vmscan: split LRU lists into anon & file sets
[linux-2.6/zen-sources.git] / mm / vmscan.c
blobd10d2f9a33f39610bea63361b5c7340f2848f019
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
43 #include <asm/tlbflush.h>
44 #include <asm/div64.h>
46 #include <linux/swapops.h>
48 #include "internal.h"
50 struct scan_control {
51 /* Incremented by the number of inactive pages that were scanned */
52 unsigned long nr_scanned;
54 /* This context's GFP mask */
55 gfp_t gfp_mask;
57 int may_writepage;
59 /* Can pages be swapped as part of reclaim? */
60 int may_swap;
62 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
63 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
64 * In this context, it doesn't matter that we scan the
65 * whole list at once. */
66 int swap_cluster_max;
68 int swappiness;
70 int all_unreclaimable;
72 int order;
74 /* Which cgroup do we reclaim from */
75 struct mem_cgroup *mem_cgroup;
77 /* Pluggable isolate pages callback */
78 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
79 unsigned long *scanned, int order, int mode,
80 struct zone *z, struct mem_cgroup *mem_cont,
81 int active, int file);
84 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
86 #ifdef ARCH_HAS_PREFETCH
87 #define prefetch_prev_lru_page(_page, _base, _field) \
88 do { \
89 if ((_page)->lru.prev != _base) { \
90 struct page *prev; \
92 prev = lru_to_page(&(_page->lru)); \
93 prefetch(&prev->_field); \
94 } \
95 } while (0)
96 #else
97 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
98 #endif
100 #ifdef ARCH_HAS_PREFETCHW
101 #define prefetchw_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetchw(&prev->_field); \
109 } while (0)
110 #else
111 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
115 * From 0 .. 100. Higher means more swappy.
117 int vm_swappiness = 60;
118 long vm_total_pages; /* The total number of pages which the VM controls */
120 static LIST_HEAD(shrinker_list);
121 static DECLARE_RWSEM(shrinker_rwsem);
123 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
124 #define scan_global_lru(sc) (!(sc)->mem_cgroup)
125 #else
126 #define scan_global_lru(sc) (1)
127 #endif
130 * Add a shrinker callback to be called from the vm
132 void register_shrinker(struct shrinker *shrinker)
134 shrinker->nr = 0;
135 down_write(&shrinker_rwsem);
136 list_add_tail(&shrinker->list, &shrinker_list);
137 up_write(&shrinker_rwsem);
139 EXPORT_SYMBOL(register_shrinker);
142 * Remove one
144 void unregister_shrinker(struct shrinker *shrinker)
146 down_write(&shrinker_rwsem);
147 list_del(&shrinker->list);
148 up_write(&shrinker_rwsem);
150 EXPORT_SYMBOL(unregister_shrinker);
152 #define SHRINK_BATCH 128
154 * Call the shrink functions to age shrinkable caches
156 * Here we assume it costs one seek to replace a lru page and that it also
157 * takes a seek to recreate a cache object. With this in mind we age equal
158 * percentages of the lru and ageable caches. This should balance the seeks
159 * generated by these structures.
161 * If the vm encountered mapped pages on the LRU it increase the pressure on
162 * slab to avoid swapping.
164 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
166 * `lru_pages' represents the number of on-LRU pages in all the zones which
167 * are eligible for the caller's allocation attempt. It is used for balancing
168 * slab reclaim versus page reclaim.
170 * Returns the number of slab objects which we shrunk.
172 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
173 unsigned long lru_pages)
175 struct shrinker *shrinker;
176 unsigned long ret = 0;
178 if (scanned == 0)
179 scanned = SWAP_CLUSTER_MAX;
181 if (!down_read_trylock(&shrinker_rwsem))
182 return 1; /* Assume we'll be able to shrink next time */
184 list_for_each_entry(shrinker, &shrinker_list, list) {
185 unsigned long long delta;
186 unsigned long total_scan;
187 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
189 delta = (4 * scanned) / shrinker->seeks;
190 delta *= max_pass;
191 do_div(delta, lru_pages + 1);
192 shrinker->nr += delta;
193 if (shrinker->nr < 0) {
194 printk(KERN_ERR "%s: nr=%ld\n",
195 __func__, shrinker->nr);
196 shrinker->nr = max_pass;
200 * Avoid risking looping forever due to too large nr value:
201 * never try to free more than twice the estimate number of
202 * freeable entries.
204 if (shrinker->nr > max_pass * 2)
205 shrinker->nr = max_pass * 2;
207 total_scan = shrinker->nr;
208 shrinker->nr = 0;
210 while (total_scan >= SHRINK_BATCH) {
211 long this_scan = SHRINK_BATCH;
212 int shrink_ret;
213 int nr_before;
215 nr_before = (*shrinker->shrink)(0, gfp_mask);
216 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
217 if (shrink_ret == -1)
218 break;
219 if (shrink_ret < nr_before)
220 ret += nr_before - shrink_ret;
221 count_vm_events(SLABS_SCANNED, this_scan);
222 total_scan -= this_scan;
224 cond_resched();
227 shrinker->nr += total_scan;
229 up_read(&shrinker_rwsem);
230 return ret;
233 /* Called without lock on whether page is mapped, so answer is unstable */
234 static inline int page_mapping_inuse(struct page *page)
236 struct address_space *mapping;
238 /* Page is in somebody's page tables. */
239 if (page_mapped(page))
240 return 1;
242 /* Be more reluctant to reclaim swapcache than pagecache */
243 if (PageSwapCache(page))
244 return 1;
246 mapping = page_mapping(page);
247 if (!mapping)
248 return 0;
250 /* File is mmap'd by somebody? */
251 return mapping_mapped(mapping);
254 static inline int is_page_cache_freeable(struct page *page)
256 return page_count(page) - !!PagePrivate(page) == 2;
259 static int may_write_to_queue(struct backing_dev_info *bdi)
261 if (current->flags & PF_SWAPWRITE)
262 return 1;
263 if (!bdi_write_congested(bdi))
264 return 1;
265 if (bdi == current->backing_dev_info)
266 return 1;
267 return 0;
271 * We detected a synchronous write error writing a page out. Probably
272 * -ENOSPC. We need to propagate that into the address_space for a subsequent
273 * fsync(), msync() or close().
275 * The tricky part is that after writepage we cannot touch the mapping: nothing
276 * prevents it from being freed up. But we have a ref on the page and once
277 * that page is locked, the mapping is pinned.
279 * We're allowed to run sleeping lock_page() here because we know the caller has
280 * __GFP_FS.
282 static void handle_write_error(struct address_space *mapping,
283 struct page *page, int error)
285 lock_page(page);
286 if (page_mapping(page) == mapping)
287 mapping_set_error(mapping, error);
288 unlock_page(page);
291 /* Request for sync pageout. */
292 enum pageout_io {
293 PAGEOUT_IO_ASYNC,
294 PAGEOUT_IO_SYNC,
297 /* possible outcome of pageout() */
298 typedef enum {
299 /* failed to write page out, page is locked */
300 PAGE_KEEP,
301 /* move page to the active list, page is locked */
302 PAGE_ACTIVATE,
303 /* page has been sent to the disk successfully, page is unlocked */
304 PAGE_SUCCESS,
305 /* page is clean and locked */
306 PAGE_CLEAN,
307 } pageout_t;
310 * pageout is called by shrink_page_list() for each dirty page.
311 * Calls ->writepage().
313 static pageout_t pageout(struct page *page, struct address_space *mapping,
314 enum pageout_io sync_writeback)
317 * If the page is dirty, only perform writeback if that write
318 * will be non-blocking. To prevent this allocation from being
319 * stalled by pagecache activity. But note that there may be
320 * stalls if we need to run get_block(). We could test
321 * PagePrivate for that.
323 * If this process is currently in generic_file_write() against
324 * this page's queue, we can perform writeback even if that
325 * will block.
327 * If the page is swapcache, write it back even if that would
328 * block, for some throttling. This happens by accident, because
329 * swap_backing_dev_info is bust: it doesn't reflect the
330 * congestion state of the swapdevs. Easy to fix, if needed.
331 * See swapfile.c:page_queue_congested().
333 if (!is_page_cache_freeable(page))
334 return PAGE_KEEP;
335 if (!mapping) {
337 * Some data journaling orphaned pages can have
338 * page->mapping == NULL while being dirty with clean buffers.
340 if (PagePrivate(page)) {
341 if (try_to_free_buffers(page)) {
342 ClearPageDirty(page);
343 printk("%s: orphaned page\n", __func__);
344 return PAGE_CLEAN;
347 return PAGE_KEEP;
349 if (mapping->a_ops->writepage == NULL)
350 return PAGE_ACTIVATE;
351 if (!may_write_to_queue(mapping->backing_dev_info))
352 return PAGE_KEEP;
354 if (clear_page_dirty_for_io(page)) {
355 int res;
356 struct writeback_control wbc = {
357 .sync_mode = WB_SYNC_NONE,
358 .nr_to_write = SWAP_CLUSTER_MAX,
359 .range_start = 0,
360 .range_end = LLONG_MAX,
361 .nonblocking = 1,
362 .for_reclaim = 1,
365 SetPageReclaim(page);
366 res = mapping->a_ops->writepage(page, &wbc);
367 if (res < 0)
368 handle_write_error(mapping, page, res);
369 if (res == AOP_WRITEPAGE_ACTIVATE) {
370 ClearPageReclaim(page);
371 return PAGE_ACTIVATE;
375 * Wait on writeback if requested to. This happens when
376 * direct reclaiming a large contiguous area and the
377 * first attempt to free a range of pages fails.
379 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
380 wait_on_page_writeback(page);
382 if (!PageWriteback(page)) {
383 /* synchronous write or broken a_ops? */
384 ClearPageReclaim(page);
386 inc_zone_page_state(page, NR_VMSCAN_WRITE);
387 return PAGE_SUCCESS;
390 return PAGE_CLEAN;
394 * Same as remove_mapping, but if the page is removed from the mapping, it
395 * gets returned with a refcount of 0.
397 static int __remove_mapping(struct address_space *mapping, struct page *page)
399 BUG_ON(!PageLocked(page));
400 BUG_ON(mapping != page_mapping(page));
402 spin_lock_irq(&mapping->tree_lock);
404 * The non racy check for a busy page.
406 * Must be careful with the order of the tests. When someone has
407 * a ref to the page, it may be possible that they dirty it then
408 * drop the reference. So if PageDirty is tested before page_count
409 * here, then the following race may occur:
411 * get_user_pages(&page);
412 * [user mapping goes away]
413 * write_to(page);
414 * !PageDirty(page) [good]
415 * SetPageDirty(page);
416 * put_page(page);
417 * !page_count(page) [good, discard it]
419 * [oops, our write_to data is lost]
421 * Reversing the order of the tests ensures such a situation cannot
422 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
423 * load is not satisfied before that of page->_count.
425 * Note that if SetPageDirty is always performed via set_page_dirty,
426 * and thus under tree_lock, then this ordering is not required.
428 if (!page_freeze_refs(page, 2))
429 goto cannot_free;
430 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
431 if (unlikely(PageDirty(page))) {
432 page_unfreeze_refs(page, 2);
433 goto cannot_free;
436 if (PageSwapCache(page)) {
437 swp_entry_t swap = { .val = page_private(page) };
438 __delete_from_swap_cache(page);
439 spin_unlock_irq(&mapping->tree_lock);
440 swap_free(swap);
441 } else {
442 __remove_from_page_cache(page);
443 spin_unlock_irq(&mapping->tree_lock);
446 return 1;
448 cannot_free:
449 spin_unlock_irq(&mapping->tree_lock);
450 return 0;
454 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
455 * someone else has a ref on the page, abort and return 0. If it was
456 * successfully detached, return 1. Assumes the caller has a single ref on
457 * this page.
459 int remove_mapping(struct address_space *mapping, struct page *page)
461 if (__remove_mapping(mapping, page)) {
463 * Unfreezing the refcount with 1 rather than 2 effectively
464 * drops the pagecache ref for us without requiring another
465 * atomic operation.
467 page_unfreeze_refs(page, 1);
468 return 1;
470 return 0;
474 * shrink_page_list() returns the number of reclaimed pages
476 static unsigned long shrink_page_list(struct list_head *page_list,
477 struct scan_control *sc,
478 enum pageout_io sync_writeback)
480 LIST_HEAD(ret_pages);
481 struct pagevec freed_pvec;
482 int pgactivate = 0;
483 unsigned long nr_reclaimed = 0;
485 cond_resched();
487 pagevec_init(&freed_pvec, 1);
488 while (!list_empty(page_list)) {
489 struct address_space *mapping;
490 struct page *page;
491 int may_enter_fs;
492 int referenced;
494 cond_resched();
496 page = lru_to_page(page_list);
497 list_del(&page->lru);
499 if (!trylock_page(page))
500 goto keep;
502 VM_BUG_ON(PageActive(page));
504 sc->nr_scanned++;
506 if (!sc->may_swap && page_mapped(page))
507 goto keep_locked;
509 /* Double the slab pressure for mapped and swapcache pages */
510 if (page_mapped(page) || PageSwapCache(page))
511 sc->nr_scanned++;
513 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
514 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
516 if (PageWriteback(page)) {
518 * Synchronous reclaim is performed in two passes,
519 * first an asynchronous pass over the list to
520 * start parallel writeback, and a second synchronous
521 * pass to wait for the IO to complete. Wait here
522 * for any page for which writeback has already
523 * started.
525 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
526 wait_on_page_writeback(page);
527 else
528 goto keep_locked;
531 referenced = page_referenced(page, 1, sc->mem_cgroup);
532 /* In active use or really unfreeable? Activate it. */
533 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
534 referenced && page_mapping_inuse(page))
535 goto activate_locked;
537 #ifdef CONFIG_SWAP
539 * Anonymous process memory has backing store?
540 * Try to allocate it some swap space here.
542 if (PageAnon(page) && !PageSwapCache(page))
543 if (!add_to_swap(page, GFP_ATOMIC))
544 goto activate_locked;
545 #endif /* CONFIG_SWAP */
547 mapping = page_mapping(page);
550 * The page is mapped into the page tables of one or more
551 * processes. Try to unmap it here.
553 if (page_mapped(page) && mapping) {
554 switch (try_to_unmap(page, 0)) {
555 case SWAP_FAIL:
556 goto activate_locked;
557 case SWAP_AGAIN:
558 goto keep_locked;
559 case SWAP_SUCCESS:
560 ; /* try to free the page below */
564 if (PageDirty(page)) {
565 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
566 goto keep_locked;
567 if (!may_enter_fs)
568 goto keep_locked;
569 if (!sc->may_writepage)
570 goto keep_locked;
572 /* Page is dirty, try to write it out here */
573 switch (pageout(page, mapping, sync_writeback)) {
574 case PAGE_KEEP:
575 goto keep_locked;
576 case PAGE_ACTIVATE:
577 goto activate_locked;
578 case PAGE_SUCCESS:
579 if (PageWriteback(page) || PageDirty(page))
580 goto keep;
582 * A synchronous write - probably a ramdisk. Go
583 * ahead and try to reclaim the page.
585 if (!trylock_page(page))
586 goto keep;
587 if (PageDirty(page) || PageWriteback(page))
588 goto keep_locked;
589 mapping = page_mapping(page);
590 case PAGE_CLEAN:
591 ; /* try to free the page below */
596 * If the page has buffers, try to free the buffer mappings
597 * associated with this page. If we succeed we try to free
598 * the page as well.
600 * We do this even if the page is PageDirty().
601 * try_to_release_page() does not perform I/O, but it is
602 * possible for a page to have PageDirty set, but it is actually
603 * clean (all its buffers are clean). This happens if the
604 * buffers were written out directly, with submit_bh(). ext3
605 * will do this, as well as the blockdev mapping.
606 * try_to_release_page() will discover that cleanness and will
607 * drop the buffers and mark the page clean - it can be freed.
609 * Rarely, pages can have buffers and no ->mapping. These are
610 * the pages which were not successfully invalidated in
611 * truncate_complete_page(). We try to drop those buffers here
612 * and if that worked, and the page is no longer mapped into
613 * process address space (page_count == 1) it can be freed.
614 * Otherwise, leave the page on the LRU so it is swappable.
616 if (PagePrivate(page)) {
617 if (!try_to_release_page(page, sc->gfp_mask))
618 goto activate_locked;
619 if (!mapping && page_count(page) == 1) {
620 unlock_page(page);
621 if (put_page_testzero(page))
622 goto free_it;
623 else {
625 * rare race with speculative reference.
626 * the speculative reference will free
627 * this page shortly, so we may
628 * increment nr_reclaimed here (and
629 * leave it off the LRU).
631 nr_reclaimed++;
632 continue;
637 if (!mapping || !__remove_mapping(mapping, page))
638 goto keep_locked;
640 unlock_page(page);
641 free_it:
642 nr_reclaimed++;
643 if (!pagevec_add(&freed_pvec, page)) {
644 __pagevec_free(&freed_pvec);
645 pagevec_reinit(&freed_pvec);
647 continue;
649 activate_locked:
650 /* Not a candidate for swapping, so reclaim swap space. */
651 if (PageSwapCache(page) && vm_swap_full())
652 remove_exclusive_swap_page_ref(page);
653 SetPageActive(page);
654 pgactivate++;
655 keep_locked:
656 unlock_page(page);
657 keep:
658 list_add(&page->lru, &ret_pages);
659 VM_BUG_ON(PageLRU(page));
661 list_splice(&ret_pages, page_list);
662 if (pagevec_count(&freed_pvec))
663 __pagevec_free(&freed_pvec);
664 count_vm_events(PGACTIVATE, pgactivate);
665 return nr_reclaimed;
668 /* LRU Isolation modes. */
669 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
670 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
671 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
674 * Attempt to remove the specified page from its LRU. Only take this page
675 * if it is of the appropriate PageActive status. Pages which are being
676 * freed elsewhere are also ignored.
678 * page: page to consider
679 * mode: one of the LRU isolation modes defined above
681 * returns 0 on success, -ve errno on failure.
683 int __isolate_lru_page(struct page *page, int mode, int file)
685 int ret = -EINVAL;
687 /* Only take pages on the LRU. */
688 if (!PageLRU(page))
689 return ret;
692 * When checking the active state, we need to be sure we are
693 * dealing with comparible boolean values. Take the logical not
694 * of each.
696 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
697 return ret;
699 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
700 return ret;
702 ret = -EBUSY;
703 if (likely(get_page_unless_zero(page))) {
705 * Be careful not to clear PageLRU until after we're
706 * sure the page is not being freed elsewhere -- the
707 * page release code relies on it.
709 ClearPageLRU(page);
710 ret = 0;
713 return ret;
717 * zone->lru_lock is heavily contended. Some of the functions that
718 * shrink the lists perform better by taking out a batch of pages
719 * and working on them outside the LRU lock.
721 * For pagecache intensive workloads, this function is the hottest
722 * spot in the kernel (apart from copy_*_user functions).
724 * Appropriate locks must be held before calling this function.
726 * @nr_to_scan: The number of pages to look through on the list.
727 * @src: The LRU list to pull pages off.
728 * @dst: The temp list to put pages on to.
729 * @scanned: The number of pages that were scanned.
730 * @order: The caller's attempted allocation order
731 * @mode: One of the LRU isolation modes
732 * @file: True [1] if isolating file [!anon] pages
734 * returns how many pages were moved onto *@dst.
736 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
737 struct list_head *src, struct list_head *dst,
738 unsigned long *scanned, int order, int mode, int file)
740 unsigned long nr_taken = 0;
741 unsigned long scan;
743 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
744 struct page *page;
745 unsigned long pfn;
746 unsigned long end_pfn;
747 unsigned long page_pfn;
748 int zone_id;
750 page = lru_to_page(src);
751 prefetchw_prev_lru_page(page, src, flags);
753 VM_BUG_ON(!PageLRU(page));
755 switch (__isolate_lru_page(page, mode, file)) {
756 case 0:
757 list_move(&page->lru, dst);
758 nr_taken++;
759 break;
761 case -EBUSY:
762 /* else it is being freed elsewhere */
763 list_move(&page->lru, src);
764 continue;
766 default:
767 BUG();
770 if (!order)
771 continue;
774 * Attempt to take all pages in the order aligned region
775 * surrounding the tag page. Only take those pages of
776 * the same active state as that tag page. We may safely
777 * round the target page pfn down to the requested order
778 * as the mem_map is guarenteed valid out to MAX_ORDER,
779 * where that page is in a different zone we will detect
780 * it from its zone id and abort this block scan.
782 zone_id = page_zone_id(page);
783 page_pfn = page_to_pfn(page);
784 pfn = page_pfn & ~((1 << order) - 1);
785 end_pfn = pfn + (1 << order);
786 for (; pfn < end_pfn; pfn++) {
787 struct page *cursor_page;
789 /* The target page is in the block, ignore it. */
790 if (unlikely(pfn == page_pfn))
791 continue;
793 /* Avoid holes within the zone. */
794 if (unlikely(!pfn_valid_within(pfn)))
795 break;
797 cursor_page = pfn_to_page(pfn);
799 /* Check that we have not crossed a zone boundary. */
800 if (unlikely(page_zone_id(cursor_page) != zone_id))
801 continue;
802 switch (__isolate_lru_page(cursor_page, mode, file)) {
803 case 0:
804 list_move(&cursor_page->lru, dst);
805 nr_taken++;
806 scan++;
807 break;
809 case -EBUSY:
810 /* else it is being freed elsewhere */
811 list_move(&cursor_page->lru, src);
812 default:
813 break;
818 *scanned = scan;
819 return nr_taken;
822 static unsigned long isolate_pages_global(unsigned long nr,
823 struct list_head *dst,
824 unsigned long *scanned, int order,
825 int mode, struct zone *z,
826 struct mem_cgroup *mem_cont,
827 int active, int file)
829 int lru = LRU_BASE;
830 if (active)
831 lru += LRU_ACTIVE;
832 if (file)
833 lru += LRU_FILE;
834 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
835 mode, !!file);
839 * clear_active_flags() is a helper for shrink_active_list(), clearing
840 * any active bits from the pages in the list.
842 static unsigned long clear_active_flags(struct list_head *page_list,
843 unsigned int *count)
845 int nr_active = 0;
846 int lru;
847 struct page *page;
849 list_for_each_entry(page, page_list, lru) {
850 lru = page_is_file_cache(page);
851 if (PageActive(page)) {
852 lru += LRU_ACTIVE;
853 ClearPageActive(page);
854 nr_active++;
856 count[lru]++;
859 return nr_active;
863 * isolate_lru_page - tries to isolate a page from its LRU list
864 * @page: page to isolate from its LRU list
866 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
867 * vmstat statistic corresponding to whatever LRU list the page was on.
869 * Returns 0 if the page was removed from an LRU list.
870 * Returns -EBUSY if the page was not on an LRU list.
872 * The returned page will have PageLRU() cleared. If it was found on
873 * the active list, it will have PageActive set. That flag may need
874 * to be cleared by the caller before letting the page go.
876 * The vmstat statistic corresponding to the list on which the page was
877 * found will be decremented.
879 * Restrictions:
880 * (1) Must be called with an elevated refcount on the page. This is a
881 * fundamentnal difference from isolate_lru_pages (which is called
882 * without a stable reference).
883 * (2) the lru_lock must not be held.
884 * (3) interrupts must be enabled.
886 int isolate_lru_page(struct page *page)
888 int ret = -EBUSY;
890 if (PageLRU(page)) {
891 struct zone *zone = page_zone(page);
893 spin_lock_irq(&zone->lru_lock);
894 if (PageLRU(page) && get_page_unless_zero(page)) {
895 int lru = LRU_BASE;
896 ret = 0;
897 ClearPageLRU(page);
899 lru += page_is_file_cache(page) + !!PageActive(page);
900 del_page_from_lru_list(zone, page, lru);
902 spin_unlock_irq(&zone->lru_lock);
904 return ret;
908 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
909 * of reclaimed pages
911 static unsigned long shrink_inactive_list(unsigned long max_scan,
912 struct zone *zone, struct scan_control *sc, int file)
914 LIST_HEAD(page_list);
915 struct pagevec pvec;
916 unsigned long nr_scanned = 0;
917 unsigned long nr_reclaimed = 0;
919 pagevec_init(&pvec, 1);
921 lru_add_drain();
922 spin_lock_irq(&zone->lru_lock);
923 do {
924 struct page *page;
925 unsigned long nr_taken;
926 unsigned long nr_scan;
927 unsigned long nr_freed;
928 unsigned long nr_active;
929 unsigned int count[NR_LRU_LISTS] = { 0, };
930 int mode = (sc->order > PAGE_ALLOC_COSTLY_ORDER) ?
931 ISOLATE_BOTH : ISOLATE_INACTIVE;
933 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
934 &page_list, &nr_scan, sc->order, mode,
935 zone, sc->mem_cgroup, 0, file);
936 nr_active = clear_active_flags(&page_list, count);
937 __count_vm_events(PGDEACTIVATE, nr_active);
939 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
940 -count[LRU_ACTIVE_FILE]);
941 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
942 -count[LRU_INACTIVE_FILE]);
943 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
944 -count[LRU_ACTIVE_ANON]);
945 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
946 -count[LRU_INACTIVE_ANON]);
948 if (scan_global_lru(sc)) {
949 zone->pages_scanned += nr_scan;
950 zone->recent_scanned[0] += count[LRU_INACTIVE_ANON];
951 zone->recent_scanned[0] += count[LRU_ACTIVE_ANON];
952 zone->recent_scanned[1] += count[LRU_INACTIVE_FILE];
953 zone->recent_scanned[1] += count[LRU_ACTIVE_FILE];
955 spin_unlock_irq(&zone->lru_lock);
957 nr_scanned += nr_scan;
958 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
961 * If we are direct reclaiming for contiguous pages and we do
962 * not reclaim everything in the list, try again and wait
963 * for IO to complete. This will stall high-order allocations
964 * but that should be acceptable to the caller
966 if (nr_freed < nr_taken && !current_is_kswapd() &&
967 sc->order > PAGE_ALLOC_COSTLY_ORDER) {
968 congestion_wait(WRITE, HZ/10);
971 * The attempt at page out may have made some
972 * of the pages active, mark them inactive again.
974 nr_active = clear_active_flags(&page_list, count);
975 count_vm_events(PGDEACTIVATE, nr_active);
977 nr_freed += shrink_page_list(&page_list, sc,
978 PAGEOUT_IO_SYNC);
981 nr_reclaimed += nr_freed;
982 local_irq_disable();
983 if (current_is_kswapd()) {
984 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
985 __count_vm_events(KSWAPD_STEAL, nr_freed);
986 } else if (scan_global_lru(sc))
987 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
989 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
991 if (nr_taken == 0)
992 goto done;
994 spin_lock(&zone->lru_lock);
996 * Put back any unfreeable pages.
998 while (!list_empty(&page_list)) {
999 page = lru_to_page(&page_list);
1000 VM_BUG_ON(PageLRU(page));
1001 SetPageLRU(page);
1002 list_del(&page->lru);
1003 add_page_to_lru_list(zone, page, page_lru(page));
1004 if (PageActive(page) && scan_global_lru(sc)) {
1005 int file = !!page_is_file_cache(page);
1006 zone->recent_rotated[file]++;
1008 if (!pagevec_add(&pvec, page)) {
1009 spin_unlock_irq(&zone->lru_lock);
1010 __pagevec_release(&pvec);
1011 spin_lock_irq(&zone->lru_lock);
1014 } while (nr_scanned < max_scan);
1015 spin_unlock(&zone->lru_lock);
1016 done:
1017 local_irq_enable();
1018 pagevec_release(&pvec);
1019 return nr_reclaimed;
1023 * We are about to scan this zone at a certain priority level. If that priority
1024 * level is smaller (ie: more urgent) than the previous priority, then note
1025 * that priority level within the zone. This is done so that when the next
1026 * process comes in to scan this zone, it will immediately start out at this
1027 * priority level rather than having to build up its own scanning priority.
1028 * Here, this priority affects only the reclaim-mapped threshold.
1030 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1032 if (priority < zone->prev_priority)
1033 zone->prev_priority = priority;
1036 static inline int zone_is_near_oom(struct zone *zone)
1038 return zone->pages_scanned >= (zone_lru_pages(zone) * 3);
1042 * This moves pages from the active list to the inactive list.
1044 * We move them the other way if the page is referenced by one or more
1045 * processes, from rmap.
1047 * If the pages are mostly unmapped, the processing is fast and it is
1048 * appropriate to hold zone->lru_lock across the whole operation. But if
1049 * the pages are mapped, the processing is slow (page_referenced()) so we
1050 * should drop zone->lru_lock around each page. It's impossible to balance
1051 * this, so instead we remove the pages from the LRU while processing them.
1052 * It is safe to rely on PG_active against the non-LRU pages in here because
1053 * nobody will play with that bit on a non-LRU page.
1055 * The downside is that we have to touch page->_count against each page.
1056 * But we had to alter page->flags anyway.
1060 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1061 struct scan_control *sc, int priority, int file)
1063 unsigned long pgmoved;
1064 int pgdeactivate = 0;
1065 unsigned long pgscanned;
1066 LIST_HEAD(l_hold); /* The pages which were snipped off */
1067 LIST_HEAD(l_active);
1068 LIST_HEAD(l_inactive);
1069 struct page *page;
1070 struct pagevec pvec;
1071 enum lru_list lru;
1073 lru_add_drain();
1074 spin_lock_irq(&zone->lru_lock);
1075 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1076 ISOLATE_ACTIVE, zone,
1077 sc->mem_cgroup, 1, file);
1079 * zone->pages_scanned is used for detect zone's oom
1080 * mem_cgroup remembers nr_scan by itself.
1082 if (scan_global_lru(sc)) {
1083 zone->pages_scanned += pgscanned;
1084 zone->recent_scanned[!!file] += pgmoved;
1087 if (file)
1088 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1089 else
1090 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1091 spin_unlock_irq(&zone->lru_lock);
1093 while (!list_empty(&l_hold)) {
1094 cond_resched();
1095 page = lru_to_page(&l_hold);
1096 list_del(&page->lru);
1097 list_add(&page->lru, &l_inactive);
1101 * Now put the pages back on the appropriate [file or anon] inactive
1102 * and active lists.
1104 pagevec_init(&pvec, 1);
1105 pgmoved = 0;
1106 lru = LRU_BASE + file * LRU_FILE;
1107 spin_lock_irq(&zone->lru_lock);
1108 while (!list_empty(&l_inactive)) {
1109 page = lru_to_page(&l_inactive);
1110 prefetchw_prev_lru_page(page, &l_inactive, flags);
1111 VM_BUG_ON(PageLRU(page));
1112 SetPageLRU(page);
1113 VM_BUG_ON(!PageActive(page));
1114 ClearPageActive(page);
1116 list_move(&page->lru, &zone->lru[lru].list);
1117 mem_cgroup_move_lists(page, false);
1118 pgmoved++;
1119 if (!pagevec_add(&pvec, page)) {
1120 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1121 spin_unlock_irq(&zone->lru_lock);
1122 pgdeactivate += pgmoved;
1123 pgmoved = 0;
1124 if (buffer_heads_over_limit)
1125 pagevec_strip(&pvec);
1126 __pagevec_release(&pvec);
1127 spin_lock_irq(&zone->lru_lock);
1130 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1131 pgdeactivate += pgmoved;
1132 if (buffer_heads_over_limit) {
1133 spin_unlock_irq(&zone->lru_lock);
1134 pagevec_strip(&pvec);
1135 spin_lock_irq(&zone->lru_lock);
1138 pgmoved = 0;
1139 lru = LRU_ACTIVE + file * LRU_FILE;
1140 while (!list_empty(&l_active)) {
1141 page = lru_to_page(&l_active);
1142 prefetchw_prev_lru_page(page, &l_active, flags);
1143 VM_BUG_ON(PageLRU(page));
1144 SetPageLRU(page);
1145 VM_BUG_ON(!PageActive(page));
1147 list_move(&page->lru, &zone->lru[lru].list);
1148 mem_cgroup_move_lists(page, true);
1149 pgmoved++;
1150 if (!pagevec_add(&pvec, page)) {
1151 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1152 pgmoved = 0;
1153 spin_unlock_irq(&zone->lru_lock);
1154 if (vm_swap_full())
1155 pagevec_swap_free(&pvec);
1156 __pagevec_release(&pvec);
1157 spin_lock_irq(&zone->lru_lock);
1160 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1161 zone->recent_rotated[!!file] += pgmoved;
1163 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1164 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1165 spin_unlock_irq(&zone->lru_lock);
1166 if (vm_swap_full())
1167 pagevec_swap_free(&pvec);
1169 pagevec_release(&pvec);
1172 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1173 struct zone *zone, struct scan_control *sc, int priority)
1175 int file = is_file_lru(lru);
1177 if (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE) {
1178 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1179 return 0;
1181 return shrink_inactive_list(nr_to_scan, zone, sc, file);
1185 * Determine how aggressively the anon and file LRU lists should be
1186 * scanned. The relative value of each set of LRU lists is determined
1187 * by looking at the fraction of the pages scanned we did rotate back
1188 * onto the active list instead of evict.
1190 * percent[0] specifies how much pressure to put on ram/swap backed
1191 * memory, while percent[1] determines pressure on the file LRUs.
1193 static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1194 unsigned long *percent)
1196 unsigned long anon, file, free;
1197 unsigned long anon_prio, file_prio;
1198 unsigned long ap, fp;
1200 anon = zone_page_state(zone, NR_ACTIVE_ANON) +
1201 zone_page_state(zone, NR_INACTIVE_ANON);
1202 file = zone_page_state(zone, NR_ACTIVE_FILE) +
1203 zone_page_state(zone, NR_INACTIVE_FILE);
1204 free = zone_page_state(zone, NR_FREE_PAGES);
1206 /* If we have no swap space, do not bother scanning anon pages. */
1207 if (nr_swap_pages <= 0) {
1208 percent[0] = 0;
1209 percent[1] = 100;
1210 return;
1213 /* If we have very few page cache pages, force-scan anon pages. */
1214 if (unlikely(file + free <= zone->pages_high)) {
1215 percent[0] = 100;
1216 percent[1] = 0;
1217 return;
1221 * OK, so we have swap space and a fair amount of page cache
1222 * pages. We use the recently rotated / recently scanned
1223 * ratios to determine how valuable each cache is.
1225 * Because workloads change over time (and to avoid overflow)
1226 * we keep these statistics as a floating average, which ends
1227 * up weighing recent references more than old ones.
1229 * anon in [0], file in [1]
1231 if (unlikely(zone->recent_scanned[0] > anon / 4)) {
1232 spin_lock_irq(&zone->lru_lock);
1233 zone->recent_scanned[0] /= 2;
1234 zone->recent_rotated[0] /= 2;
1235 spin_unlock_irq(&zone->lru_lock);
1238 if (unlikely(zone->recent_scanned[1] > file / 4)) {
1239 spin_lock_irq(&zone->lru_lock);
1240 zone->recent_scanned[1] /= 2;
1241 zone->recent_rotated[1] /= 2;
1242 spin_unlock_irq(&zone->lru_lock);
1246 * With swappiness at 100, anonymous and file have the same priority.
1247 * This scanning priority is essentially the inverse of IO cost.
1249 anon_prio = sc->swappiness;
1250 file_prio = 200 - sc->swappiness;
1253 * anon recent_rotated[0]
1254 * %anon = 100 * ----------- / ----------------- * IO cost
1255 * anon + file rotate_sum
1257 ap = (anon_prio + 1) * (zone->recent_scanned[0] + 1);
1258 ap /= zone->recent_rotated[0] + 1;
1260 fp = (file_prio + 1) * (zone->recent_scanned[1] + 1);
1261 fp /= zone->recent_rotated[1] + 1;
1263 /* Normalize to percentages */
1264 percent[0] = 100 * ap / (ap + fp + 1);
1265 percent[1] = 100 - percent[0];
1270 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1272 static unsigned long shrink_zone(int priority, struct zone *zone,
1273 struct scan_control *sc)
1275 unsigned long nr[NR_LRU_LISTS];
1276 unsigned long nr_to_scan;
1277 unsigned long nr_reclaimed = 0;
1278 unsigned long percent[2]; /* anon @ 0; file @ 1 */
1279 enum lru_list l;
1281 get_scan_ratio(zone, sc, percent);
1283 for_each_lru(l) {
1284 if (scan_global_lru(sc)) {
1285 int file = is_file_lru(l);
1286 int scan;
1288 * Add one to nr_to_scan just to make sure that the
1289 * kernel will slowly sift through each list.
1291 scan = zone_page_state(zone, NR_LRU_BASE + l);
1292 if (priority) {
1293 scan >>= priority;
1294 scan = (scan * percent[file]) / 100;
1296 zone->lru[l].nr_scan += scan + 1;
1297 nr[l] = zone->lru[l].nr_scan;
1298 if (nr[l] >= sc->swap_cluster_max)
1299 zone->lru[l].nr_scan = 0;
1300 else
1301 nr[l] = 0;
1302 } else {
1304 * This reclaim occurs not because zone memory shortage
1305 * but because memory controller hits its limit.
1306 * Don't modify zone reclaim related data.
1308 nr[l] = mem_cgroup_calc_reclaim(sc->mem_cgroup, zone,
1309 priority, l);
1313 while (nr[LRU_ACTIVE_ANON] || nr[LRU_INACTIVE_ANON] ||
1314 nr[LRU_ACTIVE_FILE] || nr[LRU_INACTIVE_FILE]) {
1315 for_each_lru(l) {
1316 if (nr[l]) {
1317 nr_to_scan = min(nr[l],
1318 (unsigned long)sc->swap_cluster_max);
1319 nr[l] -= nr_to_scan;
1321 nr_reclaimed += shrink_list(l, nr_to_scan,
1322 zone, sc, priority);
1327 throttle_vm_writeout(sc->gfp_mask);
1328 return nr_reclaimed;
1332 * This is the direct reclaim path, for page-allocating processes. We only
1333 * try to reclaim pages from zones which will satisfy the caller's allocation
1334 * request.
1336 * We reclaim from a zone even if that zone is over pages_high. Because:
1337 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1338 * allocation or
1339 * b) The zones may be over pages_high but they must go *over* pages_high to
1340 * satisfy the `incremental min' zone defense algorithm.
1342 * Returns the number of reclaimed pages.
1344 * If a zone is deemed to be full of pinned pages then just give it a light
1345 * scan then give up on it.
1347 static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1348 struct scan_control *sc)
1350 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1351 unsigned long nr_reclaimed = 0;
1352 struct zoneref *z;
1353 struct zone *zone;
1355 sc->all_unreclaimable = 1;
1356 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1357 if (!populated_zone(zone))
1358 continue;
1360 * Take care memory controller reclaiming has small influence
1361 * to global LRU.
1363 if (scan_global_lru(sc)) {
1364 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1365 continue;
1366 note_zone_scanning_priority(zone, priority);
1368 if (zone_is_all_unreclaimable(zone) &&
1369 priority != DEF_PRIORITY)
1370 continue; /* Let kswapd poll it */
1371 sc->all_unreclaimable = 0;
1372 } else {
1374 * Ignore cpuset limitation here. We just want to reduce
1375 * # of used pages by us regardless of memory shortage.
1377 sc->all_unreclaimable = 0;
1378 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1379 priority);
1382 nr_reclaimed += shrink_zone(priority, zone, sc);
1385 return nr_reclaimed;
1389 * This is the main entry point to direct page reclaim.
1391 * If a full scan of the inactive list fails to free enough memory then we
1392 * are "out of memory" and something needs to be killed.
1394 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1395 * high - the zone may be full of dirty or under-writeback pages, which this
1396 * caller can't do much about. We kick pdflush and take explicit naps in the
1397 * hope that some of these pages can be written. But if the allocating task
1398 * holds filesystem locks which prevent writeout this might not work, and the
1399 * allocation attempt will fail.
1401 * returns: 0, if no pages reclaimed
1402 * else, the number of pages reclaimed
1404 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1405 struct scan_control *sc)
1407 int priority;
1408 unsigned long ret = 0;
1409 unsigned long total_scanned = 0;
1410 unsigned long nr_reclaimed = 0;
1411 struct reclaim_state *reclaim_state = current->reclaim_state;
1412 unsigned long lru_pages = 0;
1413 struct zoneref *z;
1414 struct zone *zone;
1415 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1417 delayacct_freepages_start();
1419 if (scan_global_lru(sc))
1420 count_vm_event(ALLOCSTALL);
1422 * mem_cgroup will not do shrink_slab.
1424 if (scan_global_lru(sc)) {
1425 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1427 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1428 continue;
1430 lru_pages += zone_lru_pages(zone);
1434 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1435 sc->nr_scanned = 0;
1436 if (!priority)
1437 disable_swap_token();
1438 nr_reclaimed += shrink_zones(priority, zonelist, sc);
1440 * Don't shrink slabs when reclaiming memory from
1441 * over limit cgroups
1443 if (scan_global_lru(sc)) {
1444 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1445 if (reclaim_state) {
1446 nr_reclaimed += reclaim_state->reclaimed_slab;
1447 reclaim_state->reclaimed_slab = 0;
1450 total_scanned += sc->nr_scanned;
1451 if (nr_reclaimed >= sc->swap_cluster_max) {
1452 ret = nr_reclaimed;
1453 goto out;
1457 * Try to write back as many pages as we just scanned. This
1458 * tends to cause slow streaming writers to write data to the
1459 * disk smoothly, at the dirtying rate, which is nice. But
1460 * that's undesirable in laptop mode, where we *want* lumpy
1461 * writeout. So in laptop mode, write out the whole world.
1463 if (total_scanned > sc->swap_cluster_max +
1464 sc->swap_cluster_max / 2) {
1465 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1466 sc->may_writepage = 1;
1469 /* Take a nap, wait for some writeback to complete */
1470 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1471 congestion_wait(WRITE, HZ/10);
1473 /* top priority shrink_zones still had more to do? don't OOM, then */
1474 if (!sc->all_unreclaimable && scan_global_lru(sc))
1475 ret = nr_reclaimed;
1476 out:
1478 * Now that we've scanned all the zones at this priority level, note
1479 * that level within the zone so that the next thread which performs
1480 * scanning of this zone will immediately start out at this priority
1481 * level. This affects only the decision whether or not to bring
1482 * mapped pages onto the inactive list.
1484 if (priority < 0)
1485 priority = 0;
1487 if (scan_global_lru(sc)) {
1488 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1490 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1491 continue;
1493 zone->prev_priority = priority;
1495 } else
1496 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1498 delayacct_freepages_end();
1500 return ret;
1503 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1504 gfp_t gfp_mask)
1506 struct scan_control sc = {
1507 .gfp_mask = gfp_mask,
1508 .may_writepage = !laptop_mode,
1509 .swap_cluster_max = SWAP_CLUSTER_MAX,
1510 .may_swap = 1,
1511 .swappiness = vm_swappiness,
1512 .order = order,
1513 .mem_cgroup = NULL,
1514 .isolate_pages = isolate_pages_global,
1517 return do_try_to_free_pages(zonelist, &sc);
1520 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1522 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1523 gfp_t gfp_mask)
1525 struct scan_control sc = {
1526 .may_writepage = !laptop_mode,
1527 .may_swap = 1,
1528 .swap_cluster_max = SWAP_CLUSTER_MAX,
1529 .swappiness = vm_swappiness,
1530 .order = 0,
1531 .mem_cgroup = mem_cont,
1532 .isolate_pages = mem_cgroup_isolate_pages,
1534 struct zonelist *zonelist;
1536 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1537 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1538 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1539 return do_try_to_free_pages(zonelist, &sc);
1541 #endif
1544 * For kswapd, balance_pgdat() will work across all this node's zones until
1545 * they are all at pages_high.
1547 * Returns the number of pages which were actually freed.
1549 * There is special handling here for zones which are full of pinned pages.
1550 * This can happen if the pages are all mlocked, or if they are all used by
1551 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1552 * What we do is to detect the case where all pages in the zone have been
1553 * scanned twice and there has been zero successful reclaim. Mark the zone as
1554 * dead and from now on, only perform a short scan. Basically we're polling
1555 * the zone for when the problem goes away.
1557 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1558 * zones which have free_pages > pages_high, but once a zone is found to have
1559 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1560 * of the number of free pages in the lower zones. This interoperates with
1561 * the page allocator fallback scheme to ensure that aging of pages is balanced
1562 * across the zones.
1564 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1566 int all_zones_ok;
1567 int priority;
1568 int i;
1569 unsigned long total_scanned;
1570 unsigned long nr_reclaimed;
1571 struct reclaim_state *reclaim_state = current->reclaim_state;
1572 struct scan_control sc = {
1573 .gfp_mask = GFP_KERNEL,
1574 .may_swap = 1,
1575 .swap_cluster_max = SWAP_CLUSTER_MAX,
1576 .swappiness = vm_swappiness,
1577 .order = order,
1578 .mem_cgroup = NULL,
1579 .isolate_pages = isolate_pages_global,
1582 * temp_priority is used to remember the scanning priority at which
1583 * this zone was successfully refilled to free_pages == pages_high.
1585 int temp_priority[MAX_NR_ZONES];
1587 loop_again:
1588 total_scanned = 0;
1589 nr_reclaimed = 0;
1590 sc.may_writepage = !laptop_mode;
1591 count_vm_event(PAGEOUTRUN);
1593 for (i = 0; i < pgdat->nr_zones; i++)
1594 temp_priority[i] = DEF_PRIORITY;
1596 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1597 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1598 unsigned long lru_pages = 0;
1600 /* The swap token gets in the way of swapout... */
1601 if (!priority)
1602 disable_swap_token();
1604 all_zones_ok = 1;
1607 * Scan in the highmem->dma direction for the highest
1608 * zone which needs scanning
1610 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1611 struct zone *zone = pgdat->node_zones + i;
1613 if (!populated_zone(zone))
1614 continue;
1616 if (zone_is_all_unreclaimable(zone) &&
1617 priority != DEF_PRIORITY)
1618 continue;
1620 if (!zone_watermark_ok(zone, order, zone->pages_high,
1621 0, 0)) {
1622 end_zone = i;
1623 break;
1626 if (i < 0)
1627 goto out;
1629 for (i = 0; i <= end_zone; i++) {
1630 struct zone *zone = pgdat->node_zones + i;
1632 lru_pages += zone_lru_pages(zone);
1636 * Now scan the zone in the dma->highmem direction, stopping
1637 * at the last zone which needs scanning.
1639 * We do this because the page allocator works in the opposite
1640 * direction. This prevents the page allocator from allocating
1641 * pages behind kswapd's direction of progress, which would
1642 * cause too much scanning of the lower zones.
1644 for (i = 0; i <= end_zone; i++) {
1645 struct zone *zone = pgdat->node_zones + i;
1646 int nr_slab;
1648 if (!populated_zone(zone))
1649 continue;
1651 if (zone_is_all_unreclaimable(zone) &&
1652 priority != DEF_PRIORITY)
1653 continue;
1655 if (!zone_watermark_ok(zone, order, zone->pages_high,
1656 end_zone, 0))
1657 all_zones_ok = 0;
1658 temp_priority[i] = priority;
1659 sc.nr_scanned = 0;
1660 note_zone_scanning_priority(zone, priority);
1662 * We put equal pressure on every zone, unless one
1663 * zone has way too many pages free already.
1665 if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1666 end_zone, 0))
1667 nr_reclaimed += shrink_zone(priority, zone, &sc);
1668 reclaim_state->reclaimed_slab = 0;
1669 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1670 lru_pages);
1671 nr_reclaimed += reclaim_state->reclaimed_slab;
1672 total_scanned += sc.nr_scanned;
1673 if (zone_is_all_unreclaimable(zone))
1674 continue;
1675 if (nr_slab == 0 && zone->pages_scanned >=
1676 (zone_lru_pages(zone) * 6))
1677 zone_set_flag(zone,
1678 ZONE_ALL_UNRECLAIMABLE);
1680 * If we've done a decent amount of scanning and
1681 * the reclaim ratio is low, start doing writepage
1682 * even in laptop mode
1684 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1685 total_scanned > nr_reclaimed + nr_reclaimed / 2)
1686 sc.may_writepage = 1;
1688 if (all_zones_ok)
1689 break; /* kswapd: all done */
1691 * OK, kswapd is getting into trouble. Take a nap, then take
1692 * another pass across the zones.
1694 if (total_scanned && priority < DEF_PRIORITY - 2)
1695 congestion_wait(WRITE, HZ/10);
1698 * We do this so kswapd doesn't build up large priorities for
1699 * example when it is freeing in parallel with allocators. It
1700 * matches the direct reclaim path behaviour in terms of impact
1701 * on zone->*_priority.
1703 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1704 break;
1706 out:
1708 * Note within each zone the priority level at which this zone was
1709 * brought into a happy state. So that the next thread which scans this
1710 * zone will start out at that priority level.
1712 for (i = 0; i < pgdat->nr_zones; i++) {
1713 struct zone *zone = pgdat->node_zones + i;
1715 zone->prev_priority = temp_priority[i];
1717 if (!all_zones_ok) {
1718 cond_resched();
1720 try_to_freeze();
1722 goto loop_again;
1725 return nr_reclaimed;
1729 * The background pageout daemon, started as a kernel thread
1730 * from the init process.
1732 * This basically trickles out pages so that we have _some_
1733 * free memory available even if there is no other activity
1734 * that frees anything up. This is needed for things like routing
1735 * etc, where we otherwise might have all activity going on in
1736 * asynchronous contexts that cannot page things out.
1738 * If there are applications that are active memory-allocators
1739 * (most normal use), this basically shouldn't matter.
1741 static int kswapd(void *p)
1743 unsigned long order;
1744 pg_data_t *pgdat = (pg_data_t*)p;
1745 struct task_struct *tsk = current;
1746 DEFINE_WAIT(wait);
1747 struct reclaim_state reclaim_state = {
1748 .reclaimed_slab = 0,
1750 node_to_cpumask_ptr(cpumask, pgdat->node_id);
1752 if (!cpus_empty(*cpumask))
1753 set_cpus_allowed_ptr(tsk, cpumask);
1754 current->reclaim_state = &reclaim_state;
1757 * Tell the memory management that we're a "memory allocator",
1758 * and that if we need more memory we should get access to it
1759 * regardless (see "__alloc_pages()"). "kswapd" should
1760 * never get caught in the normal page freeing logic.
1762 * (Kswapd normally doesn't need memory anyway, but sometimes
1763 * you need a small amount of memory in order to be able to
1764 * page out something else, and this flag essentially protects
1765 * us from recursively trying to free more memory as we're
1766 * trying to free the first piece of memory in the first place).
1768 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1769 set_freezable();
1771 order = 0;
1772 for ( ; ; ) {
1773 unsigned long new_order;
1775 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1776 new_order = pgdat->kswapd_max_order;
1777 pgdat->kswapd_max_order = 0;
1778 if (order < new_order) {
1780 * Don't sleep if someone wants a larger 'order'
1781 * allocation
1783 order = new_order;
1784 } else {
1785 if (!freezing(current))
1786 schedule();
1788 order = pgdat->kswapd_max_order;
1790 finish_wait(&pgdat->kswapd_wait, &wait);
1792 if (!try_to_freeze()) {
1793 /* We can speed up thawing tasks if we don't call
1794 * balance_pgdat after returning from the refrigerator
1796 balance_pgdat(pgdat, order);
1799 return 0;
1803 * A zone is low on free memory, so wake its kswapd task to service it.
1805 void wakeup_kswapd(struct zone *zone, int order)
1807 pg_data_t *pgdat;
1809 if (!populated_zone(zone))
1810 return;
1812 pgdat = zone->zone_pgdat;
1813 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1814 return;
1815 if (pgdat->kswapd_max_order < order)
1816 pgdat->kswapd_max_order = order;
1817 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1818 return;
1819 if (!waitqueue_active(&pgdat->kswapd_wait))
1820 return;
1821 wake_up_interruptible(&pgdat->kswapd_wait);
1824 unsigned long global_lru_pages(void)
1826 return global_page_state(NR_ACTIVE_ANON)
1827 + global_page_state(NR_ACTIVE_FILE)
1828 + global_page_state(NR_INACTIVE_ANON)
1829 + global_page_state(NR_INACTIVE_FILE);
1832 #ifdef CONFIG_PM
1834 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1835 * from LRU lists system-wide, for given pass and priority, and returns the
1836 * number of reclaimed pages
1838 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1840 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1841 int pass, struct scan_control *sc)
1843 struct zone *zone;
1844 unsigned long nr_to_scan, ret = 0;
1845 enum lru_list l;
1847 for_each_zone(zone) {
1849 if (!populated_zone(zone))
1850 continue;
1852 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
1853 continue;
1855 for_each_lru(l) {
1856 /* For pass = 0 we don't shrink the active list */
1857 if (pass == 0 &&
1858 (l == LRU_ACTIVE || l == LRU_ACTIVE_FILE))
1859 continue;
1861 zone->lru[l].nr_scan +=
1862 (zone_page_state(zone, NR_LRU_BASE + l)
1863 >> prio) + 1;
1864 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
1865 zone->lru[l].nr_scan = 0;
1866 nr_to_scan = min(nr_pages,
1867 zone_page_state(zone,
1868 NR_LRU_BASE + l));
1869 ret += shrink_list(l, nr_to_scan, zone,
1870 sc, prio);
1871 if (ret >= nr_pages)
1872 return ret;
1877 return ret;
1881 * Try to free `nr_pages' of memory, system-wide, and return the number of
1882 * freed pages.
1884 * Rather than trying to age LRUs the aim is to preserve the overall
1885 * LRU order by reclaiming preferentially
1886 * inactive > active > active referenced > active mapped
1888 unsigned long shrink_all_memory(unsigned long nr_pages)
1890 unsigned long lru_pages, nr_slab;
1891 unsigned long ret = 0;
1892 int pass;
1893 struct reclaim_state reclaim_state;
1894 struct scan_control sc = {
1895 .gfp_mask = GFP_KERNEL,
1896 .may_swap = 0,
1897 .swap_cluster_max = nr_pages,
1898 .may_writepage = 1,
1899 .swappiness = vm_swappiness,
1900 .isolate_pages = isolate_pages_global,
1903 current->reclaim_state = &reclaim_state;
1905 lru_pages = global_lru_pages();
1906 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1907 /* If slab caches are huge, it's better to hit them first */
1908 while (nr_slab >= lru_pages) {
1909 reclaim_state.reclaimed_slab = 0;
1910 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1911 if (!reclaim_state.reclaimed_slab)
1912 break;
1914 ret += reclaim_state.reclaimed_slab;
1915 if (ret >= nr_pages)
1916 goto out;
1918 nr_slab -= reclaim_state.reclaimed_slab;
1922 * We try to shrink LRUs in 5 passes:
1923 * 0 = Reclaim from inactive_list only
1924 * 1 = Reclaim from active list but don't reclaim mapped
1925 * 2 = 2nd pass of type 1
1926 * 3 = Reclaim mapped (normal reclaim)
1927 * 4 = 2nd pass of type 3
1929 for (pass = 0; pass < 5; pass++) {
1930 int prio;
1932 /* Force reclaiming mapped pages in the passes #3 and #4 */
1933 if (pass > 2) {
1934 sc.may_swap = 1;
1935 sc.swappiness = 100;
1938 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1939 unsigned long nr_to_scan = nr_pages - ret;
1941 sc.nr_scanned = 0;
1942 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1943 if (ret >= nr_pages)
1944 goto out;
1946 reclaim_state.reclaimed_slab = 0;
1947 shrink_slab(sc.nr_scanned, sc.gfp_mask,
1948 global_lru_pages());
1949 ret += reclaim_state.reclaimed_slab;
1950 if (ret >= nr_pages)
1951 goto out;
1953 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1954 congestion_wait(WRITE, HZ / 10);
1959 * If ret = 0, we could not shrink LRUs, but there may be something
1960 * in slab caches
1962 if (!ret) {
1963 do {
1964 reclaim_state.reclaimed_slab = 0;
1965 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
1966 ret += reclaim_state.reclaimed_slab;
1967 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1970 out:
1971 current->reclaim_state = NULL;
1973 return ret;
1975 #endif
1977 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1978 not required for correctness. So if the last cpu in a node goes
1979 away, we get changed to run anywhere: as the first one comes back,
1980 restore their cpu bindings. */
1981 static int __devinit cpu_callback(struct notifier_block *nfb,
1982 unsigned long action, void *hcpu)
1984 int nid;
1986 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1987 for_each_node_state(nid, N_HIGH_MEMORY) {
1988 pg_data_t *pgdat = NODE_DATA(nid);
1989 node_to_cpumask_ptr(mask, pgdat->node_id);
1991 if (any_online_cpu(*mask) < nr_cpu_ids)
1992 /* One of our CPUs online: restore mask */
1993 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1996 return NOTIFY_OK;
2000 * This kswapd start function will be called by init and node-hot-add.
2001 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2003 int kswapd_run(int nid)
2005 pg_data_t *pgdat = NODE_DATA(nid);
2006 int ret = 0;
2008 if (pgdat->kswapd)
2009 return 0;
2011 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2012 if (IS_ERR(pgdat->kswapd)) {
2013 /* failure at boot is fatal */
2014 BUG_ON(system_state == SYSTEM_BOOTING);
2015 printk("Failed to start kswapd on node %d\n",nid);
2016 ret = -1;
2018 return ret;
2021 static int __init kswapd_init(void)
2023 int nid;
2025 swap_setup();
2026 for_each_node_state(nid, N_HIGH_MEMORY)
2027 kswapd_run(nid);
2028 hotcpu_notifier(cpu_callback, 0);
2029 return 0;
2032 module_init(kswapd_init)
2034 #ifdef CONFIG_NUMA
2036 * Zone reclaim mode
2038 * If non-zero call zone_reclaim when the number of free pages falls below
2039 * the watermarks.
2041 int zone_reclaim_mode __read_mostly;
2043 #define RECLAIM_OFF 0
2044 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2045 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2046 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2049 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2050 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2051 * a zone.
2053 #define ZONE_RECLAIM_PRIORITY 4
2056 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2057 * occur.
2059 int sysctl_min_unmapped_ratio = 1;
2062 * If the number of slab pages in a zone grows beyond this percentage then
2063 * slab reclaim needs to occur.
2065 int sysctl_min_slab_ratio = 5;
2068 * Try to free up some pages from this zone through reclaim.
2070 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2072 /* Minimum pages needed in order to stay on node */
2073 const unsigned long nr_pages = 1 << order;
2074 struct task_struct *p = current;
2075 struct reclaim_state reclaim_state;
2076 int priority;
2077 unsigned long nr_reclaimed = 0;
2078 struct scan_control sc = {
2079 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2080 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2081 .swap_cluster_max = max_t(unsigned long, nr_pages,
2082 SWAP_CLUSTER_MAX),
2083 .gfp_mask = gfp_mask,
2084 .swappiness = vm_swappiness,
2085 .isolate_pages = isolate_pages_global,
2087 unsigned long slab_reclaimable;
2089 disable_swap_token();
2090 cond_resched();
2092 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2093 * and we also need to be able to write out pages for RECLAIM_WRITE
2094 * and RECLAIM_SWAP.
2096 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2097 reclaim_state.reclaimed_slab = 0;
2098 p->reclaim_state = &reclaim_state;
2100 if (zone_page_state(zone, NR_FILE_PAGES) -
2101 zone_page_state(zone, NR_FILE_MAPPED) >
2102 zone->min_unmapped_pages) {
2104 * Free memory by calling shrink zone with increasing
2105 * priorities until we have enough memory freed.
2107 priority = ZONE_RECLAIM_PRIORITY;
2108 do {
2109 note_zone_scanning_priority(zone, priority);
2110 nr_reclaimed += shrink_zone(priority, zone, &sc);
2111 priority--;
2112 } while (priority >= 0 && nr_reclaimed < nr_pages);
2115 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2116 if (slab_reclaimable > zone->min_slab_pages) {
2118 * shrink_slab() does not currently allow us to determine how
2119 * many pages were freed in this zone. So we take the current
2120 * number of slab pages and shake the slab until it is reduced
2121 * by the same nr_pages that we used for reclaiming unmapped
2122 * pages.
2124 * Note that shrink_slab will free memory on all zones and may
2125 * take a long time.
2127 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2128 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2129 slab_reclaimable - nr_pages)
2133 * Update nr_reclaimed by the number of slab pages we
2134 * reclaimed from this zone.
2136 nr_reclaimed += slab_reclaimable -
2137 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2140 p->reclaim_state = NULL;
2141 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2142 return nr_reclaimed >= nr_pages;
2145 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2147 int node_id;
2148 int ret;
2151 * Zone reclaim reclaims unmapped file backed pages and
2152 * slab pages if we are over the defined limits.
2154 * A small portion of unmapped file backed pages is needed for
2155 * file I/O otherwise pages read by file I/O will be immediately
2156 * thrown out if the zone is overallocated. So we do not reclaim
2157 * if less than a specified percentage of the zone is used by
2158 * unmapped file backed pages.
2160 if (zone_page_state(zone, NR_FILE_PAGES) -
2161 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2162 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2163 <= zone->min_slab_pages)
2164 return 0;
2166 if (zone_is_all_unreclaimable(zone))
2167 return 0;
2170 * Do not scan if the allocation should not be delayed.
2172 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2173 return 0;
2176 * Only run zone reclaim on the local zone or on zones that do not
2177 * have associated processors. This will favor the local processor
2178 * over remote processors and spread off node memory allocations
2179 * as wide as possible.
2181 node_id = zone_to_nid(zone);
2182 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2183 return 0;
2185 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2186 return 0;
2187 ret = __zone_reclaim(zone, gfp_mask, order);
2188 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2190 return ret;
2192 #endif