i2c-bfin-twi: Update the dependencies
[linux-2.6/zen-sources.git] / kernel / rcupreempt.c
blob41d275a81df512229c424c317ed78d246a01ae3a
1 /*
2 * Read-Copy Update mechanism for mutual exclusion, realtime implementation
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2006
20 * Authors: Paul E. McKenney <paulmck@us.ibm.com>
21 * With thanks to Esben Nielsen, Bill Huey, and Ingo Molnar
22 * for pushing me away from locks and towards counters, and
23 * to Suparna Bhattacharya for pushing me completely away
24 * from atomic instructions on the read side.
26 * - Added handling of Dynamic Ticks
27 * Copyright 2007 - Paul E. Mckenney <paulmck@us.ibm.com>
28 * - Steven Rostedt <srostedt@redhat.com>
30 * Papers: http://www.rdrop.com/users/paulmck/RCU
32 * Design Document: http://lwn.net/Articles/253651/
34 * For detailed explanation of Read-Copy Update mechanism see -
35 * Documentation/RCU/ *.txt
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/init.h>
41 #include <linux/spinlock.h>
42 #include <linux/smp.h>
43 #include <linux/rcupdate.h>
44 #include <linux/interrupt.h>
45 #include <linux/sched.h>
46 #include <asm/atomic.h>
47 #include <linux/bitops.h>
48 #include <linux/module.h>
49 #include <linux/completion.h>
50 #include <linux/moduleparam.h>
51 #include <linux/percpu.h>
52 #include <linux/notifier.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/random.h>
56 #include <linux/delay.h>
57 #include <linux/byteorder/swabb.h>
58 #include <linux/cpumask.h>
59 #include <linux/rcupreempt_trace.h>
62 * Macro that prevents the compiler from reordering accesses, but does
63 * absolutely -nothing- to prevent CPUs from reordering. This is used
64 * only to mediate communication between mainline code and hardware
65 * interrupt and NMI handlers.
67 #define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
70 * PREEMPT_RCU data structures.
74 * GP_STAGES specifies the number of times the state machine has
75 * to go through the all the rcu_try_flip_states (see below)
76 * in a single Grace Period.
78 * GP in GP_STAGES stands for Grace Period ;)
80 #define GP_STAGES 2
81 struct rcu_data {
82 spinlock_t lock; /* Protect rcu_data fields. */
83 long completed; /* Number of last completed batch. */
84 int waitlistcount;
85 struct tasklet_struct rcu_tasklet;
86 struct rcu_head *nextlist;
87 struct rcu_head **nexttail;
88 struct rcu_head *waitlist[GP_STAGES];
89 struct rcu_head **waittail[GP_STAGES];
90 struct rcu_head *donelist;
91 struct rcu_head **donetail;
92 long rcu_flipctr[2];
93 #ifdef CONFIG_RCU_TRACE
94 struct rcupreempt_trace trace;
95 #endif /* #ifdef CONFIG_RCU_TRACE */
99 * States for rcu_try_flip() and friends.
102 enum rcu_try_flip_states {
105 * Stay here if nothing is happening. Flip the counter if somthing
106 * starts happening. Denoted by "I"
108 rcu_try_flip_idle_state,
111 * Wait here for all CPUs to notice that the counter has flipped. This
112 * prevents the old set of counters from ever being incremented once
113 * we leave this state, which in turn is necessary because we cannot
114 * test any individual counter for zero -- we can only check the sum.
115 * Denoted by "A".
117 rcu_try_flip_waitack_state,
120 * Wait here for the sum of the old per-CPU counters to reach zero.
121 * Denoted by "Z".
123 rcu_try_flip_waitzero_state,
126 * Wait here for each of the other CPUs to execute a memory barrier.
127 * This is necessary to ensure that these other CPUs really have
128 * completed executing their RCU read-side critical sections, despite
129 * their CPUs wildly reordering memory. Denoted by "M".
131 rcu_try_flip_waitmb_state,
134 struct rcu_ctrlblk {
135 spinlock_t fliplock; /* Protect state-machine transitions. */
136 long completed; /* Number of last completed batch. */
137 enum rcu_try_flip_states rcu_try_flip_state; /* The current state of
138 the rcu state machine */
141 static DEFINE_PER_CPU(struct rcu_data, rcu_data);
142 static struct rcu_ctrlblk rcu_ctrlblk = {
143 .fliplock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.fliplock),
144 .completed = 0,
145 .rcu_try_flip_state = rcu_try_flip_idle_state,
149 #ifdef CONFIG_RCU_TRACE
150 static char *rcu_try_flip_state_names[] =
151 { "idle", "waitack", "waitzero", "waitmb" };
152 #endif /* #ifdef CONFIG_RCU_TRACE */
154 static cpumask_t rcu_cpu_online_map __read_mostly = CPU_MASK_NONE;
157 * Enum and per-CPU flag to determine when each CPU has seen
158 * the most recent counter flip.
161 enum rcu_flip_flag_values {
162 rcu_flip_seen, /* Steady/initial state, last flip seen. */
163 /* Only GP detector can update. */
164 rcu_flipped /* Flip just completed, need confirmation. */
165 /* Only corresponding CPU can update. */
167 static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_flip_flag_values, rcu_flip_flag)
168 = rcu_flip_seen;
171 * Enum and per-CPU flag to determine when each CPU has executed the
172 * needed memory barrier to fence in memory references from its last RCU
173 * read-side critical section in the just-completed grace period.
176 enum rcu_mb_flag_values {
177 rcu_mb_done, /* Steady/initial state, no mb()s required. */
178 /* Only GP detector can update. */
179 rcu_mb_needed /* Flip just completed, need an mb(). */
180 /* Only corresponding CPU can update. */
182 static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_mb_flag_values, rcu_mb_flag)
183 = rcu_mb_done;
186 * RCU_DATA_ME: find the current CPU's rcu_data structure.
187 * RCU_DATA_CPU: find the specified CPU's rcu_data structure.
189 #define RCU_DATA_ME() (&__get_cpu_var(rcu_data))
190 #define RCU_DATA_CPU(cpu) (&per_cpu(rcu_data, cpu))
193 * Helper macro for tracing when the appropriate rcu_data is not
194 * cached in a local variable, but where the CPU number is so cached.
196 #define RCU_TRACE_CPU(f, cpu) RCU_TRACE(f, &(RCU_DATA_CPU(cpu)->trace));
199 * Helper macro for tracing when the appropriate rcu_data is not
200 * cached in a local variable.
202 #define RCU_TRACE_ME(f) RCU_TRACE(f, &(RCU_DATA_ME()->trace));
205 * Helper macro for tracing when the appropriate rcu_data is pointed
206 * to by a local variable.
208 #define RCU_TRACE_RDP(f, rdp) RCU_TRACE(f, &((rdp)->trace));
211 * Return the number of RCU batches processed thus far. Useful
212 * for debug and statistics.
214 long rcu_batches_completed(void)
216 return rcu_ctrlblk.completed;
218 EXPORT_SYMBOL_GPL(rcu_batches_completed);
220 void __rcu_read_lock(void)
222 int idx;
223 struct task_struct *t = current;
224 int nesting;
226 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
227 if (nesting != 0) {
229 /* An earlier rcu_read_lock() covers us, just count it. */
231 t->rcu_read_lock_nesting = nesting + 1;
233 } else {
234 unsigned long flags;
237 * We disable interrupts for the following reasons:
238 * - If we get scheduling clock interrupt here, and we
239 * end up acking the counter flip, it's like a promise
240 * that we will never increment the old counter again.
241 * Thus we will break that promise if that
242 * scheduling clock interrupt happens between the time
243 * we pick the .completed field and the time that we
244 * increment our counter.
246 * - We don't want to be preempted out here.
248 * NMIs can still occur, of course, and might themselves
249 * contain rcu_read_lock().
252 local_irq_save(flags);
255 * Outermost nesting of rcu_read_lock(), so increment
256 * the current counter for the current CPU. Use volatile
257 * casts to prevent the compiler from reordering.
260 idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1;
261 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])++;
264 * Now that the per-CPU counter has been incremented, we
265 * are protected from races with rcu_read_lock() invoked
266 * from NMI handlers on this CPU. We can therefore safely
267 * increment the nesting counter, relieving further NMIs
268 * of the need to increment the per-CPU counter.
271 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1;
274 * Now that we have preventing any NMIs from storing
275 * to the ->rcu_flipctr_idx, we can safely use it to
276 * remember which counter to decrement in the matching
277 * rcu_read_unlock().
280 ACCESS_ONCE(t->rcu_flipctr_idx) = idx;
281 local_irq_restore(flags);
284 EXPORT_SYMBOL_GPL(__rcu_read_lock);
286 void __rcu_read_unlock(void)
288 int idx;
289 struct task_struct *t = current;
290 int nesting;
292 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
293 if (nesting > 1) {
296 * We are still protected by the enclosing rcu_read_lock(),
297 * so simply decrement the counter.
300 t->rcu_read_lock_nesting = nesting - 1;
302 } else {
303 unsigned long flags;
306 * Disable local interrupts to prevent the grace-period
307 * detection state machine from seeing us half-done.
308 * NMIs can still occur, of course, and might themselves
309 * contain rcu_read_lock() and rcu_read_unlock().
312 local_irq_save(flags);
315 * Outermost nesting of rcu_read_unlock(), so we must
316 * decrement the current counter for the current CPU.
317 * This must be done carefully, because NMIs can
318 * occur at any point in this code, and any rcu_read_lock()
319 * and rcu_read_unlock() pairs in the NMI handlers
320 * must interact non-destructively with this code.
321 * Lots of volatile casts, and -very- careful ordering.
323 * Changes to this code, including this one, must be
324 * inspected, validated, and tested extremely carefully!!!
328 * First, pick up the index.
331 idx = ACCESS_ONCE(t->rcu_flipctr_idx);
334 * Now that we have fetched the counter index, it is
335 * safe to decrement the per-task RCU nesting counter.
336 * After this, any interrupts or NMIs will increment and
337 * decrement the per-CPU counters.
339 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1;
342 * It is now safe to decrement this task's nesting count.
343 * NMIs that occur after this statement will route their
344 * rcu_read_lock() calls through this "else" clause, and
345 * will thus start incrementing the per-CPU counter on
346 * their own. They will also clobber ->rcu_flipctr_idx,
347 * but that is OK, since we have already fetched it.
350 ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])--;
351 local_irq_restore(flags);
354 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
357 * If a global counter flip has occurred since the last time that we
358 * advanced callbacks, advance them. Hardware interrupts must be
359 * disabled when calling this function.
361 static void __rcu_advance_callbacks(struct rcu_data *rdp)
363 int cpu;
364 int i;
365 int wlc = 0;
367 if (rdp->completed != rcu_ctrlblk.completed) {
368 if (rdp->waitlist[GP_STAGES - 1] != NULL) {
369 *rdp->donetail = rdp->waitlist[GP_STAGES - 1];
370 rdp->donetail = rdp->waittail[GP_STAGES - 1];
371 RCU_TRACE_RDP(rcupreempt_trace_move2done, rdp);
373 for (i = GP_STAGES - 2; i >= 0; i--) {
374 if (rdp->waitlist[i] != NULL) {
375 rdp->waitlist[i + 1] = rdp->waitlist[i];
376 rdp->waittail[i + 1] = rdp->waittail[i];
377 wlc++;
378 } else {
379 rdp->waitlist[i + 1] = NULL;
380 rdp->waittail[i + 1] =
381 &rdp->waitlist[i + 1];
384 if (rdp->nextlist != NULL) {
385 rdp->waitlist[0] = rdp->nextlist;
386 rdp->waittail[0] = rdp->nexttail;
387 wlc++;
388 rdp->nextlist = NULL;
389 rdp->nexttail = &rdp->nextlist;
390 RCU_TRACE_RDP(rcupreempt_trace_move2wait, rdp);
391 } else {
392 rdp->waitlist[0] = NULL;
393 rdp->waittail[0] = &rdp->waitlist[0];
395 rdp->waitlistcount = wlc;
396 rdp->completed = rcu_ctrlblk.completed;
400 * Check to see if this CPU needs to report that it has seen
401 * the most recent counter flip, thereby declaring that all
402 * subsequent rcu_read_lock() invocations will respect this flip.
405 cpu = raw_smp_processor_id();
406 if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
407 smp_mb(); /* Subsequent counter accesses must see new value */
408 per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
409 smp_mb(); /* Subsequent RCU read-side critical sections */
410 /* seen -after- acknowledgement. */
414 #ifdef CONFIG_NO_HZ
416 DEFINE_PER_CPU(long, dynticks_progress_counter) = 1;
417 static DEFINE_PER_CPU(long, rcu_dyntick_snapshot);
418 static DEFINE_PER_CPU(int, rcu_update_flag);
421 * rcu_irq_enter - Called from Hard irq handlers and NMI/SMI.
423 * If the CPU was idle with dynamic ticks active, this updates the
424 * dynticks_progress_counter to let the RCU handling know that the
425 * CPU is active.
427 void rcu_irq_enter(void)
429 int cpu = smp_processor_id();
431 if (per_cpu(rcu_update_flag, cpu))
432 per_cpu(rcu_update_flag, cpu)++;
435 * Only update if we are coming from a stopped ticks mode
436 * (dynticks_progress_counter is even).
438 if (!in_interrupt() &&
439 (per_cpu(dynticks_progress_counter, cpu) & 0x1) == 0) {
441 * The following might seem like we could have a race
442 * with NMI/SMIs. But this really isn't a problem.
443 * Here we do a read/modify/write, and the race happens
444 * when an NMI/SMI comes in after the read and before
445 * the write. But NMI/SMIs will increment this counter
446 * twice before returning, so the zero bit will not
447 * be corrupted by the NMI/SMI which is the most important
448 * part.
450 * The only thing is that we would bring back the counter
451 * to a postion that it was in during the NMI/SMI.
452 * But the zero bit would be set, so the rest of the
453 * counter would again be ignored.
455 * On return from the IRQ, the counter may have the zero
456 * bit be 0 and the counter the same as the return from
457 * the NMI/SMI. If the state machine was so unlucky to
458 * see that, it still doesn't matter, since all
459 * RCU read-side critical sections on this CPU would
460 * have already completed.
462 per_cpu(dynticks_progress_counter, cpu)++;
464 * The following memory barrier ensures that any
465 * rcu_read_lock() primitives in the irq handler
466 * are seen by other CPUs to follow the above
467 * increment to dynticks_progress_counter. This is
468 * required in order for other CPUs to correctly
469 * determine when it is safe to advance the RCU
470 * grace-period state machine.
472 smp_mb(); /* see above block comment. */
474 * Since we can't determine the dynamic tick mode from
475 * the dynticks_progress_counter after this routine,
476 * we use a second flag to acknowledge that we came
477 * from an idle state with ticks stopped.
479 per_cpu(rcu_update_flag, cpu)++;
481 * If we take an NMI/SMI now, they will also increment
482 * the rcu_update_flag, and will not update the
483 * dynticks_progress_counter on exit. That is for
484 * this IRQ to do.
490 * rcu_irq_exit - Called from exiting Hard irq context.
492 * If the CPU was idle with dynamic ticks active, update the
493 * dynticks_progress_counter to put let the RCU handling be
494 * aware that the CPU is going back to idle with no ticks.
496 void rcu_irq_exit(void)
498 int cpu = smp_processor_id();
501 * rcu_update_flag is set if we interrupted the CPU
502 * when it was idle with ticks stopped.
503 * Once this occurs, we keep track of interrupt nesting
504 * because a NMI/SMI could also come in, and we still
505 * only want the IRQ that started the increment of the
506 * dynticks_progress_counter to be the one that modifies
507 * it on exit.
509 if (per_cpu(rcu_update_flag, cpu)) {
510 if (--per_cpu(rcu_update_flag, cpu))
511 return;
513 /* This must match the interrupt nesting */
514 WARN_ON(in_interrupt());
517 * If an NMI/SMI happens now we are still
518 * protected by the dynticks_progress_counter being odd.
522 * The following memory barrier ensures that any
523 * rcu_read_unlock() primitives in the irq handler
524 * are seen by other CPUs to preceed the following
525 * increment to dynticks_progress_counter. This
526 * is required in order for other CPUs to determine
527 * when it is safe to advance the RCU grace-period
528 * state machine.
530 smp_mb(); /* see above block comment. */
531 per_cpu(dynticks_progress_counter, cpu)++;
532 WARN_ON(per_cpu(dynticks_progress_counter, cpu) & 0x1);
536 static void dyntick_save_progress_counter(int cpu)
538 per_cpu(rcu_dyntick_snapshot, cpu) =
539 per_cpu(dynticks_progress_counter, cpu);
542 static inline int
543 rcu_try_flip_waitack_needed(int cpu)
545 long curr;
546 long snap;
548 curr = per_cpu(dynticks_progress_counter, cpu);
549 snap = per_cpu(rcu_dyntick_snapshot, cpu);
550 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
553 * If the CPU remained in dynticks mode for the entire time
554 * and didn't take any interrupts, NMIs, SMIs, or whatever,
555 * then it cannot be in the middle of an rcu_read_lock(), so
556 * the next rcu_read_lock() it executes must use the new value
557 * of the counter. So we can safely pretend that this CPU
558 * already acknowledged the counter.
561 if ((curr == snap) && ((curr & 0x1) == 0))
562 return 0;
565 * If the CPU passed through or entered a dynticks idle phase with
566 * no active irq handlers, then, as above, we can safely pretend
567 * that this CPU already acknowledged the counter.
570 if ((curr - snap) > 2 || (snap & 0x1) == 0)
571 return 0;
573 /* We need this CPU to explicitly acknowledge the counter flip. */
575 return 1;
578 static inline int
579 rcu_try_flip_waitmb_needed(int cpu)
581 long curr;
582 long snap;
584 curr = per_cpu(dynticks_progress_counter, cpu);
585 snap = per_cpu(rcu_dyntick_snapshot, cpu);
586 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
589 * If the CPU remained in dynticks mode for the entire time
590 * and didn't take any interrupts, NMIs, SMIs, or whatever,
591 * then it cannot have executed an RCU read-side critical section
592 * during that time, so there is no need for it to execute a
593 * memory barrier.
596 if ((curr == snap) && ((curr & 0x1) == 0))
597 return 0;
600 * If the CPU either entered or exited an outermost interrupt,
601 * SMI, NMI, or whatever handler, then we know that it executed
602 * a memory barrier when doing so. So we don't need another one.
604 if (curr != snap)
605 return 0;
607 /* We need the CPU to execute a memory barrier. */
609 return 1;
612 #else /* !CONFIG_NO_HZ */
614 # define dyntick_save_progress_counter(cpu) do { } while (0)
615 # define rcu_try_flip_waitack_needed(cpu) (1)
616 # define rcu_try_flip_waitmb_needed(cpu) (1)
618 #endif /* CONFIG_NO_HZ */
621 * Get here when RCU is idle. Decide whether we need to
622 * move out of idle state, and return non-zero if so.
623 * "Straightforward" approach for the moment, might later
624 * use callback-list lengths, grace-period duration, or
625 * some such to determine when to exit idle state.
626 * Might also need a pre-idle test that does not acquire
627 * the lock, but let's get the simple case working first...
630 static int
631 rcu_try_flip_idle(void)
633 int cpu;
635 RCU_TRACE_ME(rcupreempt_trace_try_flip_i1);
636 if (!rcu_pending(smp_processor_id())) {
637 RCU_TRACE_ME(rcupreempt_trace_try_flip_ie1);
638 return 0;
642 * Do the flip.
645 RCU_TRACE_ME(rcupreempt_trace_try_flip_g1);
646 rcu_ctrlblk.completed++; /* stands in for rcu_try_flip_g2 */
649 * Need a memory barrier so that other CPUs see the new
650 * counter value before they see the subsequent change of all
651 * the rcu_flip_flag instances to rcu_flipped.
654 smp_mb(); /* see above block comment. */
656 /* Now ask each CPU for acknowledgement of the flip. */
658 for_each_cpu_mask(cpu, rcu_cpu_online_map) {
659 per_cpu(rcu_flip_flag, cpu) = rcu_flipped;
660 dyntick_save_progress_counter(cpu);
663 return 1;
667 * Wait for CPUs to acknowledge the flip.
670 static int
671 rcu_try_flip_waitack(void)
673 int cpu;
675 RCU_TRACE_ME(rcupreempt_trace_try_flip_a1);
676 for_each_cpu_mask(cpu, rcu_cpu_online_map)
677 if (rcu_try_flip_waitack_needed(cpu) &&
678 per_cpu(rcu_flip_flag, cpu) != rcu_flip_seen) {
679 RCU_TRACE_ME(rcupreempt_trace_try_flip_ae1);
680 return 0;
684 * Make sure our checks above don't bleed into subsequent
685 * waiting for the sum of the counters to reach zero.
688 smp_mb(); /* see above block comment. */
689 RCU_TRACE_ME(rcupreempt_trace_try_flip_a2);
690 return 1;
694 * Wait for collective ``last'' counter to reach zero,
695 * then tell all CPUs to do an end-of-grace-period memory barrier.
698 static int
699 rcu_try_flip_waitzero(void)
701 int cpu;
702 int lastidx = !(rcu_ctrlblk.completed & 0x1);
703 int sum = 0;
705 /* Check to see if the sum of the "last" counters is zero. */
707 RCU_TRACE_ME(rcupreempt_trace_try_flip_z1);
708 for_each_cpu_mask(cpu, rcu_cpu_online_map)
709 sum += RCU_DATA_CPU(cpu)->rcu_flipctr[lastidx];
710 if (sum != 0) {
711 RCU_TRACE_ME(rcupreempt_trace_try_flip_ze1);
712 return 0;
716 * This ensures that the other CPUs see the call for
717 * memory barriers -after- the sum to zero has been
718 * detected here
720 smp_mb(); /* ^^^^^^^^^^^^ */
722 /* Call for a memory barrier from each CPU. */
723 for_each_cpu_mask(cpu, rcu_cpu_online_map) {
724 per_cpu(rcu_mb_flag, cpu) = rcu_mb_needed;
725 dyntick_save_progress_counter(cpu);
728 RCU_TRACE_ME(rcupreempt_trace_try_flip_z2);
729 return 1;
733 * Wait for all CPUs to do their end-of-grace-period memory barrier.
734 * Return 0 once all CPUs have done so.
737 static int
738 rcu_try_flip_waitmb(void)
740 int cpu;
742 RCU_TRACE_ME(rcupreempt_trace_try_flip_m1);
743 for_each_cpu_mask(cpu, rcu_cpu_online_map)
744 if (rcu_try_flip_waitmb_needed(cpu) &&
745 per_cpu(rcu_mb_flag, cpu) != rcu_mb_done) {
746 RCU_TRACE_ME(rcupreempt_trace_try_flip_me1);
747 return 0;
750 smp_mb(); /* Ensure that the above checks precede any following flip. */
751 RCU_TRACE_ME(rcupreempt_trace_try_flip_m2);
752 return 1;
756 * Attempt a single flip of the counters. Remember, a single flip does
757 * -not- constitute a grace period. Instead, the interval between
758 * at least GP_STAGES consecutive flips is a grace period.
760 * If anyone is nuts enough to run this CONFIG_PREEMPT_RCU implementation
761 * on a large SMP, they might want to use a hierarchical organization of
762 * the per-CPU-counter pairs.
764 static void rcu_try_flip(void)
766 unsigned long flags;
768 RCU_TRACE_ME(rcupreempt_trace_try_flip_1);
769 if (unlikely(!spin_trylock_irqsave(&rcu_ctrlblk.fliplock, flags))) {
770 RCU_TRACE_ME(rcupreempt_trace_try_flip_e1);
771 return;
775 * Take the next transition(s) through the RCU grace-period
776 * flip-counter state machine.
779 switch (rcu_ctrlblk.rcu_try_flip_state) {
780 case rcu_try_flip_idle_state:
781 if (rcu_try_flip_idle())
782 rcu_ctrlblk.rcu_try_flip_state =
783 rcu_try_flip_waitack_state;
784 break;
785 case rcu_try_flip_waitack_state:
786 if (rcu_try_flip_waitack())
787 rcu_ctrlblk.rcu_try_flip_state =
788 rcu_try_flip_waitzero_state;
789 break;
790 case rcu_try_flip_waitzero_state:
791 if (rcu_try_flip_waitzero())
792 rcu_ctrlblk.rcu_try_flip_state =
793 rcu_try_flip_waitmb_state;
794 break;
795 case rcu_try_flip_waitmb_state:
796 if (rcu_try_flip_waitmb())
797 rcu_ctrlblk.rcu_try_flip_state =
798 rcu_try_flip_idle_state;
800 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
804 * Check to see if this CPU needs to do a memory barrier in order to
805 * ensure that any prior RCU read-side critical sections have committed
806 * their counter manipulations and critical-section memory references
807 * before declaring the grace period to be completed.
809 static void rcu_check_mb(int cpu)
811 if (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed) {
812 smp_mb(); /* Ensure RCU read-side accesses are visible. */
813 per_cpu(rcu_mb_flag, cpu) = rcu_mb_done;
817 void rcu_check_callbacks(int cpu, int user)
819 unsigned long flags;
820 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
822 rcu_check_mb(cpu);
823 if (rcu_ctrlblk.completed == rdp->completed)
824 rcu_try_flip();
825 spin_lock_irqsave(&rdp->lock, flags);
826 RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
827 __rcu_advance_callbacks(rdp);
828 if (rdp->donelist == NULL) {
829 spin_unlock_irqrestore(&rdp->lock, flags);
830 } else {
831 spin_unlock_irqrestore(&rdp->lock, flags);
832 raise_softirq(RCU_SOFTIRQ);
837 * Needed by dynticks, to make sure all RCU processing has finished
838 * when we go idle:
840 void rcu_advance_callbacks(int cpu, int user)
842 unsigned long flags;
843 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
845 if (rcu_ctrlblk.completed == rdp->completed) {
846 rcu_try_flip();
847 if (rcu_ctrlblk.completed == rdp->completed)
848 return;
850 spin_lock_irqsave(&rdp->lock, flags);
851 RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
852 __rcu_advance_callbacks(rdp);
853 spin_unlock_irqrestore(&rdp->lock, flags);
856 #ifdef CONFIG_HOTPLUG_CPU
857 #define rcu_offline_cpu_enqueue(srclist, srctail, dstlist, dsttail) do { \
858 *dsttail = srclist; \
859 if (srclist != NULL) { \
860 dsttail = srctail; \
861 srclist = NULL; \
862 srctail = &srclist;\
864 } while (0)
866 void rcu_offline_cpu(int cpu)
868 int i;
869 struct rcu_head *list = NULL;
870 unsigned long flags;
871 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
872 struct rcu_head **tail = &list;
875 * Remove all callbacks from the newly dead CPU, retaining order.
876 * Otherwise rcu_barrier() will fail
879 spin_lock_irqsave(&rdp->lock, flags);
880 rcu_offline_cpu_enqueue(rdp->donelist, rdp->donetail, list, tail);
881 for (i = GP_STAGES - 1; i >= 0; i--)
882 rcu_offline_cpu_enqueue(rdp->waitlist[i], rdp->waittail[i],
883 list, tail);
884 rcu_offline_cpu_enqueue(rdp->nextlist, rdp->nexttail, list, tail);
885 spin_unlock_irqrestore(&rdp->lock, flags);
886 rdp->waitlistcount = 0;
888 /* Disengage the newly dead CPU from the grace-period computation. */
890 spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
891 rcu_check_mb(cpu);
892 if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
893 smp_mb(); /* Subsequent counter accesses must see new value */
894 per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
895 smp_mb(); /* Subsequent RCU read-side critical sections */
896 /* seen -after- acknowledgement. */
899 RCU_DATA_ME()->rcu_flipctr[0] += RCU_DATA_CPU(cpu)->rcu_flipctr[0];
900 RCU_DATA_ME()->rcu_flipctr[1] += RCU_DATA_CPU(cpu)->rcu_flipctr[1];
902 RCU_DATA_CPU(cpu)->rcu_flipctr[0] = 0;
903 RCU_DATA_CPU(cpu)->rcu_flipctr[1] = 0;
905 cpu_clear(cpu, rcu_cpu_online_map);
907 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
910 * Place the removed callbacks on the current CPU's queue.
911 * Make them all start a new grace period: simple approach,
912 * in theory could starve a given set of callbacks, but
913 * you would need to be doing some serious CPU hotplugging
914 * to make this happen. If this becomes a problem, adding
915 * a synchronize_rcu() to the hotplug path would be a simple
916 * fix.
919 local_irq_save(flags);
920 rdp = RCU_DATA_ME();
921 spin_lock(&rdp->lock);
922 *rdp->nexttail = list;
923 if (list)
924 rdp->nexttail = tail;
925 spin_unlock_irqrestore(&rdp->lock, flags);
928 #else /* #ifdef CONFIG_HOTPLUG_CPU */
930 void rcu_offline_cpu(int cpu)
934 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
936 void __cpuinit rcu_online_cpu(int cpu)
938 unsigned long flags;
940 spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
941 cpu_set(cpu, rcu_cpu_online_map);
942 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
945 static void rcu_process_callbacks(struct softirq_action *unused)
947 unsigned long flags;
948 struct rcu_head *next, *list;
949 struct rcu_data *rdp;
951 local_irq_save(flags);
952 rdp = RCU_DATA_ME();
953 spin_lock(&rdp->lock);
954 list = rdp->donelist;
955 if (list == NULL) {
956 spin_unlock_irqrestore(&rdp->lock, flags);
957 return;
959 rdp->donelist = NULL;
960 rdp->donetail = &rdp->donelist;
961 RCU_TRACE_RDP(rcupreempt_trace_done_remove, rdp);
962 spin_unlock_irqrestore(&rdp->lock, flags);
963 while (list) {
964 next = list->next;
965 list->func(list);
966 list = next;
967 RCU_TRACE_ME(rcupreempt_trace_invoke);
971 void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
973 unsigned long flags;
974 struct rcu_data *rdp;
976 head->func = func;
977 head->next = NULL;
978 local_irq_save(flags);
979 rdp = RCU_DATA_ME();
980 spin_lock(&rdp->lock);
981 __rcu_advance_callbacks(rdp);
982 *rdp->nexttail = head;
983 rdp->nexttail = &head->next;
984 RCU_TRACE_RDP(rcupreempt_trace_next_add, rdp);
985 spin_unlock(&rdp->lock);
986 local_irq_restore(flags);
988 EXPORT_SYMBOL_GPL(call_rcu);
991 * Wait until all currently running preempt_disable() code segments
992 * (including hardware-irq-disable segments) complete. Note that
993 * in -rt this does -not- necessarily result in all currently executing
994 * interrupt -handlers- having completed.
996 void __synchronize_sched(void)
998 cpumask_t oldmask;
999 int cpu;
1001 if (sched_getaffinity(0, &oldmask) < 0)
1002 oldmask = cpu_possible_map;
1003 for_each_online_cpu(cpu) {
1004 sched_setaffinity(0, &cpumask_of_cpu(cpu));
1005 schedule();
1007 sched_setaffinity(0, &oldmask);
1009 EXPORT_SYMBOL_GPL(__synchronize_sched);
1012 * Check to see if any future RCU-related work will need to be done
1013 * by the current CPU, even if none need be done immediately, returning
1014 * 1 if so. Assumes that notifiers would take care of handling any
1015 * outstanding requests from the RCU core.
1017 * This function is part of the RCU implementation; it is -not-
1018 * an exported member of the RCU API.
1020 int rcu_needs_cpu(int cpu)
1022 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1024 return (rdp->donelist != NULL ||
1025 !!rdp->waitlistcount ||
1026 rdp->nextlist != NULL);
1029 int rcu_pending(int cpu)
1031 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1033 /* The CPU has at least one callback queued somewhere. */
1035 if (rdp->donelist != NULL ||
1036 !!rdp->waitlistcount ||
1037 rdp->nextlist != NULL)
1038 return 1;
1040 /* The RCU core needs an acknowledgement from this CPU. */
1042 if ((per_cpu(rcu_flip_flag, cpu) == rcu_flipped) ||
1043 (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed))
1044 return 1;
1046 /* This CPU has fallen behind the global grace-period number. */
1048 if (rdp->completed != rcu_ctrlblk.completed)
1049 return 1;
1051 /* Nothing needed from this CPU. */
1053 return 0;
1056 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1057 unsigned long action, void *hcpu)
1059 long cpu = (long)hcpu;
1061 switch (action) {
1062 case CPU_UP_PREPARE:
1063 case CPU_UP_PREPARE_FROZEN:
1064 rcu_online_cpu(cpu);
1065 break;
1066 case CPU_UP_CANCELED:
1067 case CPU_UP_CANCELED_FROZEN:
1068 case CPU_DEAD:
1069 case CPU_DEAD_FROZEN:
1070 rcu_offline_cpu(cpu);
1071 break;
1072 default:
1073 break;
1075 return NOTIFY_OK;
1078 static struct notifier_block __cpuinitdata rcu_nb = {
1079 .notifier_call = rcu_cpu_notify,
1082 void __init __rcu_init(void)
1084 int cpu;
1085 int i;
1086 struct rcu_data *rdp;
1088 printk(KERN_NOTICE "Preemptible RCU implementation.\n");
1089 for_each_possible_cpu(cpu) {
1090 rdp = RCU_DATA_CPU(cpu);
1091 spin_lock_init(&rdp->lock);
1092 rdp->completed = 0;
1093 rdp->waitlistcount = 0;
1094 rdp->nextlist = NULL;
1095 rdp->nexttail = &rdp->nextlist;
1096 for (i = 0; i < GP_STAGES; i++) {
1097 rdp->waitlist[i] = NULL;
1098 rdp->waittail[i] = &rdp->waitlist[i];
1100 rdp->donelist = NULL;
1101 rdp->donetail = &rdp->donelist;
1102 rdp->rcu_flipctr[0] = 0;
1103 rdp->rcu_flipctr[1] = 0;
1105 register_cpu_notifier(&rcu_nb);
1108 * We don't need protection against CPU-Hotplug here
1109 * since
1110 * a) If a CPU comes online while we are iterating over the
1111 * cpu_online_map below, we would only end up making a
1112 * duplicate call to rcu_online_cpu() which sets the corresponding
1113 * CPU's mask in the rcu_cpu_online_map.
1115 * b) A CPU cannot go offline at this point in time since the user
1116 * does not have access to the sysfs interface, nor do we
1117 * suspend the system.
1119 for_each_online_cpu(cpu)
1120 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long) cpu);
1122 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks, NULL);
1126 * Deprecated, use synchronize_rcu() or synchronize_sched() instead.
1128 void synchronize_kernel(void)
1130 synchronize_rcu();
1133 #ifdef CONFIG_RCU_TRACE
1134 long *rcupreempt_flipctr(int cpu)
1136 return &RCU_DATA_CPU(cpu)->rcu_flipctr[0];
1138 EXPORT_SYMBOL_GPL(rcupreempt_flipctr);
1140 int rcupreempt_flip_flag(int cpu)
1142 return per_cpu(rcu_flip_flag, cpu);
1144 EXPORT_SYMBOL_GPL(rcupreempt_flip_flag);
1146 int rcupreempt_mb_flag(int cpu)
1148 return per_cpu(rcu_mb_flag, cpu);
1150 EXPORT_SYMBOL_GPL(rcupreempt_mb_flag);
1152 char *rcupreempt_try_flip_state_name(void)
1154 return rcu_try_flip_state_names[rcu_ctrlblk.rcu_try_flip_state];
1156 EXPORT_SYMBOL_GPL(rcupreempt_try_flip_state_name);
1158 struct rcupreempt_trace *rcupreempt_trace_cpu(int cpu)
1160 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
1162 return &rdp->trace;
1164 EXPORT_SYMBOL_GPL(rcupreempt_trace_cpu);
1166 #endif /* #ifdef RCU_TRACE */