vmscan: split LRU lists into anon & file sets
[linux-2.6/zen-sources.git] / mm / memcontrol.c
blob27e9e75f4eab558677bf23b5e355859631f7495b
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/spinlock.h>
32 #include <linux/fs.h>
33 #include <linux/seq_file.h>
34 #include <linux/vmalloc.h>
35 #include <linux/mm_inline.h>
37 #include <asm/uaccess.h>
39 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
40 static struct kmem_cache *page_cgroup_cache __read_mostly;
41 #define MEM_CGROUP_RECLAIM_RETRIES 5
44 * Statistics for memory cgroup.
46 enum mem_cgroup_stat_index {
48 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
50 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
51 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
52 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
53 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
55 MEM_CGROUP_STAT_NSTATS,
58 struct mem_cgroup_stat_cpu {
59 s64 count[MEM_CGROUP_STAT_NSTATS];
60 } ____cacheline_aligned_in_smp;
62 struct mem_cgroup_stat {
63 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
67 * For accounting under irq disable, no need for increment preempt count.
69 static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
70 enum mem_cgroup_stat_index idx, int val)
72 int cpu = smp_processor_id();
73 stat->cpustat[cpu].count[idx] += val;
76 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
77 enum mem_cgroup_stat_index idx)
79 int cpu;
80 s64 ret = 0;
81 for_each_possible_cpu(cpu)
82 ret += stat->cpustat[cpu].count[idx];
83 return ret;
87 * per-zone information in memory controller.
89 struct mem_cgroup_per_zone {
91 * spin_lock to protect the per cgroup LRU
93 spinlock_t lru_lock;
94 struct list_head lists[NR_LRU_LISTS];
95 unsigned long count[NR_LRU_LISTS];
97 /* Macro for accessing counter */
98 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
100 struct mem_cgroup_per_node {
101 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
104 struct mem_cgroup_lru_info {
105 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
109 * The memory controller data structure. The memory controller controls both
110 * page cache and RSS per cgroup. We would eventually like to provide
111 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
112 * to help the administrator determine what knobs to tune.
114 * TODO: Add a water mark for the memory controller. Reclaim will begin when
115 * we hit the water mark. May be even add a low water mark, such that
116 * no reclaim occurs from a cgroup at it's low water mark, this is
117 * a feature that will be implemented much later in the future.
119 struct mem_cgroup {
120 struct cgroup_subsys_state css;
122 * the counter to account for memory usage
124 struct res_counter res;
126 * Per cgroup active and inactive list, similar to the
127 * per zone LRU lists.
129 struct mem_cgroup_lru_info info;
131 int prev_priority; /* for recording reclaim priority */
133 * statistics.
135 struct mem_cgroup_stat stat;
137 static struct mem_cgroup init_mem_cgroup;
140 * We use the lower bit of the page->page_cgroup pointer as a bit spin
141 * lock. We need to ensure that page->page_cgroup is at least two
142 * byte aligned (based on comments from Nick Piggin). But since
143 * bit_spin_lock doesn't actually set that lock bit in a non-debug
144 * uniprocessor kernel, we should avoid setting it here too.
146 #define PAGE_CGROUP_LOCK_BIT 0x0
147 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
148 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
149 #else
150 #define PAGE_CGROUP_LOCK 0x0
151 #endif
154 * A page_cgroup page is associated with every page descriptor. The
155 * page_cgroup helps us identify information about the cgroup
157 struct page_cgroup {
158 struct list_head lru; /* per cgroup LRU list */
159 struct page *page;
160 struct mem_cgroup *mem_cgroup;
161 int flags;
163 #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
164 #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
165 #define PAGE_CGROUP_FLAG_FILE (0x4) /* page is file system backed */
167 static int page_cgroup_nid(struct page_cgroup *pc)
169 return page_to_nid(pc->page);
172 static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
174 return page_zonenum(pc->page);
177 enum charge_type {
178 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
179 MEM_CGROUP_CHARGE_TYPE_MAPPED,
180 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
181 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
185 * Always modified under lru lock. Then, not necessary to preempt_disable()
187 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
188 bool charge)
190 int val = (charge)? 1 : -1;
191 struct mem_cgroup_stat *stat = &mem->stat;
193 VM_BUG_ON(!irqs_disabled());
194 if (flags & PAGE_CGROUP_FLAG_CACHE)
195 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
196 else
197 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
199 if (charge)
200 __mem_cgroup_stat_add_safe(stat,
201 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
202 else
203 __mem_cgroup_stat_add_safe(stat,
204 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
207 static struct mem_cgroup_per_zone *
208 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
210 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
213 static struct mem_cgroup_per_zone *
214 page_cgroup_zoneinfo(struct page_cgroup *pc)
216 struct mem_cgroup *mem = pc->mem_cgroup;
217 int nid = page_cgroup_nid(pc);
218 int zid = page_cgroup_zid(pc);
220 return mem_cgroup_zoneinfo(mem, nid, zid);
223 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
224 enum lru_list idx)
226 int nid, zid;
227 struct mem_cgroup_per_zone *mz;
228 u64 total = 0;
230 for_each_online_node(nid)
231 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
232 mz = mem_cgroup_zoneinfo(mem, nid, zid);
233 total += MEM_CGROUP_ZSTAT(mz, idx);
235 return total;
238 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
240 return container_of(cgroup_subsys_state(cont,
241 mem_cgroup_subsys_id), struct mem_cgroup,
242 css);
245 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
248 * mm_update_next_owner() may clear mm->owner to NULL
249 * if it races with swapoff, page migration, etc.
250 * So this can be called with p == NULL.
252 if (unlikely(!p))
253 return NULL;
255 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
256 struct mem_cgroup, css);
259 static inline int page_cgroup_locked(struct page *page)
261 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
264 static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
266 VM_BUG_ON(!page_cgroup_locked(page));
267 page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
270 struct page_cgroup *page_get_page_cgroup(struct page *page)
272 return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
275 static void lock_page_cgroup(struct page *page)
277 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
280 static int try_lock_page_cgroup(struct page *page)
282 return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
285 static void unlock_page_cgroup(struct page *page)
287 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
290 static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
291 struct page_cgroup *pc)
293 int lru = LRU_BASE;
295 if (pc->flags & PAGE_CGROUP_FLAG_ACTIVE)
296 lru += LRU_ACTIVE;
297 if (pc->flags & PAGE_CGROUP_FLAG_FILE)
298 lru += LRU_FILE;
300 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
302 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
303 list_del(&pc->lru);
306 static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
307 struct page_cgroup *pc)
309 int lru = LRU_BASE;
311 if (pc->flags & PAGE_CGROUP_FLAG_ACTIVE)
312 lru += LRU_ACTIVE;
313 if (pc->flags & PAGE_CGROUP_FLAG_FILE)
314 lru += LRU_FILE;
316 MEM_CGROUP_ZSTAT(mz, lru) += 1;
317 list_add(&pc->lru, &mz->lists[lru]);
319 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
322 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
324 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
325 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
326 int file = pc->flags & PAGE_CGROUP_FLAG_FILE;
327 int lru = LRU_FILE * !!file + !!from;
329 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
331 if (active)
332 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
333 else
334 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
336 lru = LRU_FILE * !!file + !!active;
337 MEM_CGROUP_ZSTAT(mz, lru) += 1;
338 list_move(&pc->lru, &mz->lists[lru]);
341 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
343 int ret;
345 task_lock(task);
346 ret = task->mm && mm_match_cgroup(task->mm, mem);
347 task_unlock(task);
348 return ret;
352 * This routine assumes that the appropriate zone's lru lock is already held
354 void mem_cgroup_move_lists(struct page *page, bool active)
356 struct page_cgroup *pc;
357 struct mem_cgroup_per_zone *mz;
358 unsigned long flags;
360 if (mem_cgroup_subsys.disabled)
361 return;
364 * We cannot lock_page_cgroup while holding zone's lru_lock,
365 * because other holders of lock_page_cgroup can be interrupted
366 * with an attempt to rotate_reclaimable_page. But we cannot
367 * safely get to page_cgroup without it, so just try_lock it:
368 * mem_cgroup_isolate_pages allows for page left on wrong list.
370 if (!try_lock_page_cgroup(page))
371 return;
373 pc = page_get_page_cgroup(page);
374 if (pc) {
375 mz = page_cgroup_zoneinfo(pc);
376 spin_lock_irqsave(&mz->lru_lock, flags);
377 __mem_cgroup_move_lists(pc, active);
378 spin_unlock_irqrestore(&mz->lru_lock, flags);
380 unlock_page_cgroup(page);
384 * Calculate mapped_ratio under memory controller. This will be used in
385 * vmscan.c for deteremining we have to reclaim mapped pages.
387 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
389 long total, rss;
392 * usage is recorded in bytes. But, here, we assume the number of
393 * physical pages can be represented by "long" on any arch.
395 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
396 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
397 return (int)((rss * 100L) / total);
401 * prev_priority control...this will be used in memory reclaim path.
403 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
405 return mem->prev_priority;
408 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
410 if (priority < mem->prev_priority)
411 mem->prev_priority = priority;
414 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
416 mem->prev_priority = priority;
420 * Calculate # of pages to be scanned in this priority/zone.
421 * See also vmscan.c
423 * priority starts from "DEF_PRIORITY" and decremented in each loop.
424 * (see include/linux/mmzone.h)
427 long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
428 int priority, enum lru_list lru)
430 long nr_pages;
431 int nid = zone->zone_pgdat->node_id;
432 int zid = zone_idx(zone);
433 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
435 nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
437 return (nr_pages >> priority);
440 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
441 struct list_head *dst,
442 unsigned long *scanned, int order,
443 int mode, struct zone *z,
444 struct mem_cgroup *mem_cont,
445 int active, int file)
447 unsigned long nr_taken = 0;
448 struct page *page;
449 unsigned long scan;
450 LIST_HEAD(pc_list);
451 struct list_head *src;
452 struct page_cgroup *pc, *tmp;
453 int nid = z->zone_pgdat->node_id;
454 int zid = zone_idx(z);
455 struct mem_cgroup_per_zone *mz;
456 int lru = LRU_FILE * !!file + !!active;
458 BUG_ON(!mem_cont);
459 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
460 src = &mz->lists[lru];
462 spin_lock(&mz->lru_lock);
463 scan = 0;
464 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
465 if (scan >= nr_to_scan)
466 break;
467 page = pc->page;
469 if (unlikely(!PageLRU(page)))
470 continue;
473 * TODO: play better with lumpy reclaim, grabbing anything.
475 if (PageActive(page) && !active) {
476 __mem_cgroup_move_lists(pc, true);
477 continue;
479 if (!PageActive(page) && active) {
480 __mem_cgroup_move_lists(pc, false);
481 continue;
484 scan++;
485 list_move(&pc->lru, &pc_list);
487 if (__isolate_lru_page(page, mode, file) == 0) {
488 list_move(&page->lru, dst);
489 nr_taken++;
493 list_splice(&pc_list, src);
494 spin_unlock(&mz->lru_lock);
496 *scanned = scan;
497 return nr_taken;
501 * Charge the memory controller for page usage.
502 * Return
503 * 0 if the charge was successful
504 * < 0 if the cgroup is over its limit
506 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
507 gfp_t gfp_mask, enum charge_type ctype,
508 struct mem_cgroup *memcg)
510 struct mem_cgroup *mem;
511 struct page_cgroup *pc;
512 unsigned long flags;
513 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
514 struct mem_cgroup_per_zone *mz;
516 pc = kmem_cache_alloc(page_cgroup_cache, gfp_mask);
517 if (unlikely(pc == NULL))
518 goto err;
521 * We always charge the cgroup the mm_struct belongs to.
522 * The mm_struct's mem_cgroup changes on task migration if the
523 * thread group leader migrates. It's possible that mm is not
524 * set, if so charge the init_mm (happens for pagecache usage).
526 if (likely(!memcg)) {
527 rcu_read_lock();
528 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
529 if (unlikely(!mem)) {
530 rcu_read_unlock();
531 kmem_cache_free(page_cgroup_cache, pc);
532 return 0;
535 * For every charge from the cgroup, increment reference count
537 css_get(&mem->css);
538 rcu_read_unlock();
539 } else {
540 mem = memcg;
541 css_get(&memcg->css);
544 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
545 if (!(gfp_mask & __GFP_WAIT))
546 goto out;
548 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
549 continue;
552 * try_to_free_mem_cgroup_pages() might not give us a full
553 * picture of reclaim. Some pages are reclaimed and might be
554 * moved to swap cache or just unmapped from the cgroup.
555 * Check the limit again to see if the reclaim reduced the
556 * current usage of the cgroup before giving up
558 if (res_counter_check_under_limit(&mem->res))
559 continue;
561 if (!nr_retries--) {
562 mem_cgroup_out_of_memory(mem, gfp_mask);
563 goto out;
567 pc->mem_cgroup = mem;
568 pc->page = page;
570 * If a page is accounted as a page cache, insert to inactive list.
571 * If anon, insert to active list.
573 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE) {
574 pc->flags = PAGE_CGROUP_FLAG_CACHE;
575 if (page_is_file_cache(page))
576 pc->flags |= PAGE_CGROUP_FLAG_FILE;
577 else
578 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
579 } else if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
580 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
581 else /* MEM_CGROUP_CHARGE_TYPE_SHMEM */
582 pc->flags = PAGE_CGROUP_FLAG_CACHE | PAGE_CGROUP_FLAG_ACTIVE;
584 lock_page_cgroup(page);
585 if (unlikely(page_get_page_cgroup(page))) {
586 unlock_page_cgroup(page);
587 res_counter_uncharge(&mem->res, PAGE_SIZE);
588 css_put(&mem->css);
589 kmem_cache_free(page_cgroup_cache, pc);
590 goto done;
592 page_assign_page_cgroup(page, pc);
594 mz = page_cgroup_zoneinfo(pc);
595 spin_lock_irqsave(&mz->lru_lock, flags);
596 __mem_cgroup_add_list(mz, pc);
597 spin_unlock_irqrestore(&mz->lru_lock, flags);
599 unlock_page_cgroup(page);
600 done:
601 return 0;
602 out:
603 css_put(&mem->css);
604 kmem_cache_free(page_cgroup_cache, pc);
605 err:
606 return -ENOMEM;
609 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
611 if (mem_cgroup_subsys.disabled)
612 return 0;
615 * If already mapped, we don't have to account.
616 * If page cache, page->mapping has address_space.
617 * But page->mapping may have out-of-use anon_vma pointer,
618 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
619 * is NULL.
621 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
622 return 0;
623 if (unlikely(!mm))
624 mm = &init_mm;
625 return mem_cgroup_charge_common(page, mm, gfp_mask,
626 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
629 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
630 gfp_t gfp_mask)
632 if (mem_cgroup_subsys.disabled)
633 return 0;
636 * Corner case handling. This is called from add_to_page_cache()
637 * in usual. But some FS (shmem) precharges this page before calling it
638 * and call add_to_page_cache() with GFP_NOWAIT.
640 * For GFP_NOWAIT case, the page may be pre-charged before calling
641 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
642 * charge twice. (It works but has to pay a bit larger cost.)
644 if (!(gfp_mask & __GFP_WAIT)) {
645 struct page_cgroup *pc;
647 lock_page_cgroup(page);
648 pc = page_get_page_cgroup(page);
649 if (pc) {
650 VM_BUG_ON(pc->page != page);
651 VM_BUG_ON(!pc->mem_cgroup);
652 unlock_page_cgroup(page);
653 return 0;
655 unlock_page_cgroup(page);
658 if (unlikely(!mm))
659 mm = &init_mm;
661 return mem_cgroup_charge_common(page, mm, gfp_mask,
662 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
666 * uncharge if !page_mapped(page)
668 static void
669 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
671 struct page_cgroup *pc;
672 struct mem_cgroup *mem;
673 struct mem_cgroup_per_zone *mz;
674 unsigned long flags;
676 if (mem_cgroup_subsys.disabled)
677 return;
680 * Check if our page_cgroup is valid
682 lock_page_cgroup(page);
683 pc = page_get_page_cgroup(page);
684 if (unlikely(!pc))
685 goto unlock;
687 VM_BUG_ON(pc->page != page);
689 if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
690 && ((pc->flags & PAGE_CGROUP_FLAG_CACHE)
691 || page_mapped(page)))
692 goto unlock;
694 mz = page_cgroup_zoneinfo(pc);
695 spin_lock_irqsave(&mz->lru_lock, flags);
696 __mem_cgroup_remove_list(mz, pc);
697 spin_unlock_irqrestore(&mz->lru_lock, flags);
699 page_assign_page_cgroup(page, NULL);
700 unlock_page_cgroup(page);
702 mem = pc->mem_cgroup;
703 res_counter_uncharge(&mem->res, PAGE_SIZE);
704 css_put(&mem->css);
706 kmem_cache_free(page_cgroup_cache, pc);
707 return;
708 unlock:
709 unlock_page_cgroup(page);
712 void mem_cgroup_uncharge_page(struct page *page)
714 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
717 void mem_cgroup_uncharge_cache_page(struct page *page)
719 VM_BUG_ON(page_mapped(page));
720 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
724 * Before starting migration, account against new page.
726 int mem_cgroup_prepare_migration(struct page *page, struct page *newpage)
728 struct page_cgroup *pc;
729 struct mem_cgroup *mem = NULL;
730 enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
731 int ret = 0;
733 if (mem_cgroup_subsys.disabled)
734 return 0;
736 lock_page_cgroup(page);
737 pc = page_get_page_cgroup(page);
738 if (pc) {
739 mem = pc->mem_cgroup;
740 css_get(&mem->css);
741 if (pc->flags & PAGE_CGROUP_FLAG_CACHE) {
742 if (page_is_file_cache(page))
743 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
744 else
745 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
748 unlock_page_cgroup(page);
749 if (mem) {
750 ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL,
751 ctype, mem);
752 css_put(&mem->css);
754 return ret;
757 /* remove redundant charge if migration failed*/
758 void mem_cgroup_end_migration(struct page *newpage)
761 * At success, page->mapping is not NULL.
762 * special rollback care is necessary when
763 * 1. at migration failure. (newpage->mapping is cleared in this case)
764 * 2. the newpage was moved but not remapped again because the task
765 * exits and the newpage is obsolete. In this case, the new page
766 * may be a swapcache. So, we just call mem_cgroup_uncharge_page()
767 * always for avoiding mess. The page_cgroup will be removed if
768 * unnecessary. File cache pages is still on radix-tree. Don't
769 * care it.
771 if (!newpage->mapping)
772 __mem_cgroup_uncharge_common(newpage,
773 MEM_CGROUP_CHARGE_TYPE_FORCE);
774 else if (PageAnon(newpage))
775 mem_cgroup_uncharge_page(newpage);
779 * A call to try to shrink memory usage under specified resource controller.
780 * This is typically used for page reclaiming for shmem for reducing side
781 * effect of page allocation from shmem, which is used by some mem_cgroup.
783 int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
785 struct mem_cgroup *mem;
786 int progress = 0;
787 int retry = MEM_CGROUP_RECLAIM_RETRIES;
789 if (mem_cgroup_subsys.disabled)
790 return 0;
791 if (!mm)
792 return 0;
794 rcu_read_lock();
795 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
796 if (unlikely(!mem)) {
797 rcu_read_unlock();
798 return 0;
800 css_get(&mem->css);
801 rcu_read_unlock();
803 do {
804 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask);
805 progress += res_counter_check_under_limit(&mem->res);
806 } while (!progress && --retry);
808 css_put(&mem->css);
809 if (!retry)
810 return -ENOMEM;
811 return 0;
814 int mem_cgroup_resize_limit(struct mem_cgroup *memcg, unsigned long long val)
817 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
818 int progress;
819 int ret = 0;
821 while (res_counter_set_limit(&memcg->res, val)) {
822 if (signal_pending(current)) {
823 ret = -EINTR;
824 break;
826 if (!retry_count) {
827 ret = -EBUSY;
828 break;
830 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL);
831 if (!progress)
832 retry_count--;
834 return ret;
839 * This routine traverse page_cgroup in given list and drop them all.
840 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
842 #define FORCE_UNCHARGE_BATCH (128)
843 static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
844 struct mem_cgroup_per_zone *mz,
845 enum lru_list lru)
847 struct page_cgroup *pc;
848 struct page *page;
849 int count = FORCE_UNCHARGE_BATCH;
850 unsigned long flags;
851 struct list_head *list;
853 list = &mz->lists[lru];
855 spin_lock_irqsave(&mz->lru_lock, flags);
856 while (!list_empty(list)) {
857 pc = list_entry(list->prev, struct page_cgroup, lru);
858 page = pc->page;
859 get_page(page);
860 spin_unlock_irqrestore(&mz->lru_lock, flags);
862 * Check if this page is on LRU. !LRU page can be found
863 * if it's under page migration.
865 if (PageLRU(page)) {
866 __mem_cgroup_uncharge_common(page,
867 MEM_CGROUP_CHARGE_TYPE_FORCE);
868 put_page(page);
869 if (--count <= 0) {
870 count = FORCE_UNCHARGE_BATCH;
871 cond_resched();
873 } else
874 cond_resched();
875 spin_lock_irqsave(&mz->lru_lock, flags);
877 spin_unlock_irqrestore(&mz->lru_lock, flags);
881 * make mem_cgroup's charge to be 0 if there is no task.
882 * This enables deleting this mem_cgroup.
884 static int mem_cgroup_force_empty(struct mem_cgroup *mem)
886 int ret = -EBUSY;
887 int node, zid;
889 css_get(&mem->css);
891 * page reclaim code (kswapd etc..) will move pages between
892 * active_list <-> inactive_list while we don't take a lock.
893 * So, we have to do loop here until all lists are empty.
895 while (mem->res.usage > 0) {
896 if (atomic_read(&mem->css.cgroup->count) > 0)
897 goto out;
898 for_each_node_state(node, N_POSSIBLE)
899 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
900 struct mem_cgroup_per_zone *mz;
901 enum lru_list l;
902 mz = mem_cgroup_zoneinfo(mem, node, zid);
903 for_each_lru(l)
904 mem_cgroup_force_empty_list(mem, mz, l);
907 ret = 0;
908 out:
909 css_put(&mem->css);
910 return ret;
913 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
915 return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
916 cft->private);
919 * The user of this function is...
920 * RES_LIMIT.
922 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
923 const char *buffer)
925 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
926 unsigned long long val;
927 int ret;
929 switch (cft->private) {
930 case RES_LIMIT:
931 /* This function does all necessary parse...reuse it */
932 ret = res_counter_memparse_write_strategy(buffer, &val);
933 if (!ret)
934 ret = mem_cgroup_resize_limit(memcg, val);
935 break;
936 default:
937 ret = -EINVAL; /* should be BUG() ? */
938 break;
940 return ret;
943 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
945 struct mem_cgroup *mem;
947 mem = mem_cgroup_from_cont(cont);
948 switch (event) {
949 case RES_MAX_USAGE:
950 res_counter_reset_max(&mem->res);
951 break;
952 case RES_FAILCNT:
953 res_counter_reset_failcnt(&mem->res);
954 break;
956 return 0;
959 static int mem_force_empty_write(struct cgroup *cont, unsigned int event)
961 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont));
964 static const struct mem_cgroup_stat_desc {
965 const char *msg;
966 u64 unit;
967 } mem_cgroup_stat_desc[] = {
968 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
969 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
970 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
971 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
974 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
975 struct cgroup_map_cb *cb)
977 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
978 struct mem_cgroup_stat *stat = &mem_cont->stat;
979 int i;
981 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
982 s64 val;
984 val = mem_cgroup_read_stat(stat, i);
985 val *= mem_cgroup_stat_desc[i].unit;
986 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
988 /* showing # of active pages */
990 unsigned long active_anon, inactive_anon;
991 unsigned long active_file, inactive_file;
993 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
994 LRU_INACTIVE_ANON);
995 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
996 LRU_ACTIVE_ANON);
997 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
998 LRU_INACTIVE_FILE);
999 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1000 LRU_ACTIVE_FILE);
1001 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1002 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1003 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1004 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1006 return 0;
1009 static struct cftype mem_cgroup_files[] = {
1011 .name = "usage_in_bytes",
1012 .private = RES_USAGE,
1013 .read_u64 = mem_cgroup_read,
1016 .name = "max_usage_in_bytes",
1017 .private = RES_MAX_USAGE,
1018 .trigger = mem_cgroup_reset,
1019 .read_u64 = mem_cgroup_read,
1022 .name = "limit_in_bytes",
1023 .private = RES_LIMIT,
1024 .write_string = mem_cgroup_write,
1025 .read_u64 = mem_cgroup_read,
1028 .name = "failcnt",
1029 .private = RES_FAILCNT,
1030 .trigger = mem_cgroup_reset,
1031 .read_u64 = mem_cgroup_read,
1034 .name = "force_empty",
1035 .trigger = mem_force_empty_write,
1038 .name = "stat",
1039 .read_map = mem_control_stat_show,
1043 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1045 struct mem_cgroup_per_node *pn;
1046 struct mem_cgroup_per_zone *mz;
1047 enum lru_list l;
1048 int zone, tmp = node;
1050 * This routine is called against possible nodes.
1051 * But it's BUG to call kmalloc() against offline node.
1053 * TODO: this routine can waste much memory for nodes which will
1054 * never be onlined. It's better to use memory hotplug callback
1055 * function.
1057 if (!node_state(node, N_NORMAL_MEMORY))
1058 tmp = -1;
1059 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
1060 if (!pn)
1061 return 1;
1063 mem->info.nodeinfo[node] = pn;
1064 memset(pn, 0, sizeof(*pn));
1066 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1067 mz = &pn->zoneinfo[zone];
1068 spin_lock_init(&mz->lru_lock);
1069 for_each_lru(l)
1070 INIT_LIST_HEAD(&mz->lists[l]);
1072 return 0;
1075 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1077 kfree(mem->info.nodeinfo[node]);
1080 static struct mem_cgroup *mem_cgroup_alloc(void)
1082 struct mem_cgroup *mem;
1084 if (sizeof(*mem) < PAGE_SIZE)
1085 mem = kmalloc(sizeof(*mem), GFP_KERNEL);
1086 else
1087 mem = vmalloc(sizeof(*mem));
1089 if (mem)
1090 memset(mem, 0, sizeof(*mem));
1091 return mem;
1094 static void mem_cgroup_free(struct mem_cgroup *mem)
1096 if (sizeof(*mem) < PAGE_SIZE)
1097 kfree(mem);
1098 else
1099 vfree(mem);
1103 static struct cgroup_subsys_state *
1104 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1106 struct mem_cgroup *mem;
1107 int node;
1109 if (unlikely((cont->parent) == NULL)) {
1110 mem = &init_mem_cgroup;
1111 page_cgroup_cache = KMEM_CACHE(page_cgroup, SLAB_PANIC);
1112 } else {
1113 mem = mem_cgroup_alloc();
1114 if (!mem)
1115 return ERR_PTR(-ENOMEM);
1118 res_counter_init(&mem->res);
1120 for_each_node_state(node, N_POSSIBLE)
1121 if (alloc_mem_cgroup_per_zone_info(mem, node))
1122 goto free_out;
1124 return &mem->css;
1125 free_out:
1126 for_each_node_state(node, N_POSSIBLE)
1127 free_mem_cgroup_per_zone_info(mem, node);
1128 if (cont->parent != NULL)
1129 mem_cgroup_free(mem);
1130 return ERR_PTR(-ENOMEM);
1133 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1134 struct cgroup *cont)
1136 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1137 mem_cgroup_force_empty(mem);
1140 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1141 struct cgroup *cont)
1143 int node;
1144 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1146 for_each_node_state(node, N_POSSIBLE)
1147 free_mem_cgroup_per_zone_info(mem, node);
1149 mem_cgroup_free(mem_cgroup_from_cont(cont));
1152 static int mem_cgroup_populate(struct cgroup_subsys *ss,
1153 struct cgroup *cont)
1155 return cgroup_add_files(cont, ss, mem_cgroup_files,
1156 ARRAY_SIZE(mem_cgroup_files));
1159 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1160 struct cgroup *cont,
1161 struct cgroup *old_cont,
1162 struct task_struct *p)
1164 struct mm_struct *mm;
1165 struct mem_cgroup *mem, *old_mem;
1167 mm = get_task_mm(p);
1168 if (mm == NULL)
1169 return;
1171 mem = mem_cgroup_from_cont(cont);
1172 old_mem = mem_cgroup_from_cont(old_cont);
1175 * Only thread group leaders are allowed to migrate, the mm_struct is
1176 * in effect owned by the leader
1178 if (!thread_group_leader(p))
1179 goto out;
1181 out:
1182 mmput(mm);
1185 struct cgroup_subsys mem_cgroup_subsys = {
1186 .name = "memory",
1187 .subsys_id = mem_cgroup_subsys_id,
1188 .create = mem_cgroup_create,
1189 .pre_destroy = mem_cgroup_pre_destroy,
1190 .destroy = mem_cgroup_destroy,
1191 .populate = mem_cgroup_populate,
1192 .attach = mem_cgroup_move_task,
1193 .early_init = 0,