV; /* No devices discovered */
2203 goto err_out_dev_add;
2206 kfree(probe_ent);
2207 return 0;
2209 err_out_dev_add:
2210 if (MV_HP_FLAG_MSI & hpriv->hp_flags) {
2211 pci_disable_msi(pdev);
2212 } else {
2213 pci_intx(pdev, 0);
2215 err_out_hpriv:
2216 kfree(hpriv);
2217 err_out_iounmap:
2218 pci_iounmap(pdev, mmio_base);
2219 err_out_free_ent:
2220 kfree(probe_ent);
2221 err_out_regions:
2222 pci_release_regions(pdev);
2223 err_out:
2224 if (!pci_dev_busy) {
2225 pci_disable_device(pdev);
2228 return rc;
2231 static int __init mv_init(void)
2233 return pci_module_init(&mv_pci_driver);
2236 static void __exit mv_exit(void)
2238 pci_unregister_driver(&mv_pci_driver);
2241 MODULE_AUTHOR("Brett Russ");
2242 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
2243 MODULE_LICENSE("GPL");
2244 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
2245 MODULE_VERSION(DRV_VERSION);
2247 module_init(mv_init);
2248 module_exit(mv_exit);