[PATCH] libata: reimplement controller-wide PM
[linux-2.6/zen-sources.git] / arch / ia64 / kernel / perfmon.c
blobc7ccd6ee1ddfe57d7668794098e716bc77192189
1 /*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/smp_lock.h>
27 #include <linux/proc_fs.h>
28 #include <linux/seq_file.h>
29 #include <linux/init.h>
30 #include <linux/vmalloc.h>
31 #include <linux/mm.h>
32 #include <linux/sysctl.h>
33 #include <linux/list.h>
34 #include <linux/file.h>
35 #include <linux/poll.h>
36 #include <linux/vfs.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
44 #include <asm/errno.h>
45 #include <asm/intrinsics.h>
46 #include <asm/page.h>
47 #include <asm/perfmon.h>
48 #include <asm/processor.h>
49 #include <asm/signal.h>
50 #include <asm/system.h>
51 #include <asm/uaccess.h>
52 #include <asm/delay.h>
54 #ifdef CONFIG_PERFMON
56 * perfmon context state
58 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
59 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
60 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
61 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
63 #define PFM_INVALID_ACTIVATION (~0UL)
66 * depth of message queue
68 #define PFM_MAX_MSGS 32
69 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
72 * type of a PMU register (bitmask).
73 * bitmask structure:
74 * bit0 : register implemented
75 * bit1 : end marker
76 * bit2-3 : reserved
77 * bit4 : pmc has pmc.pm
78 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
79 * bit6-7 : register type
80 * bit8-31: reserved
82 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
83 #define PFM_REG_IMPL 0x1 /* register implemented */
84 #define PFM_REG_END 0x2 /* end marker */
85 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
86 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
87 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
88 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
89 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
91 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
92 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
94 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
96 /* i assumed unsigned */
97 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
98 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
100 /* XXX: these assume that register i is implemented */
101 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
102 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
103 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
104 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
106 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
107 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
108 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
109 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
111 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
112 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
114 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
115 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
116 #define PFM_CTX_TASK(h) (h)->ctx_task
118 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
120 /* XXX: does not support more than 64 PMDs */
121 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
122 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
124 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
126 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
127 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
128 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
129 #define PFM_CODE_RR 0 /* requesting code range restriction */
130 #define PFM_DATA_RR 1 /* requestion data range restriction */
132 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
133 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
134 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
136 #define RDEP(x) (1UL<<(x))
139 * context protection macros
140 * in SMP:
141 * - we need to protect against CPU concurrency (spin_lock)
142 * - we need to protect against PMU overflow interrupts (local_irq_disable)
143 * in UP:
144 * - we need to protect against PMU overflow interrupts (local_irq_disable)
146 * spin_lock_irqsave()/spin_lock_irqrestore():
147 * in SMP: local_irq_disable + spin_lock
148 * in UP : local_irq_disable
150 * spin_lock()/spin_lock():
151 * in UP : removed automatically
152 * in SMP: protect against context accesses from other CPU. interrupts
153 * are not masked. This is useful for the PMU interrupt handler
154 * because we know we will not get PMU concurrency in that code.
156 #define PROTECT_CTX(c, f) \
157 do { \
158 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
159 spin_lock_irqsave(&(c)->ctx_lock, f); \
160 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
161 } while(0)
163 #define UNPROTECT_CTX(c, f) \
164 do { \
165 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
166 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
167 } while(0)
169 #define PROTECT_CTX_NOPRINT(c, f) \
170 do { \
171 spin_lock_irqsave(&(c)->ctx_lock, f); \
172 } while(0)
175 #define UNPROTECT_CTX_NOPRINT(c, f) \
176 do { \
177 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
178 } while(0)
181 #define PROTECT_CTX_NOIRQ(c) \
182 do { \
183 spin_lock(&(c)->ctx_lock); \
184 } while(0)
186 #define UNPROTECT_CTX_NOIRQ(c) \
187 do { \
188 spin_unlock(&(c)->ctx_lock); \
189 } while(0)
192 #ifdef CONFIG_SMP
194 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
195 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
196 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
198 #else /* !CONFIG_SMP */
199 #define SET_ACTIVATION(t) do {} while(0)
200 #define GET_ACTIVATION(t) do {} while(0)
201 #define INC_ACTIVATION(t) do {} while(0)
202 #endif /* CONFIG_SMP */
204 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
205 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
206 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
208 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
209 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
211 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
214 * cmp0 must be the value of pmc0
216 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
218 #define PFMFS_MAGIC 0xa0b4d889
221 * debugging
223 #define PFM_DEBUGGING 1
224 #ifdef PFM_DEBUGGING
225 #define DPRINT(a) \
226 do { \
227 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
228 } while (0)
230 #define DPRINT_ovfl(a) \
231 do { \
232 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
233 } while (0)
234 #endif
237 * 64-bit software counter structure
239 * the next_reset_type is applied to the next call to pfm_reset_regs()
241 typedef struct {
242 unsigned long val; /* virtual 64bit counter value */
243 unsigned long lval; /* last reset value */
244 unsigned long long_reset; /* reset value on sampling overflow */
245 unsigned long short_reset; /* reset value on overflow */
246 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
247 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
248 unsigned long seed; /* seed for random-number generator */
249 unsigned long mask; /* mask for random-number generator */
250 unsigned int flags; /* notify/do not notify */
251 unsigned long eventid; /* overflow event identifier */
252 } pfm_counter_t;
255 * context flags
257 typedef struct {
258 unsigned int block:1; /* when 1, task will blocked on user notifications */
259 unsigned int system:1; /* do system wide monitoring */
260 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
261 unsigned int is_sampling:1; /* true if using a custom format */
262 unsigned int excl_idle:1; /* exclude idle task in system wide session */
263 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
264 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
265 unsigned int no_msg:1; /* no message sent on overflow */
266 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
267 unsigned int reserved:22;
268 } pfm_context_flags_t;
270 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
271 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
272 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
276 * perfmon context: encapsulates all the state of a monitoring session
279 typedef struct pfm_context {
280 spinlock_t ctx_lock; /* context protection */
282 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
283 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
285 struct task_struct *ctx_task; /* task to which context is attached */
287 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
289 struct completion ctx_restart_done; /* use for blocking notification mode */
291 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
292 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
293 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
295 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
296 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
297 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
299 unsigned long ctx_pmcs[IA64_NUM_PMC_REGS]; /* saved copies of PMC values */
301 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
302 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
303 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
304 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
306 pfm_counter_t ctx_pmds[IA64_NUM_PMD_REGS]; /* software state for PMDS */
308 u64 ctx_saved_psr_up; /* only contains psr.up value */
310 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
311 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
312 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
314 int ctx_fd; /* file descriptor used my this context */
315 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
317 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
318 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
319 unsigned long ctx_smpl_size; /* size of sampling buffer */
320 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
322 wait_queue_head_t ctx_msgq_wait;
323 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
324 int ctx_msgq_head;
325 int ctx_msgq_tail;
326 struct fasync_struct *ctx_async_queue;
328 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
329 } pfm_context_t;
332 * magic number used to verify that structure is really
333 * a perfmon context
335 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
337 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
339 #ifdef CONFIG_SMP
340 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
341 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
342 #else
343 #define SET_LAST_CPU(ctx, v) do {} while(0)
344 #define GET_LAST_CPU(ctx) do {} while(0)
345 #endif
348 #define ctx_fl_block ctx_flags.block
349 #define ctx_fl_system ctx_flags.system
350 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
351 #define ctx_fl_is_sampling ctx_flags.is_sampling
352 #define ctx_fl_excl_idle ctx_flags.excl_idle
353 #define ctx_fl_going_zombie ctx_flags.going_zombie
354 #define ctx_fl_trap_reason ctx_flags.trap_reason
355 #define ctx_fl_no_msg ctx_flags.no_msg
356 #define ctx_fl_can_restart ctx_flags.can_restart
358 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
359 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
362 * global information about all sessions
363 * mostly used to synchronize between system wide and per-process
365 typedef struct {
366 spinlock_t pfs_lock; /* lock the structure */
368 unsigned int pfs_task_sessions; /* number of per task sessions */
369 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
370 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
371 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
372 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
373 } pfm_session_t;
376 * information about a PMC or PMD.
377 * dep_pmd[]: a bitmask of dependent PMD registers
378 * dep_pmc[]: a bitmask of dependent PMC registers
380 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
381 typedef struct {
382 unsigned int type;
383 int pm_pos;
384 unsigned long default_value; /* power-on default value */
385 unsigned long reserved_mask; /* bitmask of reserved bits */
386 pfm_reg_check_t read_check;
387 pfm_reg_check_t write_check;
388 unsigned long dep_pmd[4];
389 unsigned long dep_pmc[4];
390 } pfm_reg_desc_t;
392 /* assume cnum is a valid monitor */
393 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
396 * This structure is initialized at boot time and contains
397 * a description of the PMU main characteristics.
399 * If the probe function is defined, detection is based
400 * on its return value:
401 * - 0 means recognized PMU
402 * - anything else means not supported
403 * When the probe function is not defined, then the pmu_family field
404 * is used and it must match the host CPU family such that:
405 * - cpu->family & config->pmu_family != 0
407 typedef struct {
408 unsigned long ovfl_val; /* overflow value for counters */
410 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
411 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
413 unsigned int num_pmcs; /* number of PMCS: computed at init time */
414 unsigned int num_pmds; /* number of PMDS: computed at init time */
415 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
416 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
418 char *pmu_name; /* PMU family name */
419 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
420 unsigned int flags; /* pmu specific flags */
421 unsigned int num_ibrs; /* number of IBRS: computed at init time */
422 unsigned int num_dbrs; /* number of DBRS: computed at init time */
423 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
424 int (*probe)(void); /* customized probe routine */
425 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
426 } pmu_config_t;
428 * PMU specific flags
430 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
433 * debug register related type definitions
435 typedef struct {
436 unsigned long ibr_mask:56;
437 unsigned long ibr_plm:4;
438 unsigned long ibr_ig:3;
439 unsigned long ibr_x:1;
440 } ibr_mask_reg_t;
442 typedef struct {
443 unsigned long dbr_mask:56;
444 unsigned long dbr_plm:4;
445 unsigned long dbr_ig:2;
446 unsigned long dbr_w:1;
447 unsigned long dbr_r:1;
448 } dbr_mask_reg_t;
450 typedef union {
451 unsigned long val;
452 ibr_mask_reg_t ibr;
453 dbr_mask_reg_t dbr;
454 } dbreg_t;
458 * perfmon command descriptions
460 typedef struct {
461 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
462 char *cmd_name;
463 int cmd_flags;
464 unsigned int cmd_narg;
465 size_t cmd_argsize;
466 int (*cmd_getsize)(void *arg, size_t *sz);
467 } pfm_cmd_desc_t;
469 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
470 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
471 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
472 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
475 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
476 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
477 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
478 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
479 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
481 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
483 typedef struct {
484 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
485 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
486 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
487 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
488 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
489 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
490 unsigned long pfm_smpl_handler_calls;
491 unsigned long pfm_smpl_handler_cycles;
492 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
493 } pfm_stats_t;
496 * perfmon internal variables
498 static pfm_stats_t pfm_stats[NR_CPUS];
499 static pfm_session_t pfm_sessions; /* global sessions information */
501 static DEFINE_SPINLOCK(pfm_alt_install_check);
502 static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
504 static struct proc_dir_entry *perfmon_dir;
505 static pfm_uuid_t pfm_null_uuid = {0,};
507 static spinlock_t pfm_buffer_fmt_lock;
508 static LIST_HEAD(pfm_buffer_fmt_list);
510 static pmu_config_t *pmu_conf;
512 /* sysctl() controls */
513 pfm_sysctl_t pfm_sysctl;
514 EXPORT_SYMBOL(pfm_sysctl);
516 static ctl_table pfm_ctl_table[]={
517 {1, "debug", &pfm_sysctl.debug, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
518 {2, "debug_ovfl", &pfm_sysctl.debug_ovfl, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
519 {3, "fastctxsw", &pfm_sysctl.fastctxsw, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
520 {4, "expert_mode", &pfm_sysctl.expert_mode, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
521 { 0, },
523 static ctl_table pfm_sysctl_dir[] = {
524 {1, "perfmon", NULL, 0, 0755, pfm_ctl_table, },
525 {0,},
527 static ctl_table pfm_sysctl_root[] = {
528 {1, "kernel", NULL, 0, 0755, pfm_sysctl_dir, },
529 {0,},
531 static struct ctl_table_header *pfm_sysctl_header;
533 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
535 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
536 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
538 static inline void
539 pfm_put_task(struct task_struct *task)
541 if (task != current) put_task_struct(task);
544 static inline void
545 pfm_set_task_notify(struct task_struct *task)
547 struct thread_info *info;
549 info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
550 set_bit(TIF_NOTIFY_RESUME, &info->flags);
553 static inline void
554 pfm_clear_task_notify(void)
556 clear_thread_flag(TIF_NOTIFY_RESUME);
559 static inline void
560 pfm_reserve_page(unsigned long a)
562 SetPageReserved(vmalloc_to_page((void *)a));
564 static inline void
565 pfm_unreserve_page(unsigned long a)
567 ClearPageReserved(vmalloc_to_page((void*)a));
570 static inline unsigned long
571 pfm_protect_ctx_ctxsw(pfm_context_t *x)
573 spin_lock(&(x)->ctx_lock);
574 return 0UL;
577 static inline void
578 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
580 spin_unlock(&(x)->ctx_lock);
583 static inline unsigned int
584 pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
586 return do_munmap(mm, addr, len);
589 static inline unsigned long
590 pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
592 return get_unmapped_area(file, addr, len, pgoff, flags);
596 static int
597 pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data,
598 struct vfsmount *mnt)
600 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC, mnt);
603 static struct file_system_type pfm_fs_type = {
604 .name = "pfmfs",
605 .get_sb = pfmfs_get_sb,
606 .kill_sb = kill_anon_super,
609 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
610 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
611 DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
612 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
613 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
616 /* forward declaration */
617 static struct file_operations pfm_file_ops;
620 * forward declarations
622 #ifndef CONFIG_SMP
623 static void pfm_lazy_save_regs (struct task_struct *ta);
624 #endif
626 void dump_pmu_state(const char *);
627 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
629 #include "perfmon_itanium.h"
630 #include "perfmon_mckinley.h"
631 #include "perfmon_montecito.h"
632 #include "perfmon_generic.h"
634 static pmu_config_t *pmu_confs[]={
635 &pmu_conf_mont,
636 &pmu_conf_mck,
637 &pmu_conf_ita,
638 &pmu_conf_gen, /* must be last */
639 NULL
643 static int pfm_end_notify_user(pfm_context_t *ctx);
645 static inline void
646 pfm_clear_psr_pp(void)
648 ia64_rsm(IA64_PSR_PP);
649 ia64_srlz_i();
652 static inline void
653 pfm_set_psr_pp(void)
655 ia64_ssm(IA64_PSR_PP);
656 ia64_srlz_i();
659 static inline void
660 pfm_clear_psr_up(void)
662 ia64_rsm(IA64_PSR_UP);
663 ia64_srlz_i();
666 static inline void
667 pfm_set_psr_up(void)
669 ia64_ssm(IA64_PSR_UP);
670 ia64_srlz_i();
673 static inline unsigned long
674 pfm_get_psr(void)
676 unsigned long tmp;
677 tmp = ia64_getreg(_IA64_REG_PSR);
678 ia64_srlz_i();
679 return tmp;
682 static inline void
683 pfm_set_psr_l(unsigned long val)
685 ia64_setreg(_IA64_REG_PSR_L, val);
686 ia64_srlz_i();
689 static inline void
690 pfm_freeze_pmu(void)
692 ia64_set_pmc(0,1UL);
693 ia64_srlz_d();
696 static inline void
697 pfm_unfreeze_pmu(void)
699 ia64_set_pmc(0,0UL);
700 ia64_srlz_d();
703 static inline void
704 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
706 int i;
708 for (i=0; i < nibrs; i++) {
709 ia64_set_ibr(i, ibrs[i]);
710 ia64_dv_serialize_instruction();
712 ia64_srlz_i();
715 static inline void
716 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
718 int i;
720 for (i=0; i < ndbrs; i++) {
721 ia64_set_dbr(i, dbrs[i]);
722 ia64_dv_serialize_data();
724 ia64_srlz_d();
728 * PMD[i] must be a counter. no check is made
730 static inline unsigned long
731 pfm_read_soft_counter(pfm_context_t *ctx, int i)
733 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
737 * PMD[i] must be a counter. no check is made
739 static inline void
740 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
742 unsigned long ovfl_val = pmu_conf->ovfl_val;
744 ctx->ctx_pmds[i].val = val & ~ovfl_val;
746 * writing to unimplemented part is ignore, so we do not need to
747 * mask off top part
749 ia64_set_pmd(i, val & ovfl_val);
752 static pfm_msg_t *
753 pfm_get_new_msg(pfm_context_t *ctx)
755 int idx, next;
757 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
759 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
760 if (next == ctx->ctx_msgq_head) return NULL;
762 idx = ctx->ctx_msgq_tail;
763 ctx->ctx_msgq_tail = next;
765 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
767 return ctx->ctx_msgq+idx;
770 static pfm_msg_t *
771 pfm_get_next_msg(pfm_context_t *ctx)
773 pfm_msg_t *msg;
775 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
777 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
780 * get oldest message
782 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
785 * and move forward
787 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
789 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
791 return msg;
794 static void
795 pfm_reset_msgq(pfm_context_t *ctx)
797 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
798 DPRINT(("ctx=%p msgq reset\n", ctx));
801 static void *
802 pfm_rvmalloc(unsigned long size)
804 void *mem;
805 unsigned long addr;
807 size = PAGE_ALIGN(size);
808 mem = vmalloc(size);
809 if (mem) {
810 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
811 memset(mem, 0, size);
812 addr = (unsigned long)mem;
813 while (size > 0) {
814 pfm_reserve_page(addr);
815 addr+=PAGE_SIZE;
816 size-=PAGE_SIZE;
819 return mem;
822 static void
823 pfm_rvfree(void *mem, unsigned long size)
825 unsigned long addr;
827 if (mem) {
828 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
829 addr = (unsigned long) mem;
830 while ((long) size > 0) {
831 pfm_unreserve_page(addr);
832 addr+=PAGE_SIZE;
833 size-=PAGE_SIZE;
835 vfree(mem);
837 return;
840 static pfm_context_t *
841 pfm_context_alloc(void)
843 pfm_context_t *ctx;
846 * allocate context descriptor
847 * must be able to free with interrupts disabled
849 ctx = kmalloc(sizeof(pfm_context_t), GFP_KERNEL);
850 if (ctx) {
851 memset(ctx, 0, sizeof(pfm_context_t));
852 DPRINT(("alloc ctx @%p\n", ctx));
854 return ctx;
857 static void
858 pfm_context_free(pfm_context_t *ctx)
860 if (ctx) {
861 DPRINT(("free ctx @%p\n", ctx));
862 kfree(ctx);
866 static void
867 pfm_mask_monitoring(struct task_struct *task)
869 pfm_context_t *ctx = PFM_GET_CTX(task);
870 struct thread_struct *th = &task->thread;
871 unsigned long mask, val, ovfl_mask;
872 int i;
874 DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
876 ovfl_mask = pmu_conf->ovfl_val;
878 * monitoring can only be masked as a result of a valid
879 * counter overflow. In UP, it means that the PMU still
880 * has an owner. Note that the owner can be different
881 * from the current task. However the PMU state belongs
882 * to the owner.
883 * In SMP, a valid overflow only happens when task is
884 * current. Therefore if we come here, we know that
885 * the PMU state belongs to the current task, therefore
886 * we can access the live registers.
888 * So in both cases, the live register contains the owner's
889 * state. We can ONLY touch the PMU registers and NOT the PSR.
891 * As a consequence to this call, the thread->pmds[] array
892 * contains stale information which must be ignored
893 * when context is reloaded AND monitoring is active (see
894 * pfm_restart).
896 mask = ctx->ctx_used_pmds[0];
897 for (i = 0; mask; i++, mask>>=1) {
898 /* skip non used pmds */
899 if ((mask & 0x1) == 0) continue;
900 val = ia64_get_pmd(i);
902 if (PMD_IS_COUNTING(i)) {
904 * we rebuild the full 64 bit value of the counter
906 ctx->ctx_pmds[i].val += (val & ovfl_mask);
907 } else {
908 ctx->ctx_pmds[i].val = val;
910 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
912 ctx->ctx_pmds[i].val,
913 val & ovfl_mask));
916 * mask monitoring by setting the privilege level to 0
917 * we cannot use psr.pp/psr.up for this, it is controlled by
918 * the user
920 * if task is current, modify actual registers, otherwise modify
921 * thread save state, i.e., what will be restored in pfm_load_regs()
923 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
924 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
925 if ((mask & 0x1) == 0UL) continue;
926 ia64_set_pmc(i, th->pmcs[i] & ~0xfUL);
927 th->pmcs[i] &= ~0xfUL;
928 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, th->pmcs[i]));
931 * make all of this visible
933 ia64_srlz_d();
937 * must always be done with task == current
939 * context must be in MASKED state when calling
941 static void
942 pfm_restore_monitoring(struct task_struct *task)
944 pfm_context_t *ctx = PFM_GET_CTX(task);
945 struct thread_struct *th = &task->thread;
946 unsigned long mask, ovfl_mask;
947 unsigned long psr, val;
948 int i, is_system;
950 is_system = ctx->ctx_fl_system;
951 ovfl_mask = pmu_conf->ovfl_val;
953 if (task != current) {
954 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
955 return;
957 if (ctx->ctx_state != PFM_CTX_MASKED) {
958 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
959 task->pid, current->pid, ctx->ctx_state);
960 return;
962 psr = pfm_get_psr();
964 * monitoring is masked via the PMC.
965 * As we restore their value, we do not want each counter to
966 * restart right away. We stop monitoring using the PSR,
967 * restore the PMC (and PMD) and then re-establish the psr
968 * as it was. Note that there can be no pending overflow at
969 * this point, because monitoring was MASKED.
971 * system-wide session are pinned and self-monitoring
973 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
974 /* disable dcr pp */
975 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
976 pfm_clear_psr_pp();
977 } else {
978 pfm_clear_psr_up();
981 * first, we restore the PMD
983 mask = ctx->ctx_used_pmds[0];
984 for (i = 0; mask; i++, mask>>=1) {
985 /* skip non used pmds */
986 if ((mask & 0x1) == 0) continue;
988 if (PMD_IS_COUNTING(i)) {
990 * we split the 64bit value according to
991 * counter width
993 val = ctx->ctx_pmds[i].val & ovfl_mask;
994 ctx->ctx_pmds[i].val &= ~ovfl_mask;
995 } else {
996 val = ctx->ctx_pmds[i].val;
998 ia64_set_pmd(i, val);
1000 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1002 ctx->ctx_pmds[i].val,
1003 val));
1006 * restore the PMCs
1008 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1009 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1010 if ((mask & 0x1) == 0UL) continue;
1011 th->pmcs[i] = ctx->ctx_pmcs[i];
1012 ia64_set_pmc(i, th->pmcs[i]);
1013 DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, th->pmcs[i]));
1015 ia64_srlz_d();
1018 * must restore DBR/IBR because could be modified while masked
1019 * XXX: need to optimize
1021 if (ctx->ctx_fl_using_dbreg) {
1022 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1023 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1027 * now restore PSR
1029 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1030 /* enable dcr pp */
1031 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1032 ia64_srlz_i();
1034 pfm_set_psr_l(psr);
1037 static inline void
1038 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1040 int i;
1042 ia64_srlz_d();
1044 for (i=0; mask; i++, mask>>=1) {
1045 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1050 * reload from thread state (used for ctxw only)
1052 static inline void
1053 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1055 int i;
1056 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1058 for (i=0; mask; i++, mask>>=1) {
1059 if ((mask & 0x1) == 0) continue;
1060 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1061 ia64_set_pmd(i, val);
1063 ia64_srlz_d();
1067 * propagate PMD from context to thread-state
1069 static inline void
1070 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1072 struct thread_struct *thread = &task->thread;
1073 unsigned long ovfl_val = pmu_conf->ovfl_val;
1074 unsigned long mask = ctx->ctx_all_pmds[0];
1075 unsigned long val;
1076 int i;
1078 DPRINT(("mask=0x%lx\n", mask));
1080 for (i=0; mask; i++, mask>>=1) {
1082 val = ctx->ctx_pmds[i].val;
1085 * We break up the 64 bit value into 2 pieces
1086 * the lower bits go to the machine state in the
1087 * thread (will be reloaded on ctxsw in).
1088 * The upper part stays in the soft-counter.
1090 if (PMD_IS_COUNTING(i)) {
1091 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1092 val &= ovfl_val;
1094 thread->pmds[i] = val;
1096 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1098 thread->pmds[i],
1099 ctx->ctx_pmds[i].val));
1104 * propagate PMC from context to thread-state
1106 static inline void
1107 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1109 struct thread_struct *thread = &task->thread;
1110 unsigned long mask = ctx->ctx_all_pmcs[0];
1111 int i;
1113 DPRINT(("mask=0x%lx\n", mask));
1115 for (i=0; mask; i++, mask>>=1) {
1116 /* masking 0 with ovfl_val yields 0 */
1117 thread->pmcs[i] = ctx->ctx_pmcs[i];
1118 DPRINT(("pmc[%d]=0x%lx\n", i, thread->pmcs[i]));
1124 static inline void
1125 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1127 int i;
1129 for (i=0; mask; i++, mask>>=1) {
1130 if ((mask & 0x1) == 0) continue;
1131 ia64_set_pmc(i, pmcs[i]);
1133 ia64_srlz_d();
1136 static inline int
1137 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1139 return memcmp(a, b, sizeof(pfm_uuid_t));
1142 static inline int
1143 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1145 int ret = 0;
1146 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1147 return ret;
1150 static inline int
1151 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1153 int ret = 0;
1154 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1155 return ret;
1159 static inline int
1160 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1161 int cpu, void *arg)
1163 int ret = 0;
1164 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1165 return ret;
1168 static inline int
1169 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1170 int cpu, void *arg)
1172 int ret = 0;
1173 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1174 return ret;
1177 static inline int
1178 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1180 int ret = 0;
1181 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1182 return ret;
1185 static inline int
1186 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1188 int ret = 0;
1189 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1190 return ret;
1193 static pfm_buffer_fmt_t *
1194 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1196 struct list_head * pos;
1197 pfm_buffer_fmt_t * entry;
1199 list_for_each(pos, &pfm_buffer_fmt_list) {
1200 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1201 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1202 return entry;
1204 return NULL;
1208 * find a buffer format based on its uuid
1210 static pfm_buffer_fmt_t *
1211 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1213 pfm_buffer_fmt_t * fmt;
1214 spin_lock(&pfm_buffer_fmt_lock);
1215 fmt = __pfm_find_buffer_fmt(uuid);
1216 spin_unlock(&pfm_buffer_fmt_lock);
1217 return fmt;
1221 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1223 int ret = 0;
1225 /* some sanity checks */
1226 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1228 /* we need at least a handler */
1229 if (fmt->fmt_handler == NULL) return -EINVAL;
1232 * XXX: need check validity of fmt_arg_size
1235 spin_lock(&pfm_buffer_fmt_lock);
1237 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1238 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1239 ret = -EBUSY;
1240 goto out;
1242 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1243 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1245 out:
1246 spin_unlock(&pfm_buffer_fmt_lock);
1247 return ret;
1249 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1252 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1254 pfm_buffer_fmt_t *fmt;
1255 int ret = 0;
1257 spin_lock(&pfm_buffer_fmt_lock);
1259 fmt = __pfm_find_buffer_fmt(uuid);
1260 if (!fmt) {
1261 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1262 ret = -EINVAL;
1263 goto out;
1265 list_del_init(&fmt->fmt_list);
1266 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1268 out:
1269 spin_unlock(&pfm_buffer_fmt_lock);
1270 return ret;
1273 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1275 extern void update_pal_halt_status(int);
1277 static int
1278 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1280 unsigned long flags;
1282 * validy checks on cpu_mask have been done upstream
1284 LOCK_PFS(flags);
1286 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1287 pfm_sessions.pfs_sys_sessions,
1288 pfm_sessions.pfs_task_sessions,
1289 pfm_sessions.pfs_sys_use_dbregs,
1290 is_syswide,
1291 cpu));
1293 if (is_syswide) {
1295 * cannot mix system wide and per-task sessions
1297 if (pfm_sessions.pfs_task_sessions > 0UL) {
1298 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1299 pfm_sessions.pfs_task_sessions));
1300 goto abort;
1303 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1305 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1307 pfm_sessions.pfs_sys_session[cpu] = task;
1309 pfm_sessions.pfs_sys_sessions++ ;
1311 } else {
1312 if (pfm_sessions.pfs_sys_sessions) goto abort;
1313 pfm_sessions.pfs_task_sessions++;
1316 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1317 pfm_sessions.pfs_sys_sessions,
1318 pfm_sessions.pfs_task_sessions,
1319 pfm_sessions.pfs_sys_use_dbregs,
1320 is_syswide,
1321 cpu));
1324 * disable default_idle() to go to PAL_HALT
1326 update_pal_halt_status(0);
1328 UNLOCK_PFS(flags);
1330 return 0;
1332 error_conflict:
1333 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1334 pfm_sessions.pfs_sys_session[cpu]->pid,
1335 cpu));
1336 abort:
1337 UNLOCK_PFS(flags);
1339 return -EBUSY;
1343 static int
1344 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1346 unsigned long flags;
1348 * validy checks on cpu_mask have been done upstream
1350 LOCK_PFS(flags);
1352 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1353 pfm_sessions.pfs_sys_sessions,
1354 pfm_sessions.pfs_task_sessions,
1355 pfm_sessions.pfs_sys_use_dbregs,
1356 is_syswide,
1357 cpu));
1360 if (is_syswide) {
1361 pfm_sessions.pfs_sys_session[cpu] = NULL;
1363 * would not work with perfmon+more than one bit in cpu_mask
1365 if (ctx && ctx->ctx_fl_using_dbreg) {
1366 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1367 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1368 } else {
1369 pfm_sessions.pfs_sys_use_dbregs--;
1372 pfm_sessions.pfs_sys_sessions--;
1373 } else {
1374 pfm_sessions.pfs_task_sessions--;
1376 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1377 pfm_sessions.pfs_sys_sessions,
1378 pfm_sessions.pfs_task_sessions,
1379 pfm_sessions.pfs_sys_use_dbregs,
1380 is_syswide,
1381 cpu));
1384 * if possible, enable default_idle() to go into PAL_HALT
1386 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1387 update_pal_halt_status(1);
1389 UNLOCK_PFS(flags);
1391 return 0;
1395 * removes virtual mapping of the sampling buffer.
1396 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1397 * a PROTECT_CTX() section.
1399 static int
1400 pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1402 int r;
1404 /* sanity checks */
1405 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1406 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
1407 return -EINVAL;
1410 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1413 * does the actual unmapping
1415 down_write(&task->mm->mmap_sem);
1417 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1419 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1421 up_write(&task->mm->mmap_sem);
1422 if (r !=0) {
1423 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
1426 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1428 return 0;
1432 * free actual physical storage used by sampling buffer
1434 #if 0
1435 static int
1436 pfm_free_smpl_buffer(pfm_context_t *ctx)
1438 pfm_buffer_fmt_t *fmt;
1440 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1443 * we won't use the buffer format anymore
1445 fmt = ctx->ctx_buf_fmt;
1447 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1448 ctx->ctx_smpl_hdr,
1449 ctx->ctx_smpl_size,
1450 ctx->ctx_smpl_vaddr));
1452 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1455 * free the buffer
1457 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1459 ctx->ctx_smpl_hdr = NULL;
1460 ctx->ctx_smpl_size = 0UL;
1462 return 0;
1464 invalid_free:
1465 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
1466 return -EINVAL;
1468 #endif
1470 static inline void
1471 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1473 if (fmt == NULL) return;
1475 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1480 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1481 * no real gain from having the whole whorehouse mounted. So we don't need
1482 * any operations on the root directory. However, we need a non-trivial
1483 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1485 static struct vfsmount *pfmfs_mnt;
1487 static int __init
1488 init_pfm_fs(void)
1490 int err = register_filesystem(&pfm_fs_type);
1491 if (!err) {
1492 pfmfs_mnt = kern_mount(&pfm_fs_type);
1493 err = PTR_ERR(pfmfs_mnt);
1494 if (IS_ERR(pfmfs_mnt))
1495 unregister_filesystem(&pfm_fs_type);
1496 else
1497 err = 0;
1499 return err;
1502 static void __exit
1503 exit_pfm_fs(void)
1505 unregister_filesystem(&pfm_fs_type);
1506 mntput(pfmfs_mnt);
1509 static ssize_t
1510 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1512 pfm_context_t *ctx;
1513 pfm_msg_t *msg;
1514 ssize_t ret;
1515 unsigned long flags;
1516 DECLARE_WAITQUEUE(wait, current);
1517 if (PFM_IS_FILE(filp) == 0) {
1518 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1519 return -EINVAL;
1522 ctx = (pfm_context_t *)filp->private_data;
1523 if (ctx == NULL) {
1524 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
1525 return -EINVAL;
1529 * check even when there is no message
1531 if (size < sizeof(pfm_msg_t)) {
1532 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1533 return -EINVAL;
1536 PROTECT_CTX(ctx, flags);
1539 * put ourselves on the wait queue
1541 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1544 for(;;) {
1546 * check wait queue
1549 set_current_state(TASK_INTERRUPTIBLE);
1551 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1553 ret = 0;
1554 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1556 UNPROTECT_CTX(ctx, flags);
1559 * check non-blocking read
1561 ret = -EAGAIN;
1562 if(filp->f_flags & O_NONBLOCK) break;
1565 * check pending signals
1567 if(signal_pending(current)) {
1568 ret = -EINTR;
1569 break;
1572 * no message, so wait
1574 schedule();
1576 PROTECT_CTX(ctx, flags);
1578 DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
1579 set_current_state(TASK_RUNNING);
1580 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1582 if (ret < 0) goto abort;
1584 ret = -EINVAL;
1585 msg = pfm_get_next_msg(ctx);
1586 if (msg == NULL) {
1587 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
1588 goto abort_locked;
1591 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1593 ret = -EFAULT;
1594 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1596 abort_locked:
1597 UNPROTECT_CTX(ctx, flags);
1598 abort:
1599 return ret;
1602 static ssize_t
1603 pfm_write(struct file *file, const char __user *ubuf,
1604 size_t size, loff_t *ppos)
1606 DPRINT(("pfm_write called\n"));
1607 return -EINVAL;
1610 static unsigned int
1611 pfm_poll(struct file *filp, poll_table * wait)
1613 pfm_context_t *ctx;
1614 unsigned long flags;
1615 unsigned int mask = 0;
1617 if (PFM_IS_FILE(filp) == 0) {
1618 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1619 return 0;
1622 ctx = (pfm_context_t *)filp->private_data;
1623 if (ctx == NULL) {
1624 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
1625 return 0;
1629 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1631 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1633 PROTECT_CTX(ctx, flags);
1635 if (PFM_CTXQ_EMPTY(ctx) == 0)
1636 mask = POLLIN | POLLRDNORM;
1638 UNPROTECT_CTX(ctx, flags);
1640 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1642 return mask;
1645 static int
1646 pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1648 DPRINT(("pfm_ioctl called\n"));
1649 return -EINVAL;
1653 * interrupt cannot be masked when coming here
1655 static inline int
1656 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1658 int ret;
1660 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1662 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1663 current->pid,
1666 ctx->ctx_async_queue, ret));
1668 return ret;
1671 static int
1672 pfm_fasync(int fd, struct file *filp, int on)
1674 pfm_context_t *ctx;
1675 int ret;
1677 if (PFM_IS_FILE(filp) == 0) {
1678 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
1679 return -EBADF;
1682 ctx = (pfm_context_t *)filp->private_data;
1683 if (ctx == NULL) {
1684 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
1685 return -EBADF;
1688 * we cannot mask interrupts during this call because this may
1689 * may go to sleep if memory is not readily avalaible.
1691 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1692 * done in caller. Serialization of this function is ensured by caller.
1694 ret = pfm_do_fasync(fd, filp, ctx, on);
1697 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1700 ctx->ctx_async_queue, ret));
1702 return ret;
1705 #ifdef CONFIG_SMP
1707 * this function is exclusively called from pfm_close().
1708 * The context is not protected at that time, nor are interrupts
1709 * on the remote CPU. That's necessary to avoid deadlocks.
1711 static void
1712 pfm_syswide_force_stop(void *info)
1714 pfm_context_t *ctx = (pfm_context_t *)info;
1715 struct pt_regs *regs = task_pt_regs(current);
1716 struct task_struct *owner;
1717 unsigned long flags;
1718 int ret;
1720 if (ctx->ctx_cpu != smp_processor_id()) {
1721 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1722 ctx->ctx_cpu,
1723 smp_processor_id());
1724 return;
1726 owner = GET_PMU_OWNER();
1727 if (owner != ctx->ctx_task) {
1728 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1729 smp_processor_id(),
1730 owner->pid, ctx->ctx_task->pid);
1731 return;
1733 if (GET_PMU_CTX() != ctx) {
1734 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1735 smp_processor_id(),
1736 GET_PMU_CTX(), ctx);
1737 return;
1740 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
1742 * the context is already protected in pfm_close(), we simply
1743 * need to mask interrupts to avoid a PMU interrupt race on
1744 * this CPU
1746 local_irq_save(flags);
1748 ret = pfm_context_unload(ctx, NULL, 0, regs);
1749 if (ret) {
1750 DPRINT(("context_unload returned %d\n", ret));
1754 * unmask interrupts, PMU interrupts are now spurious here
1756 local_irq_restore(flags);
1759 static void
1760 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1762 int ret;
1764 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1765 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
1766 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1768 #endif /* CONFIG_SMP */
1771 * called for each close(). Partially free resources.
1772 * When caller is self-monitoring, the context is unloaded.
1774 static int
1775 pfm_flush(struct file *filp, fl_owner_t id)
1777 pfm_context_t *ctx;
1778 struct task_struct *task;
1779 struct pt_regs *regs;
1780 unsigned long flags;
1781 unsigned long smpl_buf_size = 0UL;
1782 void *smpl_buf_vaddr = NULL;
1783 int state, is_system;
1785 if (PFM_IS_FILE(filp) == 0) {
1786 DPRINT(("bad magic for\n"));
1787 return -EBADF;
1790 ctx = (pfm_context_t *)filp->private_data;
1791 if (ctx == NULL) {
1792 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
1793 return -EBADF;
1797 * remove our file from the async queue, if we use this mode.
1798 * This can be done without the context being protected. We come
1799 * here when the context has become unreacheable by other tasks.
1801 * We may still have active monitoring at this point and we may
1802 * end up in pfm_overflow_handler(). However, fasync_helper()
1803 * operates with interrupts disabled and it cleans up the
1804 * queue. If the PMU handler is called prior to entering
1805 * fasync_helper() then it will send a signal. If it is
1806 * invoked after, it will find an empty queue and no
1807 * signal will be sent. In both case, we are safe
1809 if (filp->f_flags & FASYNC) {
1810 DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
1811 pfm_do_fasync (-1, filp, ctx, 0);
1814 PROTECT_CTX(ctx, flags);
1816 state = ctx->ctx_state;
1817 is_system = ctx->ctx_fl_system;
1819 task = PFM_CTX_TASK(ctx);
1820 regs = task_pt_regs(task);
1822 DPRINT(("ctx_state=%d is_current=%d\n",
1823 state,
1824 task == current ? 1 : 0));
1827 * if state == UNLOADED, then task is NULL
1831 * we must stop and unload because we are losing access to the context.
1833 if (task == current) {
1834 #ifdef CONFIG_SMP
1836 * the task IS the owner but it migrated to another CPU: that's bad
1837 * but we must handle this cleanly. Unfortunately, the kernel does
1838 * not provide a mechanism to block migration (while the context is loaded).
1840 * We need to release the resource on the ORIGINAL cpu.
1842 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1844 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1846 * keep context protected but unmask interrupt for IPI
1848 local_irq_restore(flags);
1850 pfm_syswide_cleanup_other_cpu(ctx);
1853 * restore interrupt masking
1855 local_irq_save(flags);
1858 * context is unloaded at this point
1860 } else
1861 #endif /* CONFIG_SMP */
1864 DPRINT(("forcing unload\n"));
1866 * stop and unload, returning with state UNLOADED
1867 * and session unreserved.
1869 pfm_context_unload(ctx, NULL, 0, regs);
1871 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1876 * remove virtual mapping, if any, for the calling task.
1877 * cannot reset ctx field until last user is calling close().
1879 * ctx_smpl_vaddr must never be cleared because it is needed
1880 * by every task with access to the context
1882 * When called from do_exit(), the mm context is gone already, therefore
1883 * mm is NULL, i.e., the VMA is already gone and we do not have to
1884 * do anything here
1886 if (ctx->ctx_smpl_vaddr && current->mm) {
1887 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1888 smpl_buf_size = ctx->ctx_smpl_size;
1891 UNPROTECT_CTX(ctx, flags);
1894 * if there was a mapping, then we systematically remove it
1895 * at this point. Cannot be done inside critical section
1896 * because some VM function reenables interrupts.
1899 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1901 return 0;
1904 * called either on explicit close() or from exit_files().
1905 * Only the LAST user of the file gets to this point, i.e., it is
1906 * called only ONCE.
1908 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1909 * (fput()),i.e, last task to access the file. Nobody else can access the
1910 * file at this point.
1912 * When called from exit_files(), the VMA has been freed because exit_mm()
1913 * is executed before exit_files().
1915 * When called from exit_files(), the current task is not yet ZOMBIE but we
1916 * flush the PMU state to the context.
1918 static int
1919 pfm_close(struct inode *inode, struct file *filp)
1921 pfm_context_t *ctx;
1922 struct task_struct *task;
1923 struct pt_regs *regs;
1924 DECLARE_WAITQUEUE(wait, current);
1925 unsigned long flags;
1926 unsigned long smpl_buf_size = 0UL;
1927 void *smpl_buf_addr = NULL;
1928 int free_possible = 1;
1929 int state, is_system;
1931 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1933 if (PFM_IS_FILE(filp) == 0) {
1934 DPRINT(("bad magic\n"));
1935 return -EBADF;
1938 ctx = (pfm_context_t *)filp->private_data;
1939 if (ctx == NULL) {
1940 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
1941 return -EBADF;
1944 PROTECT_CTX(ctx, flags);
1946 state = ctx->ctx_state;
1947 is_system = ctx->ctx_fl_system;
1949 task = PFM_CTX_TASK(ctx);
1950 regs = task_pt_regs(task);
1952 DPRINT(("ctx_state=%d is_current=%d\n",
1953 state,
1954 task == current ? 1 : 0));
1957 * if task == current, then pfm_flush() unloaded the context
1959 if (state == PFM_CTX_UNLOADED) goto doit;
1962 * context is loaded/masked and task != current, we need to
1963 * either force an unload or go zombie
1967 * The task is currently blocked or will block after an overflow.
1968 * we must force it to wakeup to get out of the
1969 * MASKED state and transition to the unloaded state by itself.
1971 * This situation is only possible for per-task mode
1973 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
1976 * set a "partial" zombie state to be checked
1977 * upon return from down() in pfm_handle_work().
1979 * We cannot use the ZOMBIE state, because it is checked
1980 * by pfm_load_regs() which is called upon wakeup from down().
1981 * In such case, it would free the context and then we would
1982 * return to pfm_handle_work() which would access the
1983 * stale context. Instead, we set a flag invisible to pfm_load_regs()
1984 * but visible to pfm_handle_work().
1986 * For some window of time, we have a zombie context with
1987 * ctx_state = MASKED and not ZOMBIE
1989 ctx->ctx_fl_going_zombie = 1;
1992 * force task to wake up from MASKED state
1994 complete(&ctx->ctx_restart_done);
1996 DPRINT(("waking up ctx_state=%d\n", state));
1999 * put ourself to sleep waiting for the other
2000 * task to report completion
2002 * the context is protected by mutex, therefore there
2003 * is no risk of being notified of completion before
2004 * begin actually on the waitq.
2006 set_current_state(TASK_INTERRUPTIBLE);
2007 add_wait_queue(&ctx->ctx_zombieq, &wait);
2009 UNPROTECT_CTX(ctx, flags);
2012 * XXX: check for signals :
2013 * - ok for explicit close
2014 * - not ok when coming from exit_files()
2016 schedule();
2019 PROTECT_CTX(ctx, flags);
2022 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2023 set_current_state(TASK_RUNNING);
2026 * context is unloaded at this point
2028 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2030 else if (task != current) {
2031 #ifdef CONFIG_SMP
2033 * switch context to zombie state
2035 ctx->ctx_state = PFM_CTX_ZOMBIE;
2037 DPRINT(("zombie ctx for [%d]\n", task->pid));
2039 * cannot free the context on the spot. deferred until
2040 * the task notices the ZOMBIE state
2042 free_possible = 0;
2043 #else
2044 pfm_context_unload(ctx, NULL, 0, regs);
2045 #endif
2048 doit:
2049 /* reload state, may have changed during opening of critical section */
2050 state = ctx->ctx_state;
2053 * the context is still attached to a task (possibly current)
2054 * we cannot destroy it right now
2058 * we must free the sampling buffer right here because
2059 * we cannot rely on it being cleaned up later by the
2060 * monitored task. It is not possible to free vmalloc'ed
2061 * memory in pfm_load_regs(). Instead, we remove the buffer
2062 * now. should there be subsequent PMU overflow originally
2063 * meant for sampling, the will be converted to spurious
2064 * and that's fine because the monitoring tools is gone anyway.
2066 if (ctx->ctx_smpl_hdr) {
2067 smpl_buf_addr = ctx->ctx_smpl_hdr;
2068 smpl_buf_size = ctx->ctx_smpl_size;
2069 /* no more sampling */
2070 ctx->ctx_smpl_hdr = NULL;
2071 ctx->ctx_fl_is_sampling = 0;
2074 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2075 state,
2076 free_possible,
2077 smpl_buf_addr,
2078 smpl_buf_size));
2080 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2083 * UNLOADED that the session has already been unreserved.
2085 if (state == PFM_CTX_ZOMBIE) {
2086 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2090 * disconnect file descriptor from context must be done
2091 * before we unlock.
2093 filp->private_data = NULL;
2096 * if we free on the spot, the context is now completely unreacheable
2097 * from the callers side. The monitored task side is also cut, so we
2098 * can freely cut.
2100 * If we have a deferred free, only the caller side is disconnected.
2102 UNPROTECT_CTX(ctx, flags);
2105 * All memory free operations (especially for vmalloc'ed memory)
2106 * MUST be done with interrupts ENABLED.
2108 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2111 * return the memory used by the context
2113 if (free_possible) pfm_context_free(ctx);
2115 return 0;
2118 static int
2119 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2121 DPRINT(("pfm_no_open called\n"));
2122 return -ENXIO;
2127 static struct file_operations pfm_file_ops = {
2128 .llseek = no_llseek,
2129 .read = pfm_read,
2130 .write = pfm_write,
2131 .poll = pfm_poll,
2132 .ioctl = pfm_ioctl,
2133 .open = pfm_no_open, /* special open code to disallow open via /proc */
2134 .fasync = pfm_fasync,
2135 .release = pfm_close,
2136 .flush = pfm_flush
2139 static int
2140 pfmfs_delete_dentry(struct dentry *dentry)
2142 return 1;
2145 static struct dentry_operations pfmfs_dentry_operations = {
2146 .d_delete = pfmfs_delete_dentry,
2150 static int
2151 pfm_alloc_fd(struct file **cfile)
2153 int fd, ret = 0;
2154 struct file *file = NULL;
2155 struct inode * inode;
2156 char name[32];
2157 struct qstr this;
2159 fd = get_unused_fd();
2160 if (fd < 0) return -ENFILE;
2162 ret = -ENFILE;
2164 file = get_empty_filp();
2165 if (!file) goto out;
2168 * allocate a new inode
2170 inode = new_inode(pfmfs_mnt->mnt_sb);
2171 if (!inode) goto out;
2173 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2175 inode->i_mode = S_IFCHR|S_IRUGO;
2176 inode->i_uid = current->fsuid;
2177 inode->i_gid = current->fsgid;
2179 sprintf(name, "[%lu]", inode->i_ino);
2180 this.name = name;
2181 this.len = strlen(name);
2182 this.hash = inode->i_ino;
2184 ret = -ENOMEM;
2187 * allocate a new dcache entry
2189 file->f_dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2190 if (!file->f_dentry) goto out;
2192 file->f_dentry->d_op = &pfmfs_dentry_operations;
2194 d_add(file->f_dentry, inode);
2195 file->f_vfsmnt = mntget(pfmfs_mnt);
2196 file->f_mapping = inode->i_mapping;
2198 file->f_op = &pfm_file_ops;
2199 file->f_mode = FMODE_READ;
2200 file->f_flags = O_RDONLY;
2201 file->f_pos = 0;
2204 * may have to delay until context is attached?
2206 fd_install(fd, file);
2209 * the file structure we will use
2211 *cfile = file;
2213 return fd;
2214 out:
2215 if (file) put_filp(file);
2216 put_unused_fd(fd);
2217 return ret;
2220 static void
2221 pfm_free_fd(int fd, struct file *file)
2223 struct files_struct *files = current->files;
2224 struct fdtable *fdt;
2227 * there ie no fd_uninstall(), so we do it here
2229 spin_lock(&files->file_lock);
2230 fdt = files_fdtable(files);
2231 rcu_assign_pointer(fdt->fd[fd], NULL);
2232 spin_unlock(&files->file_lock);
2234 if (file)
2235 put_filp(file);
2236 put_unused_fd(fd);
2239 static int
2240 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2242 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2244 while (size > 0) {
2245 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2248 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2249 return -ENOMEM;
2251 addr += PAGE_SIZE;
2252 buf += PAGE_SIZE;
2253 size -= PAGE_SIZE;
2255 return 0;
2259 * allocate a sampling buffer and remaps it into the user address space of the task
2261 static int
2262 pfm_smpl_buffer_alloc(struct task_struct *task, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2264 struct mm_struct *mm = task->mm;
2265 struct vm_area_struct *vma = NULL;
2266 unsigned long size;
2267 void *smpl_buf;
2271 * the fixed header + requested size and align to page boundary
2273 size = PAGE_ALIGN(rsize);
2275 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2278 * check requested size to avoid Denial-of-service attacks
2279 * XXX: may have to refine this test
2280 * Check against address space limit.
2282 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2283 * return -ENOMEM;
2285 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2286 return -ENOMEM;
2289 * We do the easy to undo allocations first.
2291 * pfm_rvmalloc(), clears the buffer, so there is no leak
2293 smpl_buf = pfm_rvmalloc(size);
2294 if (smpl_buf == NULL) {
2295 DPRINT(("Can't allocate sampling buffer\n"));
2296 return -ENOMEM;
2299 DPRINT(("smpl_buf @%p\n", smpl_buf));
2301 /* allocate vma */
2302 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2303 if (!vma) {
2304 DPRINT(("Cannot allocate vma\n"));
2305 goto error_kmem;
2307 memset(vma, 0, sizeof(*vma));
2310 * partially initialize the vma for the sampling buffer
2312 vma->vm_mm = mm;
2313 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2314 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2317 * Now we have everything we need and we can initialize
2318 * and connect all the data structures
2321 ctx->ctx_smpl_hdr = smpl_buf;
2322 ctx->ctx_smpl_size = size; /* aligned size */
2325 * Let's do the difficult operations next.
2327 * now we atomically find some area in the address space and
2328 * remap the buffer in it.
2330 down_write(&task->mm->mmap_sem);
2332 /* find some free area in address space, must have mmap sem held */
2333 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2334 if (vma->vm_start == 0UL) {
2335 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2336 up_write(&task->mm->mmap_sem);
2337 goto error;
2339 vma->vm_end = vma->vm_start + size;
2340 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2342 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2344 /* can only be applied to current task, need to have the mm semaphore held when called */
2345 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2346 DPRINT(("Can't remap buffer\n"));
2347 up_write(&task->mm->mmap_sem);
2348 goto error;
2352 * now insert the vma in the vm list for the process, must be
2353 * done with mmap lock held
2355 insert_vm_struct(mm, vma);
2357 mm->total_vm += size >> PAGE_SHIFT;
2358 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2359 vma_pages(vma));
2360 up_write(&task->mm->mmap_sem);
2363 * keep track of user level virtual address
2365 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2366 *(unsigned long *)user_vaddr = vma->vm_start;
2368 return 0;
2370 error:
2371 kmem_cache_free(vm_area_cachep, vma);
2372 error_kmem:
2373 pfm_rvfree(smpl_buf, size);
2375 return -ENOMEM;
2379 * XXX: do something better here
2381 static int
2382 pfm_bad_permissions(struct task_struct *task)
2384 /* inspired by ptrace_attach() */
2385 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2386 current->uid,
2387 current->gid,
2388 task->euid,
2389 task->suid,
2390 task->uid,
2391 task->egid,
2392 task->sgid));
2394 return ((current->uid != task->euid)
2395 || (current->uid != task->suid)
2396 || (current->uid != task->uid)
2397 || (current->gid != task->egid)
2398 || (current->gid != task->sgid)
2399 || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
2402 static int
2403 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2405 int ctx_flags;
2407 /* valid signal */
2409 ctx_flags = pfx->ctx_flags;
2411 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2414 * cannot block in this mode
2416 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2417 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2418 return -EINVAL;
2420 } else {
2422 /* probably more to add here */
2424 return 0;
2427 static int
2428 pfm_setup_buffer_fmt(struct task_struct *task, pfm_context_t *ctx, unsigned int ctx_flags,
2429 unsigned int cpu, pfarg_context_t *arg)
2431 pfm_buffer_fmt_t *fmt = NULL;
2432 unsigned long size = 0UL;
2433 void *uaddr = NULL;
2434 void *fmt_arg = NULL;
2435 int ret = 0;
2436 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2438 /* invoke and lock buffer format, if found */
2439 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2440 if (fmt == NULL) {
2441 DPRINT(("[%d] cannot find buffer format\n", task->pid));
2442 return -EINVAL;
2446 * buffer argument MUST be contiguous to pfarg_context_t
2448 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2450 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2452 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
2454 if (ret) goto error;
2456 /* link buffer format and context */
2457 ctx->ctx_buf_fmt = fmt;
2460 * check if buffer format wants to use perfmon buffer allocation/mapping service
2462 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2463 if (ret) goto error;
2465 if (size) {
2467 * buffer is always remapped into the caller's address space
2469 ret = pfm_smpl_buffer_alloc(current, ctx, size, &uaddr);
2470 if (ret) goto error;
2472 /* keep track of user address of buffer */
2473 arg->ctx_smpl_vaddr = uaddr;
2475 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2477 error:
2478 return ret;
2481 static void
2482 pfm_reset_pmu_state(pfm_context_t *ctx)
2484 int i;
2487 * install reset values for PMC.
2489 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2490 if (PMC_IS_IMPL(i) == 0) continue;
2491 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2492 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2495 * PMD registers are set to 0UL when the context in memset()
2499 * On context switched restore, we must restore ALL pmc and ALL pmd even
2500 * when they are not actively used by the task. In UP, the incoming process
2501 * may otherwise pick up left over PMC, PMD state from the previous process.
2502 * As opposed to PMD, stale PMC can cause harm to the incoming
2503 * process because they may change what is being measured.
2504 * Therefore, we must systematically reinstall the entire
2505 * PMC state. In SMP, the same thing is possible on the
2506 * same CPU but also on between 2 CPUs.
2508 * The problem with PMD is information leaking especially
2509 * to user level when psr.sp=0
2511 * There is unfortunately no easy way to avoid this problem
2512 * on either UP or SMP. This definitively slows down the
2513 * pfm_load_regs() function.
2517 * bitmask of all PMCs accessible to this context
2519 * PMC0 is treated differently.
2521 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2524 * bitmask of all PMDs that are accesible to this context
2526 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2528 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2531 * useful in case of re-enable after disable
2533 ctx->ctx_used_ibrs[0] = 0UL;
2534 ctx->ctx_used_dbrs[0] = 0UL;
2537 static int
2538 pfm_ctx_getsize(void *arg, size_t *sz)
2540 pfarg_context_t *req = (pfarg_context_t *)arg;
2541 pfm_buffer_fmt_t *fmt;
2543 *sz = 0;
2545 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2547 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2548 if (fmt == NULL) {
2549 DPRINT(("cannot find buffer format\n"));
2550 return -EINVAL;
2552 /* get just enough to copy in user parameters */
2553 *sz = fmt->fmt_arg_size;
2554 DPRINT(("arg_size=%lu\n", *sz));
2556 return 0;
2562 * cannot attach if :
2563 * - kernel task
2564 * - task not owned by caller
2565 * - task incompatible with context mode
2567 static int
2568 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2571 * no kernel task or task not owner by caller
2573 if (task->mm == NULL) {
2574 DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
2575 return -EPERM;
2577 if (pfm_bad_permissions(task)) {
2578 DPRINT(("no permission to attach to [%d]\n", task->pid));
2579 return -EPERM;
2582 * cannot block in self-monitoring mode
2584 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2585 DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
2586 return -EINVAL;
2589 if (task->exit_state == EXIT_ZOMBIE) {
2590 DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
2591 return -EBUSY;
2595 * always ok for self
2597 if (task == current) return 0;
2599 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
2600 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
2601 return -EBUSY;
2604 * make sure the task is off any CPU
2606 wait_task_inactive(task);
2608 /* more to come... */
2610 return 0;
2613 static int
2614 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2616 struct task_struct *p = current;
2617 int ret;
2619 /* XXX: need to add more checks here */
2620 if (pid < 2) return -EPERM;
2622 if (pid != current->pid) {
2624 read_lock(&tasklist_lock);
2626 p = find_task_by_pid(pid);
2628 /* make sure task cannot go away while we operate on it */
2629 if (p) get_task_struct(p);
2631 read_unlock(&tasklist_lock);
2633 if (p == NULL) return -ESRCH;
2636 ret = pfm_task_incompatible(ctx, p);
2637 if (ret == 0) {
2638 *task = p;
2639 } else if (p != current) {
2640 pfm_put_task(p);
2642 return ret;
2647 static int
2648 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2650 pfarg_context_t *req = (pfarg_context_t *)arg;
2651 struct file *filp;
2652 int ctx_flags;
2653 int ret;
2655 /* let's check the arguments first */
2656 ret = pfarg_is_sane(current, req);
2657 if (ret < 0) return ret;
2659 ctx_flags = req->ctx_flags;
2661 ret = -ENOMEM;
2663 ctx = pfm_context_alloc();
2664 if (!ctx) goto error;
2666 ret = pfm_alloc_fd(&filp);
2667 if (ret < 0) goto error_file;
2669 req->ctx_fd = ctx->ctx_fd = ret;
2672 * attach context to file
2674 filp->private_data = ctx;
2677 * does the user want to sample?
2679 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2680 ret = pfm_setup_buffer_fmt(current, ctx, ctx_flags, 0, req);
2681 if (ret) goto buffer_error;
2685 * init context protection lock
2687 spin_lock_init(&ctx->ctx_lock);
2690 * context is unloaded
2692 ctx->ctx_state = PFM_CTX_UNLOADED;
2695 * initialization of context's flags
2697 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
2698 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
2699 ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
2700 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
2702 * will move to set properties
2703 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2707 * init restart semaphore to locked
2709 init_completion(&ctx->ctx_restart_done);
2712 * activation is used in SMP only
2714 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
2715 SET_LAST_CPU(ctx, -1);
2718 * initialize notification message queue
2720 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
2721 init_waitqueue_head(&ctx->ctx_msgq_wait);
2722 init_waitqueue_head(&ctx->ctx_zombieq);
2724 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2725 ctx,
2726 ctx_flags,
2727 ctx->ctx_fl_system,
2728 ctx->ctx_fl_block,
2729 ctx->ctx_fl_excl_idle,
2730 ctx->ctx_fl_no_msg,
2731 ctx->ctx_fd));
2734 * initialize soft PMU state
2736 pfm_reset_pmu_state(ctx);
2738 return 0;
2740 buffer_error:
2741 pfm_free_fd(ctx->ctx_fd, filp);
2743 if (ctx->ctx_buf_fmt) {
2744 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2746 error_file:
2747 pfm_context_free(ctx);
2749 error:
2750 return ret;
2753 static inline unsigned long
2754 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2756 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2757 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2758 extern unsigned long carta_random32 (unsigned long seed);
2760 if (reg->flags & PFM_REGFL_RANDOM) {
2761 new_seed = carta_random32(old_seed);
2762 val -= (old_seed & mask); /* counter values are negative numbers! */
2763 if ((mask >> 32) != 0)
2764 /* construct a full 64-bit random value: */
2765 new_seed |= carta_random32(old_seed >> 32) << 32;
2766 reg->seed = new_seed;
2768 reg->lval = val;
2769 return val;
2772 static void
2773 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2775 unsigned long mask = ovfl_regs[0];
2776 unsigned long reset_others = 0UL;
2777 unsigned long val;
2778 int i;
2781 * now restore reset value on sampling overflowed counters
2783 mask >>= PMU_FIRST_COUNTER;
2784 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2786 if ((mask & 0x1UL) == 0UL) continue;
2788 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2789 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2791 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2795 * Now take care of resetting the other registers
2797 for(i = 0; reset_others; i++, reset_others >>= 1) {
2799 if ((reset_others & 0x1) == 0) continue;
2801 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2803 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2804 is_long_reset ? "long" : "short", i, val));
2808 static void
2809 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2811 unsigned long mask = ovfl_regs[0];
2812 unsigned long reset_others = 0UL;
2813 unsigned long val;
2814 int i;
2816 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2818 if (ctx->ctx_state == PFM_CTX_MASKED) {
2819 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2820 return;
2824 * now restore reset value on sampling overflowed counters
2826 mask >>= PMU_FIRST_COUNTER;
2827 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2829 if ((mask & 0x1UL) == 0UL) continue;
2831 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2832 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2834 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2836 pfm_write_soft_counter(ctx, i, val);
2840 * Now take care of resetting the other registers
2842 for(i = 0; reset_others; i++, reset_others >>= 1) {
2844 if ((reset_others & 0x1) == 0) continue;
2846 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2848 if (PMD_IS_COUNTING(i)) {
2849 pfm_write_soft_counter(ctx, i, val);
2850 } else {
2851 ia64_set_pmd(i, val);
2853 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2854 is_long_reset ? "long" : "short", i, val));
2856 ia64_srlz_d();
2859 static int
2860 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2862 struct thread_struct *thread = NULL;
2863 struct task_struct *task;
2864 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2865 unsigned long value, pmc_pm;
2866 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2867 unsigned int cnum, reg_flags, flags, pmc_type;
2868 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2869 int is_monitor, is_counting, state;
2870 int ret = -EINVAL;
2871 pfm_reg_check_t wr_func;
2872 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2874 state = ctx->ctx_state;
2875 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2876 is_system = ctx->ctx_fl_system;
2877 task = ctx->ctx_task;
2878 impl_pmds = pmu_conf->impl_pmds[0];
2880 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2882 if (is_loaded) {
2883 thread = &task->thread;
2885 * In system wide and when the context is loaded, access can only happen
2886 * when the caller is running on the CPU being monitored by the session.
2887 * It does not have to be the owner (ctx_task) of the context per se.
2889 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2890 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2891 return -EBUSY;
2893 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2895 expert_mode = pfm_sysctl.expert_mode;
2897 for (i = 0; i < count; i++, req++) {
2899 cnum = req->reg_num;
2900 reg_flags = req->reg_flags;
2901 value = req->reg_value;
2902 smpl_pmds = req->reg_smpl_pmds[0];
2903 reset_pmds = req->reg_reset_pmds[0];
2904 flags = 0;
2907 if (cnum >= PMU_MAX_PMCS) {
2908 DPRINT(("pmc%u is invalid\n", cnum));
2909 goto error;
2912 pmc_type = pmu_conf->pmc_desc[cnum].type;
2913 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2914 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2915 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2918 * we reject all non implemented PMC as well
2919 * as attempts to modify PMC[0-3] which are used
2920 * as status registers by the PMU
2922 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2923 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2924 goto error;
2926 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2928 * If the PMC is a monitor, then if the value is not the default:
2929 * - system-wide session: PMCx.pm=1 (privileged monitor)
2930 * - per-task : PMCx.pm=0 (user monitor)
2932 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2933 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2934 cnum,
2935 pmc_pm,
2936 is_system));
2937 goto error;
2940 if (is_counting) {
2942 * enforce generation of overflow interrupt. Necessary on all
2943 * CPUs.
2945 value |= 1 << PMU_PMC_OI;
2947 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2948 flags |= PFM_REGFL_OVFL_NOTIFY;
2951 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2953 /* verify validity of smpl_pmds */
2954 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2955 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2956 goto error;
2959 /* verify validity of reset_pmds */
2960 if ((reset_pmds & impl_pmds) != reset_pmds) {
2961 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2962 goto error;
2964 } else {
2965 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2966 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2967 goto error;
2969 /* eventid on non-counting monitors are ignored */
2973 * execute write checker, if any
2975 if (likely(expert_mode == 0 && wr_func)) {
2976 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2977 if (ret) goto error;
2978 ret = -EINVAL;
2982 * no error on this register
2984 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2987 * Now we commit the changes to the software state
2991 * update overflow information
2993 if (is_counting) {
2995 * full flag update each time a register is programmed
2997 ctx->ctx_pmds[cnum].flags = flags;
2999 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
3000 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
3001 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
3004 * Mark all PMDS to be accessed as used.
3006 * We do not keep track of PMC because we have to
3007 * systematically restore ALL of them.
3009 * We do not update the used_monitors mask, because
3010 * if we have not programmed them, then will be in
3011 * a quiescent state, therefore we will not need to
3012 * mask/restore then when context is MASKED.
3014 CTX_USED_PMD(ctx, reset_pmds);
3015 CTX_USED_PMD(ctx, smpl_pmds);
3017 * make sure we do not try to reset on
3018 * restart because we have established new values
3020 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3023 * Needed in case the user does not initialize the equivalent
3024 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3025 * possible leak here.
3027 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3030 * keep track of the monitor PMC that we are using.
3031 * we save the value of the pmc in ctx_pmcs[] and if
3032 * the monitoring is not stopped for the context we also
3033 * place it in the saved state area so that it will be
3034 * picked up later by the context switch code.
3036 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3038 * The value in thread->pmcs[] may be modified on overflow, i.e., when
3039 * monitoring needs to be stopped.
3041 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3044 * update context state
3046 ctx->ctx_pmcs[cnum] = value;
3048 if (is_loaded) {
3050 * write thread state
3052 if (is_system == 0) thread->pmcs[cnum] = value;
3055 * write hardware register if we can
3057 if (can_access_pmu) {
3058 ia64_set_pmc(cnum, value);
3060 #ifdef CONFIG_SMP
3061 else {
3063 * per-task SMP only here
3065 * we are guaranteed that the task is not running on the other CPU,
3066 * we indicate that this PMD will need to be reloaded if the task
3067 * is rescheduled on the CPU it ran last on.
3069 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3071 #endif
3074 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3075 cnum,
3076 value,
3077 is_loaded,
3078 can_access_pmu,
3079 flags,
3080 ctx->ctx_all_pmcs[0],
3081 ctx->ctx_used_pmds[0],
3082 ctx->ctx_pmds[cnum].eventid,
3083 smpl_pmds,
3084 reset_pmds,
3085 ctx->ctx_reload_pmcs[0],
3086 ctx->ctx_used_monitors[0],
3087 ctx->ctx_ovfl_regs[0]));
3091 * make sure the changes are visible
3093 if (can_access_pmu) ia64_srlz_d();
3095 return 0;
3096 error:
3097 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3098 return ret;
3101 static int
3102 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3104 struct thread_struct *thread = NULL;
3105 struct task_struct *task;
3106 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3107 unsigned long value, hw_value, ovfl_mask;
3108 unsigned int cnum;
3109 int i, can_access_pmu = 0, state;
3110 int is_counting, is_loaded, is_system, expert_mode;
3111 int ret = -EINVAL;
3112 pfm_reg_check_t wr_func;
3115 state = ctx->ctx_state;
3116 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3117 is_system = ctx->ctx_fl_system;
3118 ovfl_mask = pmu_conf->ovfl_val;
3119 task = ctx->ctx_task;
3121 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3124 * on both UP and SMP, we can only write to the PMC when the task is
3125 * the owner of the local PMU.
3127 if (likely(is_loaded)) {
3128 thread = &task->thread;
3130 * In system wide and when the context is loaded, access can only happen
3131 * when the caller is running on the CPU being monitored by the session.
3132 * It does not have to be the owner (ctx_task) of the context per se.
3134 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3135 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3136 return -EBUSY;
3138 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3140 expert_mode = pfm_sysctl.expert_mode;
3142 for (i = 0; i < count; i++, req++) {
3144 cnum = req->reg_num;
3145 value = req->reg_value;
3147 if (!PMD_IS_IMPL(cnum)) {
3148 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3149 goto abort_mission;
3151 is_counting = PMD_IS_COUNTING(cnum);
3152 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3155 * execute write checker, if any
3157 if (unlikely(expert_mode == 0 && wr_func)) {
3158 unsigned long v = value;
3160 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3161 if (ret) goto abort_mission;
3163 value = v;
3164 ret = -EINVAL;
3168 * no error on this register
3170 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3173 * now commit changes to software state
3175 hw_value = value;
3178 * update virtualized (64bits) counter
3180 if (is_counting) {
3182 * write context state
3184 ctx->ctx_pmds[cnum].lval = value;
3187 * when context is load we use the split value
3189 if (is_loaded) {
3190 hw_value = value & ovfl_mask;
3191 value = value & ~ovfl_mask;
3195 * update reset values (not just for counters)
3197 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3198 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3201 * update randomization parameters (not just for counters)
3203 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3204 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3207 * update context value
3209 ctx->ctx_pmds[cnum].val = value;
3212 * Keep track of what we use
3214 * We do not keep track of PMC because we have to
3215 * systematically restore ALL of them.
3217 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3220 * mark this PMD register used as well
3222 CTX_USED_PMD(ctx, RDEP(cnum));
3225 * make sure we do not try to reset on
3226 * restart because we have established new values
3228 if (is_counting && state == PFM_CTX_MASKED) {
3229 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3232 if (is_loaded) {
3234 * write thread state
3236 if (is_system == 0) thread->pmds[cnum] = hw_value;
3239 * write hardware register if we can
3241 if (can_access_pmu) {
3242 ia64_set_pmd(cnum, hw_value);
3243 } else {
3244 #ifdef CONFIG_SMP
3246 * we are guaranteed that the task is not running on the other CPU,
3247 * we indicate that this PMD will need to be reloaded if the task
3248 * is rescheduled on the CPU it ran last on.
3250 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3251 #endif
3255 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3256 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3257 cnum,
3258 value,
3259 is_loaded,
3260 can_access_pmu,
3261 hw_value,
3262 ctx->ctx_pmds[cnum].val,
3263 ctx->ctx_pmds[cnum].short_reset,
3264 ctx->ctx_pmds[cnum].long_reset,
3265 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3266 ctx->ctx_pmds[cnum].seed,
3267 ctx->ctx_pmds[cnum].mask,
3268 ctx->ctx_used_pmds[0],
3269 ctx->ctx_pmds[cnum].reset_pmds[0],
3270 ctx->ctx_reload_pmds[0],
3271 ctx->ctx_all_pmds[0],
3272 ctx->ctx_ovfl_regs[0]));
3276 * make changes visible
3278 if (can_access_pmu) ia64_srlz_d();
3280 return 0;
3282 abort_mission:
3284 * for now, we have only one possibility for error
3286 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3287 return ret;
3291 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3292 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3293 * interrupt is delivered during the call, it will be kept pending until we leave, making
3294 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3295 * guaranteed to return consistent data to the user, it may simply be old. It is not
3296 * trivial to treat the overflow while inside the call because you may end up in
3297 * some module sampling buffer code causing deadlocks.
3299 static int
3300 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3302 struct thread_struct *thread = NULL;
3303 struct task_struct *task;
3304 unsigned long val = 0UL, lval, ovfl_mask, sval;
3305 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3306 unsigned int cnum, reg_flags = 0;
3307 int i, can_access_pmu = 0, state;
3308 int is_loaded, is_system, is_counting, expert_mode;
3309 int ret = -EINVAL;
3310 pfm_reg_check_t rd_func;
3313 * access is possible when loaded only for
3314 * self-monitoring tasks or in UP mode
3317 state = ctx->ctx_state;
3318 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3319 is_system = ctx->ctx_fl_system;
3320 ovfl_mask = pmu_conf->ovfl_val;
3321 task = ctx->ctx_task;
3323 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3325 if (likely(is_loaded)) {
3326 thread = &task->thread;
3328 * In system wide and when the context is loaded, access can only happen
3329 * when the caller is running on the CPU being monitored by the session.
3330 * It does not have to be the owner (ctx_task) of the context per se.
3332 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3333 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3334 return -EBUSY;
3337 * this can be true when not self-monitoring only in UP
3339 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3341 if (can_access_pmu) ia64_srlz_d();
3343 expert_mode = pfm_sysctl.expert_mode;
3345 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3346 is_loaded,
3347 can_access_pmu,
3348 state));
3351 * on both UP and SMP, we can only read the PMD from the hardware register when
3352 * the task is the owner of the local PMU.
3355 for (i = 0; i < count; i++, req++) {
3357 cnum = req->reg_num;
3358 reg_flags = req->reg_flags;
3360 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3362 * we can only read the register that we use. That includes
3363 * the one we explicitely initialize AND the one we want included
3364 * in the sampling buffer (smpl_regs).
3366 * Having this restriction allows optimization in the ctxsw routine
3367 * without compromising security (leaks)
3369 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3371 sval = ctx->ctx_pmds[cnum].val;
3372 lval = ctx->ctx_pmds[cnum].lval;
3373 is_counting = PMD_IS_COUNTING(cnum);
3376 * If the task is not the current one, then we check if the
3377 * PMU state is still in the local live register due to lazy ctxsw.
3378 * If true, then we read directly from the registers.
3380 if (can_access_pmu){
3381 val = ia64_get_pmd(cnum);
3382 } else {
3384 * context has been saved
3385 * if context is zombie, then task does not exist anymore.
3386 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3388 val = is_loaded ? thread->pmds[cnum] : 0UL;
3390 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3392 if (is_counting) {
3394 * XXX: need to check for overflow when loaded
3396 val &= ovfl_mask;
3397 val += sval;
3401 * execute read checker, if any
3403 if (unlikely(expert_mode == 0 && rd_func)) {
3404 unsigned long v = val;
3405 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3406 if (ret) goto error;
3407 val = v;
3408 ret = -EINVAL;
3411 PFM_REG_RETFLAG_SET(reg_flags, 0);
3413 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3416 * update register return value, abort all if problem during copy.
3417 * we only modify the reg_flags field. no check mode is fine because
3418 * access has been verified upfront in sys_perfmonctl().
3420 req->reg_value = val;
3421 req->reg_flags = reg_flags;
3422 req->reg_last_reset_val = lval;
3425 return 0;
3427 error:
3428 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3429 return ret;
3433 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3435 pfm_context_t *ctx;
3437 if (req == NULL) return -EINVAL;
3439 ctx = GET_PMU_CTX();
3441 if (ctx == NULL) return -EINVAL;
3444 * for now limit to current task, which is enough when calling
3445 * from overflow handler
3447 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3449 return pfm_write_pmcs(ctx, req, nreq, regs);
3451 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3454 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3456 pfm_context_t *ctx;
3458 if (req == NULL) return -EINVAL;
3460 ctx = GET_PMU_CTX();
3462 if (ctx == NULL) return -EINVAL;
3465 * for now limit to current task, which is enough when calling
3466 * from overflow handler
3468 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3470 return pfm_read_pmds(ctx, req, nreq, regs);
3472 EXPORT_SYMBOL(pfm_mod_read_pmds);
3475 * Only call this function when a process it trying to
3476 * write the debug registers (reading is always allowed)
3479 pfm_use_debug_registers(struct task_struct *task)
3481 pfm_context_t *ctx = task->thread.pfm_context;
3482 unsigned long flags;
3483 int ret = 0;
3485 if (pmu_conf->use_rr_dbregs == 0) return 0;
3487 DPRINT(("called for [%d]\n", task->pid));
3490 * do it only once
3492 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3495 * Even on SMP, we do not need to use an atomic here because
3496 * the only way in is via ptrace() and this is possible only when the
3497 * process is stopped. Even in the case where the ctxsw out is not totally
3498 * completed by the time we come here, there is no way the 'stopped' process
3499 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3500 * So this is always safe.
3502 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3504 LOCK_PFS(flags);
3507 * We cannot allow setting breakpoints when system wide monitoring
3508 * sessions are using the debug registers.
3510 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3511 ret = -1;
3512 else
3513 pfm_sessions.pfs_ptrace_use_dbregs++;
3515 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3516 pfm_sessions.pfs_ptrace_use_dbregs,
3517 pfm_sessions.pfs_sys_use_dbregs,
3518 task->pid, ret));
3520 UNLOCK_PFS(flags);
3522 return ret;
3526 * This function is called for every task that exits with the
3527 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3528 * able to use the debug registers for debugging purposes via
3529 * ptrace(). Therefore we know it was not using them for
3530 * perfmormance monitoring, so we only decrement the number
3531 * of "ptraced" debug register users to keep the count up to date
3534 pfm_release_debug_registers(struct task_struct *task)
3536 unsigned long flags;
3537 int ret;
3539 if (pmu_conf->use_rr_dbregs == 0) return 0;
3541 LOCK_PFS(flags);
3542 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3543 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
3544 ret = -1;
3545 } else {
3546 pfm_sessions.pfs_ptrace_use_dbregs--;
3547 ret = 0;
3549 UNLOCK_PFS(flags);
3551 return ret;
3554 static int
3555 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3557 struct task_struct *task;
3558 pfm_buffer_fmt_t *fmt;
3559 pfm_ovfl_ctrl_t rst_ctrl;
3560 int state, is_system;
3561 int ret = 0;
3563 state = ctx->ctx_state;
3564 fmt = ctx->ctx_buf_fmt;
3565 is_system = ctx->ctx_fl_system;
3566 task = PFM_CTX_TASK(ctx);
3568 switch(state) {
3569 case PFM_CTX_MASKED:
3570 break;
3571 case PFM_CTX_LOADED:
3572 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3573 /* fall through */
3574 case PFM_CTX_UNLOADED:
3575 case PFM_CTX_ZOMBIE:
3576 DPRINT(("invalid state=%d\n", state));
3577 return -EBUSY;
3578 default:
3579 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3580 return -EINVAL;
3584 * In system wide and when the context is loaded, access can only happen
3585 * when the caller is running on the CPU being monitored by the session.
3586 * It does not have to be the owner (ctx_task) of the context per se.
3588 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3589 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3590 return -EBUSY;
3593 /* sanity check */
3594 if (unlikely(task == NULL)) {
3595 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
3596 return -EINVAL;
3599 if (task == current || is_system) {
3601 fmt = ctx->ctx_buf_fmt;
3603 DPRINT(("restarting self %d ovfl=0x%lx\n",
3604 task->pid,
3605 ctx->ctx_ovfl_regs[0]));
3607 if (CTX_HAS_SMPL(ctx)) {
3609 prefetch(ctx->ctx_smpl_hdr);
3611 rst_ctrl.bits.mask_monitoring = 0;
3612 rst_ctrl.bits.reset_ovfl_pmds = 0;
3614 if (state == PFM_CTX_LOADED)
3615 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3616 else
3617 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3618 } else {
3619 rst_ctrl.bits.mask_monitoring = 0;
3620 rst_ctrl.bits.reset_ovfl_pmds = 1;
3623 if (ret == 0) {
3624 if (rst_ctrl.bits.reset_ovfl_pmds)
3625 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3627 if (rst_ctrl.bits.mask_monitoring == 0) {
3628 DPRINT(("resuming monitoring for [%d]\n", task->pid));
3630 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3631 } else {
3632 DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
3634 // cannot use pfm_stop_monitoring(task, regs);
3638 * clear overflowed PMD mask to remove any stale information
3640 ctx->ctx_ovfl_regs[0] = 0UL;
3643 * back to LOADED state
3645 ctx->ctx_state = PFM_CTX_LOADED;
3648 * XXX: not really useful for self monitoring
3650 ctx->ctx_fl_can_restart = 0;
3652 return 0;
3656 * restart another task
3660 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3661 * one is seen by the task.
3663 if (state == PFM_CTX_MASKED) {
3664 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3666 * will prevent subsequent restart before this one is
3667 * seen by other task
3669 ctx->ctx_fl_can_restart = 0;
3673 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3674 * the task is blocked or on its way to block. That's the normal
3675 * restart path. If the monitoring is not masked, then the task
3676 * can be actively monitoring and we cannot directly intervene.
3677 * Therefore we use the trap mechanism to catch the task and
3678 * force it to reset the buffer/reset PMDs.
3680 * if non-blocking, then we ensure that the task will go into
3681 * pfm_handle_work() before returning to user mode.
3683 * We cannot explicitely reset another task, it MUST always
3684 * be done by the task itself. This works for system wide because
3685 * the tool that is controlling the session is logically doing
3686 * "self-monitoring".
3688 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3689 DPRINT(("unblocking [%d] \n", task->pid));
3690 complete(&ctx->ctx_restart_done);
3691 } else {
3692 DPRINT(("[%d] armed exit trap\n", task->pid));
3694 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3696 PFM_SET_WORK_PENDING(task, 1);
3698 pfm_set_task_notify(task);
3701 * XXX: send reschedule if task runs on another CPU
3704 return 0;
3707 static int
3708 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3710 unsigned int m = *(unsigned int *)arg;
3712 pfm_sysctl.debug = m == 0 ? 0 : 1;
3714 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3716 if (m == 0) {
3717 memset(pfm_stats, 0, sizeof(pfm_stats));
3718 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3720 return 0;
3724 * arg can be NULL and count can be zero for this function
3726 static int
3727 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3729 struct thread_struct *thread = NULL;
3730 struct task_struct *task;
3731 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3732 unsigned long flags;
3733 dbreg_t dbreg;
3734 unsigned int rnum;
3735 int first_time;
3736 int ret = 0, state;
3737 int i, can_access_pmu = 0;
3738 int is_system, is_loaded;
3740 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3742 state = ctx->ctx_state;
3743 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3744 is_system = ctx->ctx_fl_system;
3745 task = ctx->ctx_task;
3747 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3750 * on both UP and SMP, we can only write to the PMC when the task is
3751 * the owner of the local PMU.
3753 if (is_loaded) {
3754 thread = &task->thread;
3756 * In system wide and when the context is loaded, access can only happen
3757 * when the caller is running on the CPU being monitored by the session.
3758 * It does not have to be the owner (ctx_task) of the context per se.
3760 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3761 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3762 return -EBUSY;
3764 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3768 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3769 * ensuring that no real breakpoint can be installed via this call.
3771 * IMPORTANT: regs can be NULL in this function
3774 first_time = ctx->ctx_fl_using_dbreg == 0;
3777 * don't bother if we are loaded and task is being debugged
3779 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3780 DPRINT(("debug registers already in use for [%d]\n", task->pid));
3781 return -EBUSY;
3785 * check for debug registers in system wide mode
3787 * If though a check is done in pfm_context_load(),
3788 * we must repeat it here, in case the registers are
3789 * written after the context is loaded
3791 if (is_loaded) {
3792 LOCK_PFS(flags);
3794 if (first_time && is_system) {
3795 if (pfm_sessions.pfs_ptrace_use_dbregs)
3796 ret = -EBUSY;
3797 else
3798 pfm_sessions.pfs_sys_use_dbregs++;
3800 UNLOCK_PFS(flags);
3803 if (ret != 0) return ret;
3806 * mark ourself as user of the debug registers for
3807 * perfmon purposes.
3809 ctx->ctx_fl_using_dbreg = 1;
3812 * clear hardware registers to make sure we don't
3813 * pick up stale state.
3815 * for a system wide session, we do not use
3816 * thread.dbr, thread.ibr because this process
3817 * never leaves the current CPU and the state
3818 * is shared by all processes running on it
3820 if (first_time && can_access_pmu) {
3821 DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
3822 for (i=0; i < pmu_conf->num_ibrs; i++) {
3823 ia64_set_ibr(i, 0UL);
3824 ia64_dv_serialize_instruction();
3826 ia64_srlz_i();
3827 for (i=0; i < pmu_conf->num_dbrs; i++) {
3828 ia64_set_dbr(i, 0UL);
3829 ia64_dv_serialize_data();
3831 ia64_srlz_d();
3835 * Now install the values into the registers
3837 for (i = 0; i < count; i++, req++) {
3839 rnum = req->dbreg_num;
3840 dbreg.val = req->dbreg_value;
3842 ret = -EINVAL;
3844 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3845 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3846 rnum, dbreg.val, mode, i, count));
3848 goto abort_mission;
3852 * make sure we do not install enabled breakpoint
3854 if (rnum & 0x1) {
3855 if (mode == PFM_CODE_RR)
3856 dbreg.ibr.ibr_x = 0;
3857 else
3858 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3861 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3864 * Debug registers, just like PMC, can only be modified
3865 * by a kernel call. Moreover, perfmon() access to those
3866 * registers are centralized in this routine. The hardware
3867 * does not modify the value of these registers, therefore,
3868 * if we save them as they are written, we can avoid having
3869 * to save them on context switch out. This is made possible
3870 * by the fact that when perfmon uses debug registers, ptrace()
3871 * won't be able to modify them concurrently.
3873 if (mode == PFM_CODE_RR) {
3874 CTX_USED_IBR(ctx, rnum);
3876 if (can_access_pmu) {
3877 ia64_set_ibr(rnum, dbreg.val);
3878 ia64_dv_serialize_instruction();
3881 ctx->ctx_ibrs[rnum] = dbreg.val;
3883 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3884 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3885 } else {
3886 CTX_USED_DBR(ctx, rnum);
3888 if (can_access_pmu) {
3889 ia64_set_dbr(rnum, dbreg.val);
3890 ia64_dv_serialize_data();
3892 ctx->ctx_dbrs[rnum] = dbreg.val;
3894 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3895 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3899 return 0;
3901 abort_mission:
3903 * in case it was our first attempt, we undo the global modifications
3905 if (first_time) {
3906 LOCK_PFS(flags);
3907 if (ctx->ctx_fl_system) {
3908 pfm_sessions.pfs_sys_use_dbregs--;
3910 UNLOCK_PFS(flags);
3911 ctx->ctx_fl_using_dbreg = 0;
3914 * install error return flag
3916 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3918 return ret;
3921 static int
3922 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3924 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3927 static int
3928 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3930 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3934 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3936 pfm_context_t *ctx;
3938 if (req == NULL) return -EINVAL;
3940 ctx = GET_PMU_CTX();
3942 if (ctx == NULL) return -EINVAL;
3945 * for now limit to current task, which is enough when calling
3946 * from overflow handler
3948 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3950 return pfm_write_ibrs(ctx, req, nreq, regs);
3952 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3955 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3957 pfm_context_t *ctx;
3959 if (req == NULL) return -EINVAL;
3961 ctx = GET_PMU_CTX();
3963 if (ctx == NULL) return -EINVAL;
3966 * for now limit to current task, which is enough when calling
3967 * from overflow handler
3969 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3971 return pfm_write_dbrs(ctx, req, nreq, regs);
3973 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3976 static int
3977 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3979 pfarg_features_t *req = (pfarg_features_t *)arg;
3981 req->ft_version = PFM_VERSION;
3982 return 0;
3985 static int
3986 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3988 struct pt_regs *tregs;
3989 struct task_struct *task = PFM_CTX_TASK(ctx);
3990 int state, is_system;
3992 state = ctx->ctx_state;
3993 is_system = ctx->ctx_fl_system;
3996 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3998 if (state == PFM_CTX_UNLOADED) return -EINVAL;
4001 * In system wide and when the context is loaded, access can only happen
4002 * when the caller is running on the CPU being monitored by the session.
4003 * It does not have to be the owner (ctx_task) of the context per se.
4005 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4006 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4007 return -EBUSY;
4009 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4010 PFM_CTX_TASK(ctx)->pid,
4011 state,
4012 is_system));
4014 * in system mode, we need to update the PMU directly
4015 * and the user level state of the caller, which may not
4016 * necessarily be the creator of the context.
4018 if (is_system) {
4020 * Update local PMU first
4022 * disable dcr pp
4024 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4025 ia64_srlz_i();
4028 * update local cpuinfo
4030 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4033 * stop monitoring, does srlz.i
4035 pfm_clear_psr_pp();
4038 * stop monitoring in the caller
4040 ia64_psr(regs)->pp = 0;
4042 return 0;
4045 * per-task mode
4048 if (task == current) {
4049 /* stop monitoring at kernel level */
4050 pfm_clear_psr_up();
4053 * stop monitoring at the user level
4055 ia64_psr(regs)->up = 0;
4056 } else {
4057 tregs = task_pt_regs(task);
4060 * stop monitoring at the user level
4062 ia64_psr(tregs)->up = 0;
4065 * monitoring disabled in kernel at next reschedule
4067 ctx->ctx_saved_psr_up = 0;
4068 DPRINT(("task=[%d]\n", task->pid));
4070 return 0;
4074 static int
4075 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4077 struct pt_regs *tregs;
4078 int state, is_system;
4080 state = ctx->ctx_state;
4081 is_system = ctx->ctx_fl_system;
4083 if (state != PFM_CTX_LOADED) return -EINVAL;
4086 * In system wide and when the context is loaded, access can only happen
4087 * when the caller is running on the CPU being monitored by the session.
4088 * It does not have to be the owner (ctx_task) of the context per se.
4090 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4091 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4092 return -EBUSY;
4096 * in system mode, we need to update the PMU directly
4097 * and the user level state of the caller, which may not
4098 * necessarily be the creator of the context.
4100 if (is_system) {
4103 * set user level psr.pp for the caller
4105 ia64_psr(regs)->pp = 1;
4108 * now update the local PMU and cpuinfo
4110 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4113 * start monitoring at kernel level
4115 pfm_set_psr_pp();
4117 /* enable dcr pp */
4118 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4119 ia64_srlz_i();
4121 return 0;
4125 * per-process mode
4128 if (ctx->ctx_task == current) {
4130 /* start monitoring at kernel level */
4131 pfm_set_psr_up();
4134 * activate monitoring at user level
4136 ia64_psr(regs)->up = 1;
4138 } else {
4139 tregs = task_pt_regs(ctx->ctx_task);
4142 * start monitoring at the kernel level the next
4143 * time the task is scheduled
4145 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4148 * activate monitoring at user level
4150 ia64_psr(tregs)->up = 1;
4152 return 0;
4155 static int
4156 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4158 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4159 unsigned int cnum;
4160 int i;
4161 int ret = -EINVAL;
4163 for (i = 0; i < count; i++, req++) {
4165 cnum = req->reg_num;
4167 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4169 req->reg_value = PMC_DFL_VAL(cnum);
4171 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4173 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4175 return 0;
4177 abort_mission:
4178 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4179 return ret;
4182 static int
4183 pfm_check_task_exist(pfm_context_t *ctx)
4185 struct task_struct *g, *t;
4186 int ret = -ESRCH;
4188 read_lock(&tasklist_lock);
4190 do_each_thread (g, t) {
4191 if (t->thread.pfm_context == ctx) {
4192 ret = 0;
4193 break;
4195 } while_each_thread (g, t);
4197 read_unlock(&tasklist_lock);
4199 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4201 return ret;
4204 static int
4205 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4207 struct task_struct *task;
4208 struct thread_struct *thread;
4209 struct pfm_context_t *old;
4210 unsigned long flags;
4211 #ifndef CONFIG_SMP
4212 struct task_struct *owner_task = NULL;
4213 #endif
4214 pfarg_load_t *req = (pfarg_load_t *)arg;
4215 unsigned long *pmcs_source, *pmds_source;
4216 int the_cpu;
4217 int ret = 0;
4218 int state, is_system, set_dbregs = 0;
4220 state = ctx->ctx_state;
4221 is_system = ctx->ctx_fl_system;
4223 * can only load from unloaded or terminated state
4225 if (state != PFM_CTX_UNLOADED) {
4226 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4227 req->load_pid,
4228 ctx->ctx_state));
4229 return -EBUSY;
4232 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4234 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4235 DPRINT(("cannot use blocking mode on self\n"));
4236 return -EINVAL;
4239 ret = pfm_get_task(ctx, req->load_pid, &task);
4240 if (ret) {
4241 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4242 return ret;
4245 ret = -EINVAL;
4248 * system wide is self monitoring only
4250 if (is_system && task != current) {
4251 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4252 req->load_pid));
4253 goto error;
4256 thread = &task->thread;
4258 ret = 0;
4260 * cannot load a context which is using range restrictions,
4261 * into a task that is being debugged.
4263 if (ctx->ctx_fl_using_dbreg) {
4264 if (thread->flags & IA64_THREAD_DBG_VALID) {
4265 ret = -EBUSY;
4266 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4267 goto error;
4269 LOCK_PFS(flags);
4271 if (is_system) {
4272 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4273 DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
4274 ret = -EBUSY;
4275 } else {
4276 pfm_sessions.pfs_sys_use_dbregs++;
4277 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
4278 set_dbregs = 1;
4282 UNLOCK_PFS(flags);
4284 if (ret) goto error;
4288 * SMP system-wide monitoring implies self-monitoring.
4290 * The programming model expects the task to
4291 * be pinned on a CPU throughout the session.
4292 * Here we take note of the current CPU at the
4293 * time the context is loaded. No call from
4294 * another CPU will be allowed.
4296 * The pinning via shed_setaffinity()
4297 * must be done by the calling task prior
4298 * to this call.
4300 * systemwide: keep track of CPU this session is supposed to run on
4302 the_cpu = ctx->ctx_cpu = smp_processor_id();
4304 ret = -EBUSY;
4306 * now reserve the session
4308 ret = pfm_reserve_session(current, is_system, the_cpu);
4309 if (ret) goto error;
4312 * task is necessarily stopped at this point.
4314 * If the previous context was zombie, then it got removed in
4315 * pfm_save_regs(). Therefore we should not see it here.
4316 * If we see a context, then this is an active context
4318 * XXX: needs to be atomic
4320 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4321 thread->pfm_context, ctx));
4323 ret = -EBUSY;
4324 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4325 if (old != NULL) {
4326 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4327 goto error_unres;
4330 pfm_reset_msgq(ctx);
4332 ctx->ctx_state = PFM_CTX_LOADED;
4335 * link context to task
4337 ctx->ctx_task = task;
4339 if (is_system) {
4341 * we load as stopped
4343 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4344 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4346 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4347 } else {
4348 thread->flags |= IA64_THREAD_PM_VALID;
4352 * propagate into thread-state
4354 pfm_copy_pmds(task, ctx);
4355 pfm_copy_pmcs(task, ctx);
4357 pmcs_source = thread->pmcs;
4358 pmds_source = thread->pmds;
4361 * always the case for system-wide
4363 if (task == current) {
4365 if (is_system == 0) {
4367 /* allow user level control */
4368 ia64_psr(regs)->sp = 0;
4369 DPRINT(("clearing psr.sp for [%d]\n", task->pid));
4371 SET_LAST_CPU(ctx, smp_processor_id());
4372 INC_ACTIVATION();
4373 SET_ACTIVATION(ctx);
4374 #ifndef CONFIG_SMP
4376 * push the other task out, if any
4378 owner_task = GET_PMU_OWNER();
4379 if (owner_task) pfm_lazy_save_regs(owner_task);
4380 #endif
4383 * load all PMD from ctx to PMU (as opposed to thread state)
4384 * restore all PMC from ctx to PMU
4386 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4387 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4389 ctx->ctx_reload_pmcs[0] = 0UL;
4390 ctx->ctx_reload_pmds[0] = 0UL;
4393 * guaranteed safe by earlier check against DBG_VALID
4395 if (ctx->ctx_fl_using_dbreg) {
4396 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4397 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4400 * set new ownership
4402 SET_PMU_OWNER(task, ctx);
4404 DPRINT(("context loaded on PMU for [%d]\n", task->pid));
4405 } else {
4407 * when not current, task MUST be stopped, so this is safe
4409 regs = task_pt_regs(task);
4411 /* force a full reload */
4412 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4413 SET_LAST_CPU(ctx, -1);
4415 /* initial saved psr (stopped) */
4416 ctx->ctx_saved_psr_up = 0UL;
4417 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4420 ret = 0;
4422 error_unres:
4423 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4424 error:
4426 * we must undo the dbregs setting (for system-wide)
4428 if (ret && set_dbregs) {
4429 LOCK_PFS(flags);
4430 pfm_sessions.pfs_sys_use_dbregs--;
4431 UNLOCK_PFS(flags);
4434 * release task, there is now a link with the context
4436 if (is_system == 0 && task != current) {
4437 pfm_put_task(task);
4439 if (ret == 0) {
4440 ret = pfm_check_task_exist(ctx);
4441 if (ret) {
4442 ctx->ctx_state = PFM_CTX_UNLOADED;
4443 ctx->ctx_task = NULL;
4447 return ret;
4451 * in this function, we do not need to increase the use count
4452 * for the task via get_task_struct(), because we hold the
4453 * context lock. If the task were to disappear while having
4454 * a context attached, it would go through pfm_exit_thread()
4455 * which also grabs the context lock and would therefore be blocked
4456 * until we are here.
4458 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4460 static int
4461 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4463 struct task_struct *task = PFM_CTX_TASK(ctx);
4464 struct pt_regs *tregs;
4465 int prev_state, is_system;
4466 int ret;
4468 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
4470 prev_state = ctx->ctx_state;
4471 is_system = ctx->ctx_fl_system;
4474 * unload only when necessary
4476 if (prev_state == PFM_CTX_UNLOADED) {
4477 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4478 return 0;
4482 * clear psr and dcr bits
4484 ret = pfm_stop(ctx, NULL, 0, regs);
4485 if (ret) return ret;
4487 ctx->ctx_state = PFM_CTX_UNLOADED;
4490 * in system mode, we need to update the PMU directly
4491 * and the user level state of the caller, which may not
4492 * necessarily be the creator of the context.
4494 if (is_system) {
4497 * Update cpuinfo
4499 * local PMU is taken care of in pfm_stop()
4501 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4502 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4505 * save PMDs in context
4506 * release ownership
4508 pfm_flush_pmds(current, ctx);
4511 * at this point we are done with the PMU
4512 * so we can unreserve the resource.
4514 if (prev_state != PFM_CTX_ZOMBIE)
4515 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4518 * disconnect context from task
4520 task->thread.pfm_context = NULL;
4522 * disconnect task from context
4524 ctx->ctx_task = NULL;
4527 * There is nothing more to cleanup here.
4529 return 0;
4533 * per-task mode
4535 tregs = task == current ? regs : task_pt_regs(task);
4537 if (task == current) {
4539 * cancel user level control
4541 ia64_psr(regs)->sp = 1;
4543 DPRINT(("setting psr.sp for [%d]\n", task->pid));
4546 * save PMDs to context
4547 * release ownership
4549 pfm_flush_pmds(task, ctx);
4552 * at this point we are done with the PMU
4553 * so we can unreserve the resource.
4555 * when state was ZOMBIE, we have already unreserved.
4557 if (prev_state != PFM_CTX_ZOMBIE)
4558 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4561 * reset activation counter and psr
4563 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4564 SET_LAST_CPU(ctx, -1);
4567 * PMU state will not be restored
4569 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4572 * break links between context and task
4574 task->thread.pfm_context = NULL;
4575 ctx->ctx_task = NULL;
4577 PFM_SET_WORK_PENDING(task, 0);
4579 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4580 ctx->ctx_fl_can_restart = 0;
4581 ctx->ctx_fl_going_zombie = 0;
4583 DPRINT(("disconnected [%d] from context\n", task->pid));
4585 return 0;
4590 * called only from exit_thread(): task == current
4591 * we come here only if current has a context attached (loaded or masked)
4593 void
4594 pfm_exit_thread(struct task_struct *task)
4596 pfm_context_t *ctx;
4597 unsigned long flags;
4598 struct pt_regs *regs = task_pt_regs(task);
4599 int ret, state;
4600 int free_ok = 0;
4602 ctx = PFM_GET_CTX(task);
4604 PROTECT_CTX(ctx, flags);
4606 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
4608 state = ctx->ctx_state;
4609 switch(state) {
4610 case PFM_CTX_UNLOADED:
4612 * only comes to thios function if pfm_context is not NULL, i.e., cannot
4613 * be in unloaded state
4615 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
4616 break;
4617 case PFM_CTX_LOADED:
4618 case PFM_CTX_MASKED:
4619 ret = pfm_context_unload(ctx, NULL, 0, regs);
4620 if (ret) {
4621 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4623 DPRINT(("ctx unloaded for current state was %d\n", state));
4625 pfm_end_notify_user(ctx);
4626 break;
4627 case PFM_CTX_ZOMBIE:
4628 ret = pfm_context_unload(ctx, NULL, 0, regs);
4629 if (ret) {
4630 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4632 free_ok = 1;
4633 break;
4634 default:
4635 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
4636 break;
4638 UNPROTECT_CTX(ctx, flags);
4640 { u64 psr = pfm_get_psr();
4641 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4642 BUG_ON(GET_PMU_OWNER());
4643 BUG_ON(ia64_psr(regs)->up);
4644 BUG_ON(ia64_psr(regs)->pp);
4648 * All memory free operations (especially for vmalloc'ed memory)
4649 * MUST be done with interrupts ENABLED.
4651 if (free_ok) pfm_context_free(ctx);
4655 * functions MUST be listed in the increasing order of their index (see permfon.h)
4657 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4658 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4659 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4660 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4661 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4663 static pfm_cmd_desc_t pfm_cmd_tab[]={
4664 /* 0 */PFM_CMD_NONE,
4665 /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4666 /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4667 /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4668 /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4669 /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4670 /* 6 */PFM_CMD_NONE,
4671 /* 7 */PFM_CMD_NONE,
4672 /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4673 /* 9 */PFM_CMD_NONE,
4674 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4675 /* 11 */PFM_CMD_NONE,
4676 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4677 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4678 /* 14 */PFM_CMD_NONE,
4679 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4680 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4681 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4682 /* 18 */PFM_CMD_NONE,
4683 /* 19 */PFM_CMD_NONE,
4684 /* 20 */PFM_CMD_NONE,
4685 /* 21 */PFM_CMD_NONE,
4686 /* 22 */PFM_CMD_NONE,
4687 /* 23 */PFM_CMD_NONE,
4688 /* 24 */PFM_CMD_NONE,
4689 /* 25 */PFM_CMD_NONE,
4690 /* 26 */PFM_CMD_NONE,
4691 /* 27 */PFM_CMD_NONE,
4692 /* 28 */PFM_CMD_NONE,
4693 /* 29 */PFM_CMD_NONE,
4694 /* 30 */PFM_CMD_NONE,
4695 /* 31 */PFM_CMD_NONE,
4696 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4697 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4699 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4701 static int
4702 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4704 struct task_struct *task;
4705 int state, old_state;
4707 recheck:
4708 state = ctx->ctx_state;
4709 task = ctx->ctx_task;
4711 if (task == NULL) {
4712 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4713 return 0;
4716 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4717 ctx->ctx_fd,
4718 state,
4719 task->pid,
4720 task->state, PFM_CMD_STOPPED(cmd)));
4723 * self-monitoring always ok.
4725 * for system-wide the caller can either be the creator of the
4726 * context (to one to which the context is attached to) OR
4727 * a task running on the same CPU as the session.
4729 if (task == current || ctx->ctx_fl_system) return 0;
4732 * we are monitoring another thread
4734 switch(state) {
4735 case PFM_CTX_UNLOADED:
4737 * if context is UNLOADED we are safe to go
4739 return 0;
4740 case PFM_CTX_ZOMBIE:
4742 * no command can operate on a zombie context
4744 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4745 return -EINVAL;
4746 case PFM_CTX_MASKED:
4748 * PMU state has been saved to software even though
4749 * the thread may still be running.
4751 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4755 * context is LOADED or MASKED. Some commands may need to have
4756 * the task stopped.
4758 * We could lift this restriction for UP but it would mean that
4759 * the user has no guarantee the task would not run between
4760 * two successive calls to perfmonctl(). That's probably OK.
4761 * If this user wants to ensure the task does not run, then
4762 * the task must be stopped.
4764 if (PFM_CMD_STOPPED(cmd)) {
4765 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
4766 DPRINT(("[%d] task not in stopped state\n", task->pid));
4767 return -EBUSY;
4770 * task is now stopped, wait for ctxsw out
4772 * This is an interesting point in the code.
4773 * We need to unprotect the context because
4774 * the pfm_save_regs() routines needs to grab
4775 * the same lock. There are danger in doing
4776 * this because it leaves a window open for
4777 * another task to get access to the context
4778 * and possibly change its state. The one thing
4779 * that is not possible is for the context to disappear
4780 * because we are protected by the VFS layer, i.e.,
4781 * get_fd()/put_fd().
4783 old_state = state;
4785 UNPROTECT_CTX(ctx, flags);
4787 wait_task_inactive(task);
4789 PROTECT_CTX(ctx, flags);
4792 * we must recheck to verify if state has changed
4794 if (ctx->ctx_state != old_state) {
4795 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4796 goto recheck;
4799 return 0;
4803 * system-call entry point (must return long)
4805 asmlinkage long
4806 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4808 struct file *file = NULL;
4809 pfm_context_t *ctx = NULL;
4810 unsigned long flags = 0UL;
4811 void *args_k = NULL;
4812 long ret; /* will expand int return types */
4813 size_t base_sz, sz, xtra_sz = 0;
4814 int narg, completed_args = 0, call_made = 0, cmd_flags;
4815 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4816 int (*getsize)(void *arg, size_t *sz);
4817 #define PFM_MAX_ARGSIZE 4096
4820 * reject any call if perfmon was disabled at initialization
4822 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4824 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4825 DPRINT(("invalid cmd=%d\n", cmd));
4826 return -EINVAL;
4829 func = pfm_cmd_tab[cmd].cmd_func;
4830 narg = pfm_cmd_tab[cmd].cmd_narg;
4831 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4832 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4833 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4835 if (unlikely(func == NULL)) {
4836 DPRINT(("invalid cmd=%d\n", cmd));
4837 return -EINVAL;
4840 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4841 PFM_CMD_NAME(cmd),
4842 cmd,
4843 narg,
4844 base_sz,
4845 count));
4848 * check if number of arguments matches what the command expects
4850 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4851 return -EINVAL;
4853 restart_args:
4854 sz = xtra_sz + base_sz*count;
4856 * limit abuse to min page size
4858 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4859 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
4860 return -E2BIG;
4864 * allocate default-sized argument buffer
4866 if (likely(count && args_k == NULL)) {
4867 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4868 if (args_k == NULL) return -ENOMEM;
4871 ret = -EFAULT;
4874 * copy arguments
4876 * assume sz = 0 for command without parameters
4878 if (sz && copy_from_user(args_k, arg, sz)) {
4879 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4880 goto error_args;
4884 * check if command supports extra parameters
4886 if (completed_args == 0 && getsize) {
4888 * get extra parameters size (based on main argument)
4890 ret = (*getsize)(args_k, &xtra_sz);
4891 if (ret) goto error_args;
4893 completed_args = 1;
4895 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4897 /* retry if necessary */
4898 if (likely(xtra_sz)) goto restart_args;
4901 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4903 ret = -EBADF;
4905 file = fget(fd);
4906 if (unlikely(file == NULL)) {
4907 DPRINT(("invalid fd %d\n", fd));
4908 goto error_args;
4910 if (unlikely(PFM_IS_FILE(file) == 0)) {
4911 DPRINT(("fd %d not related to perfmon\n", fd));
4912 goto error_args;
4915 ctx = (pfm_context_t *)file->private_data;
4916 if (unlikely(ctx == NULL)) {
4917 DPRINT(("no context for fd %d\n", fd));
4918 goto error_args;
4920 prefetch(&ctx->ctx_state);
4922 PROTECT_CTX(ctx, flags);
4925 * check task is stopped
4927 ret = pfm_check_task_state(ctx, cmd, flags);
4928 if (unlikely(ret)) goto abort_locked;
4930 skip_fd:
4931 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4933 call_made = 1;
4935 abort_locked:
4936 if (likely(ctx)) {
4937 DPRINT(("context unlocked\n"));
4938 UNPROTECT_CTX(ctx, flags);
4939 fput(file);
4942 /* copy argument back to user, if needed */
4943 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4945 error_args:
4946 kfree(args_k);
4948 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4950 return ret;
4953 static void
4954 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4956 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4957 pfm_ovfl_ctrl_t rst_ctrl;
4958 int state;
4959 int ret = 0;
4961 state = ctx->ctx_state;
4963 * Unlock sampling buffer and reset index atomically
4964 * XXX: not really needed when blocking
4966 if (CTX_HAS_SMPL(ctx)) {
4968 rst_ctrl.bits.mask_monitoring = 0;
4969 rst_ctrl.bits.reset_ovfl_pmds = 0;
4971 if (state == PFM_CTX_LOADED)
4972 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4973 else
4974 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4975 } else {
4976 rst_ctrl.bits.mask_monitoring = 0;
4977 rst_ctrl.bits.reset_ovfl_pmds = 1;
4980 if (ret == 0) {
4981 if (rst_ctrl.bits.reset_ovfl_pmds) {
4982 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4984 if (rst_ctrl.bits.mask_monitoring == 0) {
4985 DPRINT(("resuming monitoring\n"));
4986 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4987 } else {
4988 DPRINT(("stopping monitoring\n"));
4989 //pfm_stop_monitoring(current, regs);
4991 ctx->ctx_state = PFM_CTX_LOADED;
4996 * context MUST BE LOCKED when calling
4997 * can only be called for current
4999 static void
5000 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
5002 int ret;
5004 DPRINT(("entering for [%d]\n", current->pid));
5006 ret = pfm_context_unload(ctx, NULL, 0, regs);
5007 if (ret) {
5008 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
5012 * and wakeup controlling task, indicating we are now disconnected
5014 wake_up_interruptible(&ctx->ctx_zombieq);
5017 * given that context is still locked, the controlling
5018 * task will only get access when we return from
5019 * pfm_handle_work().
5023 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5025 * pfm_handle_work() can be called with interrupts enabled
5026 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5027 * call may sleep, therefore we must re-enable interrupts
5028 * to avoid deadlocks. It is safe to do so because this function
5029 * is called ONLY when returning to user level (PUStk=1), in which case
5030 * there is no risk of kernel stack overflow due to deep
5031 * interrupt nesting.
5033 void
5034 pfm_handle_work(void)
5036 pfm_context_t *ctx;
5037 struct pt_regs *regs;
5038 unsigned long flags, dummy_flags;
5039 unsigned long ovfl_regs;
5040 unsigned int reason;
5041 int ret;
5043 ctx = PFM_GET_CTX(current);
5044 if (ctx == NULL) {
5045 printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
5046 return;
5049 PROTECT_CTX(ctx, flags);
5051 PFM_SET_WORK_PENDING(current, 0);
5053 pfm_clear_task_notify();
5055 regs = task_pt_regs(current);
5058 * extract reason for being here and clear
5060 reason = ctx->ctx_fl_trap_reason;
5061 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5062 ovfl_regs = ctx->ctx_ovfl_regs[0];
5064 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5067 * must be done before we check for simple-reset mode
5069 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
5072 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5073 if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
5076 * restore interrupt mask to what it was on entry.
5077 * Could be enabled/diasbled.
5079 UNPROTECT_CTX(ctx, flags);
5082 * force interrupt enable because of down_interruptible()
5084 local_irq_enable();
5086 DPRINT(("before block sleeping\n"));
5089 * may go through without blocking on SMP systems
5090 * if restart has been received already by the time we call down()
5092 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5094 DPRINT(("after block sleeping ret=%d\n", ret));
5097 * lock context and mask interrupts again
5098 * We save flags into a dummy because we may have
5099 * altered interrupts mask compared to entry in this
5100 * function.
5102 PROTECT_CTX(ctx, dummy_flags);
5105 * we need to read the ovfl_regs only after wake-up
5106 * because we may have had pfm_write_pmds() in between
5107 * and that can changed PMD values and therefore
5108 * ovfl_regs is reset for these new PMD values.
5110 ovfl_regs = ctx->ctx_ovfl_regs[0];
5112 if (ctx->ctx_fl_going_zombie) {
5113 do_zombie:
5114 DPRINT(("context is zombie, bailing out\n"));
5115 pfm_context_force_terminate(ctx, regs);
5116 goto nothing_to_do;
5119 * in case of interruption of down() we don't restart anything
5121 if (ret < 0) goto nothing_to_do;
5123 skip_blocking:
5124 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5125 ctx->ctx_ovfl_regs[0] = 0UL;
5127 nothing_to_do:
5129 * restore flags as they were upon entry
5131 UNPROTECT_CTX(ctx, flags);
5134 static int
5135 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5137 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5138 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5139 return 0;
5142 DPRINT(("waking up somebody\n"));
5144 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5147 * safe, we are not in intr handler, nor in ctxsw when
5148 * we come here
5150 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5152 return 0;
5155 static int
5156 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5158 pfm_msg_t *msg = NULL;
5160 if (ctx->ctx_fl_no_msg == 0) {
5161 msg = pfm_get_new_msg(ctx);
5162 if (msg == NULL) {
5163 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5164 return -1;
5167 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5168 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5169 msg->pfm_ovfl_msg.msg_active_set = 0;
5170 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5171 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5172 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5173 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5174 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5177 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5178 msg,
5179 ctx->ctx_fl_no_msg,
5180 ctx->ctx_fd,
5181 ovfl_pmds));
5183 return pfm_notify_user(ctx, msg);
5186 static int
5187 pfm_end_notify_user(pfm_context_t *ctx)
5189 pfm_msg_t *msg;
5191 msg = pfm_get_new_msg(ctx);
5192 if (msg == NULL) {
5193 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5194 return -1;
5196 /* no leak */
5197 memset(msg, 0, sizeof(*msg));
5199 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5200 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5201 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5203 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5204 msg,
5205 ctx->ctx_fl_no_msg,
5206 ctx->ctx_fd));
5208 return pfm_notify_user(ctx, msg);
5212 * main overflow processing routine.
5213 * it can be called from the interrupt path or explicitely during the context switch code
5215 static void
5216 pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5218 pfm_ovfl_arg_t *ovfl_arg;
5219 unsigned long mask;
5220 unsigned long old_val, ovfl_val, new_val;
5221 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5222 unsigned long tstamp;
5223 pfm_ovfl_ctrl_t ovfl_ctrl;
5224 unsigned int i, has_smpl;
5225 int must_notify = 0;
5227 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5230 * sanity test. Should never happen
5232 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5234 tstamp = ia64_get_itc();
5235 mask = pmc0 >> PMU_FIRST_COUNTER;
5236 ovfl_val = pmu_conf->ovfl_val;
5237 has_smpl = CTX_HAS_SMPL(ctx);
5239 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5240 "used_pmds=0x%lx\n",
5241 pmc0,
5242 task ? task->pid: -1,
5243 (regs ? regs->cr_iip : 0),
5244 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5245 ctx->ctx_used_pmds[0]));
5249 * first we update the virtual counters
5250 * assume there was a prior ia64_srlz_d() issued
5252 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5254 /* skip pmd which did not overflow */
5255 if ((mask & 0x1) == 0) continue;
5258 * Note that the pmd is not necessarily 0 at this point as qualified events
5259 * may have happened before the PMU was frozen. The residual count is not
5260 * taken into consideration here but will be with any read of the pmd via
5261 * pfm_read_pmds().
5263 old_val = new_val = ctx->ctx_pmds[i].val;
5264 new_val += 1 + ovfl_val;
5265 ctx->ctx_pmds[i].val = new_val;
5268 * check for overflow condition
5270 if (likely(old_val > new_val)) {
5271 ovfl_pmds |= 1UL << i;
5272 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5275 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5277 new_val,
5278 old_val,
5279 ia64_get_pmd(i) & ovfl_val,
5280 ovfl_pmds,
5281 ovfl_notify));
5285 * there was no 64-bit overflow, nothing else to do
5287 if (ovfl_pmds == 0UL) return;
5290 * reset all control bits
5292 ovfl_ctrl.val = 0;
5293 reset_pmds = 0UL;
5296 * if a sampling format module exists, then we "cache" the overflow by
5297 * calling the module's handler() routine.
5299 if (has_smpl) {
5300 unsigned long start_cycles, end_cycles;
5301 unsigned long pmd_mask;
5302 int j, k, ret = 0;
5303 int this_cpu = smp_processor_id();
5305 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5306 ovfl_arg = &ctx->ctx_ovfl_arg;
5308 prefetch(ctx->ctx_smpl_hdr);
5310 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5312 mask = 1UL << i;
5314 if ((pmd_mask & 0x1) == 0) continue;
5316 ovfl_arg->ovfl_pmd = (unsigned char )i;
5317 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5318 ovfl_arg->active_set = 0;
5319 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5320 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5322 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5323 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5324 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5327 * copy values of pmds of interest. Sampling format may copy them
5328 * into sampling buffer.
5330 if (smpl_pmds) {
5331 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5332 if ((smpl_pmds & 0x1) == 0) continue;
5333 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5334 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5338 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5340 start_cycles = ia64_get_itc();
5343 * call custom buffer format record (handler) routine
5345 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5347 end_cycles = ia64_get_itc();
5350 * For those controls, we take the union because they have
5351 * an all or nothing behavior.
5353 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5354 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5355 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5357 * build the bitmask of pmds to reset now
5359 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5361 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5364 * when the module cannot handle the rest of the overflows, we abort right here
5366 if (ret && pmd_mask) {
5367 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5368 pmd_mask<<PMU_FIRST_COUNTER));
5371 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5373 ovfl_pmds &= ~reset_pmds;
5374 } else {
5376 * when no sampling module is used, then the default
5377 * is to notify on overflow if requested by user
5379 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5380 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5381 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5382 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5384 * if needed, we reset all overflowed pmds
5386 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5389 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5392 * reset the requested PMD registers using the short reset values
5394 if (reset_pmds) {
5395 unsigned long bm = reset_pmds;
5396 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5399 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5401 * keep track of what to reset when unblocking
5403 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5406 * check for blocking context
5408 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5410 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5413 * set the perfmon specific checking pending work for the task
5415 PFM_SET_WORK_PENDING(task, 1);
5418 * when coming from ctxsw, current still points to the
5419 * previous task, therefore we must work with task and not current.
5421 pfm_set_task_notify(task);
5424 * defer until state is changed (shorten spin window). the context is locked
5425 * anyway, so the signal receiver would come spin for nothing.
5427 must_notify = 1;
5430 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5431 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
5432 PFM_GET_WORK_PENDING(task),
5433 ctx->ctx_fl_trap_reason,
5434 ovfl_pmds,
5435 ovfl_notify,
5436 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5438 * in case monitoring must be stopped, we toggle the psr bits
5440 if (ovfl_ctrl.bits.mask_monitoring) {
5441 pfm_mask_monitoring(task);
5442 ctx->ctx_state = PFM_CTX_MASKED;
5443 ctx->ctx_fl_can_restart = 1;
5447 * send notification now
5449 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5451 return;
5453 sanity_check:
5454 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5455 smp_processor_id(),
5456 task ? task->pid : -1,
5457 pmc0);
5458 return;
5460 stop_monitoring:
5462 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5463 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5464 * come here as zombie only if the task is the current task. In which case, we
5465 * can access the PMU hardware directly.
5467 * Note that zombies do have PM_VALID set. So here we do the minimal.
5469 * In case the context was zombified it could not be reclaimed at the time
5470 * the monitoring program exited. At this point, the PMU reservation has been
5471 * returned, the sampiing buffer has been freed. We must convert this call
5472 * into a spurious interrupt. However, we must also avoid infinite overflows
5473 * by stopping monitoring for this task. We can only come here for a per-task
5474 * context. All we need to do is to stop monitoring using the psr bits which
5475 * are always task private. By re-enabling secure montioring, we ensure that
5476 * the monitored task will not be able to re-activate monitoring.
5477 * The task will eventually be context switched out, at which point the context
5478 * will be reclaimed (that includes releasing ownership of the PMU).
5480 * So there might be a window of time where the number of per-task session is zero
5481 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5482 * context. This is safe because if a per-task session comes in, it will push this one
5483 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5484 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5485 * also push our zombie context out.
5487 * Overall pretty hairy stuff....
5489 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
5490 pfm_clear_psr_up();
5491 ia64_psr(regs)->up = 0;
5492 ia64_psr(regs)->sp = 1;
5493 return;
5496 static int
5497 pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5499 struct task_struct *task;
5500 pfm_context_t *ctx;
5501 unsigned long flags;
5502 u64 pmc0;
5503 int this_cpu = smp_processor_id();
5504 int retval = 0;
5506 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5509 * srlz.d done before arriving here
5511 pmc0 = ia64_get_pmc(0);
5513 task = GET_PMU_OWNER();
5514 ctx = GET_PMU_CTX();
5517 * if we have some pending bits set
5518 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5520 if (PMC0_HAS_OVFL(pmc0) && task) {
5522 * we assume that pmc0.fr is always set here
5525 /* sanity check */
5526 if (!ctx) goto report_spurious1;
5528 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5529 goto report_spurious2;
5531 PROTECT_CTX_NOPRINT(ctx, flags);
5533 pfm_overflow_handler(task, ctx, pmc0, regs);
5535 UNPROTECT_CTX_NOPRINT(ctx, flags);
5537 } else {
5538 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5539 retval = -1;
5542 * keep it unfrozen at all times
5544 pfm_unfreeze_pmu();
5546 return retval;
5548 report_spurious1:
5549 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5550 this_cpu, task->pid);
5551 pfm_unfreeze_pmu();
5552 return -1;
5553 report_spurious2:
5554 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5555 this_cpu,
5556 task->pid);
5557 pfm_unfreeze_pmu();
5558 return -1;
5561 static irqreturn_t
5562 pfm_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5564 unsigned long start_cycles, total_cycles;
5565 unsigned long min, max;
5566 int this_cpu;
5567 int ret;
5569 this_cpu = get_cpu();
5570 if (likely(!pfm_alt_intr_handler)) {
5571 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5572 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5574 start_cycles = ia64_get_itc();
5576 ret = pfm_do_interrupt_handler(irq, arg, regs);
5578 total_cycles = ia64_get_itc();
5581 * don't measure spurious interrupts
5583 if (likely(ret == 0)) {
5584 total_cycles -= start_cycles;
5586 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5587 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5589 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5592 else {
5593 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5596 put_cpu_no_resched();
5597 return IRQ_HANDLED;
5601 * /proc/perfmon interface, for debug only
5604 #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5606 static void *
5607 pfm_proc_start(struct seq_file *m, loff_t *pos)
5609 if (*pos == 0) {
5610 return PFM_PROC_SHOW_HEADER;
5613 while (*pos <= NR_CPUS) {
5614 if (cpu_online(*pos - 1)) {
5615 return (void *)*pos;
5617 ++*pos;
5619 return NULL;
5622 static void *
5623 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5625 ++*pos;
5626 return pfm_proc_start(m, pos);
5629 static void
5630 pfm_proc_stop(struct seq_file *m, void *v)
5634 static void
5635 pfm_proc_show_header(struct seq_file *m)
5637 struct list_head * pos;
5638 pfm_buffer_fmt_t * entry;
5639 unsigned long flags;
5641 seq_printf(m,
5642 "perfmon version : %u.%u\n"
5643 "model : %s\n"
5644 "fastctxsw : %s\n"
5645 "expert mode : %s\n"
5646 "ovfl_mask : 0x%lx\n"
5647 "PMU flags : 0x%x\n",
5648 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5649 pmu_conf->pmu_name,
5650 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5651 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5652 pmu_conf->ovfl_val,
5653 pmu_conf->flags);
5655 LOCK_PFS(flags);
5657 seq_printf(m,
5658 "proc_sessions : %u\n"
5659 "sys_sessions : %u\n"
5660 "sys_use_dbregs : %u\n"
5661 "ptrace_use_dbregs : %u\n",
5662 pfm_sessions.pfs_task_sessions,
5663 pfm_sessions.pfs_sys_sessions,
5664 pfm_sessions.pfs_sys_use_dbregs,
5665 pfm_sessions.pfs_ptrace_use_dbregs);
5667 UNLOCK_PFS(flags);
5669 spin_lock(&pfm_buffer_fmt_lock);
5671 list_for_each(pos, &pfm_buffer_fmt_list) {
5672 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5673 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5674 entry->fmt_uuid[0],
5675 entry->fmt_uuid[1],
5676 entry->fmt_uuid[2],
5677 entry->fmt_uuid[3],
5678 entry->fmt_uuid[4],
5679 entry->fmt_uuid[5],
5680 entry->fmt_uuid[6],
5681 entry->fmt_uuid[7],
5682 entry->fmt_uuid[8],
5683 entry->fmt_uuid[9],
5684 entry->fmt_uuid[10],
5685 entry->fmt_uuid[11],
5686 entry->fmt_uuid[12],
5687 entry->fmt_uuid[13],
5688 entry->fmt_uuid[14],
5689 entry->fmt_uuid[15],
5690 entry->fmt_name);
5692 spin_unlock(&pfm_buffer_fmt_lock);
5696 static int
5697 pfm_proc_show(struct seq_file *m, void *v)
5699 unsigned long psr;
5700 unsigned int i;
5701 int cpu;
5703 if (v == PFM_PROC_SHOW_HEADER) {
5704 pfm_proc_show_header(m);
5705 return 0;
5708 /* show info for CPU (v - 1) */
5710 cpu = (long)v - 1;
5711 seq_printf(m,
5712 "CPU%-2d overflow intrs : %lu\n"
5713 "CPU%-2d overflow cycles : %lu\n"
5714 "CPU%-2d overflow min : %lu\n"
5715 "CPU%-2d overflow max : %lu\n"
5716 "CPU%-2d smpl handler calls : %lu\n"
5717 "CPU%-2d smpl handler cycles : %lu\n"
5718 "CPU%-2d spurious intrs : %lu\n"
5719 "CPU%-2d replay intrs : %lu\n"
5720 "CPU%-2d syst_wide : %d\n"
5721 "CPU%-2d dcr_pp : %d\n"
5722 "CPU%-2d exclude idle : %d\n"
5723 "CPU%-2d owner : %d\n"
5724 "CPU%-2d context : %p\n"
5725 "CPU%-2d activations : %lu\n",
5726 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5727 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5728 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5729 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5730 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5731 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5732 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5733 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5734 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5735 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5736 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5737 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5738 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5739 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5741 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5743 psr = pfm_get_psr();
5745 ia64_srlz_d();
5747 seq_printf(m,
5748 "CPU%-2d psr : 0x%lx\n"
5749 "CPU%-2d pmc0 : 0x%lx\n",
5750 cpu, psr,
5751 cpu, ia64_get_pmc(0));
5753 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5754 if (PMC_IS_COUNTING(i) == 0) continue;
5755 seq_printf(m,
5756 "CPU%-2d pmc%u : 0x%lx\n"
5757 "CPU%-2d pmd%u : 0x%lx\n",
5758 cpu, i, ia64_get_pmc(i),
5759 cpu, i, ia64_get_pmd(i));
5762 return 0;
5765 struct seq_operations pfm_seq_ops = {
5766 .start = pfm_proc_start,
5767 .next = pfm_proc_next,
5768 .stop = pfm_proc_stop,
5769 .show = pfm_proc_show
5772 static int
5773 pfm_proc_open(struct inode *inode, struct file *file)
5775 return seq_open(file, &pfm_seq_ops);
5780 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5781 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5782 * is active or inactive based on mode. We must rely on the value in
5783 * local_cpu_data->pfm_syst_info
5785 void
5786 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5788 struct pt_regs *regs;
5789 unsigned long dcr;
5790 unsigned long dcr_pp;
5792 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5795 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5796 * on every CPU, so we can rely on the pid to identify the idle task.
5798 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5799 regs = task_pt_regs(task);
5800 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5801 return;
5804 * if monitoring has started
5806 if (dcr_pp) {
5807 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5809 * context switching in?
5811 if (is_ctxswin) {
5812 /* mask monitoring for the idle task */
5813 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5814 pfm_clear_psr_pp();
5815 ia64_srlz_i();
5816 return;
5819 * context switching out
5820 * restore monitoring for next task
5822 * Due to inlining this odd if-then-else construction generates
5823 * better code.
5825 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5826 pfm_set_psr_pp();
5827 ia64_srlz_i();
5831 #ifdef CONFIG_SMP
5833 static void
5834 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5836 struct task_struct *task = ctx->ctx_task;
5838 ia64_psr(regs)->up = 0;
5839 ia64_psr(regs)->sp = 1;
5841 if (GET_PMU_OWNER() == task) {
5842 DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
5843 SET_PMU_OWNER(NULL, NULL);
5847 * disconnect the task from the context and vice-versa
5849 PFM_SET_WORK_PENDING(task, 0);
5851 task->thread.pfm_context = NULL;
5852 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5854 DPRINT(("force cleanup for [%d]\n", task->pid));
5859 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5861 void
5862 pfm_save_regs(struct task_struct *task)
5864 pfm_context_t *ctx;
5865 struct thread_struct *t;
5866 unsigned long flags;
5867 u64 psr;
5870 ctx = PFM_GET_CTX(task);
5871 if (ctx == NULL) return;
5872 t = &task->thread;
5875 * we always come here with interrupts ALREADY disabled by
5876 * the scheduler. So we simply need to protect against concurrent
5877 * access, not CPU concurrency.
5879 flags = pfm_protect_ctx_ctxsw(ctx);
5881 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5882 struct pt_regs *regs = task_pt_regs(task);
5884 pfm_clear_psr_up();
5886 pfm_force_cleanup(ctx, regs);
5888 BUG_ON(ctx->ctx_smpl_hdr);
5890 pfm_unprotect_ctx_ctxsw(ctx, flags);
5892 pfm_context_free(ctx);
5893 return;
5897 * save current PSR: needed because we modify it
5899 ia64_srlz_d();
5900 psr = pfm_get_psr();
5902 BUG_ON(psr & (IA64_PSR_I));
5905 * stop monitoring:
5906 * This is the last instruction which may generate an overflow
5908 * We do not need to set psr.sp because, it is irrelevant in kernel.
5909 * It will be restored from ipsr when going back to user level
5911 pfm_clear_psr_up();
5914 * keep a copy of psr.up (for reload)
5916 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5919 * release ownership of this PMU.
5920 * PM interrupts are masked, so nothing
5921 * can happen.
5923 SET_PMU_OWNER(NULL, NULL);
5926 * we systematically save the PMD as we have no
5927 * guarantee we will be schedule at that same
5928 * CPU again.
5930 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
5933 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5934 * we will need it on the restore path to check
5935 * for pending overflow.
5937 t->pmcs[0] = ia64_get_pmc(0);
5940 * unfreeze PMU if had pending overflows
5942 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5945 * finally, allow context access.
5946 * interrupts will still be masked after this call.
5948 pfm_unprotect_ctx_ctxsw(ctx, flags);
5951 #else /* !CONFIG_SMP */
5952 void
5953 pfm_save_regs(struct task_struct *task)
5955 pfm_context_t *ctx;
5956 u64 psr;
5958 ctx = PFM_GET_CTX(task);
5959 if (ctx == NULL) return;
5962 * save current PSR: needed because we modify it
5964 psr = pfm_get_psr();
5966 BUG_ON(psr & (IA64_PSR_I));
5969 * stop monitoring:
5970 * This is the last instruction which may generate an overflow
5972 * We do not need to set psr.sp because, it is irrelevant in kernel.
5973 * It will be restored from ipsr when going back to user level
5975 pfm_clear_psr_up();
5978 * keep a copy of psr.up (for reload)
5980 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5983 static void
5984 pfm_lazy_save_regs (struct task_struct *task)
5986 pfm_context_t *ctx;
5987 struct thread_struct *t;
5988 unsigned long flags;
5990 { u64 psr = pfm_get_psr();
5991 BUG_ON(psr & IA64_PSR_UP);
5994 ctx = PFM_GET_CTX(task);
5995 t = &task->thread;
5998 * we need to mask PMU overflow here to
5999 * make sure that we maintain pmc0 until
6000 * we save it. overflow interrupts are
6001 * treated as spurious if there is no
6002 * owner.
6004 * XXX: I don't think this is necessary
6006 PROTECT_CTX(ctx,flags);
6009 * release ownership of this PMU.
6010 * must be done before we save the registers.
6012 * after this call any PMU interrupt is treated
6013 * as spurious.
6015 SET_PMU_OWNER(NULL, NULL);
6018 * save all the pmds we use
6020 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
6023 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6024 * it is needed to check for pended overflow
6025 * on the restore path
6027 t->pmcs[0] = ia64_get_pmc(0);
6030 * unfreeze PMU if had pending overflows
6032 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6035 * now get can unmask PMU interrupts, they will
6036 * be treated as purely spurious and we will not
6037 * lose any information
6039 UNPROTECT_CTX(ctx,flags);
6041 #endif /* CONFIG_SMP */
6043 #ifdef CONFIG_SMP
6045 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6047 void
6048 pfm_load_regs (struct task_struct *task)
6050 pfm_context_t *ctx;
6051 struct thread_struct *t;
6052 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6053 unsigned long flags;
6054 u64 psr, psr_up;
6055 int need_irq_resend;
6057 ctx = PFM_GET_CTX(task);
6058 if (unlikely(ctx == NULL)) return;
6060 BUG_ON(GET_PMU_OWNER());
6062 t = &task->thread;
6064 * possible on unload
6066 if (unlikely((t->flags & IA64_THREAD_PM_VALID) == 0)) return;
6069 * we always come here with interrupts ALREADY disabled by
6070 * the scheduler. So we simply need to protect against concurrent
6071 * access, not CPU concurrency.
6073 flags = pfm_protect_ctx_ctxsw(ctx);
6074 psr = pfm_get_psr();
6076 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6078 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6079 BUG_ON(psr & IA64_PSR_I);
6081 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6082 struct pt_regs *regs = task_pt_regs(task);
6084 BUG_ON(ctx->ctx_smpl_hdr);
6086 pfm_force_cleanup(ctx, regs);
6088 pfm_unprotect_ctx_ctxsw(ctx, flags);
6091 * this one (kmalloc'ed) is fine with interrupts disabled
6093 pfm_context_free(ctx);
6095 return;
6099 * we restore ALL the debug registers to avoid picking up
6100 * stale state.
6102 if (ctx->ctx_fl_using_dbreg) {
6103 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6104 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6107 * retrieve saved psr.up
6109 psr_up = ctx->ctx_saved_psr_up;
6112 * if we were the last user of the PMU on that CPU,
6113 * then nothing to do except restore psr
6115 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6118 * retrieve partial reload masks (due to user modifications)
6120 pmc_mask = ctx->ctx_reload_pmcs[0];
6121 pmd_mask = ctx->ctx_reload_pmds[0];
6123 } else {
6125 * To avoid leaking information to the user level when psr.sp=0,
6126 * we must reload ALL implemented pmds (even the ones we don't use).
6127 * In the kernel we only allow PFM_READ_PMDS on registers which
6128 * we initialized or requested (sampling) so there is no risk there.
6130 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6133 * ALL accessible PMCs are systematically reloaded, unused registers
6134 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6135 * up stale configuration.
6137 * PMC0 is never in the mask. It is always restored separately.
6139 pmc_mask = ctx->ctx_all_pmcs[0];
6142 * when context is MASKED, we will restore PMC with plm=0
6143 * and PMD with stale information, but that's ok, nothing
6144 * will be captured.
6146 * XXX: optimize here
6148 if (pmd_mask) pfm_restore_pmds(t->pmds, pmd_mask);
6149 if (pmc_mask) pfm_restore_pmcs(t->pmcs, pmc_mask);
6152 * check for pending overflow at the time the state
6153 * was saved.
6155 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6157 * reload pmc0 with the overflow information
6158 * On McKinley PMU, this will trigger a PMU interrupt
6160 ia64_set_pmc(0, t->pmcs[0]);
6161 ia64_srlz_d();
6162 t->pmcs[0] = 0UL;
6165 * will replay the PMU interrupt
6167 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6169 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6173 * we just did a reload, so we reset the partial reload fields
6175 ctx->ctx_reload_pmcs[0] = 0UL;
6176 ctx->ctx_reload_pmds[0] = 0UL;
6178 SET_LAST_CPU(ctx, smp_processor_id());
6181 * dump activation value for this PMU
6183 INC_ACTIVATION();
6185 * record current activation for this context
6187 SET_ACTIVATION(ctx);
6190 * establish new ownership.
6192 SET_PMU_OWNER(task, ctx);
6195 * restore the psr.up bit. measurement
6196 * is active again.
6197 * no PMU interrupt can happen at this point
6198 * because we still have interrupts disabled.
6200 if (likely(psr_up)) pfm_set_psr_up();
6203 * allow concurrent access to context
6205 pfm_unprotect_ctx_ctxsw(ctx, flags);
6207 #else /* !CONFIG_SMP */
6209 * reload PMU state for UP kernels
6210 * in 2.5 we come here with interrupts disabled
6212 void
6213 pfm_load_regs (struct task_struct *task)
6215 struct thread_struct *t;
6216 pfm_context_t *ctx;
6217 struct task_struct *owner;
6218 unsigned long pmd_mask, pmc_mask;
6219 u64 psr, psr_up;
6220 int need_irq_resend;
6222 owner = GET_PMU_OWNER();
6223 ctx = PFM_GET_CTX(task);
6224 t = &task->thread;
6225 psr = pfm_get_psr();
6227 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6228 BUG_ON(psr & IA64_PSR_I);
6231 * we restore ALL the debug registers to avoid picking up
6232 * stale state.
6234 * This must be done even when the task is still the owner
6235 * as the registers may have been modified via ptrace()
6236 * (not perfmon) by the previous task.
6238 if (ctx->ctx_fl_using_dbreg) {
6239 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6240 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6244 * retrieved saved psr.up
6246 psr_up = ctx->ctx_saved_psr_up;
6247 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6250 * short path, our state is still there, just
6251 * need to restore psr and we go
6253 * we do not touch either PMC nor PMD. the psr is not touched
6254 * by the overflow_handler. So we are safe w.r.t. to interrupt
6255 * concurrency even without interrupt masking.
6257 if (likely(owner == task)) {
6258 if (likely(psr_up)) pfm_set_psr_up();
6259 return;
6263 * someone else is still using the PMU, first push it out and
6264 * then we'll be able to install our stuff !
6266 * Upon return, there will be no owner for the current PMU
6268 if (owner) pfm_lazy_save_regs(owner);
6271 * To avoid leaking information to the user level when psr.sp=0,
6272 * we must reload ALL implemented pmds (even the ones we don't use).
6273 * In the kernel we only allow PFM_READ_PMDS on registers which
6274 * we initialized or requested (sampling) so there is no risk there.
6276 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6279 * ALL accessible PMCs are systematically reloaded, unused registers
6280 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6281 * up stale configuration.
6283 * PMC0 is never in the mask. It is always restored separately
6285 pmc_mask = ctx->ctx_all_pmcs[0];
6287 pfm_restore_pmds(t->pmds, pmd_mask);
6288 pfm_restore_pmcs(t->pmcs, pmc_mask);
6291 * check for pending overflow at the time the state
6292 * was saved.
6294 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6296 * reload pmc0 with the overflow information
6297 * On McKinley PMU, this will trigger a PMU interrupt
6299 ia64_set_pmc(0, t->pmcs[0]);
6300 ia64_srlz_d();
6302 t->pmcs[0] = 0UL;
6305 * will replay the PMU interrupt
6307 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6309 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6313 * establish new ownership.
6315 SET_PMU_OWNER(task, ctx);
6318 * restore the psr.up bit. measurement
6319 * is active again.
6320 * no PMU interrupt can happen at this point
6321 * because we still have interrupts disabled.
6323 if (likely(psr_up)) pfm_set_psr_up();
6325 #endif /* CONFIG_SMP */
6328 * this function assumes monitoring is stopped
6330 static void
6331 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6333 u64 pmc0;
6334 unsigned long mask2, val, pmd_val, ovfl_val;
6335 int i, can_access_pmu = 0;
6336 int is_self;
6339 * is the caller the task being monitored (or which initiated the
6340 * session for system wide measurements)
6342 is_self = ctx->ctx_task == task ? 1 : 0;
6345 * can access PMU is task is the owner of the PMU state on the current CPU
6346 * or if we are running on the CPU bound to the context in system-wide mode
6347 * (that is not necessarily the task the context is attached to in this mode).
6348 * In system-wide we always have can_access_pmu true because a task running on an
6349 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6351 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6352 if (can_access_pmu) {
6354 * Mark the PMU as not owned
6355 * This will cause the interrupt handler to do nothing in case an overflow
6356 * interrupt was in-flight
6357 * This also guarantees that pmc0 will contain the final state
6358 * It virtually gives us full control on overflow processing from that point
6359 * on.
6361 SET_PMU_OWNER(NULL, NULL);
6362 DPRINT(("releasing ownership\n"));
6365 * read current overflow status:
6367 * we are guaranteed to read the final stable state
6369 ia64_srlz_d();
6370 pmc0 = ia64_get_pmc(0); /* slow */
6373 * reset freeze bit, overflow status information destroyed
6375 pfm_unfreeze_pmu();
6376 } else {
6377 pmc0 = task->thread.pmcs[0];
6379 * clear whatever overflow status bits there were
6381 task->thread.pmcs[0] = 0;
6383 ovfl_val = pmu_conf->ovfl_val;
6385 * we save all the used pmds
6386 * we take care of overflows for counting PMDs
6388 * XXX: sampling situation is not taken into account here
6390 mask2 = ctx->ctx_used_pmds[0];
6392 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6394 for (i = 0; mask2; i++, mask2>>=1) {
6396 /* skip non used pmds */
6397 if ((mask2 & 0x1) == 0) continue;
6400 * can access PMU always true in system wide mode
6402 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : task->thread.pmds[i];
6404 if (PMD_IS_COUNTING(i)) {
6405 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6406 task->pid,
6408 ctx->ctx_pmds[i].val,
6409 val & ovfl_val));
6412 * we rebuild the full 64 bit value of the counter
6414 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6417 * now everything is in ctx_pmds[] and we need
6418 * to clear the saved context from save_regs() such that
6419 * pfm_read_pmds() gets the correct value
6421 pmd_val = 0UL;
6424 * take care of overflow inline
6426 if (pmc0 & (1UL << i)) {
6427 val += 1 + ovfl_val;
6428 DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
6432 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
6434 if (is_self) task->thread.pmds[i] = pmd_val;
6436 ctx->ctx_pmds[i].val = val;
6440 static struct irqaction perfmon_irqaction = {
6441 .handler = pfm_interrupt_handler,
6442 .flags = IRQF_DISABLED,
6443 .name = "perfmon"
6446 static void
6447 pfm_alt_save_pmu_state(void *data)
6449 struct pt_regs *regs;
6451 regs = task_pt_regs(current);
6453 DPRINT(("called\n"));
6456 * should not be necessary but
6457 * let's take not risk
6459 pfm_clear_psr_up();
6460 pfm_clear_psr_pp();
6461 ia64_psr(regs)->pp = 0;
6464 * This call is required
6465 * May cause a spurious interrupt on some processors
6467 pfm_freeze_pmu();
6469 ia64_srlz_d();
6472 void
6473 pfm_alt_restore_pmu_state(void *data)
6475 struct pt_regs *regs;
6477 regs = task_pt_regs(current);
6479 DPRINT(("called\n"));
6482 * put PMU back in state expected
6483 * by perfmon
6485 pfm_clear_psr_up();
6486 pfm_clear_psr_pp();
6487 ia64_psr(regs)->pp = 0;
6490 * perfmon runs with PMU unfrozen at all times
6492 pfm_unfreeze_pmu();
6494 ia64_srlz_d();
6498 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6500 int ret, i;
6501 int reserve_cpu;
6503 /* some sanity checks */
6504 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6506 /* do the easy test first */
6507 if (pfm_alt_intr_handler) return -EBUSY;
6509 /* one at a time in the install or remove, just fail the others */
6510 if (!spin_trylock(&pfm_alt_install_check)) {
6511 return -EBUSY;
6514 /* reserve our session */
6515 for_each_online_cpu(reserve_cpu) {
6516 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6517 if (ret) goto cleanup_reserve;
6520 /* save the current system wide pmu states */
6521 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
6522 if (ret) {
6523 DPRINT(("on_each_cpu() failed: %d\n", ret));
6524 goto cleanup_reserve;
6527 /* officially change to the alternate interrupt handler */
6528 pfm_alt_intr_handler = hdl;
6530 spin_unlock(&pfm_alt_install_check);
6532 return 0;
6534 cleanup_reserve:
6535 for_each_online_cpu(i) {
6536 /* don't unreserve more than we reserved */
6537 if (i >= reserve_cpu) break;
6539 pfm_unreserve_session(NULL, 1, i);
6542 spin_unlock(&pfm_alt_install_check);
6544 return ret;
6546 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6549 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6551 int i;
6552 int ret;
6554 if (hdl == NULL) return -EINVAL;
6556 /* cannot remove someone else's handler! */
6557 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6559 /* one at a time in the install or remove, just fail the others */
6560 if (!spin_trylock(&pfm_alt_install_check)) {
6561 return -EBUSY;
6564 pfm_alt_intr_handler = NULL;
6566 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
6567 if (ret) {
6568 DPRINT(("on_each_cpu() failed: %d\n", ret));
6571 for_each_online_cpu(i) {
6572 pfm_unreserve_session(NULL, 1, i);
6575 spin_unlock(&pfm_alt_install_check);
6577 return 0;
6579 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6582 * perfmon initialization routine, called from the initcall() table
6584 static int init_pfm_fs(void);
6586 static int __init
6587 pfm_probe_pmu(void)
6589 pmu_config_t **p;
6590 int family;
6592 family = local_cpu_data->family;
6593 p = pmu_confs;
6595 while(*p) {
6596 if ((*p)->probe) {
6597 if ((*p)->probe() == 0) goto found;
6598 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6599 goto found;
6601 p++;
6603 return -1;
6604 found:
6605 pmu_conf = *p;
6606 return 0;
6609 static struct file_operations pfm_proc_fops = {
6610 .open = pfm_proc_open,
6611 .read = seq_read,
6612 .llseek = seq_lseek,
6613 .release = seq_release,
6616 int __init
6617 pfm_init(void)
6619 unsigned int n, n_counters, i;
6621 printk("perfmon: version %u.%u IRQ %u\n",
6622 PFM_VERSION_MAJ,
6623 PFM_VERSION_MIN,
6624 IA64_PERFMON_VECTOR);
6626 if (pfm_probe_pmu()) {
6627 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6628 local_cpu_data->family);
6629 return -ENODEV;
6633 * compute the number of implemented PMD/PMC from the
6634 * description tables
6636 n = 0;
6637 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6638 if (PMC_IS_IMPL(i) == 0) continue;
6639 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6640 n++;
6642 pmu_conf->num_pmcs = n;
6644 n = 0; n_counters = 0;
6645 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6646 if (PMD_IS_IMPL(i) == 0) continue;
6647 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6648 n++;
6649 if (PMD_IS_COUNTING(i)) n_counters++;
6651 pmu_conf->num_pmds = n;
6652 pmu_conf->num_counters = n_counters;
6655 * sanity checks on the number of debug registers
6657 if (pmu_conf->use_rr_dbregs) {
6658 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6659 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6660 pmu_conf = NULL;
6661 return -1;
6663 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6664 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6665 pmu_conf = NULL;
6666 return -1;
6670 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6671 pmu_conf->pmu_name,
6672 pmu_conf->num_pmcs,
6673 pmu_conf->num_pmds,
6674 pmu_conf->num_counters,
6675 ffz(pmu_conf->ovfl_val));
6677 /* sanity check */
6678 if (pmu_conf->num_pmds >= IA64_NUM_PMD_REGS || pmu_conf->num_pmcs >= IA64_NUM_PMC_REGS) {
6679 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6680 pmu_conf = NULL;
6681 return -1;
6685 * create /proc/perfmon (mostly for debugging purposes)
6687 perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
6688 if (perfmon_dir == NULL) {
6689 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6690 pmu_conf = NULL;
6691 return -1;
6694 * install customized file operations for /proc/perfmon entry
6696 perfmon_dir->proc_fops = &pfm_proc_fops;
6699 * create /proc/sys/kernel/perfmon (for debugging purposes)
6701 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root, 0);
6704 * initialize all our spinlocks
6706 spin_lock_init(&pfm_sessions.pfs_lock);
6707 spin_lock_init(&pfm_buffer_fmt_lock);
6709 init_pfm_fs();
6711 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6713 return 0;
6716 __initcall(pfm_init);
6719 * this function is called before pfm_init()
6721 void
6722 pfm_init_percpu (void)
6724 static int first_time=1;
6726 * make sure no measurement is active
6727 * (may inherit programmed PMCs from EFI).
6729 pfm_clear_psr_pp();
6730 pfm_clear_psr_up();
6733 * we run with the PMU not frozen at all times
6735 pfm_unfreeze_pmu();
6737 if (first_time) {
6738 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6739 first_time=0;
6742 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6743 ia64_srlz_d();
6747 * used for debug purposes only
6749 void
6750 dump_pmu_state(const char *from)
6752 struct task_struct *task;
6753 struct thread_struct *t;
6754 struct pt_regs *regs;
6755 pfm_context_t *ctx;
6756 unsigned long psr, dcr, info, flags;
6757 int i, this_cpu;
6759 local_irq_save(flags);
6761 this_cpu = smp_processor_id();
6762 regs = task_pt_regs(current);
6763 info = PFM_CPUINFO_GET();
6764 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6766 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6767 local_irq_restore(flags);
6768 return;
6771 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6772 this_cpu,
6773 from,
6774 current->pid,
6775 regs->cr_iip,
6776 current->comm);
6778 task = GET_PMU_OWNER();
6779 ctx = GET_PMU_CTX();
6781 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
6783 psr = pfm_get_psr();
6785 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6786 this_cpu,
6787 ia64_get_pmc(0),
6788 psr & IA64_PSR_PP ? 1 : 0,
6789 psr & IA64_PSR_UP ? 1 : 0,
6790 dcr & IA64_DCR_PP ? 1 : 0,
6791 info,
6792 ia64_psr(regs)->up,
6793 ia64_psr(regs)->pp);
6795 ia64_psr(regs)->up = 0;
6796 ia64_psr(regs)->pp = 0;
6798 t = &current->thread;
6800 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6801 if (PMC_IS_IMPL(i) == 0) continue;
6802 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, t->pmcs[i]);
6805 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6806 if (PMD_IS_IMPL(i) == 0) continue;
6807 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, t->pmds[i]);
6810 if (ctx) {
6811 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6812 this_cpu,
6813 ctx->ctx_state,
6814 ctx->ctx_smpl_vaddr,
6815 ctx->ctx_smpl_hdr,
6816 ctx->ctx_msgq_head,
6817 ctx->ctx_msgq_tail,
6818 ctx->ctx_saved_psr_up);
6820 local_irq_restore(flags);
6824 * called from process.c:copy_thread(). task is new child.
6826 void
6827 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6829 struct thread_struct *thread;
6831 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
6833 thread = &task->thread;
6836 * cut links inherited from parent (current)
6838 thread->pfm_context = NULL;
6840 PFM_SET_WORK_PENDING(task, 0);
6843 * the psr bits are already set properly in copy_threads()
6846 #else /* !CONFIG_PERFMON */
6847 asmlinkage long
6848 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6850 return -ENOSYS;
6852 #endif /* CONFIG_PERFMON */