Merge branch 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6/zen-sources.git] / drivers / block / cciss.c
blob4023885353e095e75d179f7ed8f649cd1abbb5a2
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/init.h>
38 #include <linux/hdreg.h>
39 #include <linux/spinlock.h>
40 #include <linux/compat.h>
41 #include <linux/blktrace_api.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/blkdev.h>
47 #include <linux/genhd.h>
48 #include <linux/completion.h>
49 #include <scsi/scsi.h>
50 #include <scsi/sg.h>
51 #include <scsi/scsi_ioctl.h>
52 #include <linux/cdrom.h>
53 #include <linux/scatterlist.h>
55 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
56 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
57 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
59 /* Embedded module documentation macros - see modules.h */
60 MODULE_AUTHOR("Hewlett-Packard Company");
61 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
62 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
63 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
64 " Smart Array G2 Series SAS/SATA Controllers");
65 MODULE_VERSION("3.6.20");
66 MODULE_LICENSE("GPL");
68 #include "cciss_cmd.h"
69 #include "cciss.h"
70 #include <linux/cciss_ioctl.h>
72 /* define the PCI info for the cards we can control */
73 static const struct pci_device_id cciss_pci_device_id[] = {
74 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
75 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
76 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
77 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
78 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
79 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
80 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
99 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
100 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101 {0,}
104 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
106 /* board_id = Subsystem Device ID & Vendor ID
107 * product = Marketing Name for the board
108 * access = Address of the struct of function pointers
110 static struct board_type products[] = {
111 {0x40700E11, "Smart Array 5300", &SA5_access},
112 {0x40800E11, "Smart Array 5i", &SA5B_access},
113 {0x40820E11, "Smart Array 532", &SA5B_access},
114 {0x40830E11, "Smart Array 5312", &SA5B_access},
115 {0x409A0E11, "Smart Array 641", &SA5_access},
116 {0x409B0E11, "Smart Array 642", &SA5_access},
117 {0x409C0E11, "Smart Array 6400", &SA5_access},
118 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
119 {0x40910E11, "Smart Array 6i", &SA5_access},
120 {0x3225103C, "Smart Array P600", &SA5_access},
121 {0x3223103C, "Smart Array P800", &SA5_access},
122 {0x3234103C, "Smart Array P400", &SA5_access},
123 {0x3235103C, "Smart Array P400i", &SA5_access},
124 {0x3211103C, "Smart Array E200i", &SA5_access},
125 {0x3212103C, "Smart Array E200", &SA5_access},
126 {0x3213103C, "Smart Array E200i", &SA5_access},
127 {0x3214103C, "Smart Array E200i", &SA5_access},
128 {0x3215103C, "Smart Array E200i", &SA5_access},
129 {0x3237103C, "Smart Array E500", &SA5_access},
130 {0x323D103C, "Smart Array P700m", &SA5_access},
131 {0x3241103C, "Smart Array P212", &SA5_access},
132 {0x3243103C, "Smart Array P410", &SA5_access},
133 {0x3245103C, "Smart Array P410i", &SA5_access},
134 {0x3247103C, "Smart Array P411", &SA5_access},
135 {0x3249103C, "Smart Array P812", &SA5_access},
136 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
139 /* How long to wait (in milliseconds) for board to go into simple mode */
140 #define MAX_CONFIG_WAIT 30000
141 #define MAX_IOCTL_CONFIG_WAIT 1000
143 /*define how many times we will try a command because of bus resets */
144 #define MAX_CMD_RETRIES 3
146 #define MAX_CTLR 32
148 /* Originally cciss driver only supports 8 major numbers */
149 #define MAX_CTLR_ORIG 8
151 static ctlr_info_t *hba[MAX_CTLR];
153 static void do_cciss_request(struct request_queue *q);
154 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
155 static int cciss_open(struct block_device *bdev, fmode_t mode);
156 static int cciss_release(struct gendisk *disk, fmode_t mode);
157 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
158 unsigned int cmd, unsigned long arg);
159 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
161 static int cciss_revalidate(struct gendisk *disk);
162 static int rebuild_lun_table(ctlr_info_t *h, int first_time);
163 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
164 int clear_all);
166 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
167 sector_t *total_size, unsigned int *block_size);
168 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
169 sector_t *total_size, unsigned int *block_size);
170 static void cciss_geometry_inquiry(int ctlr, int logvol,
171 int withirq, sector_t total_size,
172 unsigned int block_size, InquiryData_struct *inq_buff,
173 drive_info_struct *drv);
174 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
175 __u32);
176 static void start_io(ctlr_info_t *h);
177 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
178 unsigned int use_unit_num, unsigned int log_unit,
179 __u8 page_code, unsigned char *scsi3addr, int cmd_type);
180 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
181 unsigned int use_unit_num, unsigned int log_unit,
182 __u8 page_code, int cmd_type);
184 static void fail_all_cmds(unsigned long ctlr);
186 #ifdef CONFIG_PROC_FS
187 static void cciss_procinit(int i);
188 #else
189 static void cciss_procinit(int i)
192 #endif /* CONFIG_PROC_FS */
194 #ifdef CONFIG_COMPAT
195 static int cciss_compat_ioctl(struct block_device *, fmode_t,
196 unsigned, unsigned long);
197 #endif
199 static struct block_device_operations cciss_fops = {
200 .owner = THIS_MODULE,
201 .open = cciss_open,
202 .release = cciss_release,
203 .locked_ioctl = cciss_ioctl,
204 .getgeo = cciss_getgeo,
205 #ifdef CONFIG_COMPAT
206 .compat_ioctl = cciss_compat_ioctl,
207 #endif
208 .revalidate_disk = cciss_revalidate,
212 * Enqueuing and dequeuing functions for cmdlists.
214 static inline void addQ(CommandList_struct **Qptr, CommandList_struct *c)
216 if (*Qptr == NULL) {
217 *Qptr = c;
218 c->next = c->prev = c;
219 } else {
220 c->prev = (*Qptr)->prev;
221 c->next = (*Qptr);
222 (*Qptr)->prev->next = c;
223 (*Qptr)->prev = c;
227 static inline CommandList_struct *removeQ(CommandList_struct **Qptr,
228 CommandList_struct *c)
230 if (c && c->next != c) {
231 if (*Qptr == c)
232 *Qptr = c->next;
233 c->prev->next = c->next;
234 c->next->prev = c->prev;
235 } else {
236 *Qptr = NULL;
238 return c;
241 #include "cciss_scsi.c" /* For SCSI tape support */
243 #define RAID_UNKNOWN 6
245 #ifdef CONFIG_PROC_FS
248 * Report information about this controller.
250 #define ENG_GIG 1000000000
251 #define ENG_GIG_FACTOR (ENG_GIG/512)
252 #define ENGAGE_SCSI "engage scsi"
253 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
254 "UNKNOWN"
257 static struct proc_dir_entry *proc_cciss;
259 static void cciss_seq_show_header(struct seq_file *seq)
261 ctlr_info_t *h = seq->private;
263 seq_printf(seq, "%s: HP %s Controller\n"
264 "Board ID: 0x%08lx\n"
265 "Firmware Version: %c%c%c%c\n"
266 "IRQ: %d\n"
267 "Logical drives: %d\n"
268 "Current Q depth: %d\n"
269 "Current # commands on controller: %d\n"
270 "Max Q depth since init: %d\n"
271 "Max # commands on controller since init: %d\n"
272 "Max SG entries since init: %d\n",
273 h->devname,
274 h->product_name,
275 (unsigned long)h->board_id,
276 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
277 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
278 h->num_luns,
279 h->Qdepth, h->commands_outstanding,
280 h->maxQsinceinit, h->max_outstanding, h->maxSG);
282 #ifdef CONFIG_CISS_SCSI_TAPE
283 cciss_seq_tape_report(seq, h->ctlr);
284 #endif /* CONFIG_CISS_SCSI_TAPE */
287 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
289 ctlr_info_t *h = seq->private;
290 unsigned ctlr = h->ctlr;
291 unsigned long flags;
293 /* prevent displaying bogus info during configuration
294 * or deconfiguration of a logical volume
296 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
297 if (h->busy_configuring) {
298 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
299 return ERR_PTR(-EBUSY);
301 h->busy_configuring = 1;
302 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
304 if (*pos == 0)
305 cciss_seq_show_header(seq);
307 return pos;
310 static int cciss_seq_show(struct seq_file *seq, void *v)
312 sector_t vol_sz, vol_sz_frac;
313 ctlr_info_t *h = seq->private;
314 unsigned ctlr = h->ctlr;
315 loff_t *pos = v;
316 drive_info_struct *drv = &h->drv[*pos];
318 if (*pos > h->highest_lun)
319 return 0;
321 if (drv->heads == 0)
322 return 0;
324 vol_sz = drv->nr_blocks;
325 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
326 vol_sz_frac *= 100;
327 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
329 if (drv->raid_level > 5)
330 drv->raid_level = RAID_UNKNOWN;
331 seq_printf(seq, "cciss/c%dd%d:"
332 "\t%4u.%02uGB\tRAID %s\n",
333 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
334 raid_label[drv->raid_level]);
335 return 0;
338 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
340 ctlr_info_t *h = seq->private;
342 if (*pos > h->highest_lun)
343 return NULL;
344 *pos += 1;
346 return pos;
349 static void cciss_seq_stop(struct seq_file *seq, void *v)
351 ctlr_info_t *h = seq->private;
353 /* Only reset h->busy_configuring if we succeeded in setting
354 * it during cciss_seq_start. */
355 if (v == ERR_PTR(-EBUSY))
356 return;
358 h->busy_configuring = 0;
361 static struct seq_operations cciss_seq_ops = {
362 .start = cciss_seq_start,
363 .show = cciss_seq_show,
364 .next = cciss_seq_next,
365 .stop = cciss_seq_stop,
368 static int cciss_seq_open(struct inode *inode, struct file *file)
370 int ret = seq_open(file, &cciss_seq_ops);
371 struct seq_file *seq = file->private_data;
373 if (!ret)
374 seq->private = PDE(inode)->data;
376 return ret;
379 static ssize_t
380 cciss_proc_write(struct file *file, const char __user *buf,
381 size_t length, loff_t *ppos)
383 int err;
384 char *buffer;
386 #ifndef CONFIG_CISS_SCSI_TAPE
387 return -EINVAL;
388 #endif
390 if (!buf || length > PAGE_SIZE - 1)
391 return -EINVAL;
393 buffer = (char *)__get_free_page(GFP_KERNEL);
394 if (!buffer)
395 return -ENOMEM;
397 err = -EFAULT;
398 if (copy_from_user(buffer, buf, length))
399 goto out;
400 buffer[length] = '\0';
402 #ifdef CONFIG_CISS_SCSI_TAPE
403 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
404 struct seq_file *seq = file->private_data;
405 ctlr_info_t *h = seq->private;
406 int rc;
408 rc = cciss_engage_scsi(h->ctlr);
409 if (rc != 0)
410 err = -rc;
411 else
412 err = length;
413 } else
414 #endif /* CONFIG_CISS_SCSI_TAPE */
415 err = -EINVAL;
416 /* might be nice to have "disengage" too, but it's not
417 safely possible. (only 1 module use count, lock issues.) */
419 out:
420 free_page((unsigned long)buffer);
421 return err;
424 static struct file_operations cciss_proc_fops = {
425 .owner = THIS_MODULE,
426 .open = cciss_seq_open,
427 .read = seq_read,
428 .llseek = seq_lseek,
429 .release = seq_release,
430 .write = cciss_proc_write,
433 static void __devinit cciss_procinit(int i)
435 struct proc_dir_entry *pde;
437 if (proc_cciss == NULL)
438 proc_cciss = proc_mkdir("driver/cciss", NULL);
439 if (!proc_cciss)
440 return;
441 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
442 S_IROTH, proc_cciss,
443 &cciss_proc_fops, hba[i]);
445 #endif /* CONFIG_PROC_FS */
448 * For operations that cannot sleep, a command block is allocated at init,
449 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
450 * which ones are free or in use. For operations that can wait for kmalloc
451 * to possible sleep, this routine can be called with get_from_pool set to 0.
452 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
454 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
456 CommandList_struct *c;
457 int i;
458 u64bit temp64;
459 dma_addr_t cmd_dma_handle, err_dma_handle;
461 if (!get_from_pool) {
462 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
463 sizeof(CommandList_struct), &cmd_dma_handle);
464 if (c == NULL)
465 return NULL;
466 memset(c, 0, sizeof(CommandList_struct));
468 c->cmdindex = -1;
470 c->err_info = (ErrorInfo_struct *)
471 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
472 &err_dma_handle);
474 if (c->err_info == NULL) {
475 pci_free_consistent(h->pdev,
476 sizeof(CommandList_struct), c, cmd_dma_handle);
477 return NULL;
479 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
480 } else { /* get it out of the controllers pool */
482 do {
483 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
484 if (i == h->nr_cmds)
485 return NULL;
486 } while (test_and_set_bit
487 (i & (BITS_PER_LONG - 1),
488 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
489 #ifdef CCISS_DEBUG
490 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
491 #endif
492 c = h->cmd_pool + i;
493 memset(c, 0, sizeof(CommandList_struct));
494 cmd_dma_handle = h->cmd_pool_dhandle
495 + i * sizeof(CommandList_struct);
496 c->err_info = h->errinfo_pool + i;
497 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
498 err_dma_handle = h->errinfo_pool_dhandle
499 + i * sizeof(ErrorInfo_struct);
500 h->nr_allocs++;
502 c->cmdindex = i;
505 c->busaddr = (__u32) cmd_dma_handle;
506 temp64.val = (__u64) err_dma_handle;
507 c->ErrDesc.Addr.lower = temp64.val32.lower;
508 c->ErrDesc.Addr.upper = temp64.val32.upper;
509 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
511 c->ctlr = h->ctlr;
512 return c;
516 * Frees a command block that was previously allocated with cmd_alloc().
518 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
520 int i;
521 u64bit temp64;
523 if (!got_from_pool) {
524 temp64.val32.lower = c->ErrDesc.Addr.lower;
525 temp64.val32.upper = c->ErrDesc.Addr.upper;
526 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
527 c->err_info, (dma_addr_t) temp64.val);
528 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
529 c, (dma_addr_t) c->busaddr);
530 } else {
531 i = c - h->cmd_pool;
532 clear_bit(i & (BITS_PER_LONG - 1),
533 h->cmd_pool_bits + (i / BITS_PER_LONG));
534 h->nr_frees++;
538 static inline ctlr_info_t *get_host(struct gendisk *disk)
540 return disk->queue->queuedata;
543 static inline drive_info_struct *get_drv(struct gendisk *disk)
545 return disk->private_data;
549 * Open. Make sure the device is really there.
551 static int cciss_open(struct block_device *bdev, fmode_t mode)
553 ctlr_info_t *host = get_host(bdev->bd_disk);
554 drive_info_struct *drv = get_drv(bdev->bd_disk);
556 #ifdef CCISS_DEBUG
557 printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
558 #endif /* CCISS_DEBUG */
560 if (host->busy_initializing || drv->busy_configuring)
561 return -EBUSY;
563 * Root is allowed to open raw volume zero even if it's not configured
564 * so array config can still work. Root is also allowed to open any
565 * volume that has a LUN ID, so it can issue IOCTL to reread the
566 * disk information. I don't think I really like this
567 * but I'm already using way to many device nodes to claim another one
568 * for "raw controller".
570 if (drv->heads == 0) {
571 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
572 /* if not node 0 make sure it is a partition = 0 */
573 if (MINOR(bdev->bd_dev) & 0x0f) {
574 return -ENXIO;
575 /* if it is, make sure we have a LUN ID */
576 } else if (drv->LunID == 0) {
577 return -ENXIO;
580 if (!capable(CAP_SYS_ADMIN))
581 return -EPERM;
583 drv->usage_count++;
584 host->usage_count++;
585 return 0;
589 * Close. Sync first.
591 static int cciss_release(struct gendisk *disk, fmode_t mode)
593 ctlr_info_t *host = get_host(disk);
594 drive_info_struct *drv = get_drv(disk);
596 #ifdef CCISS_DEBUG
597 printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
598 #endif /* CCISS_DEBUG */
600 drv->usage_count--;
601 host->usage_count--;
602 return 0;
605 #ifdef CONFIG_COMPAT
607 static int do_ioctl(struct block_device *bdev, fmode_t mode,
608 unsigned cmd, unsigned long arg)
610 int ret;
611 lock_kernel();
612 ret = cciss_ioctl(bdev, mode, cmd, arg);
613 unlock_kernel();
614 return ret;
617 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
618 unsigned cmd, unsigned long arg);
619 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
620 unsigned cmd, unsigned long arg);
622 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
623 unsigned cmd, unsigned long arg)
625 switch (cmd) {
626 case CCISS_GETPCIINFO:
627 case CCISS_GETINTINFO:
628 case CCISS_SETINTINFO:
629 case CCISS_GETNODENAME:
630 case CCISS_SETNODENAME:
631 case CCISS_GETHEARTBEAT:
632 case CCISS_GETBUSTYPES:
633 case CCISS_GETFIRMVER:
634 case CCISS_GETDRIVVER:
635 case CCISS_REVALIDVOLS:
636 case CCISS_DEREGDISK:
637 case CCISS_REGNEWDISK:
638 case CCISS_REGNEWD:
639 case CCISS_RESCANDISK:
640 case CCISS_GETLUNINFO:
641 return do_ioctl(bdev, mode, cmd, arg);
643 case CCISS_PASSTHRU32:
644 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
645 case CCISS_BIG_PASSTHRU32:
646 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
648 default:
649 return -ENOIOCTLCMD;
653 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
654 unsigned cmd, unsigned long arg)
656 IOCTL32_Command_struct __user *arg32 =
657 (IOCTL32_Command_struct __user *) arg;
658 IOCTL_Command_struct arg64;
659 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
660 int err;
661 u32 cp;
663 err = 0;
664 err |=
665 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
666 sizeof(arg64.LUN_info));
667 err |=
668 copy_from_user(&arg64.Request, &arg32->Request,
669 sizeof(arg64.Request));
670 err |=
671 copy_from_user(&arg64.error_info, &arg32->error_info,
672 sizeof(arg64.error_info));
673 err |= get_user(arg64.buf_size, &arg32->buf_size);
674 err |= get_user(cp, &arg32->buf);
675 arg64.buf = compat_ptr(cp);
676 err |= copy_to_user(p, &arg64, sizeof(arg64));
678 if (err)
679 return -EFAULT;
681 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
682 if (err)
683 return err;
684 err |=
685 copy_in_user(&arg32->error_info, &p->error_info,
686 sizeof(arg32->error_info));
687 if (err)
688 return -EFAULT;
689 return err;
692 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
693 unsigned cmd, unsigned long arg)
695 BIG_IOCTL32_Command_struct __user *arg32 =
696 (BIG_IOCTL32_Command_struct __user *) arg;
697 BIG_IOCTL_Command_struct arg64;
698 BIG_IOCTL_Command_struct __user *p =
699 compat_alloc_user_space(sizeof(arg64));
700 int err;
701 u32 cp;
703 err = 0;
704 err |=
705 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
706 sizeof(arg64.LUN_info));
707 err |=
708 copy_from_user(&arg64.Request, &arg32->Request,
709 sizeof(arg64.Request));
710 err |=
711 copy_from_user(&arg64.error_info, &arg32->error_info,
712 sizeof(arg64.error_info));
713 err |= get_user(arg64.buf_size, &arg32->buf_size);
714 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
715 err |= get_user(cp, &arg32->buf);
716 arg64.buf = compat_ptr(cp);
717 err |= copy_to_user(p, &arg64, sizeof(arg64));
719 if (err)
720 return -EFAULT;
722 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
723 if (err)
724 return err;
725 err |=
726 copy_in_user(&arg32->error_info, &p->error_info,
727 sizeof(arg32->error_info));
728 if (err)
729 return -EFAULT;
730 return err;
732 #endif
734 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
736 drive_info_struct *drv = get_drv(bdev->bd_disk);
738 if (!drv->cylinders)
739 return -ENXIO;
741 geo->heads = drv->heads;
742 geo->sectors = drv->sectors;
743 geo->cylinders = drv->cylinders;
744 return 0;
748 * ioctl
750 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
751 unsigned int cmd, unsigned long arg)
753 struct gendisk *disk = bdev->bd_disk;
754 ctlr_info_t *host = get_host(disk);
755 drive_info_struct *drv = get_drv(disk);
756 int ctlr = host->ctlr;
757 void __user *argp = (void __user *)arg;
759 #ifdef CCISS_DEBUG
760 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
761 #endif /* CCISS_DEBUG */
763 switch (cmd) {
764 case CCISS_GETPCIINFO:
766 cciss_pci_info_struct pciinfo;
768 if (!arg)
769 return -EINVAL;
770 pciinfo.domain = pci_domain_nr(host->pdev->bus);
771 pciinfo.bus = host->pdev->bus->number;
772 pciinfo.dev_fn = host->pdev->devfn;
773 pciinfo.board_id = host->board_id;
774 if (copy_to_user
775 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
776 return -EFAULT;
777 return 0;
779 case CCISS_GETINTINFO:
781 cciss_coalint_struct intinfo;
782 if (!arg)
783 return -EINVAL;
784 intinfo.delay =
785 readl(&host->cfgtable->HostWrite.CoalIntDelay);
786 intinfo.count =
787 readl(&host->cfgtable->HostWrite.CoalIntCount);
788 if (copy_to_user
789 (argp, &intinfo, sizeof(cciss_coalint_struct)))
790 return -EFAULT;
791 return 0;
793 case CCISS_SETINTINFO:
795 cciss_coalint_struct intinfo;
796 unsigned long flags;
797 int i;
799 if (!arg)
800 return -EINVAL;
801 if (!capable(CAP_SYS_ADMIN))
802 return -EPERM;
803 if (copy_from_user
804 (&intinfo, argp, sizeof(cciss_coalint_struct)))
805 return -EFAULT;
806 if ((intinfo.delay == 0) && (intinfo.count == 0))
808 // printk("cciss_ioctl: delay and count cannot be 0\n");
809 return -EINVAL;
811 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
812 /* Update the field, and then ring the doorbell */
813 writel(intinfo.delay,
814 &(host->cfgtable->HostWrite.CoalIntDelay));
815 writel(intinfo.count,
816 &(host->cfgtable->HostWrite.CoalIntCount));
817 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
819 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
820 if (!(readl(host->vaddr + SA5_DOORBELL)
821 & CFGTBL_ChangeReq))
822 break;
823 /* delay and try again */
824 udelay(1000);
826 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
827 if (i >= MAX_IOCTL_CONFIG_WAIT)
828 return -EAGAIN;
829 return 0;
831 case CCISS_GETNODENAME:
833 NodeName_type NodeName;
834 int i;
836 if (!arg)
837 return -EINVAL;
838 for (i = 0; i < 16; i++)
839 NodeName[i] =
840 readb(&host->cfgtable->ServerName[i]);
841 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
842 return -EFAULT;
843 return 0;
845 case CCISS_SETNODENAME:
847 NodeName_type NodeName;
848 unsigned long flags;
849 int i;
851 if (!arg)
852 return -EINVAL;
853 if (!capable(CAP_SYS_ADMIN))
854 return -EPERM;
856 if (copy_from_user
857 (NodeName, argp, sizeof(NodeName_type)))
858 return -EFAULT;
860 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
862 /* Update the field, and then ring the doorbell */
863 for (i = 0; i < 16; i++)
864 writeb(NodeName[i],
865 &host->cfgtable->ServerName[i]);
867 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
869 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
870 if (!(readl(host->vaddr + SA5_DOORBELL)
871 & CFGTBL_ChangeReq))
872 break;
873 /* delay and try again */
874 udelay(1000);
876 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
877 if (i >= MAX_IOCTL_CONFIG_WAIT)
878 return -EAGAIN;
879 return 0;
882 case CCISS_GETHEARTBEAT:
884 Heartbeat_type heartbeat;
886 if (!arg)
887 return -EINVAL;
888 heartbeat = readl(&host->cfgtable->HeartBeat);
889 if (copy_to_user
890 (argp, &heartbeat, sizeof(Heartbeat_type)))
891 return -EFAULT;
892 return 0;
894 case CCISS_GETBUSTYPES:
896 BusTypes_type BusTypes;
898 if (!arg)
899 return -EINVAL;
900 BusTypes = readl(&host->cfgtable->BusTypes);
901 if (copy_to_user
902 (argp, &BusTypes, sizeof(BusTypes_type)))
903 return -EFAULT;
904 return 0;
906 case CCISS_GETFIRMVER:
908 FirmwareVer_type firmware;
910 if (!arg)
911 return -EINVAL;
912 memcpy(firmware, host->firm_ver, 4);
914 if (copy_to_user
915 (argp, firmware, sizeof(FirmwareVer_type)))
916 return -EFAULT;
917 return 0;
919 case CCISS_GETDRIVVER:
921 DriverVer_type DriverVer = DRIVER_VERSION;
923 if (!arg)
924 return -EINVAL;
926 if (copy_to_user
927 (argp, &DriverVer, sizeof(DriverVer_type)))
928 return -EFAULT;
929 return 0;
932 case CCISS_DEREGDISK:
933 case CCISS_REGNEWD:
934 case CCISS_REVALIDVOLS:
935 return rebuild_lun_table(host, 0);
937 case CCISS_GETLUNINFO:{
938 LogvolInfo_struct luninfo;
940 luninfo.LunID = drv->LunID;
941 luninfo.num_opens = drv->usage_count;
942 luninfo.num_parts = 0;
943 if (copy_to_user(argp, &luninfo,
944 sizeof(LogvolInfo_struct)))
945 return -EFAULT;
946 return 0;
948 case CCISS_PASSTHRU:
950 IOCTL_Command_struct iocommand;
951 CommandList_struct *c;
952 char *buff = NULL;
953 u64bit temp64;
954 unsigned long flags;
955 DECLARE_COMPLETION_ONSTACK(wait);
957 if (!arg)
958 return -EINVAL;
960 if (!capable(CAP_SYS_RAWIO))
961 return -EPERM;
963 if (copy_from_user
964 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
965 return -EFAULT;
966 if ((iocommand.buf_size < 1) &&
967 (iocommand.Request.Type.Direction != XFER_NONE)) {
968 return -EINVAL;
970 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
971 /* Check kmalloc limits */
972 if (iocommand.buf_size > 128000)
973 return -EINVAL;
974 #endif
975 if (iocommand.buf_size > 0) {
976 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
977 if (buff == NULL)
978 return -EFAULT;
980 if (iocommand.Request.Type.Direction == XFER_WRITE) {
981 /* Copy the data into the buffer we created */
982 if (copy_from_user
983 (buff, iocommand.buf, iocommand.buf_size)) {
984 kfree(buff);
985 return -EFAULT;
987 } else {
988 memset(buff, 0, iocommand.buf_size);
990 if ((c = cmd_alloc(host, 0)) == NULL) {
991 kfree(buff);
992 return -ENOMEM;
994 // Fill in the command type
995 c->cmd_type = CMD_IOCTL_PEND;
996 // Fill in Command Header
997 c->Header.ReplyQueue = 0; // unused in simple mode
998 if (iocommand.buf_size > 0) // buffer to fill
1000 c->Header.SGList = 1;
1001 c->Header.SGTotal = 1;
1002 } else // no buffers to fill
1004 c->Header.SGList = 0;
1005 c->Header.SGTotal = 0;
1007 c->Header.LUN = iocommand.LUN_info;
1008 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
1010 // Fill in Request block
1011 c->Request = iocommand.Request;
1013 // Fill in the scatter gather information
1014 if (iocommand.buf_size > 0) {
1015 temp64.val = pci_map_single(host->pdev, buff,
1016 iocommand.buf_size,
1017 PCI_DMA_BIDIRECTIONAL);
1018 c->SG[0].Addr.lower = temp64.val32.lower;
1019 c->SG[0].Addr.upper = temp64.val32.upper;
1020 c->SG[0].Len = iocommand.buf_size;
1021 c->SG[0].Ext = 0; // we are not chaining
1023 c->waiting = &wait;
1025 /* Put the request on the tail of the request queue */
1026 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1027 addQ(&host->reqQ, c);
1028 host->Qdepth++;
1029 start_io(host);
1030 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1032 wait_for_completion(&wait);
1034 /* unlock the buffers from DMA */
1035 temp64.val32.lower = c->SG[0].Addr.lower;
1036 temp64.val32.upper = c->SG[0].Addr.upper;
1037 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1038 iocommand.buf_size,
1039 PCI_DMA_BIDIRECTIONAL);
1041 /* Copy the error information out */
1042 iocommand.error_info = *(c->err_info);
1043 if (copy_to_user
1044 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1045 kfree(buff);
1046 cmd_free(host, c, 0);
1047 return -EFAULT;
1050 if (iocommand.Request.Type.Direction == XFER_READ) {
1051 /* Copy the data out of the buffer we created */
1052 if (copy_to_user
1053 (iocommand.buf, buff, iocommand.buf_size)) {
1054 kfree(buff);
1055 cmd_free(host, c, 0);
1056 return -EFAULT;
1059 kfree(buff);
1060 cmd_free(host, c, 0);
1061 return 0;
1063 case CCISS_BIG_PASSTHRU:{
1064 BIG_IOCTL_Command_struct *ioc;
1065 CommandList_struct *c;
1066 unsigned char **buff = NULL;
1067 int *buff_size = NULL;
1068 u64bit temp64;
1069 unsigned long flags;
1070 BYTE sg_used = 0;
1071 int status = 0;
1072 int i;
1073 DECLARE_COMPLETION_ONSTACK(wait);
1074 __u32 left;
1075 __u32 sz;
1076 BYTE __user *data_ptr;
1078 if (!arg)
1079 return -EINVAL;
1080 if (!capable(CAP_SYS_RAWIO))
1081 return -EPERM;
1082 ioc = (BIG_IOCTL_Command_struct *)
1083 kmalloc(sizeof(*ioc), GFP_KERNEL);
1084 if (!ioc) {
1085 status = -ENOMEM;
1086 goto cleanup1;
1088 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1089 status = -EFAULT;
1090 goto cleanup1;
1092 if ((ioc->buf_size < 1) &&
1093 (ioc->Request.Type.Direction != XFER_NONE)) {
1094 status = -EINVAL;
1095 goto cleanup1;
1097 /* Check kmalloc limits using all SGs */
1098 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1099 status = -EINVAL;
1100 goto cleanup1;
1102 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1103 status = -EINVAL;
1104 goto cleanup1;
1106 buff =
1107 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1108 if (!buff) {
1109 status = -ENOMEM;
1110 goto cleanup1;
1112 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1113 GFP_KERNEL);
1114 if (!buff_size) {
1115 status = -ENOMEM;
1116 goto cleanup1;
1118 left = ioc->buf_size;
1119 data_ptr = ioc->buf;
1120 while (left) {
1121 sz = (left >
1122 ioc->malloc_size) ? ioc->
1123 malloc_size : left;
1124 buff_size[sg_used] = sz;
1125 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1126 if (buff[sg_used] == NULL) {
1127 status = -ENOMEM;
1128 goto cleanup1;
1130 if (ioc->Request.Type.Direction == XFER_WRITE) {
1131 if (copy_from_user
1132 (buff[sg_used], data_ptr, sz)) {
1133 status = -EFAULT;
1134 goto cleanup1;
1136 } else {
1137 memset(buff[sg_used], 0, sz);
1139 left -= sz;
1140 data_ptr += sz;
1141 sg_used++;
1143 if ((c = cmd_alloc(host, 0)) == NULL) {
1144 status = -ENOMEM;
1145 goto cleanup1;
1147 c->cmd_type = CMD_IOCTL_PEND;
1148 c->Header.ReplyQueue = 0;
1150 if (ioc->buf_size > 0) {
1151 c->Header.SGList = sg_used;
1152 c->Header.SGTotal = sg_used;
1153 } else {
1154 c->Header.SGList = 0;
1155 c->Header.SGTotal = 0;
1157 c->Header.LUN = ioc->LUN_info;
1158 c->Header.Tag.lower = c->busaddr;
1160 c->Request = ioc->Request;
1161 if (ioc->buf_size > 0) {
1162 int i;
1163 for (i = 0; i < sg_used; i++) {
1164 temp64.val =
1165 pci_map_single(host->pdev, buff[i],
1166 buff_size[i],
1167 PCI_DMA_BIDIRECTIONAL);
1168 c->SG[i].Addr.lower =
1169 temp64.val32.lower;
1170 c->SG[i].Addr.upper =
1171 temp64.val32.upper;
1172 c->SG[i].Len = buff_size[i];
1173 c->SG[i].Ext = 0; /* we are not chaining */
1176 c->waiting = &wait;
1177 /* Put the request on the tail of the request queue */
1178 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1179 addQ(&host->reqQ, c);
1180 host->Qdepth++;
1181 start_io(host);
1182 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1183 wait_for_completion(&wait);
1184 /* unlock the buffers from DMA */
1185 for (i = 0; i < sg_used; i++) {
1186 temp64.val32.lower = c->SG[i].Addr.lower;
1187 temp64.val32.upper = c->SG[i].Addr.upper;
1188 pci_unmap_single(host->pdev,
1189 (dma_addr_t) temp64.val, buff_size[i],
1190 PCI_DMA_BIDIRECTIONAL);
1192 /* Copy the error information out */
1193 ioc->error_info = *(c->err_info);
1194 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1195 cmd_free(host, c, 0);
1196 status = -EFAULT;
1197 goto cleanup1;
1199 if (ioc->Request.Type.Direction == XFER_READ) {
1200 /* Copy the data out of the buffer we created */
1201 BYTE __user *ptr = ioc->buf;
1202 for (i = 0; i < sg_used; i++) {
1203 if (copy_to_user
1204 (ptr, buff[i], buff_size[i])) {
1205 cmd_free(host, c, 0);
1206 status = -EFAULT;
1207 goto cleanup1;
1209 ptr += buff_size[i];
1212 cmd_free(host, c, 0);
1213 status = 0;
1214 cleanup1:
1215 if (buff) {
1216 for (i = 0; i < sg_used; i++)
1217 kfree(buff[i]);
1218 kfree(buff);
1220 kfree(buff_size);
1221 kfree(ioc);
1222 return status;
1225 /* scsi_cmd_ioctl handles these, below, though some are not */
1226 /* very meaningful for cciss. SG_IO is the main one people want. */
1228 case SG_GET_VERSION_NUM:
1229 case SG_SET_TIMEOUT:
1230 case SG_GET_TIMEOUT:
1231 case SG_GET_RESERVED_SIZE:
1232 case SG_SET_RESERVED_SIZE:
1233 case SG_EMULATED_HOST:
1234 case SG_IO:
1235 case SCSI_IOCTL_SEND_COMMAND:
1236 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1238 /* scsi_cmd_ioctl would normally handle these, below, but */
1239 /* they aren't a good fit for cciss, as CD-ROMs are */
1240 /* not supported, and we don't have any bus/target/lun */
1241 /* which we present to the kernel. */
1243 case CDROM_SEND_PACKET:
1244 case CDROMCLOSETRAY:
1245 case CDROMEJECT:
1246 case SCSI_IOCTL_GET_IDLUN:
1247 case SCSI_IOCTL_GET_BUS_NUMBER:
1248 default:
1249 return -ENOTTY;
1253 static void cciss_check_queues(ctlr_info_t *h)
1255 int start_queue = h->next_to_run;
1256 int i;
1258 /* check to see if we have maxed out the number of commands that can
1259 * be placed on the queue. If so then exit. We do this check here
1260 * in case the interrupt we serviced was from an ioctl and did not
1261 * free any new commands.
1263 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1264 return;
1266 /* We have room on the queue for more commands. Now we need to queue
1267 * them up. We will also keep track of the next queue to run so
1268 * that every queue gets a chance to be started first.
1270 for (i = 0; i < h->highest_lun + 1; i++) {
1271 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1272 /* make sure the disk has been added and the drive is real
1273 * because this can be called from the middle of init_one.
1275 if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
1276 continue;
1277 blk_start_queue(h->gendisk[curr_queue]->queue);
1279 /* check to see if we have maxed out the number of commands
1280 * that can be placed on the queue.
1282 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1283 if (curr_queue == start_queue) {
1284 h->next_to_run =
1285 (start_queue + 1) % (h->highest_lun + 1);
1286 break;
1287 } else {
1288 h->next_to_run = curr_queue;
1289 break;
1295 static void cciss_softirq_done(struct request *rq)
1297 CommandList_struct *cmd = rq->completion_data;
1298 ctlr_info_t *h = hba[cmd->ctlr];
1299 unsigned long flags;
1300 u64bit temp64;
1301 int i, ddir;
1303 if (cmd->Request.Type.Direction == XFER_READ)
1304 ddir = PCI_DMA_FROMDEVICE;
1305 else
1306 ddir = PCI_DMA_TODEVICE;
1308 /* command did not need to be retried */
1309 /* unmap the DMA mapping for all the scatter gather elements */
1310 for (i = 0; i < cmd->Header.SGList; i++) {
1311 temp64.val32.lower = cmd->SG[i].Addr.lower;
1312 temp64.val32.upper = cmd->SG[i].Addr.upper;
1313 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1316 #ifdef CCISS_DEBUG
1317 printk("Done with %p\n", rq);
1318 #endif /* CCISS_DEBUG */
1320 if (blk_end_request(rq, (rq->errors == 0) ? 0 : -EIO, blk_rq_bytes(rq)))
1321 BUG();
1323 spin_lock_irqsave(&h->lock, flags);
1324 cmd_free(h, cmd, 1);
1325 cciss_check_queues(h);
1326 spin_unlock_irqrestore(&h->lock, flags);
1329 /* This function gets the serial number of a logical drive via
1330 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1331 * number cannot be had, for whatever reason, 16 bytes of 0xff
1332 * are returned instead.
1334 static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
1335 unsigned char *serial_no, int buflen)
1337 #define PAGE_83_INQ_BYTES 64
1338 int rc;
1339 unsigned char *buf;
1341 if (buflen > 16)
1342 buflen = 16;
1343 memset(serial_no, 0xff, buflen);
1344 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1345 if (!buf)
1346 return;
1347 memset(serial_no, 0, buflen);
1348 if (withirq)
1349 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1350 PAGE_83_INQ_BYTES, 1, logvol, 0x83, TYPE_CMD);
1351 else
1352 rc = sendcmd(CISS_INQUIRY, ctlr, buf,
1353 PAGE_83_INQ_BYTES, 1, logvol, 0x83, NULL, TYPE_CMD);
1354 if (rc == IO_OK)
1355 memcpy(serial_no, &buf[8], buflen);
1356 kfree(buf);
1357 return;
1360 static void cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1361 int drv_index)
1363 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1364 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1365 disk->major = h->major;
1366 disk->first_minor = drv_index << NWD_SHIFT;
1367 disk->fops = &cciss_fops;
1368 disk->private_data = &h->drv[drv_index];
1370 /* Set up queue information */
1371 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1373 /* This is a hardware imposed limit. */
1374 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1376 /* This is a limit in the driver and could be eliminated. */
1377 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1379 blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1381 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1383 disk->queue->queuedata = h;
1385 blk_queue_hardsect_size(disk->queue,
1386 h->drv[drv_index].block_size);
1388 /* Make sure all queue data is written out before */
1389 /* setting h->drv[drv_index].queue, as setting this */
1390 /* allows the interrupt handler to start the queue */
1391 wmb();
1392 h->drv[drv_index].queue = disk->queue;
1393 add_disk(disk);
1396 /* This function will check the usage_count of the drive to be updated/added.
1397 * If the usage_count is zero and it is a heretofore unknown drive, or,
1398 * the drive's capacity, geometry, or serial number has changed,
1399 * then the drive information will be updated and the disk will be
1400 * re-registered with the kernel. If these conditions don't hold,
1401 * then it will be left alone for the next reboot. The exception to this
1402 * is disk 0 which will always be left registered with the kernel since it
1403 * is also the controller node. Any changes to disk 0 will show up on
1404 * the next reboot.
1406 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time)
1408 ctlr_info_t *h = hba[ctlr];
1409 struct gendisk *disk;
1410 InquiryData_struct *inq_buff = NULL;
1411 unsigned int block_size;
1412 sector_t total_size;
1413 unsigned long flags = 0;
1414 int ret = 0;
1415 drive_info_struct *drvinfo;
1416 int was_only_controller_node;
1418 /* Get information about the disk and modify the driver structure */
1419 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1420 drvinfo = kmalloc(sizeof(*drvinfo), GFP_KERNEL);
1421 if (inq_buff == NULL || drvinfo == NULL)
1422 goto mem_msg;
1424 /* See if we're trying to update the "controller node"
1425 * this will happen the when the first logical drive gets
1426 * created by ACU.
1428 was_only_controller_node = (drv_index == 0 &&
1429 h->drv[0].raid_level == -1);
1431 /* testing to see if 16-byte CDBs are already being used */
1432 if (h->cciss_read == CCISS_READ_16) {
1433 cciss_read_capacity_16(h->ctlr, drv_index, 1,
1434 &total_size, &block_size);
1436 } else {
1437 cciss_read_capacity(ctlr, drv_index, 1,
1438 &total_size, &block_size);
1440 /* if read_capacity returns all F's this volume is >2TB */
1441 /* in size so we switch to 16-byte CDB's for all */
1442 /* read/write ops */
1443 if (total_size == 0xFFFFFFFFULL) {
1444 cciss_read_capacity_16(ctlr, drv_index, 1,
1445 &total_size, &block_size);
1446 h->cciss_read = CCISS_READ_16;
1447 h->cciss_write = CCISS_WRITE_16;
1448 } else {
1449 h->cciss_read = CCISS_READ_10;
1450 h->cciss_write = CCISS_WRITE_10;
1454 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1455 inq_buff, drvinfo);
1456 drvinfo->block_size = block_size;
1457 drvinfo->nr_blocks = total_size + 1;
1459 cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
1460 sizeof(drvinfo->serial_no));
1462 /* Is it the same disk we already know, and nothing's changed? */
1463 if (h->drv[drv_index].raid_level != -1 &&
1464 ((memcmp(drvinfo->serial_no,
1465 h->drv[drv_index].serial_no, 16) == 0) &&
1466 drvinfo->block_size == h->drv[drv_index].block_size &&
1467 drvinfo->nr_blocks == h->drv[drv_index].nr_blocks &&
1468 drvinfo->heads == h->drv[drv_index].heads &&
1469 drvinfo->sectors == h->drv[drv_index].sectors &&
1470 drvinfo->cylinders == h->drv[drv_index].cylinders))
1471 /* The disk is unchanged, nothing to update */
1472 goto freeret;
1474 /* If we get here it's not the same disk, or something's changed,
1475 * so we need to * deregister it, and re-register it, if it's not
1476 * in use.
1477 * If the disk already exists then deregister it before proceeding
1478 * (unless it's the first disk (for the controller node).
1480 if (h->drv[drv_index].raid_level != -1 && drv_index != 0) {
1481 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1482 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1483 h->drv[drv_index].busy_configuring = 1;
1484 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1486 /* deregister_disk sets h->drv[drv_index].queue = NULL
1487 * which keeps the interrupt handler from starting
1488 * the queue.
1490 ret = deregister_disk(h->gendisk[drv_index],
1491 &h->drv[drv_index], 0);
1492 h->drv[drv_index].busy_configuring = 0;
1495 /* If the disk is in use return */
1496 if (ret)
1497 goto freeret;
1499 /* Save the new information from cciss_geometry_inquiry
1500 * and serial number inquiry.
1502 h->drv[drv_index].block_size = drvinfo->block_size;
1503 h->drv[drv_index].nr_blocks = drvinfo->nr_blocks;
1504 h->drv[drv_index].heads = drvinfo->heads;
1505 h->drv[drv_index].sectors = drvinfo->sectors;
1506 h->drv[drv_index].cylinders = drvinfo->cylinders;
1507 h->drv[drv_index].raid_level = drvinfo->raid_level;
1508 memcpy(h->drv[drv_index].serial_no, drvinfo->serial_no, 16);
1510 ++h->num_luns;
1511 disk = h->gendisk[drv_index];
1512 set_capacity(disk, h->drv[drv_index].nr_blocks);
1514 /* If it's not disk 0 (drv_index != 0)
1515 * or if it was disk 0, but there was previously
1516 * no actual corresponding configured logical drive
1517 * (raid_leve == -1) then we want to update the
1518 * logical drive's information.
1520 if (drv_index || first_time)
1521 cciss_add_disk(h, disk, drv_index);
1523 freeret:
1524 kfree(inq_buff);
1525 kfree(drvinfo);
1526 return;
1527 mem_msg:
1528 printk(KERN_ERR "cciss: out of memory\n");
1529 goto freeret;
1532 /* This function will find the first index of the controllers drive array
1533 * that has a -1 for the raid_level and will return that index. This is
1534 * where new drives will be added. If the index to be returned is greater
1535 * than the highest_lun index for the controller then highest_lun is set
1536 * to this new index. If there are no available indexes then -1 is returned.
1537 * "controller_node" is used to know if this is a real logical drive, or just
1538 * the controller node, which determines if this counts towards highest_lun.
1540 static int cciss_find_free_drive_index(int ctlr, int controller_node)
1542 int i;
1544 for (i = 0; i < CISS_MAX_LUN; i++) {
1545 if (hba[ctlr]->drv[i].raid_level == -1) {
1546 if (i > hba[ctlr]->highest_lun)
1547 if (!controller_node)
1548 hba[ctlr]->highest_lun = i;
1549 return i;
1552 return -1;
1555 /* cciss_add_gendisk finds a free hba[]->drv structure
1556 * and allocates a gendisk if needed, and sets the lunid
1557 * in the drvinfo structure. It returns the index into
1558 * the ->drv[] array, or -1 if none are free.
1559 * is_controller_node indicates whether highest_lun should
1560 * count this disk, or if it's only being added to provide
1561 * a means to talk to the controller in case no logical
1562 * drives have yet been configured.
1564 static int cciss_add_gendisk(ctlr_info_t *h, __u32 lunid, int controller_node)
1566 int drv_index;
1568 drv_index = cciss_find_free_drive_index(h->ctlr, controller_node);
1569 if (drv_index == -1)
1570 return -1;
1571 /*Check if the gendisk needs to be allocated */
1572 if (!h->gendisk[drv_index]) {
1573 h->gendisk[drv_index] =
1574 alloc_disk(1 << NWD_SHIFT);
1575 if (!h->gendisk[drv_index]) {
1576 printk(KERN_ERR "cciss%d: could not "
1577 "allocate a new disk %d\n",
1578 h->ctlr, drv_index);
1579 return -1;
1582 h->drv[drv_index].LunID = lunid;
1584 /* Don't need to mark this busy because nobody */
1585 /* else knows about this disk yet to contend */
1586 /* for access to it. */
1587 h->drv[drv_index].busy_configuring = 0;
1588 wmb();
1589 return drv_index;
1592 /* This is for the special case of a controller which
1593 * has no logical drives. In this case, we still need
1594 * to register a disk so the controller can be accessed
1595 * by the Array Config Utility.
1597 static void cciss_add_controller_node(ctlr_info_t *h)
1599 struct gendisk *disk;
1600 int drv_index;
1602 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
1603 return;
1605 drv_index = cciss_add_gendisk(h, 0, 1);
1606 if (drv_index == -1) {
1607 printk(KERN_WARNING "cciss%d: could not "
1608 "add disk 0.\n", h->ctlr);
1609 return;
1611 h->drv[drv_index].block_size = 512;
1612 h->drv[drv_index].nr_blocks = 0;
1613 h->drv[drv_index].heads = 0;
1614 h->drv[drv_index].sectors = 0;
1615 h->drv[drv_index].cylinders = 0;
1616 h->drv[drv_index].raid_level = -1;
1617 memset(h->drv[drv_index].serial_no, 0, 16);
1618 disk = h->gendisk[drv_index];
1619 cciss_add_disk(h, disk, drv_index);
1622 /* This function will add and remove logical drives from the Logical
1623 * drive array of the controller and maintain persistency of ordering
1624 * so that mount points are preserved until the next reboot. This allows
1625 * for the removal of logical drives in the middle of the drive array
1626 * without a re-ordering of those drives.
1627 * INPUT
1628 * h = The controller to perform the operations on
1630 static int rebuild_lun_table(ctlr_info_t *h, int first_time)
1632 int ctlr = h->ctlr;
1633 int num_luns;
1634 ReportLunData_struct *ld_buff = NULL;
1635 int return_code;
1636 int listlength = 0;
1637 int i;
1638 int drv_found;
1639 int drv_index = 0;
1640 __u32 lunid = 0;
1641 unsigned long flags;
1643 if (!capable(CAP_SYS_RAWIO))
1644 return -EPERM;
1646 /* Set busy_configuring flag for this operation */
1647 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1648 if (h->busy_configuring) {
1649 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1650 return -EBUSY;
1652 h->busy_configuring = 1;
1653 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1655 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1656 if (ld_buff == NULL)
1657 goto mem_msg;
1659 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1660 sizeof(ReportLunData_struct), 0,
1661 0, 0, TYPE_CMD);
1663 if (return_code == IO_OK)
1664 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
1665 else { /* reading number of logical volumes failed */
1666 printk(KERN_WARNING "cciss: report logical volume"
1667 " command failed\n");
1668 listlength = 0;
1669 goto freeret;
1672 num_luns = listlength / 8; /* 8 bytes per entry */
1673 if (num_luns > CISS_MAX_LUN) {
1674 num_luns = CISS_MAX_LUN;
1675 printk(KERN_WARNING "cciss: more luns configured"
1676 " on controller than can be handled by"
1677 " this driver.\n");
1680 if (num_luns == 0)
1681 cciss_add_controller_node(h);
1683 /* Compare controller drive array to driver's drive array
1684 * to see if any drives are missing on the controller due
1685 * to action of Array Config Utility (user deletes drive)
1686 * and deregister logical drives which have disappeared.
1688 for (i = 0; i <= h->highest_lun; i++) {
1689 int j;
1690 drv_found = 0;
1691 for (j = 0; j < num_luns; j++) {
1692 memcpy(&lunid, &ld_buff->LUN[j][0], 4);
1693 lunid = le32_to_cpu(lunid);
1694 if (h->drv[i].LunID == lunid) {
1695 drv_found = 1;
1696 break;
1699 if (!drv_found) {
1700 /* Deregister it from the OS, it's gone. */
1701 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1702 h->drv[i].busy_configuring = 1;
1703 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1704 return_code = deregister_disk(h->gendisk[i],
1705 &h->drv[i], 1);
1706 h->drv[i].busy_configuring = 0;
1710 /* Compare controller drive array to driver's drive array.
1711 * Check for updates in the drive information and any new drives
1712 * on the controller due to ACU adding logical drives, or changing
1713 * a logical drive's size, etc. Reregister any new/changed drives
1715 for (i = 0; i < num_luns; i++) {
1716 int j;
1718 drv_found = 0;
1720 memcpy(&lunid, &ld_buff->LUN[i][0], 4);
1721 lunid = le32_to_cpu(lunid);
1723 /* Find if the LUN is already in the drive array
1724 * of the driver. If so then update its info
1725 * if not in use. If it does not exist then find
1726 * the first free index and add it.
1728 for (j = 0; j <= h->highest_lun; j++) {
1729 if (h->drv[j].raid_level != -1 &&
1730 h->drv[j].LunID == lunid) {
1731 drv_index = j;
1732 drv_found = 1;
1733 break;
1737 /* check if the drive was found already in the array */
1738 if (!drv_found) {
1739 drv_index = cciss_add_gendisk(h, lunid, 0);
1740 if (drv_index == -1)
1741 goto freeret;
1743 cciss_update_drive_info(ctlr, drv_index, first_time);
1744 } /* end for */
1746 freeret:
1747 kfree(ld_buff);
1748 h->busy_configuring = 0;
1749 /* We return -1 here to tell the ACU that we have registered/updated
1750 * all of the drives that we can and to keep it from calling us
1751 * additional times.
1753 return -1;
1754 mem_msg:
1755 printk(KERN_ERR "cciss: out of memory\n");
1756 h->busy_configuring = 0;
1757 goto freeret;
1760 /* This function will deregister the disk and it's queue from the
1761 * kernel. It must be called with the controller lock held and the
1762 * drv structures busy_configuring flag set. It's parameters are:
1764 * disk = This is the disk to be deregistered
1765 * drv = This is the drive_info_struct associated with the disk to be
1766 * deregistered. It contains information about the disk used
1767 * by the driver.
1768 * clear_all = This flag determines whether or not the disk information
1769 * is going to be completely cleared out and the highest_lun
1770 * reset. Sometimes we want to clear out information about
1771 * the disk in preparation for re-adding it. In this case
1772 * the highest_lun should be left unchanged and the LunID
1773 * should not be cleared.
1775 static int deregister_disk(struct gendisk *disk, drive_info_struct *drv,
1776 int clear_all)
1778 int i;
1779 ctlr_info_t *h = get_host(disk);
1781 if (!capable(CAP_SYS_RAWIO))
1782 return -EPERM;
1784 /* make sure logical volume is NOT is use */
1785 if (clear_all || (h->gendisk[0] == disk)) {
1786 if (drv->usage_count > 1)
1787 return -EBUSY;
1788 } else if (drv->usage_count > 0)
1789 return -EBUSY;
1791 /* invalidate the devices and deregister the disk. If it is disk
1792 * zero do not deregister it but just zero out it's values. This
1793 * allows us to delete disk zero but keep the controller registered.
1795 if (h->gendisk[0] != disk) {
1796 struct request_queue *q = disk->queue;
1797 if (disk->flags & GENHD_FL_UP)
1798 del_gendisk(disk);
1799 if (q) {
1800 blk_cleanup_queue(q);
1801 /* Set drv->queue to NULL so that we do not try
1802 * to call blk_start_queue on this queue in the
1803 * interrupt handler
1805 drv->queue = NULL;
1807 /* If clear_all is set then we are deleting the logical
1808 * drive, not just refreshing its info. For drives
1809 * other than disk 0 we will call put_disk. We do not
1810 * do this for disk 0 as we need it to be able to
1811 * configure the controller.
1813 if (clear_all){
1814 /* This isn't pretty, but we need to find the
1815 * disk in our array and NULL our the pointer.
1816 * This is so that we will call alloc_disk if
1817 * this index is used again later.
1819 for (i=0; i < CISS_MAX_LUN; i++){
1820 if (h->gendisk[i] == disk) {
1821 h->gendisk[i] = NULL;
1822 break;
1825 put_disk(disk);
1827 } else {
1828 set_capacity(disk, 0);
1831 --h->num_luns;
1832 /* zero out the disk size info */
1833 drv->nr_blocks = 0;
1834 drv->block_size = 0;
1835 drv->heads = 0;
1836 drv->sectors = 0;
1837 drv->cylinders = 0;
1838 drv->raid_level = -1; /* This can be used as a flag variable to
1839 * indicate that this element of the drive
1840 * array is free.
1843 if (clear_all) {
1844 /* check to see if it was the last disk */
1845 if (drv == h->drv + h->highest_lun) {
1846 /* if so, find the new hightest lun */
1847 int i, newhighest = -1;
1848 for (i = 0; i <= h->highest_lun; i++) {
1849 /* if the disk has size > 0, it is available */
1850 if (h->drv[i].heads)
1851 newhighest = i;
1853 h->highest_lun = newhighest;
1856 drv->LunID = 0;
1858 return 0;
1861 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
1862 1: address logical volume log_unit,
1863 2: periph device address is scsi3addr */
1864 unsigned int log_unit, __u8 page_code,
1865 unsigned char *scsi3addr, int cmd_type)
1867 ctlr_info_t *h = hba[ctlr];
1868 u64bit buff_dma_handle;
1869 int status = IO_OK;
1871 c->cmd_type = CMD_IOCTL_PEND;
1872 c->Header.ReplyQueue = 0;
1873 if (buff != NULL) {
1874 c->Header.SGList = 1;
1875 c->Header.SGTotal = 1;
1876 } else {
1877 c->Header.SGList = 0;
1878 c->Header.SGTotal = 0;
1880 c->Header.Tag.lower = c->busaddr;
1882 c->Request.Type.Type = cmd_type;
1883 if (cmd_type == TYPE_CMD) {
1884 switch (cmd) {
1885 case CISS_INQUIRY:
1886 /* If the logical unit number is 0 then, this is going
1887 to controller so It's a physical command
1888 mode = 0 target = 0. So we have nothing to write.
1889 otherwise, if use_unit_num == 1,
1890 mode = 1(volume set addressing) target = LUNID
1891 otherwise, if use_unit_num == 2,
1892 mode = 0(periph dev addr) target = scsi3addr */
1893 if (use_unit_num == 1) {
1894 c->Header.LUN.LogDev.VolId =
1895 h->drv[log_unit].LunID;
1896 c->Header.LUN.LogDev.Mode = 1;
1897 } else if (use_unit_num == 2) {
1898 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr,
1900 c->Header.LUN.LogDev.Mode = 0;
1902 /* are we trying to read a vital product page */
1903 if (page_code != 0) {
1904 c->Request.CDB[1] = 0x01;
1905 c->Request.CDB[2] = page_code;
1907 c->Request.CDBLen = 6;
1908 c->Request.Type.Attribute = ATTR_SIMPLE;
1909 c->Request.Type.Direction = XFER_READ;
1910 c->Request.Timeout = 0;
1911 c->Request.CDB[0] = CISS_INQUIRY;
1912 c->Request.CDB[4] = size & 0xFF;
1913 break;
1914 case CISS_REPORT_LOG:
1915 case CISS_REPORT_PHYS:
1916 /* Talking to controller so It's a physical command
1917 mode = 00 target = 0. Nothing to write.
1919 c->Request.CDBLen = 12;
1920 c->Request.Type.Attribute = ATTR_SIMPLE;
1921 c->Request.Type.Direction = XFER_READ;
1922 c->Request.Timeout = 0;
1923 c->Request.CDB[0] = cmd;
1924 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
1925 c->Request.CDB[7] = (size >> 16) & 0xFF;
1926 c->Request.CDB[8] = (size >> 8) & 0xFF;
1927 c->Request.CDB[9] = size & 0xFF;
1928 break;
1930 case CCISS_READ_CAPACITY:
1931 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1932 c->Header.LUN.LogDev.Mode = 1;
1933 c->Request.CDBLen = 10;
1934 c->Request.Type.Attribute = ATTR_SIMPLE;
1935 c->Request.Type.Direction = XFER_READ;
1936 c->Request.Timeout = 0;
1937 c->Request.CDB[0] = cmd;
1938 break;
1939 case CCISS_READ_CAPACITY_16:
1940 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
1941 c->Header.LUN.LogDev.Mode = 1;
1942 c->Request.CDBLen = 16;
1943 c->Request.Type.Attribute = ATTR_SIMPLE;
1944 c->Request.Type.Direction = XFER_READ;
1945 c->Request.Timeout = 0;
1946 c->Request.CDB[0] = cmd;
1947 c->Request.CDB[1] = 0x10;
1948 c->Request.CDB[10] = (size >> 24) & 0xFF;
1949 c->Request.CDB[11] = (size >> 16) & 0xFF;
1950 c->Request.CDB[12] = (size >> 8) & 0xFF;
1951 c->Request.CDB[13] = size & 0xFF;
1952 c->Request.Timeout = 0;
1953 c->Request.CDB[0] = cmd;
1954 break;
1955 case CCISS_CACHE_FLUSH:
1956 c->Request.CDBLen = 12;
1957 c->Request.Type.Attribute = ATTR_SIMPLE;
1958 c->Request.Type.Direction = XFER_WRITE;
1959 c->Request.Timeout = 0;
1960 c->Request.CDB[0] = BMIC_WRITE;
1961 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
1962 break;
1963 default:
1964 printk(KERN_WARNING
1965 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
1966 return IO_ERROR;
1968 } else if (cmd_type == TYPE_MSG) {
1969 switch (cmd) {
1970 case 0: /* ABORT message */
1971 c->Request.CDBLen = 12;
1972 c->Request.Type.Attribute = ATTR_SIMPLE;
1973 c->Request.Type.Direction = XFER_WRITE;
1974 c->Request.Timeout = 0;
1975 c->Request.CDB[0] = cmd; /* abort */
1976 c->Request.CDB[1] = 0; /* abort a command */
1977 /* buff contains the tag of the command to abort */
1978 memcpy(&c->Request.CDB[4], buff, 8);
1979 break;
1980 case 1: /* RESET message */
1981 c->Request.CDBLen = 12;
1982 c->Request.Type.Attribute = ATTR_SIMPLE;
1983 c->Request.Type.Direction = XFER_WRITE;
1984 c->Request.Timeout = 0;
1985 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
1986 c->Request.CDB[0] = cmd; /* reset */
1987 c->Request.CDB[1] = 0x04; /* reset a LUN */
1988 break;
1989 case 3: /* No-Op message */
1990 c->Request.CDBLen = 1;
1991 c->Request.Type.Attribute = ATTR_SIMPLE;
1992 c->Request.Type.Direction = XFER_WRITE;
1993 c->Request.Timeout = 0;
1994 c->Request.CDB[0] = cmd;
1995 break;
1996 default:
1997 printk(KERN_WARNING
1998 "cciss%d: unknown message type %d\n", ctlr, cmd);
1999 return IO_ERROR;
2001 } else {
2002 printk(KERN_WARNING
2003 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2004 return IO_ERROR;
2006 /* Fill in the scatter gather information */
2007 if (size > 0) {
2008 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2009 buff, size,
2010 PCI_DMA_BIDIRECTIONAL);
2011 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2012 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2013 c->SG[0].Len = size;
2014 c->SG[0].Ext = 0; /* we are not chaining */
2016 return status;
2019 static int sendcmd_withirq(__u8 cmd,
2020 int ctlr,
2021 void *buff,
2022 size_t size,
2023 unsigned int use_unit_num,
2024 unsigned int log_unit, __u8 page_code, int cmd_type)
2026 ctlr_info_t *h = hba[ctlr];
2027 CommandList_struct *c;
2028 u64bit buff_dma_handle;
2029 unsigned long flags;
2030 int return_status;
2031 DECLARE_COMPLETION_ONSTACK(wait);
2033 if ((c = cmd_alloc(h, 0)) == NULL)
2034 return -ENOMEM;
2035 return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
2036 log_unit, page_code, NULL, cmd_type);
2037 if (return_status != IO_OK) {
2038 cmd_free(h, c, 0);
2039 return return_status;
2041 resend_cmd2:
2042 c->waiting = &wait;
2044 /* Put the request on the tail of the queue and send it */
2045 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
2046 addQ(&h->reqQ, c);
2047 h->Qdepth++;
2048 start_io(h);
2049 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
2051 wait_for_completion(&wait);
2053 if (c->err_info->CommandStatus != 0) { /* an error has occurred */
2054 switch (c->err_info->CommandStatus) {
2055 case CMD_TARGET_STATUS:
2056 printk(KERN_WARNING "cciss: cmd %p has "
2057 " completed with errors\n", c);
2058 if (c->err_info->ScsiStatus) {
2059 printk(KERN_WARNING "cciss: cmd %p "
2060 "has SCSI Status = %x\n",
2061 c, c->err_info->ScsiStatus);
2064 break;
2065 case CMD_DATA_UNDERRUN:
2066 case CMD_DATA_OVERRUN:
2067 /* expected for inquire and report lun commands */
2068 break;
2069 case CMD_INVALID:
2070 printk(KERN_WARNING "cciss: Cmd %p is "
2071 "reported invalid\n", c);
2072 return_status = IO_ERROR;
2073 break;
2074 case CMD_PROTOCOL_ERR:
2075 printk(KERN_WARNING "cciss: cmd %p has "
2076 "protocol error \n", c);
2077 return_status = IO_ERROR;
2078 break;
2079 case CMD_HARDWARE_ERR:
2080 printk(KERN_WARNING "cciss: cmd %p had "
2081 " hardware error\n", c);
2082 return_status = IO_ERROR;
2083 break;
2084 case CMD_CONNECTION_LOST:
2085 printk(KERN_WARNING "cciss: cmd %p had "
2086 "connection lost\n", c);
2087 return_status = IO_ERROR;
2088 break;
2089 case CMD_ABORTED:
2090 printk(KERN_WARNING "cciss: cmd %p was "
2091 "aborted\n", c);
2092 return_status = IO_ERROR;
2093 break;
2094 case CMD_ABORT_FAILED:
2095 printk(KERN_WARNING "cciss: cmd %p reports "
2096 "abort failed\n", c);
2097 return_status = IO_ERROR;
2098 break;
2099 case CMD_UNSOLICITED_ABORT:
2100 printk(KERN_WARNING
2101 "cciss%d: unsolicited abort %p\n", ctlr, c);
2102 if (c->retry_count < MAX_CMD_RETRIES) {
2103 printk(KERN_WARNING
2104 "cciss%d: retrying %p\n", ctlr, c);
2105 c->retry_count++;
2106 /* erase the old error information */
2107 memset(c->err_info, 0,
2108 sizeof(ErrorInfo_struct));
2109 return_status = IO_OK;
2110 INIT_COMPLETION(wait);
2111 goto resend_cmd2;
2113 return_status = IO_ERROR;
2114 break;
2115 default:
2116 printk(KERN_WARNING "cciss: cmd %p returned "
2117 "unknown status %x\n", c,
2118 c->err_info->CommandStatus);
2119 return_status = IO_ERROR;
2122 /* unlock the buffers from DMA */
2123 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2124 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2125 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2126 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2127 cmd_free(h, c, 0);
2128 return return_status;
2131 static void cciss_geometry_inquiry(int ctlr, int logvol,
2132 int withirq, sector_t total_size,
2133 unsigned int block_size,
2134 InquiryData_struct *inq_buff,
2135 drive_info_struct *drv)
2137 int return_code;
2138 unsigned long t;
2140 memset(inq_buff, 0, sizeof(InquiryData_struct));
2141 if (withirq)
2142 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
2143 inq_buff, sizeof(*inq_buff), 1,
2144 logvol, 0xC1, TYPE_CMD);
2145 else
2146 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
2147 sizeof(*inq_buff), 1, logvol, 0xC1, NULL,
2148 TYPE_CMD);
2149 if (return_code == IO_OK) {
2150 if (inq_buff->data_byte[8] == 0xFF) {
2151 printk(KERN_WARNING
2152 "cciss: reading geometry failed, volume "
2153 "does not support reading geometry\n");
2154 drv->heads = 255;
2155 drv->sectors = 32; // Sectors per track
2156 drv->cylinders = total_size + 1;
2157 drv->raid_level = RAID_UNKNOWN;
2158 } else {
2159 drv->heads = inq_buff->data_byte[6];
2160 drv->sectors = inq_buff->data_byte[7];
2161 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2162 drv->cylinders += inq_buff->data_byte[5];
2163 drv->raid_level = inq_buff->data_byte[8];
2165 drv->block_size = block_size;
2166 drv->nr_blocks = total_size + 1;
2167 t = drv->heads * drv->sectors;
2168 if (t > 1) {
2169 sector_t real_size = total_size + 1;
2170 unsigned long rem = sector_div(real_size, t);
2171 if (rem)
2172 real_size++;
2173 drv->cylinders = real_size;
2175 } else { /* Get geometry failed */
2176 printk(KERN_WARNING "cciss: reading geometry failed\n");
2178 printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n",
2179 drv->heads, drv->sectors, drv->cylinders);
2182 static void
2183 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
2184 unsigned int *block_size)
2186 ReadCapdata_struct *buf;
2187 int return_code;
2189 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2190 if (!buf) {
2191 printk(KERN_WARNING "cciss: out of memory\n");
2192 return;
2195 if (withirq)
2196 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
2197 ctlr, buf, sizeof(ReadCapdata_struct),
2198 1, logvol, 0, TYPE_CMD);
2199 else
2200 return_code = sendcmd(CCISS_READ_CAPACITY,
2201 ctlr, buf, sizeof(ReadCapdata_struct),
2202 1, logvol, 0, NULL, TYPE_CMD);
2203 if (return_code == IO_OK) {
2204 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2205 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2206 } else { /* read capacity command failed */
2207 printk(KERN_WARNING "cciss: read capacity failed\n");
2208 *total_size = 0;
2209 *block_size = BLOCK_SIZE;
2211 if (*total_size != 0)
2212 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2213 (unsigned long long)*total_size+1, *block_size);
2214 kfree(buf);
2217 static void
2218 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
2220 ReadCapdata_struct_16 *buf;
2221 int return_code;
2223 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2224 if (!buf) {
2225 printk(KERN_WARNING "cciss: out of memory\n");
2226 return;
2229 if (withirq) {
2230 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2231 ctlr, buf, sizeof(ReadCapdata_struct_16),
2232 1, logvol, 0, TYPE_CMD);
2234 else {
2235 return_code = sendcmd(CCISS_READ_CAPACITY_16,
2236 ctlr, buf, sizeof(ReadCapdata_struct_16),
2237 1, logvol, 0, NULL, TYPE_CMD);
2239 if (return_code == IO_OK) {
2240 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2241 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2242 } else { /* read capacity command failed */
2243 printk(KERN_WARNING "cciss: read capacity failed\n");
2244 *total_size = 0;
2245 *block_size = BLOCK_SIZE;
2247 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2248 (unsigned long long)*total_size+1, *block_size);
2249 kfree(buf);
2252 static int cciss_revalidate(struct gendisk *disk)
2254 ctlr_info_t *h = get_host(disk);
2255 drive_info_struct *drv = get_drv(disk);
2256 int logvol;
2257 int FOUND = 0;
2258 unsigned int block_size;
2259 sector_t total_size;
2260 InquiryData_struct *inq_buff = NULL;
2262 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2263 if (h->drv[logvol].LunID == drv->LunID) {
2264 FOUND = 1;
2265 break;
2269 if (!FOUND)
2270 return 1;
2272 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2273 if (inq_buff == NULL) {
2274 printk(KERN_WARNING "cciss: out of memory\n");
2275 return 1;
2277 if (h->cciss_read == CCISS_READ_10) {
2278 cciss_read_capacity(h->ctlr, logvol, 1,
2279 &total_size, &block_size);
2280 } else {
2281 cciss_read_capacity_16(h->ctlr, logvol, 1,
2282 &total_size, &block_size);
2284 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2285 inq_buff, drv);
2287 blk_queue_hardsect_size(drv->queue, drv->block_size);
2288 set_capacity(disk, drv->nr_blocks);
2290 kfree(inq_buff);
2291 return 0;
2295 * Wait polling for a command to complete.
2296 * The memory mapped FIFO is polled for the completion.
2297 * Used only at init time, interrupts from the HBA are disabled.
2299 static unsigned long pollcomplete(int ctlr)
2301 unsigned long done;
2302 int i;
2304 /* Wait (up to 20 seconds) for a command to complete */
2306 for (i = 20 * HZ; i > 0; i--) {
2307 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2308 if (done == FIFO_EMPTY)
2309 schedule_timeout_uninterruptible(1);
2310 else
2311 return done;
2313 /* Invalid address to tell caller we ran out of time */
2314 return 1;
2317 static int add_sendcmd_reject(__u8 cmd, int ctlr, unsigned long complete)
2319 /* We get in here if sendcmd() is polling for completions
2320 and gets some command back that it wasn't expecting --
2321 something other than that which it just sent down.
2322 Ordinarily, that shouldn't happen, but it can happen when
2323 the scsi tape stuff gets into error handling mode, and
2324 starts using sendcmd() to try to abort commands and
2325 reset tape drives. In that case, sendcmd may pick up
2326 completions of commands that were sent to logical drives
2327 through the block i/o system, or cciss ioctls completing, etc.
2328 In that case, we need to save those completions for later
2329 processing by the interrupt handler.
2332 #ifdef CONFIG_CISS_SCSI_TAPE
2333 struct sendcmd_reject_list *srl = &hba[ctlr]->scsi_rejects;
2335 /* If it's not the scsi tape stuff doing error handling, (abort */
2336 /* or reset) then we don't expect anything weird. */
2337 if (cmd != CCISS_RESET_MSG && cmd != CCISS_ABORT_MSG) {
2338 #endif
2339 printk(KERN_WARNING "cciss cciss%d: SendCmd "
2340 "Invalid command list address returned! (%lx)\n",
2341 ctlr, complete);
2342 /* not much we can do. */
2343 #ifdef CONFIG_CISS_SCSI_TAPE
2344 return 1;
2347 /* We've sent down an abort or reset, but something else
2348 has completed */
2349 if (srl->ncompletions >= (hba[ctlr]->nr_cmds + 2)) {
2350 /* Uh oh. No room to save it for later... */
2351 printk(KERN_WARNING "cciss%d: Sendcmd: Invalid command addr, "
2352 "reject list overflow, command lost!\n", ctlr);
2353 return 1;
2355 /* Save it for later */
2356 srl->complete[srl->ncompletions] = complete;
2357 srl->ncompletions++;
2358 #endif
2359 return 0;
2363 * Send a command to the controller, and wait for it to complete.
2364 * Only used at init time.
2366 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
2367 1: address logical volume log_unit,
2368 2: periph device address is scsi3addr */
2369 unsigned int log_unit,
2370 __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2372 CommandList_struct *c;
2373 int i;
2374 unsigned long complete;
2375 ctlr_info_t *info_p = hba[ctlr];
2376 u64bit buff_dma_handle;
2377 int status, done = 0;
2379 if ((c = cmd_alloc(info_p, 1)) == NULL) {
2380 printk(KERN_WARNING "cciss: unable to get memory");
2381 return IO_ERROR;
2383 status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
2384 log_unit, page_code, scsi3addr, cmd_type);
2385 if (status != IO_OK) {
2386 cmd_free(info_p, c, 1);
2387 return status;
2389 resend_cmd1:
2391 * Disable interrupt
2393 #ifdef CCISS_DEBUG
2394 printk(KERN_DEBUG "cciss: turning intr off\n");
2395 #endif /* CCISS_DEBUG */
2396 info_p->access.set_intr_mask(info_p, CCISS_INTR_OFF);
2398 /* Make sure there is room in the command FIFO */
2399 /* Actually it should be completely empty at this time */
2400 /* unless we are in here doing error handling for the scsi */
2401 /* tape side of the driver. */
2402 for (i = 200000; i > 0; i--) {
2403 /* if fifo isn't full go */
2404 if (!(info_p->access.fifo_full(info_p))) {
2406 break;
2408 udelay(10);
2409 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2410 " waiting!\n", ctlr);
2413 * Send the cmd
2415 info_p->access.submit_command(info_p, c);
2416 done = 0;
2417 do {
2418 complete = pollcomplete(ctlr);
2420 #ifdef CCISS_DEBUG
2421 printk(KERN_DEBUG "cciss: command completed\n");
2422 #endif /* CCISS_DEBUG */
2424 if (complete == 1) {
2425 printk(KERN_WARNING
2426 "cciss cciss%d: SendCmd Timeout out, "
2427 "No command list address returned!\n", ctlr);
2428 status = IO_ERROR;
2429 done = 1;
2430 break;
2433 /* This will need to change for direct lookup completions */
2434 if ((complete & CISS_ERROR_BIT)
2435 && (complete & ~CISS_ERROR_BIT) == c->busaddr) {
2436 /* if data overrun or underun on Report command
2437 ignore it
2439 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2440 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2441 (c->Request.CDB[0] == CISS_INQUIRY)) &&
2442 ((c->err_info->CommandStatus ==
2443 CMD_DATA_OVERRUN) ||
2444 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN)
2445 )) {
2446 complete = c->busaddr;
2447 } else {
2448 if (c->err_info->CommandStatus ==
2449 CMD_UNSOLICITED_ABORT) {
2450 printk(KERN_WARNING "cciss%d: "
2451 "unsolicited abort %p\n",
2452 ctlr, c);
2453 if (c->retry_count < MAX_CMD_RETRIES) {
2454 printk(KERN_WARNING
2455 "cciss%d: retrying %p\n",
2456 ctlr, c);
2457 c->retry_count++;
2458 /* erase the old error */
2459 /* information */
2460 memset(c->err_info, 0,
2461 sizeof
2462 (ErrorInfo_struct));
2463 goto resend_cmd1;
2464 } else {
2465 printk(KERN_WARNING
2466 "cciss%d: retried %p too "
2467 "many times\n", ctlr, c);
2468 status = IO_ERROR;
2469 goto cleanup1;
2471 } else if (c->err_info->CommandStatus ==
2472 CMD_UNABORTABLE) {
2473 printk(KERN_WARNING
2474 "cciss%d: command could not be aborted.\n",
2475 ctlr);
2476 status = IO_ERROR;
2477 goto cleanup1;
2479 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2480 " Error %x \n", ctlr,
2481 c->err_info->CommandStatus);
2482 printk(KERN_WARNING "ciss ciss%d: sendcmd"
2483 " offensive info\n"
2484 " size %x\n num %x value %x\n",
2485 ctlr,
2486 c->err_info->MoreErrInfo.Invalid_Cmd.
2487 offense_size,
2488 c->err_info->MoreErrInfo.Invalid_Cmd.
2489 offense_num,
2490 c->err_info->MoreErrInfo.Invalid_Cmd.
2491 offense_value);
2492 status = IO_ERROR;
2493 goto cleanup1;
2496 /* This will need changing for direct lookup completions */
2497 if (complete != c->busaddr) {
2498 if (add_sendcmd_reject(cmd, ctlr, complete) != 0) {
2499 BUG(); /* we are pretty much hosed if we get here. */
2501 continue;
2502 } else
2503 done = 1;
2504 } while (!done);
2506 cleanup1:
2507 /* unlock the data buffer from DMA */
2508 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2509 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2510 pci_unmap_single(info_p->pdev, (dma_addr_t) buff_dma_handle.val,
2511 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2512 #ifdef CONFIG_CISS_SCSI_TAPE
2513 /* if we saved some commands for later, process them now. */
2514 if (info_p->scsi_rejects.ncompletions > 0)
2515 do_cciss_intr(0, info_p);
2516 #endif
2517 cmd_free(info_p, c, 1);
2518 return status;
2522 * Map (physical) PCI mem into (virtual) kernel space
2524 static void __iomem *remap_pci_mem(ulong base, ulong size)
2526 ulong page_base = ((ulong) base) & PAGE_MASK;
2527 ulong page_offs = ((ulong) base) - page_base;
2528 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2530 return page_remapped ? (page_remapped + page_offs) : NULL;
2534 * Takes jobs of the Q and sends them to the hardware, then puts it on
2535 * the Q to wait for completion.
2537 static void start_io(ctlr_info_t *h)
2539 CommandList_struct *c;
2541 while ((c = h->reqQ) != NULL) {
2542 /* can't do anything if fifo is full */
2543 if ((h->access.fifo_full(h))) {
2544 printk(KERN_WARNING "cciss: fifo full\n");
2545 break;
2548 /* Get the first entry from the Request Q */
2549 removeQ(&(h->reqQ), c);
2550 h->Qdepth--;
2552 /* Tell the controller execute command */
2553 h->access.submit_command(h, c);
2555 /* Put job onto the completed Q */
2556 addQ(&(h->cmpQ), c);
2560 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2561 /* Zeros out the error record and then resends the command back */
2562 /* to the controller */
2563 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2565 /* erase the old error information */
2566 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2568 /* add it to software queue and then send it to the controller */
2569 addQ(&(h->reqQ), c);
2570 h->Qdepth++;
2571 if (h->Qdepth > h->maxQsinceinit)
2572 h->maxQsinceinit = h->Qdepth;
2574 start_io(h);
2577 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2578 unsigned int msg_byte, unsigned int host_byte,
2579 unsigned int driver_byte)
2581 /* inverse of macros in scsi.h */
2582 return (scsi_status_byte & 0xff) |
2583 ((msg_byte & 0xff) << 8) |
2584 ((host_byte & 0xff) << 16) |
2585 ((driver_byte & 0xff) << 24);
2588 static inline int evaluate_target_status(CommandList_struct *cmd)
2590 unsigned char sense_key;
2591 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2592 int error_value;
2594 /* If we get in here, it means we got "target status", that is, scsi status */
2595 status_byte = cmd->err_info->ScsiStatus;
2596 driver_byte = DRIVER_OK;
2597 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2599 if (blk_pc_request(cmd->rq))
2600 host_byte = DID_PASSTHROUGH;
2601 else
2602 host_byte = DID_OK;
2604 error_value = make_status_bytes(status_byte, msg_byte,
2605 host_byte, driver_byte);
2607 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2608 if (!blk_pc_request(cmd->rq))
2609 printk(KERN_WARNING "cciss: cmd %p "
2610 "has SCSI Status 0x%x\n",
2611 cmd, cmd->err_info->ScsiStatus);
2612 return error_value;
2615 /* check the sense key */
2616 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2617 /* no status or recovered error */
2618 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2619 error_value = 0;
2621 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2622 if (error_value != 0)
2623 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2624 " sense key = 0x%x\n", cmd, sense_key);
2625 return error_value;
2628 /* SG_IO or similar, copy sense data back */
2629 if (cmd->rq->sense) {
2630 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2631 cmd->rq->sense_len = cmd->err_info->SenseLen;
2632 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2633 cmd->rq->sense_len);
2634 } else
2635 cmd->rq->sense_len = 0;
2637 return error_value;
2640 /* checks the status of the job and calls complete buffers to mark all
2641 * buffers for the completed job. Note that this function does not need
2642 * to hold the hba/queue lock.
2644 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2645 int timeout)
2647 int retry_cmd = 0;
2648 struct request *rq = cmd->rq;
2650 rq->errors = 0;
2652 if (timeout)
2653 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
2655 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
2656 goto after_error_processing;
2658 switch (cmd->err_info->CommandStatus) {
2659 case CMD_TARGET_STATUS:
2660 rq->errors = evaluate_target_status(cmd);
2661 break;
2662 case CMD_DATA_UNDERRUN:
2663 if (blk_fs_request(cmd->rq)) {
2664 printk(KERN_WARNING "cciss: cmd %p has"
2665 " completed with data underrun "
2666 "reported\n", cmd);
2667 cmd->rq->data_len = cmd->err_info->ResidualCnt;
2669 break;
2670 case CMD_DATA_OVERRUN:
2671 if (blk_fs_request(cmd->rq))
2672 printk(KERN_WARNING "cciss: cmd %p has"
2673 " completed with data overrun "
2674 "reported\n", cmd);
2675 break;
2676 case CMD_INVALID:
2677 printk(KERN_WARNING "cciss: cmd %p is "
2678 "reported invalid\n", cmd);
2679 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2680 cmd->err_info->CommandStatus, DRIVER_OK,
2681 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2682 break;
2683 case CMD_PROTOCOL_ERR:
2684 printk(KERN_WARNING "cciss: cmd %p has "
2685 "protocol error \n", cmd);
2686 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2687 cmd->err_info->CommandStatus, DRIVER_OK,
2688 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2689 break;
2690 case CMD_HARDWARE_ERR:
2691 printk(KERN_WARNING "cciss: cmd %p had "
2692 " hardware error\n", cmd);
2693 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2694 cmd->err_info->CommandStatus, DRIVER_OK,
2695 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2696 break;
2697 case CMD_CONNECTION_LOST:
2698 printk(KERN_WARNING "cciss: cmd %p had "
2699 "connection lost\n", cmd);
2700 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2701 cmd->err_info->CommandStatus, DRIVER_OK,
2702 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2703 break;
2704 case CMD_ABORTED:
2705 printk(KERN_WARNING "cciss: cmd %p was "
2706 "aborted\n", cmd);
2707 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2708 cmd->err_info->CommandStatus, DRIVER_OK,
2709 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2710 break;
2711 case CMD_ABORT_FAILED:
2712 printk(KERN_WARNING "cciss: cmd %p reports "
2713 "abort failed\n", cmd);
2714 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2715 cmd->err_info->CommandStatus, DRIVER_OK,
2716 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2717 break;
2718 case CMD_UNSOLICITED_ABORT:
2719 printk(KERN_WARNING "cciss%d: unsolicited "
2720 "abort %p\n", h->ctlr, cmd);
2721 if (cmd->retry_count < MAX_CMD_RETRIES) {
2722 retry_cmd = 1;
2723 printk(KERN_WARNING
2724 "cciss%d: retrying %p\n", h->ctlr, cmd);
2725 cmd->retry_count++;
2726 } else
2727 printk(KERN_WARNING
2728 "cciss%d: %p retried too "
2729 "many times\n", h->ctlr, cmd);
2730 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2731 cmd->err_info->CommandStatus, DRIVER_OK,
2732 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2733 break;
2734 case CMD_TIMEOUT:
2735 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
2736 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2737 cmd->err_info->CommandStatus, DRIVER_OK,
2738 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2739 break;
2740 default:
2741 printk(KERN_WARNING "cciss: cmd %p returned "
2742 "unknown status %x\n", cmd,
2743 cmd->err_info->CommandStatus);
2744 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2745 cmd->err_info->CommandStatus, DRIVER_OK,
2746 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2749 after_error_processing:
2751 /* We need to return this command */
2752 if (retry_cmd) {
2753 resend_cciss_cmd(h, cmd);
2754 return;
2756 cmd->rq->completion_data = cmd;
2757 blk_complete_request(cmd->rq);
2761 * Get a request and submit it to the controller.
2763 static void do_cciss_request(struct request_queue *q)
2765 ctlr_info_t *h = q->queuedata;
2766 CommandList_struct *c;
2767 sector_t start_blk;
2768 int seg;
2769 struct request *creq;
2770 u64bit temp64;
2771 struct scatterlist tmp_sg[MAXSGENTRIES];
2772 drive_info_struct *drv;
2773 int i, dir;
2775 /* We call start_io here in case there is a command waiting on the
2776 * queue that has not been sent.
2778 if (blk_queue_plugged(q))
2779 goto startio;
2781 queue:
2782 creq = elv_next_request(q);
2783 if (!creq)
2784 goto startio;
2786 BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
2788 if ((c = cmd_alloc(h, 1)) == NULL)
2789 goto full;
2791 blkdev_dequeue_request(creq);
2793 spin_unlock_irq(q->queue_lock);
2795 c->cmd_type = CMD_RWREQ;
2796 c->rq = creq;
2798 /* fill in the request */
2799 drv = creq->rq_disk->private_data;
2800 c->Header.ReplyQueue = 0; // unused in simple mode
2801 /* got command from pool, so use the command block index instead */
2802 /* for direct lookups. */
2803 /* The first 2 bits are reserved for controller error reporting. */
2804 c->Header.Tag.lower = (c->cmdindex << 3);
2805 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
2806 c->Header.LUN.LogDev.VolId = drv->LunID;
2807 c->Header.LUN.LogDev.Mode = 1;
2808 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
2809 c->Request.Type.Type = TYPE_CMD; // It is a command.
2810 c->Request.Type.Attribute = ATTR_SIMPLE;
2811 c->Request.Type.Direction =
2812 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
2813 c->Request.Timeout = 0; // Don't time out
2814 c->Request.CDB[0] =
2815 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
2816 start_blk = creq->sector;
2817 #ifdef CCISS_DEBUG
2818 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n", (int)creq->sector,
2819 (int)creq->nr_sectors);
2820 #endif /* CCISS_DEBUG */
2822 sg_init_table(tmp_sg, MAXSGENTRIES);
2823 seg = blk_rq_map_sg(q, creq, tmp_sg);
2825 /* get the DMA records for the setup */
2826 if (c->Request.Type.Direction == XFER_READ)
2827 dir = PCI_DMA_FROMDEVICE;
2828 else
2829 dir = PCI_DMA_TODEVICE;
2831 for (i = 0; i < seg; i++) {
2832 c->SG[i].Len = tmp_sg[i].length;
2833 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
2834 tmp_sg[i].offset,
2835 tmp_sg[i].length, dir);
2836 c->SG[i].Addr.lower = temp64.val32.lower;
2837 c->SG[i].Addr.upper = temp64.val32.upper;
2838 c->SG[i].Ext = 0; // we are not chaining
2840 /* track how many SG entries we are using */
2841 if (seg > h->maxSG)
2842 h->maxSG = seg;
2844 #ifdef CCISS_DEBUG
2845 printk(KERN_DEBUG "cciss: Submitting %d sectors in %d segments\n",
2846 creq->nr_sectors, seg);
2847 #endif /* CCISS_DEBUG */
2849 c->Header.SGList = c->Header.SGTotal = seg;
2850 if (likely(blk_fs_request(creq))) {
2851 if(h->cciss_read == CCISS_READ_10) {
2852 c->Request.CDB[1] = 0;
2853 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
2854 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
2855 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
2856 c->Request.CDB[5] = start_blk & 0xff;
2857 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
2858 c->Request.CDB[7] = (creq->nr_sectors >> 8) & 0xff;
2859 c->Request.CDB[8] = creq->nr_sectors & 0xff;
2860 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
2861 } else {
2862 u32 upper32 = upper_32_bits(start_blk);
2864 c->Request.CDBLen = 16;
2865 c->Request.CDB[1]= 0;
2866 c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
2867 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
2868 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
2869 c->Request.CDB[5]= upper32 & 0xff;
2870 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
2871 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
2872 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
2873 c->Request.CDB[9]= start_blk & 0xff;
2874 c->Request.CDB[10]= (creq->nr_sectors >> 24) & 0xff;
2875 c->Request.CDB[11]= (creq->nr_sectors >> 16) & 0xff;
2876 c->Request.CDB[12]= (creq->nr_sectors >> 8) & 0xff;
2877 c->Request.CDB[13]= creq->nr_sectors & 0xff;
2878 c->Request.CDB[14] = c->Request.CDB[15] = 0;
2880 } else if (blk_pc_request(creq)) {
2881 c->Request.CDBLen = creq->cmd_len;
2882 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
2883 } else {
2884 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
2885 BUG();
2888 spin_lock_irq(q->queue_lock);
2890 addQ(&(h->reqQ), c);
2891 h->Qdepth++;
2892 if (h->Qdepth > h->maxQsinceinit)
2893 h->maxQsinceinit = h->Qdepth;
2895 goto queue;
2896 full:
2897 blk_stop_queue(q);
2898 startio:
2899 /* We will already have the driver lock here so not need
2900 * to lock it.
2902 start_io(h);
2905 static inline unsigned long get_next_completion(ctlr_info_t *h)
2907 #ifdef CONFIG_CISS_SCSI_TAPE
2908 /* Any rejects from sendcmd() lying around? Process them first */
2909 if (h->scsi_rejects.ncompletions == 0)
2910 return h->access.command_completed(h);
2911 else {
2912 struct sendcmd_reject_list *srl;
2913 int n;
2914 srl = &h->scsi_rejects;
2915 n = --srl->ncompletions;
2916 /* printk("cciss%d: processing saved reject\n", h->ctlr); */
2917 printk("p");
2918 return srl->complete[n];
2920 #else
2921 return h->access.command_completed(h);
2922 #endif
2925 static inline int interrupt_pending(ctlr_info_t *h)
2927 #ifdef CONFIG_CISS_SCSI_TAPE
2928 return (h->access.intr_pending(h)
2929 || (h->scsi_rejects.ncompletions > 0));
2930 #else
2931 return h->access.intr_pending(h);
2932 #endif
2935 static inline long interrupt_not_for_us(ctlr_info_t *h)
2937 #ifdef CONFIG_CISS_SCSI_TAPE
2938 return (((h->access.intr_pending(h) == 0) ||
2939 (h->interrupts_enabled == 0))
2940 && (h->scsi_rejects.ncompletions == 0));
2941 #else
2942 return (((h->access.intr_pending(h) == 0) ||
2943 (h->interrupts_enabled == 0)));
2944 #endif
2947 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
2949 ctlr_info_t *h = dev_id;
2950 CommandList_struct *c;
2951 unsigned long flags;
2952 __u32 a, a1, a2;
2954 if (interrupt_not_for_us(h))
2955 return IRQ_NONE;
2957 * If there are completed commands in the completion queue,
2958 * we had better do something about it.
2960 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2961 while (interrupt_pending(h)) {
2962 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
2963 a1 = a;
2964 if ((a & 0x04)) {
2965 a2 = (a >> 3);
2966 if (a2 >= h->nr_cmds) {
2967 printk(KERN_WARNING
2968 "cciss: controller cciss%d failed, stopping.\n",
2969 h->ctlr);
2970 fail_all_cmds(h->ctlr);
2971 return IRQ_HANDLED;
2974 c = h->cmd_pool + a2;
2975 a = c->busaddr;
2977 } else {
2978 a &= ~3;
2979 if ((c = h->cmpQ) == NULL) {
2980 printk(KERN_WARNING
2981 "cciss: Completion of %08x ignored\n",
2982 a1);
2983 continue;
2985 while (c->busaddr != a) {
2986 c = c->next;
2987 if (c == h->cmpQ)
2988 break;
2992 * If we've found the command, take it off the
2993 * completion Q and free it
2995 if (c->busaddr == a) {
2996 removeQ(&h->cmpQ, c);
2997 if (c->cmd_type == CMD_RWREQ) {
2998 complete_command(h, c, 0);
2999 } else if (c->cmd_type == CMD_IOCTL_PEND) {
3000 complete(c->waiting);
3002 # ifdef CONFIG_CISS_SCSI_TAPE
3003 else if (c->cmd_type == CMD_SCSI)
3004 complete_scsi_command(c, 0, a1);
3005 # endif
3006 continue;
3011 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3012 return IRQ_HANDLED;
3016 * We cannot read the structure directly, for portability we must use
3017 * the io functions.
3018 * This is for debug only.
3020 #ifdef CCISS_DEBUG
3021 static void print_cfg_table(CfgTable_struct *tb)
3023 int i;
3024 char temp_name[17];
3026 printk("Controller Configuration information\n");
3027 printk("------------------------------------\n");
3028 for (i = 0; i < 4; i++)
3029 temp_name[i] = readb(&(tb->Signature[i]));
3030 temp_name[4] = '\0';
3031 printk(" Signature = %s\n", temp_name);
3032 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
3033 printk(" Transport methods supported = 0x%x\n",
3034 readl(&(tb->TransportSupport)));
3035 printk(" Transport methods active = 0x%x\n",
3036 readl(&(tb->TransportActive)));
3037 printk(" Requested transport Method = 0x%x\n",
3038 readl(&(tb->HostWrite.TransportRequest)));
3039 printk(" Coalesce Interrupt Delay = 0x%x\n",
3040 readl(&(tb->HostWrite.CoalIntDelay)));
3041 printk(" Coalesce Interrupt Count = 0x%x\n",
3042 readl(&(tb->HostWrite.CoalIntCount)));
3043 printk(" Max outstanding commands = 0x%d\n",
3044 readl(&(tb->CmdsOutMax)));
3045 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3046 for (i = 0; i < 16; i++)
3047 temp_name[i] = readb(&(tb->ServerName[i]));
3048 temp_name[16] = '\0';
3049 printk(" Server Name = %s\n", temp_name);
3050 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3052 #endif /* CCISS_DEBUG */
3054 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3056 int i, offset, mem_type, bar_type;
3057 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3058 return 0;
3059 offset = 0;
3060 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3061 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3062 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3063 offset += 4;
3064 else {
3065 mem_type = pci_resource_flags(pdev, i) &
3066 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3067 switch (mem_type) {
3068 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3069 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3070 offset += 4; /* 32 bit */
3071 break;
3072 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3073 offset += 8;
3074 break;
3075 default: /* reserved in PCI 2.2 */
3076 printk(KERN_WARNING
3077 "Base address is invalid\n");
3078 return -1;
3079 break;
3082 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3083 return i + 1;
3085 return -1;
3088 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3089 * controllers that are capable. If not, we use IO-APIC mode.
3092 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3093 struct pci_dev *pdev, __u32 board_id)
3095 #ifdef CONFIG_PCI_MSI
3096 int err;
3097 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3098 {0, 2}, {0, 3}
3101 /* Some boards advertise MSI but don't really support it */
3102 if ((board_id == 0x40700E11) ||
3103 (board_id == 0x40800E11) ||
3104 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3105 goto default_int_mode;
3107 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3108 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3109 if (!err) {
3110 c->intr[0] = cciss_msix_entries[0].vector;
3111 c->intr[1] = cciss_msix_entries[1].vector;
3112 c->intr[2] = cciss_msix_entries[2].vector;
3113 c->intr[3] = cciss_msix_entries[3].vector;
3114 c->msix_vector = 1;
3115 return;
3117 if (err > 0) {
3118 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3119 "available\n", err);
3120 goto default_int_mode;
3121 } else {
3122 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3123 err);
3124 goto default_int_mode;
3127 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3128 if (!pci_enable_msi(pdev)) {
3129 c->msi_vector = 1;
3130 } else {
3131 printk(KERN_WARNING "cciss: MSI init failed\n");
3134 default_int_mode:
3135 #endif /* CONFIG_PCI_MSI */
3136 /* if we get here we're going to use the default interrupt mode */
3137 c->intr[SIMPLE_MODE_INT] = pdev->irq;
3138 return;
3141 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3143 ushort subsystem_vendor_id, subsystem_device_id, command;
3144 __u32 board_id, scratchpad = 0;
3145 __u64 cfg_offset;
3146 __u32 cfg_base_addr;
3147 __u64 cfg_base_addr_index;
3148 int i, err;
3150 /* check to see if controller has been disabled */
3151 /* BEFORE trying to enable it */
3152 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3153 if (!(command & 0x02)) {
3154 printk(KERN_WARNING
3155 "cciss: controller appears to be disabled\n");
3156 return -ENODEV;
3159 err = pci_enable_device(pdev);
3160 if (err) {
3161 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3162 return err;
3165 err = pci_request_regions(pdev, "cciss");
3166 if (err) {
3167 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3168 "aborting\n");
3169 return err;
3172 subsystem_vendor_id = pdev->subsystem_vendor;
3173 subsystem_device_id = pdev->subsystem_device;
3174 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3175 subsystem_vendor_id);
3177 #ifdef CCISS_DEBUG
3178 printk("command = %x\n", command);
3179 printk("irq = %x\n", pdev->irq);
3180 printk("board_id = %x\n", board_id);
3181 #endif /* CCISS_DEBUG */
3183 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3184 * else we use the IO-APIC interrupt assigned to us by system ROM.
3186 cciss_interrupt_mode(c, pdev, board_id);
3189 * Memory base addr is first addr , the second points to the config
3190 * table
3193 c->paddr = pci_resource_start(pdev, 0); /* addressing mode bits already removed */
3194 #ifdef CCISS_DEBUG
3195 printk("address 0 = %x\n", c->paddr);
3196 #endif /* CCISS_DEBUG */
3197 c->vaddr = remap_pci_mem(c->paddr, 0x250);
3199 /* Wait for the board to become ready. (PCI hotplug needs this.)
3200 * We poll for up to 120 secs, once per 100ms. */
3201 for (i = 0; i < 1200; i++) {
3202 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3203 if (scratchpad == CCISS_FIRMWARE_READY)
3204 break;
3205 set_current_state(TASK_INTERRUPTIBLE);
3206 schedule_timeout(HZ / 10); /* wait 100ms */
3208 if (scratchpad != CCISS_FIRMWARE_READY) {
3209 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
3210 err = -ENODEV;
3211 goto err_out_free_res;
3214 /* get the address index number */
3215 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3216 cfg_base_addr &= (__u32) 0x0000ffff;
3217 #ifdef CCISS_DEBUG
3218 printk("cfg base address = %x\n", cfg_base_addr);
3219 #endif /* CCISS_DEBUG */
3220 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3221 #ifdef CCISS_DEBUG
3222 printk("cfg base address index = %x\n", cfg_base_addr_index);
3223 #endif /* CCISS_DEBUG */
3224 if (cfg_base_addr_index == -1) {
3225 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3226 err = -ENODEV;
3227 goto err_out_free_res;
3230 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3231 #ifdef CCISS_DEBUG
3232 printk("cfg offset = %x\n", cfg_offset);
3233 #endif /* CCISS_DEBUG */
3234 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3235 cfg_base_addr_index) +
3236 cfg_offset, sizeof(CfgTable_struct));
3237 c->board_id = board_id;
3239 #ifdef CCISS_DEBUG
3240 print_cfg_table(c->cfgtable);
3241 #endif /* CCISS_DEBUG */
3243 /* Some controllers support Zero Memory Raid (ZMR).
3244 * When configured in ZMR mode the number of supported
3245 * commands drops to 64. So instead of just setting an
3246 * arbitrary value we make the driver a little smarter.
3247 * We read the config table to tell us how many commands
3248 * are supported on the controller then subtract 4 to
3249 * leave a little room for ioctl calls.
3251 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3252 for (i = 0; i < ARRAY_SIZE(products); i++) {
3253 if (board_id == products[i].board_id) {
3254 c->product_name = products[i].product_name;
3255 c->access = *(products[i].access);
3256 c->nr_cmds = c->max_commands - 4;
3257 break;
3260 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3261 (readb(&c->cfgtable->Signature[1]) != 'I') ||
3262 (readb(&c->cfgtable->Signature[2]) != 'S') ||
3263 (readb(&c->cfgtable->Signature[3]) != 'S')) {
3264 printk("Does not appear to be a valid CISS config table\n");
3265 err = -ENODEV;
3266 goto err_out_free_res;
3268 /* We didn't find the controller in our list. We know the
3269 * signature is valid. If it's an HP device let's try to
3270 * bind to the device and fire it up. Otherwise we bail.
3272 if (i == ARRAY_SIZE(products)) {
3273 if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
3274 c->product_name = products[i-1].product_name;
3275 c->access = *(products[i-1].access);
3276 c->nr_cmds = c->max_commands - 4;
3277 printk(KERN_WARNING "cciss: This is an unknown "
3278 "Smart Array controller.\n"
3279 "cciss: Please update to the latest driver "
3280 "available from www.hp.com.\n");
3281 } else {
3282 printk(KERN_WARNING "cciss: Sorry, I don't know how"
3283 " to access the Smart Array controller %08lx\n"
3284 , (unsigned long)board_id);
3285 err = -ENODEV;
3286 goto err_out_free_res;
3289 #ifdef CONFIG_X86
3291 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3292 __u32 prefetch;
3293 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3294 prefetch |= 0x100;
3295 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3297 #endif
3299 /* Disabling DMA prefetch and refetch for the P600.
3300 * An ASIC bug may result in accesses to invalid memory addresses.
3301 * We've disabled prefetch for some time now. Testing with XEN
3302 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3304 if(board_id == 0x3225103C) {
3305 __u32 dma_prefetch;
3306 __u32 dma_refetch;
3307 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3308 dma_prefetch |= 0x8000;
3309 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3310 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3311 dma_refetch |= 0x1;
3312 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3315 #ifdef CCISS_DEBUG
3316 printk("Trying to put board into Simple mode\n");
3317 #endif /* CCISS_DEBUG */
3318 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3319 /* Update the field, and then ring the doorbell */
3320 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3321 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3323 /* under certain very rare conditions, this can take awhile.
3324 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3325 * as we enter this code.) */
3326 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3327 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3328 break;
3329 /* delay and try again */
3330 set_current_state(TASK_INTERRUPTIBLE);
3331 schedule_timeout(10);
3334 #ifdef CCISS_DEBUG
3335 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3336 readl(c->vaddr + SA5_DOORBELL));
3337 #endif /* CCISS_DEBUG */
3338 #ifdef CCISS_DEBUG
3339 print_cfg_table(c->cfgtable);
3340 #endif /* CCISS_DEBUG */
3342 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3343 printk(KERN_WARNING "cciss: unable to get board into"
3344 " simple mode\n");
3345 err = -ENODEV;
3346 goto err_out_free_res;
3348 return 0;
3350 err_out_free_res:
3352 * Deliberately omit pci_disable_device(): it does something nasty to
3353 * Smart Array controllers that pci_enable_device does not undo
3355 pci_release_regions(pdev);
3356 return err;
3359 /* Function to find the first free pointer into our hba[] array
3360 * Returns -1 if no free entries are left.
3362 static int alloc_cciss_hba(void)
3364 int i;
3366 for (i = 0; i < MAX_CTLR; i++) {
3367 if (!hba[i]) {
3368 ctlr_info_t *p;
3370 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3371 if (!p)
3372 goto Enomem;
3373 hba[i] = p;
3374 return i;
3377 printk(KERN_WARNING "cciss: This driver supports a maximum"
3378 " of %d controllers.\n", MAX_CTLR);
3379 return -1;
3380 Enomem:
3381 printk(KERN_ERR "cciss: out of memory.\n");
3382 return -1;
3385 static void free_hba(int i)
3387 ctlr_info_t *p = hba[i];
3388 int n;
3390 hba[i] = NULL;
3391 for (n = 0; n < CISS_MAX_LUN; n++)
3392 put_disk(p->gendisk[n]);
3393 kfree(p);
3397 * This is it. Find all the controllers and register them. I really hate
3398 * stealing all these major device numbers.
3399 * returns the number of block devices registered.
3401 static int __devinit cciss_init_one(struct pci_dev *pdev,
3402 const struct pci_device_id *ent)
3404 int i;
3405 int j = 0;
3406 int rc;
3407 int dac;
3409 i = alloc_cciss_hba();
3410 if (i < 0)
3411 return -1;
3413 hba[i]->busy_initializing = 1;
3415 if (cciss_pci_init(hba[i], pdev) != 0)
3416 goto clean1;
3418 sprintf(hba[i]->devname, "cciss%d", i);
3419 hba[i]->ctlr = i;
3420 hba[i]->pdev = pdev;
3422 /* configure PCI DMA stuff */
3423 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK))
3424 dac = 1;
3425 else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK))
3426 dac = 0;
3427 else {
3428 printk(KERN_ERR "cciss: no suitable DMA available\n");
3429 goto clean1;
3433 * register with the major number, or get a dynamic major number
3434 * by passing 0 as argument. This is done for greater than
3435 * 8 controller support.
3437 if (i < MAX_CTLR_ORIG)
3438 hba[i]->major = COMPAQ_CISS_MAJOR + i;
3439 rc = register_blkdev(hba[i]->major, hba[i]->devname);
3440 if (rc == -EBUSY || rc == -EINVAL) {
3441 printk(KERN_ERR
3442 "cciss: Unable to get major number %d for %s "
3443 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
3444 goto clean1;
3445 } else {
3446 if (i >= MAX_CTLR_ORIG)
3447 hba[i]->major = rc;
3450 /* make sure the board interrupts are off */
3451 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
3452 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
3453 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
3454 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
3455 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
3456 goto clean2;
3459 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3460 hba[i]->devname, pdev->device, pci_name(pdev),
3461 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
3463 hba[i]->cmd_pool_bits =
3464 kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
3465 * sizeof(unsigned long), GFP_KERNEL);
3466 hba[i]->cmd_pool = (CommandList_struct *)
3467 pci_alloc_consistent(hba[i]->pdev,
3468 hba[i]->nr_cmds * sizeof(CommandList_struct),
3469 &(hba[i]->cmd_pool_dhandle));
3470 hba[i]->errinfo_pool = (ErrorInfo_struct *)
3471 pci_alloc_consistent(hba[i]->pdev,
3472 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3473 &(hba[i]->errinfo_pool_dhandle));
3474 if ((hba[i]->cmd_pool_bits == NULL)
3475 || (hba[i]->cmd_pool == NULL)
3476 || (hba[i]->errinfo_pool == NULL)) {
3477 printk(KERN_ERR "cciss: out of memory");
3478 goto clean4;
3480 #ifdef CONFIG_CISS_SCSI_TAPE
3481 hba[i]->scsi_rejects.complete =
3482 kmalloc(sizeof(hba[i]->scsi_rejects.complete[0]) *
3483 (hba[i]->nr_cmds + 5), GFP_KERNEL);
3484 if (hba[i]->scsi_rejects.complete == NULL) {
3485 printk(KERN_ERR "cciss: out of memory");
3486 goto clean4;
3488 #endif
3489 spin_lock_init(&hba[i]->lock);
3491 /* Initialize the pdev driver private data.
3492 have it point to hba[i]. */
3493 pci_set_drvdata(pdev, hba[i]);
3494 /* command and error info recs zeroed out before
3495 they are used */
3496 memset(hba[i]->cmd_pool_bits, 0,
3497 DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
3498 * sizeof(unsigned long));
3500 hba[i]->num_luns = 0;
3501 hba[i]->highest_lun = -1;
3502 for (j = 0; j < CISS_MAX_LUN; j++) {
3503 hba[i]->drv[j].raid_level = -1;
3504 hba[i]->drv[j].queue = NULL;
3505 hba[i]->gendisk[j] = NULL;
3508 cciss_scsi_setup(i);
3510 /* Turn the interrupts on so we can service requests */
3511 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
3513 cciss_procinit(i);
3515 hba[i]->cciss_max_sectors = 2048;
3517 hba[i]->busy_initializing = 0;
3519 rebuild_lun_table(hba[i], 1);
3520 return 1;
3522 clean4:
3523 #ifdef CONFIG_CISS_SCSI_TAPE
3524 kfree(hba[i]->scsi_rejects.complete);
3525 #endif
3526 kfree(hba[i]->cmd_pool_bits);
3527 if (hba[i]->cmd_pool)
3528 pci_free_consistent(hba[i]->pdev,
3529 hba[i]->nr_cmds * sizeof(CommandList_struct),
3530 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3531 if (hba[i]->errinfo_pool)
3532 pci_free_consistent(hba[i]->pdev,
3533 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3534 hba[i]->errinfo_pool,
3535 hba[i]->errinfo_pool_dhandle);
3536 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
3537 clean2:
3538 unregister_blkdev(hba[i]->major, hba[i]->devname);
3539 clean1:
3540 hba[i]->busy_initializing = 0;
3541 /* cleanup any queues that may have been initialized */
3542 for (j=0; j <= hba[i]->highest_lun; j++){
3543 drive_info_struct *drv = &(hba[i]->drv[j]);
3544 if (drv->queue)
3545 blk_cleanup_queue(drv->queue);
3548 * Deliberately omit pci_disable_device(): it does something nasty to
3549 * Smart Array controllers that pci_enable_device does not undo
3551 pci_release_regions(pdev);
3552 pci_set_drvdata(pdev, NULL);
3553 free_hba(i);
3554 return -1;
3557 static void cciss_shutdown(struct pci_dev *pdev)
3559 ctlr_info_t *tmp_ptr;
3560 int i;
3561 char flush_buf[4];
3562 int return_code;
3564 tmp_ptr = pci_get_drvdata(pdev);
3565 if (tmp_ptr == NULL)
3566 return;
3567 i = tmp_ptr->ctlr;
3568 if (hba[i] == NULL)
3569 return;
3571 /* Turn board interrupts off and send the flush cache command */
3572 /* sendcmd will turn off interrupt, and send the flush...
3573 * To write all data in the battery backed cache to disks */
3574 memset(flush_buf, 0, 4);
3575 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL,
3576 TYPE_CMD);
3577 if (return_code == IO_OK) {
3578 printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
3579 } else {
3580 printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
3582 free_irq(hba[i]->intr[2], hba[i]);
3585 static void __devexit cciss_remove_one(struct pci_dev *pdev)
3587 ctlr_info_t *tmp_ptr;
3588 int i, j;
3590 if (pci_get_drvdata(pdev) == NULL) {
3591 printk(KERN_ERR "cciss: Unable to remove device \n");
3592 return;
3594 tmp_ptr = pci_get_drvdata(pdev);
3595 i = tmp_ptr->ctlr;
3596 if (hba[i] == NULL) {
3597 printk(KERN_ERR "cciss: device appears to "
3598 "already be removed \n");
3599 return;
3602 remove_proc_entry(hba[i]->devname, proc_cciss);
3603 unregister_blkdev(hba[i]->major, hba[i]->devname);
3605 /* remove it from the disk list */
3606 for (j = 0; j < CISS_MAX_LUN; j++) {
3607 struct gendisk *disk = hba[i]->gendisk[j];
3608 if (disk) {
3609 struct request_queue *q = disk->queue;
3611 if (disk->flags & GENHD_FL_UP)
3612 del_gendisk(disk);
3613 if (q)
3614 blk_cleanup_queue(q);
3618 #ifdef CONFIG_CISS_SCSI_TAPE
3619 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
3620 #endif
3622 cciss_shutdown(pdev);
3624 #ifdef CONFIG_PCI_MSI
3625 if (hba[i]->msix_vector)
3626 pci_disable_msix(hba[i]->pdev);
3627 else if (hba[i]->msi_vector)
3628 pci_disable_msi(hba[i]->pdev);
3629 #endif /* CONFIG_PCI_MSI */
3631 iounmap(hba[i]->vaddr);
3633 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
3634 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
3635 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3636 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
3637 kfree(hba[i]->cmd_pool_bits);
3638 #ifdef CONFIG_CISS_SCSI_TAPE
3639 kfree(hba[i]->scsi_rejects.complete);
3640 #endif
3642 * Deliberately omit pci_disable_device(): it does something nasty to
3643 * Smart Array controllers that pci_enable_device does not undo
3645 pci_release_regions(pdev);
3646 pci_set_drvdata(pdev, NULL);
3647 free_hba(i);
3650 static struct pci_driver cciss_pci_driver = {
3651 .name = "cciss",
3652 .probe = cciss_init_one,
3653 .remove = __devexit_p(cciss_remove_one),
3654 .id_table = cciss_pci_device_id, /* id_table */
3655 .shutdown = cciss_shutdown,
3659 * This is it. Register the PCI driver information for the cards we control
3660 * the OS will call our registered routines when it finds one of our cards.
3662 static int __init cciss_init(void)
3664 printk(KERN_INFO DRIVER_NAME "\n");
3666 /* Register for our PCI devices */
3667 return pci_register_driver(&cciss_pci_driver);
3670 static void __exit cciss_cleanup(void)
3672 int i;
3674 pci_unregister_driver(&cciss_pci_driver);
3675 /* double check that all controller entrys have been removed */
3676 for (i = 0; i < MAX_CTLR; i++) {
3677 if (hba[i] != NULL) {
3678 printk(KERN_WARNING "cciss: had to remove"
3679 " controller %d\n", i);
3680 cciss_remove_one(hba[i]->pdev);
3683 remove_proc_entry("driver/cciss", NULL);
3686 static void fail_all_cmds(unsigned long ctlr)
3688 /* If we get here, the board is apparently dead. */
3689 ctlr_info_t *h = hba[ctlr];
3690 CommandList_struct *c;
3691 unsigned long flags;
3693 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
3694 h->alive = 0; /* the controller apparently died... */
3696 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
3698 pci_disable_device(h->pdev); /* Make sure it is really dead. */
3700 /* move everything off the request queue onto the completed queue */
3701 while ((c = h->reqQ) != NULL) {
3702 removeQ(&(h->reqQ), c);
3703 h->Qdepth--;
3704 addQ(&(h->cmpQ), c);
3707 /* Now, fail everything on the completed queue with a HW error */
3708 while ((c = h->cmpQ) != NULL) {
3709 removeQ(&h->cmpQ, c);
3710 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
3711 if (c->cmd_type == CMD_RWREQ) {
3712 complete_command(h, c, 0);
3713 } else if (c->cmd_type == CMD_IOCTL_PEND)
3714 complete(c->waiting);
3715 #ifdef CONFIG_CISS_SCSI_TAPE
3716 else if (c->cmd_type == CMD_SCSI)
3717 complete_scsi_command(c, 0, 0);
3718 #endif
3720 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
3721 return;
3724 module_init(cciss_init);
3725 module_exit(cciss_cleanup);