[PATCH] separate bdi congestion functions from queue congestion functions
[linux-2.6/zen-sources.git] / fs / xfs / linux-2.6 / xfs_buf.c
blobdb5f5a3608ca3b4f09b8ae2bb0627c6c3c0ae38d
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/stddef.h>
19 #include <linux/errno.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/vmalloc.h>
24 #include <linux/bio.h>
25 #include <linux/sysctl.h>
26 #include <linux/proc_fs.h>
27 #include <linux/workqueue.h>
28 #include <linux/percpu.h>
29 #include <linux/blkdev.h>
30 #include <linux/hash.h>
31 #include <linux/kthread.h>
32 #include <linux/migrate.h>
33 #include <linux/backing-dev.h>
34 #include "xfs_linux.h"
36 STATIC kmem_zone_t *xfs_buf_zone;
37 STATIC kmem_shaker_t xfs_buf_shake;
38 STATIC int xfsbufd(void *);
39 STATIC int xfsbufd_wakeup(int, gfp_t);
40 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
42 STATIC struct workqueue_struct *xfslogd_workqueue;
43 struct workqueue_struct *xfsdatad_workqueue;
45 #ifdef XFS_BUF_TRACE
46 void
47 xfs_buf_trace(
48 xfs_buf_t *bp,
49 char *id,
50 void *data,
51 void *ra)
53 ktrace_enter(xfs_buf_trace_buf,
54 bp, id,
55 (void *)(unsigned long)bp->b_flags,
56 (void *)(unsigned long)bp->b_hold.counter,
57 (void *)(unsigned long)bp->b_sema.count.counter,
58 (void *)current,
59 data, ra,
60 (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
61 (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
62 (void *)(unsigned long)bp->b_buffer_length,
63 NULL, NULL, NULL, NULL, NULL);
65 ktrace_t *xfs_buf_trace_buf;
66 #define XFS_BUF_TRACE_SIZE 4096
67 #define XB_TRACE(bp, id, data) \
68 xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
69 #else
70 #define XB_TRACE(bp, id, data) do { } while (0)
71 #endif
73 #ifdef XFS_BUF_LOCK_TRACKING
74 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
75 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
76 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
77 #else
78 # define XB_SET_OWNER(bp) do { } while (0)
79 # define XB_CLEAR_OWNER(bp) do { } while (0)
80 # define XB_GET_OWNER(bp) do { } while (0)
81 #endif
83 #define xb_to_gfp(flags) \
84 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
85 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
87 #define xb_to_km(flags) \
88 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
90 #define xfs_buf_allocate(flags) \
91 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
92 #define xfs_buf_deallocate(bp) \
93 kmem_zone_free(xfs_buf_zone, (bp));
96 * Page Region interfaces.
98 * For pages in filesystems where the blocksize is smaller than the
99 * pagesize, we use the page->private field (long) to hold a bitmap
100 * of uptodate regions within the page.
102 * Each such region is "bytes per page / bits per long" bytes long.
104 * NBPPR == number-of-bytes-per-page-region
105 * BTOPR == bytes-to-page-region (rounded up)
106 * BTOPRT == bytes-to-page-region-truncated (rounded down)
108 #if (BITS_PER_LONG == 32)
109 #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
110 #elif (BITS_PER_LONG == 64)
111 #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
112 #else
113 #error BITS_PER_LONG must be 32 or 64
114 #endif
115 #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
116 #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
117 #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
119 STATIC unsigned long
120 page_region_mask(
121 size_t offset,
122 size_t length)
124 unsigned long mask;
125 int first, final;
127 first = BTOPR(offset);
128 final = BTOPRT(offset + length - 1);
129 first = min(first, final);
131 mask = ~0UL;
132 mask <<= BITS_PER_LONG - (final - first);
133 mask >>= BITS_PER_LONG - (final);
135 ASSERT(offset + length <= PAGE_CACHE_SIZE);
136 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
138 return mask;
141 STATIC inline void
142 set_page_region(
143 struct page *page,
144 size_t offset,
145 size_t length)
147 set_page_private(page,
148 page_private(page) | page_region_mask(offset, length));
149 if (page_private(page) == ~0UL)
150 SetPageUptodate(page);
153 STATIC inline int
154 test_page_region(
155 struct page *page,
156 size_t offset,
157 size_t length)
159 unsigned long mask = page_region_mask(offset, length);
161 return (mask && (page_private(page) & mask) == mask);
165 * Mapping of multi-page buffers into contiguous virtual space
168 typedef struct a_list {
169 void *vm_addr;
170 struct a_list *next;
171 } a_list_t;
173 STATIC a_list_t *as_free_head;
174 STATIC int as_list_len;
175 STATIC DEFINE_SPINLOCK(as_lock);
178 * Try to batch vunmaps because they are costly.
180 STATIC void
181 free_address(
182 void *addr)
184 a_list_t *aentry;
186 aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
187 if (likely(aentry)) {
188 spin_lock(&as_lock);
189 aentry->next = as_free_head;
190 aentry->vm_addr = addr;
191 as_free_head = aentry;
192 as_list_len++;
193 spin_unlock(&as_lock);
194 } else {
195 vunmap(addr);
199 STATIC void
200 purge_addresses(void)
202 a_list_t *aentry, *old;
204 if (as_free_head == NULL)
205 return;
207 spin_lock(&as_lock);
208 aentry = as_free_head;
209 as_free_head = NULL;
210 as_list_len = 0;
211 spin_unlock(&as_lock);
213 while ((old = aentry) != NULL) {
214 vunmap(aentry->vm_addr);
215 aentry = aentry->next;
216 kfree(old);
221 * Internal xfs_buf_t object manipulation
224 STATIC void
225 _xfs_buf_initialize(
226 xfs_buf_t *bp,
227 xfs_buftarg_t *target,
228 xfs_off_t range_base,
229 size_t range_length,
230 xfs_buf_flags_t flags)
233 * We don't want certain flags to appear in b_flags.
235 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
237 memset(bp, 0, sizeof(xfs_buf_t));
238 atomic_set(&bp->b_hold, 1);
239 init_MUTEX_LOCKED(&bp->b_iodonesema);
240 INIT_LIST_HEAD(&bp->b_list);
241 INIT_LIST_HEAD(&bp->b_hash_list);
242 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
243 XB_SET_OWNER(bp);
244 bp->b_target = target;
245 bp->b_file_offset = range_base;
247 * Set buffer_length and count_desired to the same value initially.
248 * I/O routines should use count_desired, which will be the same in
249 * most cases but may be reset (e.g. XFS recovery).
251 bp->b_buffer_length = bp->b_count_desired = range_length;
252 bp->b_flags = flags;
253 bp->b_bn = XFS_BUF_DADDR_NULL;
254 atomic_set(&bp->b_pin_count, 0);
255 init_waitqueue_head(&bp->b_waiters);
257 XFS_STATS_INC(xb_create);
258 XB_TRACE(bp, "initialize", target);
262 * Allocate a page array capable of holding a specified number
263 * of pages, and point the page buf at it.
265 STATIC int
266 _xfs_buf_get_pages(
267 xfs_buf_t *bp,
268 int page_count,
269 xfs_buf_flags_t flags)
271 /* Make sure that we have a page list */
272 if (bp->b_pages == NULL) {
273 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
274 bp->b_page_count = page_count;
275 if (page_count <= XB_PAGES) {
276 bp->b_pages = bp->b_page_array;
277 } else {
278 bp->b_pages = kmem_alloc(sizeof(struct page *) *
279 page_count, xb_to_km(flags));
280 if (bp->b_pages == NULL)
281 return -ENOMEM;
283 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
285 return 0;
289 * Frees b_pages if it was allocated.
291 STATIC void
292 _xfs_buf_free_pages(
293 xfs_buf_t *bp)
295 if (bp->b_pages != bp->b_page_array) {
296 kmem_free(bp->b_pages,
297 bp->b_page_count * sizeof(struct page *));
302 * Releases the specified buffer.
304 * The modification state of any associated pages is left unchanged.
305 * The buffer most not be on any hash - use xfs_buf_rele instead for
306 * hashed and refcounted buffers
308 void
309 xfs_buf_free(
310 xfs_buf_t *bp)
312 XB_TRACE(bp, "free", 0);
314 ASSERT(list_empty(&bp->b_hash_list));
316 if (bp->b_flags & _XBF_PAGE_CACHE) {
317 uint i;
319 if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
320 free_address(bp->b_addr - bp->b_offset);
322 for (i = 0; i < bp->b_page_count; i++) {
323 struct page *page = bp->b_pages[i];
325 ASSERT(!PagePrivate(page));
326 page_cache_release(page);
328 _xfs_buf_free_pages(bp);
329 } else if (bp->b_flags & _XBF_KMEM_ALLOC) {
331 * XXX(hch): bp->b_count_desired might be incorrect (see
332 * xfs_buf_associate_memory for details), but fortunately
333 * the Linux version of kmem_free ignores the len argument..
335 kmem_free(bp->b_addr, bp->b_count_desired);
336 _xfs_buf_free_pages(bp);
339 xfs_buf_deallocate(bp);
343 * Finds all pages for buffer in question and builds it's page list.
345 STATIC int
346 _xfs_buf_lookup_pages(
347 xfs_buf_t *bp,
348 uint flags)
350 struct address_space *mapping = bp->b_target->bt_mapping;
351 size_t blocksize = bp->b_target->bt_bsize;
352 size_t size = bp->b_count_desired;
353 size_t nbytes, offset;
354 gfp_t gfp_mask = xb_to_gfp(flags);
355 unsigned short page_count, i;
356 pgoff_t first;
357 xfs_off_t end;
358 int error;
360 end = bp->b_file_offset + bp->b_buffer_length;
361 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
363 error = _xfs_buf_get_pages(bp, page_count, flags);
364 if (unlikely(error))
365 return error;
366 bp->b_flags |= _XBF_PAGE_CACHE;
368 offset = bp->b_offset;
369 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
371 for (i = 0; i < bp->b_page_count; i++) {
372 struct page *page;
373 uint retries = 0;
375 retry:
376 page = find_or_create_page(mapping, first + i, gfp_mask);
377 if (unlikely(page == NULL)) {
378 if (flags & XBF_READ_AHEAD) {
379 bp->b_page_count = i;
380 for (i = 0; i < bp->b_page_count; i++)
381 unlock_page(bp->b_pages[i]);
382 return -ENOMEM;
386 * This could deadlock.
388 * But until all the XFS lowlevel code is revamped to
389 * handle buffer allocation failures we can't do much.
391 if (!(++retries % 100))
392 printk(KERN_ERR
393 "XFS: possible memory allocation "
394 "deadlock in %s (mode:0x%x)\n",
395 __FUNCTION__, gfp_mask);
397 XFS_STATS_INC(xb_page_retries);
398 xfsbufd_wakeup(0, gfp_mask);
399 congestion_wait(WRITE, HZ/50);
400 goto retry;
403 XFS_STATS_INC(xb_page_found);
405 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
406 size -= nbytes;
408 ASSERT(!PagePrivate(page));
409 if (!PageUptodate(page)) {
410 page_count--;
411 if (blocksize >= PAGE_CACHE_SIZE) {
412 if (flags & XBF_READ)
413 bp->b_locked = 1;
414 } else if (!PagePrivate(page)) {
415 if (test_page_region(page, offset, nbytes))
416 page_count++;
420 bp->b_pages[i] = page;
421 offset = 0;
424 if (!bp->b_locked) {
425 for (i = 0; i < bp->b_page_count; i++)
426 unlock_page(bp->b_pages[i]);
429 if (page_count == bp->b_page_count)
430 bp->b_flags |= XBF_DONE;
432 XB_TRACE(bp, "lookup_pages", (long)page_count);
433 return error;
437 * Map buffer into kernel address-space if nessecary.
439 STATIC int
440 _xfs_buf_map_pages(
441 xfs_buf_t *bp,
442 uint flags)
444 /* A single page buffer is always mappable */
445 if (bp->b_page_count == 1) {
446 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
447 bp->b_flags |= XBF_MAPPED;
448 } else if (flags & XBF_MAPPED) {
449 if (as_list_len > 64)
450 purge_addresses();
451 bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
452 VM_MAP, PAGE_KERNEL);
453 if (unlikely(bp->b_addr == NULL))
454 return -ENOMEM;
455 bp->b_addr += bp->b_offset;
456 bp->b_flags |= XBF_MAPPED;
459 return 0;
463 * Finding and Reading Buffers
467 * Look up, and creates if absent, a lockable buffer for
468 * a given range of an inode. The buffer is returned
469 * locked. If other overlapping buffers exist, they are
470 * released before the new buffer is created and locked,
471 * which may imply that this call will block until those buffers
472 * are unlocked. No I/O is implied by this call.
474 xfs_buf_t *
475 _xfs_buf_find(
476 xfs_buftarg_t *btp, /* block device target */
477 xfs_off_t ioff, /* starting offset of range */
478 size_t isize, /* length of range */
479 xfs_buf_flags_t flags,
480 xfs_buf_t *new_bp)
482 xfs_off_t range_base;
483 size_t range_length;
484 xfs_bufhash_t *hash;
485 xfs_buf_t *bp, *n;
487 range_base = (ioff << BBSHIFT);
488 range_length = (isize << BBSHIFT);
490 /* Check for IOs smaller than the sector size / not sector aligned */
491 ASSERT(!(range_length < (1 << btp->bt_sshift)));
492 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
494 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
496 spin_lock(&hash->bh_lock);
498 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
499 ASSERT(btp == bp->b_target);
500 if (bp->b_file_offset == range_base &&
501 bp->b_buffer_length == range_length) {
503 * If we look at something, bring it to the
504 * front of the list for next time.
506 atomic_inc(&bp->b_hold);
507 list_move(&bp->b_hash_list, &hash->bh_list);
508 goto found;
512 /* No match found */
513 if (new_bp) {
514 _xfs_buf_initialize(new_bp, btp, range_base,
515 range_length, flags);
516 new_bp->b_hash = hash;
517 list_add(&new_bp->b_hash_list, &hash->bh_list);
518 } else {
519 XFS_STATS_INC(xb_miss_locked);
522 spin_unlock(&hash->bh_lock);
523 return new_bp;
525 found:
526 spin_unlock(&hash->bh_lock);
528 /* Attempt to get the semaphore without sleeping,
529 * if this does not work then we need to drop the
530 * spinlock and do a hard attempt on the semaphore.
532 if (down_trylock(&bp->b_sema)) {
533 if (!(flags & XBF_TRYLOCK)) {
534 /* wait for buffer ownership */
535 XB_TRACE(bp, "get_lock", 0);
536 xfs_buf_lock(bp);
537 XFS_STATS_INC(xb_get_locked_waited);
538 } else {
539 /* We asked for a trylock and failed, no need
540 * to look at file offset and length here, we
541 * know that this buffer at least overlaps our
542 * buffer and is locked, therefore our buffer
543 * either does not exist, or is this buffer.
545 xfs_buf_rele(bp);
546 XFS_STATS_INC(xb_busy_locked);
547 return NULL;
549 } else {
550 /* trylock worked */
551 XB_SET_OWNER(bp);
554 if (bp->b_flags & XBF_STALE) {
555 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
556 bp->b_flags &= XBF_MAPPED;
558 XB_TRACE(bp, "got_lock", 0);
559 XFS_STATS_INC(xb_get_locked);
560 return bp;
564 * Assembles a buffer covering the specified range.
565 * Storage in memory for all portions of the buffer will be allocated,
566 * although backing storage may not be.
568 xfs_buf_t *
569 xfs_buf_get_flags(
570 xfs_buftarg_t *target,/* target for buffer */
571 xfs_off_t ioff, /* starting offset of range */
572 size_t isize, /* length of range */
573 xfs_buf_flags_t flags)
575 xfs_buf_t *bp, *new_bp;
576 int error = 0, i;
578 new_bp = xfs_buf_allocate(flags);
579 if (unlikely(!new_bp))
580 return NULL;
582 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
583 if (bp == new_bp) {
584 error = _xfs_buf_lookup_pages(bp, flags);
585 if (error)
586 goto no_buffer;
587 } else {
588 xfs_buf_deallocate(new_bp);
589 if (unlikely(bp == NULL))
590 return NULL;
593 for (i = 0; i < bp->b_page_count; i++)
594 mark_page_accessed(bp->b_pages[i]);
596 if (!(bp->b_flags & XBF_MAPPED)) {
597 error = _xfs_buf_map_pages(bp, flags);
598 if (unlikely(error)) {
599 printk(KERN_WARNING "%s: failed to map pages\n",
600 __FUNCTION__);
601 goto no_buffer;
605 XFS_STATS_INC(xb_get);
608 * Always fill in the block number now, the mapped cases can do
609 * their own overlay of this later.
611 bp->b_bn = ioff;
612 bp->b_count_desired = bp->b_buffer_length;
614 XB_TRACE(bp, "get", (unsigned long)flags);
615 return bp;
617 no_buffer:
618 if (flags & (XBF_LOCK | XBF_TRYLOCK))
619 xfs_buf_unlock(bp);
620 xfs_buf_rele(bp);
621 return NULL;
624 xfs_buf_t *
625 xfs_buf_read_flags(
626 xfs_buftarg_t *target,
627 xfs_off_t ioff,
628 size_t isize,
629 xfs_buf_flags_t flags)
631 xfs_buf_t *bp;
633 flags |= XBF_READ;
635 bp = xfs_buf_get_flags(target, ioff, isize, flags);
636 if (bp) {
637 if (!XFS_BUF_ISDONE(bp)) {
638 XB_TRACE(bp, "read", (unsigned long)flags);
639 XFS_STATS_INC(xb_get_read);
640 xfs_buf_iostart(bp, flags);
641 } else if (flags & XBF_ASYNC) {
642 XB_TRACE(bp, "read_async", (unsigned long)flags);
644 * Read ahead call which is already satisfied,
645 * drop the buffer
647 goto no_buffer;
648 } else {
649 XB_TRACE(bp, "read_done", (unsigned long)flags);
650 /* We do not want read in the flags */
651 bp->b_flags &= ~XBF_READ;
655 return bp;
657 no_buffer:
658 if (flags & (XBF_LOCK | XBF_TRYLOCK))
659 xfs_buf_unlock(bp);
660 xfs_buf_rele(bp);
661 return NULL;
665 * If we are not low on memory then do the readahead in a deadlock
666 * safe manner.
668 void
669 xfs_buf_readahead(
670 xfs_buftarg_t *target,
671 xfs_off_t ioff,
672 size_t isize,
673 xfs_buf_flags_t flags)
675 struct backing_dev_info *bdi;
677 bdi = target->bt_mapping->backing_dev_info;
678 if (bdi_read_congested(bdi))
679 return;
681 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
682 xfs_buf_read_flags(target, ioff, isize, flags);
685 xfs_buf_t *
686 xfs_buf_get_empty(
687 size_t len,
688 xfs_buftarg_t *target)
690 xfs_buf_t *bp;
692 bp = xfs_buf_allocate(0);
693 if (bp)
694 _xfs_buf_initialize(bp, target, 0, len, 0);
695 return bp;
698 static inline struct page *
699 mem_to_page(
700 void *addr)
702 if (((unsigned long)addr < VMALLOC_START) ||
703 ((unsigned long)addr >= VMALLOC_END)) {
704 return virt_to_page(addr);
705 } else {
706 return vmalloc_to_page(addr);
711 xfs_buf_associate_memory(
712 xfs_buf_t *bp,
713 void *mem,
714 size_t len)
716 int rval;
717 int i = 0;
718 size_t ptr;
719 size_t end, end_cur;
720 off_t offset;
721 int page_count;
723 page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
724 offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
725 if (offset && (len > PAGE_CACHE_SIZE))
726 page_count++;
728 /* Free any previous set of page pointers */
729 if (bp->b_pages)
730 _xfs_buf_free_pages(bp);
732 bp->b_pages = NULL;
733 bp->b_addr = mem;
735 rval = _xfs_buf_get_pages(bp, page_count, 0);
736 if (rval)
737 return rval;
739 bp->b_offset = offset;
740 ptr = (size_t) mem & PAGE_CACHE_MASK;
741 end = PAGE_CACHE_ALIGN((size_t) mem + len);
742 end_cur = end;
743 /* set up first page */
744 bp->b_pages[0] = mem_to_page(mem);
746 ptr += PAGE_CACHE_SIZE;
747 bp->b_page_count = ++i;
748 while (ptr < end) {
749 bp->b_pages[i] = mem_to_page((void *)ptr);
750 bp->b_page_count = ++i;
751 ptr += PAGE_CACHE_SIZE;
753 bp->b_locked = 0;
755 bp->b_count_desired = bp->b_buffer_length = len;
756 bp->b_flags |= XBF_MAPPED;
758 return 0;
761 xfs_buf_t *
762 xfs_buf_get_noaddr(
763 size_t len,
764 xfs_buftarg_t *target)
766 size_t malloc_len = len;
767 xfs_buf_t *bp;
768 void *data;
769 int error;
771 bp = xfs_buf_allocate(0);
772 if (unlikely(bp == NULL))
773 goto fail;
774 _xfs_buf_initialize(bp, target, 0, len, 0);
776 try_again:
777 data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL | KM_LARGE);
778 if (unlikely(data == NULL))
779 goto fail_free_buf;
781 /* check whether alignment matches.. */
782 if ((__psunsigned_t)data !=
783 ((__psunsigned_t)data & ~target->bt_smask)) {
784 /* .. else double the size and try again */
785 kmem_free(data, malloc_len);
786 malloc_len <<= 1;
787 goto try_again;
790 error = xfs_buf_associate_memory(bp, data, len);
791 if (error)
792 goto fail_free_mem;
793 bp->b_flags |= _XBF_KMEM_ALLOC;
795 xfs_buf_unlock(bp);
797 XB_TRACE(bp, "no_daddr", data);
798 return bp;
799 fail_free_mem:
800 kmem_free(data, malloc_len);
801 fail_free_buf:
802 xfs_buf_free(bp);
803 fail:
804 return NULL;
808 * Increment reference count on buffer, to hold the buffer concurrently
809 * with another thread which may release (free) the buffer asynchronously.
810 * Must hold the buffer already to call this function.
812 void
813 xfs_buf_hold(
814 xfs_buf_t *bp)
816 atomic_inc(&bp->b_hold);
817 XB_TRACE(bp, "hold", 0);
821 * Releases a hold on the specified buffer. If the
822 * the hold count is 1, calls xfs_buf_free.
824 void
825 xfs_buf_rele(
826 xfs_buf_t *bp)
828 xfs_bufhash_t *hash = bp->b_hash;
830 XB_TRACE(bp, "rele", bp->b_relse);
832 if (unlikely(!hash)) {
833 ASSERT(!bp->b_relse);
834 if (atomic_dec_and_test(&bp->b_hold))
835 xfs_buf_free(bp);
836 return;
839 if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
840 if (bp->b_relse) {
841 atomic_inc(&bp->b_hold);
842 spin_unlock(&hash->bh_lock);
843 (*(bp->b_relse)) (bp);
844 } else if (bp->b_flags & XBF_FS_MANAGED) {
845 spin_unlock(&hash->bh_lock);
846 } else {
847 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
848 list_del_init(&bp->b_hash_list);
849 spin_unlock(&hash->bh_lock);
850 xfs_buf_free(bp);
852 } else {
854 * Catch reference count leaks
856 ASSERT(atomic_read(&bp->b_hold) >= 0);
862 * Mutual exclusion on buffers. Locking model:
864 * Buffers associated with inodes for which buffer locking
865 * is not enabled are not protected by semaphores, and are
866 * assumed to be exclusively owned by the caller. There is a
867 * spinlock in the buffer, used by the caller when concurrent
868 * access is possible.
872 * Locks a buffer object, if it is not already locked.
873 * Note that this in no way locks the underlying pages, so it is only
874 * useful for synchronizing concurrent use of buffer objects, not for
875 * synchronizing independent access to the underlying pages.
878 xfs_buf_cond_lock(
879 xfs_buf_t *bp)
881 int locked;
883 locked = down_trylock(&bp->b_sema) == 0;
884 if (locked) {
885 XB_SET_OWNER(bp);
887 XB_TRACE(bp, "cond_lock", (long)locked);
888 return locked ? 0 : -EBUSY;
891 #if defined(DEBUG) || defined(XFS_BLI_TRACE)
893 xfs_buf_lock_value(
894 xfs_buf_t *bp)
896 return atomic_read(&bp->b_sema.count);
898 #endif
901 * Locks a buffer object.
902 * Note that this in no way locks the underlying pages, so it is only
903 * useful for synchronizing concurrent use of buffer objects, not for
904 * synchronizing independent access to the underlying pages.
906 void
907 xfs_buf_lock(
908 xfs_buf_t *bp)
910 XB_TRACE(bp, "lock", 0);
911 if (atomic_read(&bp->b_io_remaining))
912 blk_run_address_space(bp->b_target->bt_mapping);
913 down(&bp->b_sema);
914 XB_SET_OWNER(bp);
915 XB_TRACE(bp, "locked", 0);
919 * Releases the lock on the buffer object.
920 * If the buffer is marked delwri but is not queued, do so before we
921 * unlock the buffer as we need to set flags correctly. We also need to
922 * take a reference for the delwri queue because the unlocker is going to
923 * drop their's and they don't know we just queued it.
925 void
926 xfs_buf_unlock(
927 xfs_buf_t *bp)
929 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
930 atomic_inc(&bp->b_hold);
931 bp->b_flags |= XBF_ASYNC;
932 xfs_buf_delwri_queue(bp, 0);
935 XB_CLEAR_OWNER(bp);
936 up(&bp->b_sema);
937 XB_TRACE(bp, "unlock", 0);
942 * Pinning Buffer Storage in Memory
943 * Ensure that no attempt to force a buffer to disk will succeed.
945 void
946 xfs_buf_pin(
947 xfs_buf_t *bp)
949 atomic_inc(&bp->b_pin_count);
950 XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
953 void
954 xfs_buf_unpin(
955 xfs_buf_t *bp)
957 if (atomic_dec_and_test(&bp->b_pin_count))
958 wake_up_all(&bp->b_waiters);
959 XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
963 xfs_buf_ispin(
964 xfs_buf_t *bp)
966 return atomic_read(&bp->b_pin_count);
969 STATIC void
970 xfs_buf_wait_unpin(
971 xfs_buf_t *bp)
973 DECLARE_WAITQUEUE (wait, current);
975 if (atomic_read(&bp->b_pin_count) == 0)
976 return;
978 add_wait_queue(&bp->b_waiters, &wait);
979 for (;;) {
980 set_current_state(TASK_UNINTERRUPTIBLE);
981 if (atomic_read(&bp->b_pin_count) == 0)
982 break;
983 if (atomic_read(&bp->b_io_remaining))
984 blk_run_address_space(bp->b_target->bt_mapping);
985 schedule();
987 remove_wait_queue(&bp->b_waiters, &wait);
988 set_current_state(TASK_RUNNING);
992 * Buffer Utility Routines
995 STATIC void
996 xfs_buf_iodone_work(
997 void *v)
999 xfs_buf_t *bp = (xfs_buf_t *)v;
1001 if (bp->b_iodone)
1002 (*(bp->b_iodone))(bp);
1003 else if (bp->b_flags & XBF_ASYNC)
1004 xfs_buf_relse(bp);
1007 void
1008 xfs_buf_ioend(
1009 xfs_buf_t *bp,
1010 int schedule)
1012 bp->b_flags &= ~(XBF_READ | XBF_WRITE);
1013 if (bp->b_error == 0)
1014 bp->b_flags |= XBF_DONE;
1016 XB_TRACE(bp, "iodone", bp->b_iodone);
1018 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1019 if (schedule) {
1020 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work, bp);
1021 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1022 } else {
1023 xfs_buf_iodone_work(bp);
1025 } else {
1026 up(&bp->b_iodonesema);
1030 void
1031 xfs_buf_ioerror(
1032 xfs_buf_t *bp,
1033 int error)
1035 ASSERT(error >= 0 && error <= 0xffff);
1036 bp->b_error = (unsigned short)error;
1037 XB_TRACE(bp, "ioerror", (unsigned long)error);
1041 * Initiate I/O on a buffer, based on the flags supplied.
1042 * The b_iodone routine in the buffer supplied will only be called
1043 * when all of the subsidiary I/O requests, if any, have been completed.
1046 xfs_buf_iostart(
1047 xfs_buf_t *bp,
1048 xfs_buf_flags_t flags)
1050 int status = 0;
1052 XB_TRACE(bp, "iostart", (unsigned long)flags);
1054 if (flags & XBF_DELWRI) {
1055 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
1056 bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
1057 xfs_buf_delwri_queue(bp, 1);
1058 return status;
1061 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
1062 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1063 bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
1064 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1066 BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
1068 /* For writes allow an alternate strategy routine to precede
1069 * the actual I/O request (which may not be issued at all in
1070 * a shutdown situation, for example).
1072 status = (flags & XBF_WRITE) ?
1073 xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
1075 /* Wait for I/O if we are not an async request.
1076 * Note: async I/O request completion will release the buffer,
1077 * and that can already be done by this point. So using the
1078 * buffer pointer from here on, after async I/O, is invalid.
1080 if (!status && !(flags & XBF_ASYNC))
1081 status = xfs_buf_iowait(bp);
1083 return status;
1086 STATIC __inline__ int
1087 _xfs_buf_iolocked(
1088 xfs_buf_t *bp)
1090 ASSERT(bp->b_flags & (XBF_READ | XBF_WRITE));
1091 if (bp->b_flags & XBF_READ)
1092 return bp->b_locked;
1093 return 0;
1096 STATIC __inline__ void
1097 _xfs_buf_ioend(
1098 xfs_buf_t *bp,
1099 int schedule)
1101 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1102 bp->b_locked = 0;
1103 xfs_buf_ioend(bp, schedule);
1107 STATIC int
1108 xfs_buf_bio_end_io(
1109 struct bio *bio,
1110 unsigned int bytes_done,
1111 int error)
1113 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1114 unsigned int blocksize = bp->b_target->bt_bsize;
1115 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1117 if (bio->bi_size)
1118 return 1;
1120 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1121 bp->b_error = EIO;
1123 do {
1124 struct page *page = bvec->bv_page;
1126 ASSERT(!PagePrivate(page));
1127 if (unlikely(bp->b_error)) {
1128 if (bp->b_flags & XBF_READ)
1129 ClearPageUptodate(page);
1130 } else if (blocksize >= PAGE_CACHE_SIZE) {
1131 SetPageUptodate(page);
1132 } else if (!PagePrivate(page) &&
1133 (bp->b_flags & _XBF_PAGE_CACHE)) {
1134 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1137 if (--bvec >= bio->bi_io_vec)
1138 prefetchw(&bvec->bv_page->flags);
1140 if (_xfs_buf_iolocked(bp)) {
1141 unlock_page(page);
1143 } while (bvec >= bio->bi_io_vec);
1145 _xfs_buf_ioend(bp, 1);
1146 bio_put(bio);
1147 return 0;
1150 STATIC void
1151 _xfs_buf_ioapply(
1152 xfs_buf_t *bp)
1154 int i, rw, map_i, total_nr_pages, nr_pages;
1155 struct bio *bio;
1156 int offset = bp->b_offset;
1157 int size = bp->b_count_desired;
1158 sector_t sector = bp->b_bn;
1159 unsigned int blocksize = bp->b_target->bt_bsize;
1160 int locking = _xfs_buf_iolocked(bp);
1162 total_nr_pages = bp->b_page_count;
1163 map_i = 0;
1165 if (bp->b_flags & XBF_ORDERED) {
1166 ASSERT(!(bp->b_flags & XBF_READ));
1167 rw = WRITE_BARRIER;
1168 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1169 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1170 bp->b_flags &= ~_XBF_RUN_QUEUES;
1171 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1172 } else {
1173 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1174 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1177 /* Special code path for reading a sub page size buffer in --
1178 * we populate up the whole page, and hence the other metadata
1179 * in the same page. This optimization is only valid when the
1180 * filesystem block size is not smaller than the page size.
1182 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1183 (bp->b_flags & XBF_READ) && locking &&
1184 (blocksize >= PAGE_CACHE_SIZE)) {
1185 bio = bio_alloc(GFP_NOIO, 1);
1187 bio->bi_bdev = bp->b_target->bt_bdev;
1188 bio->bi_sector = sector - (offset >> BBSHIFT);
1189 bio->bi_end_io = xfs_buf_bio_end_io;
1190 bio->bi_private = bp;
1192 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1193 size = 0;
1195 atomic_inc(&bp->b_io_remaining);
1197 goto submit_io;
1200 /* Lock down the pages which we need to for the request */
1201 if (locking && (bp->b_flags & XBF_WRITE) && (bp->b_locked == 0)) {
1202 for (i = 0; size; i++) {
1203 int nbytes = PAGE_CACHE_SIZE - offset;
1204 struct page *page = bp->b_pages[i];
1206 if (nbytes > size)
1207 nbytes = size;
1209 lock_page(page);
1211 size -= nbytes;
1212 offset = 0;
1214 offset = bp->b_offset;
1215 size = bp->b_count_desired;
1218 next_chunk:
1219 atomic_inc(&bp->b_io_remaining);
1220 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1221 if (nr_pages > total_nr_pages)
1222 nr_pages = total_nr_pages;
1224 bio = bio_alloc(GFP_NOIO, nr_pages);
1225 bio->bi_bdev = bp->b_target->bt_bdev;
1226 bio->bi_sector = sector;
1227 bio->bi_end_io = xfs_buf_bio_end_io;
1228 bio->bi_private = bp;
1230 for (; size && nr_pages; nr_pages--, map_i++) {
1231 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1233 if (nbytes > size)
1234 nbytes = size;
1236 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1237 if (rbytes < nbytes)
1238 break;
1240 offset = 0;
1241 sector += nbytes >> BBSHIFT;
1242 size -= nbytes;
1243 total_nr_pages--;
1246 submit_io:
1247 if (likely(bio->bi_size)) {
1248 submit_bio(rw, bio);
1249 if (size)
1250 goto next_chunk;
1251 } else {
1252 bio_put(bio);
1253 xfs_buf_ioerror(bp, EIO);
1258 xfs_buf_iorequest(
1259 xfs_buf_t *bp)
1261 XB_TRACE(bp, "iorequest", 0);
1263 if (bp->b_flags & XBF_DELWRI) {
1264 xfs_buf_delwri_queue(bp, 1);
1265 return 0;
1268 if (bp->b_flags & XBF_WRITE) {
1269 xfs_buf_wait_unpin(bp);
1272 xfs_buf_hold(bp);
1274 /* Set the count to 1 initially, this will stop an I/O
1275 * completion callout which happens before we have started
1276 * all the I/O from calling xfs_buf_ioend too early.
1278 atomic_set(&bp->b_io_remaining, 1);
1279 _xfs_buf_ioapply(bp);
1280 _xfs_buf_ioend(bp, 0);
1282 xfs_buf_rele(bp);
1283 return 0;
1287 * Waits for I/O to complete on the buffer supplied.
1288 * It returns immediately if no I/O is pending.
1289 * It returns the I/O error code, if any, or 0 if there was no error.
1292 xfs_buf_iowait(
1293 xfs_buf_t *bp)
1295 XB_TRACE(bp, "iowait", 0);
1296 if (atomic_read(&bp->b_io_remaining))
1297 blk_run_address_space(bp->b_target->bt_mapping);
1298 down(&bp->b_iodonesema);
1299 XB_TRACE(bp, "iowaited", (long)bp->b_error);
1300 return bp->b_error;
1303 xfs_caddr_t
1304 xfs_buf_offset(
1305 xfs_buf_t *bp,
1306 size_t offset)
1308 struct page *page;
1310 if (bp->b_flags & XBF_MAPPED)
1311 return XFS_BUF_PTR(bp) + offset;
1313 offset += bp->b_offset;
1314 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1315 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1319 * Move data into or out of a buffer.
1321 void
1322 xfs_buf_iomove(
1323 xfs_buf_t *bp, /* buffer to process */
1324 size_t boff, /* starting buffer offset */
1325 size_t bsize, /* length to copy */
1326 caddr_t data, /* data address */
1327 xfs_buf_rw_t mode) /* read/write/zero flag */
1329 size_t bend, cpoff, csize;
1330 struct page *page;
1332 bend = boff + bsize;
1333 while (boff < bend) {
1334 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1335 cpoff = xfs_buf_poff(boff + bp->b_offset);
1336 csize = min_t(size_t,
1337 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1339 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1341 switch (mode) {
1342 case XBRW_ZERO:
1343 memset(page_address(page) + cpoff, 0, csize);
1344 break;
1345 case XBRW_READ:
1346 memcpy(data, page_address(page) + cpoff, csize);
1347 break;
1348 case XBRW_WRITE:
1349 memcpy(page_address(page) + cpoff, data, csize);
1352 boff += csize;
1353 data += csize;
1358 * Handling of buffer targets (buftargs).
1362 * Wait for any bufs with callbacks that have been submitted but
1363 * have not yet returned... walk the hash list for the target.
1365 void
1366 xfs_wait_buftarg(
1367 xfs_buftarg_t *btp)
1369 xfs_buf_t *bp, *n;
1370 xfs_bufhash_t *hash;
1371 uint i;
1373 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1374 hash = &btp->bt_hash[i];
1375 again:
1376 spin_lock(&hash->bh_lock);
1377 list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1378 ASSERT(btp == bp->b_target);
1379 if (!(bp->b_flags & XBF_FS_MANAGED)) {
1380 spin_unlock(&hash->bh_lock);
1382 * Catch superblock reference count leaks
1383 * immediately
1385 BUG_ON(bp->b_bn == 0);
1386 delay(100);
1387 goto again;
1390 spin_unlock(&hash->bh_lock);
1395 * Allocate buffer hash table for a given target.
1396 * For devices containing metadata (i.e. not the log/realtime devices)
1397 * we need to allocate a much larger hash table.
1399 STATIC void
1400 xfs_alloc_bufhash(
1401 xfs_buftarg_t *btp,
1402 int external)
1404 unsigned int i;
1406 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1407 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1408 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1409 sizeof(xfs_bufhash_t), KM_SLEEP);
1410 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1411 spin_lock_init(&btp->bt_hash[i].bh_lock);
1412 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1416 STATIC void
1417 xfs_free_bufhash(
1418 xfs_buftarg_t *btp)
1420 kmem_free(btp->bt_hash, (1<<btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1421 btp->bt_hash = NULL;
1425 * buftarg list for delwrite queue processing
1427 STATIC LIST_HEAD(xfs_buftarg_list);
1428 STATIC DEFINE_SPINLOCK(xfs_buftarg_lock);
1430 STATIC void
1431 xfs_register_buftarg(
1432 xfs_buftarg_t *btp)
1434 spin_lock(&xfs_buftarg_lock);
1435 list_add(&btp->bt_list, &xfs_buftarg_list);
1436 spin_unlock(&xfs_buftarg_lock);
1439 STATIC void
1440 xfs_unregister_buftarg(
1441 xfs_buftarg_t *btp)
1443 spin_lock(&xfs_buftarg_lock);
1444 list_del(&btp->bt_list);
1445 spin_unlock(&xfs_buftarg_lock);
1448 void
1449 xfs_free_buftarg(
1450 xfs_buftarg_t *btp,
1451 int external)
1453 xfs_flush_buftarg(btp, 1);
1454 if (external)
1455 xfs_blkdev_put(btp->bt_bdev);
1456 xfs_free_bufhash(btp);
1457 iput(btp->bt_mapping->host);
1459 /* Unregister the buftarg first so that we don't get a
1460 * wakeup finding a non-existent task
1462 xfs_unregister_buftarg(btp);
1463 kthread_stop(btp->bt_task);
1465 kmem_free(btp, sizeof(*btp));
1468 STATIC int
1469 xfs_setsize_buftarg_flags(
1470 xfs_buftarg_t *btp,
1471 unsigned int blocksize,
1472 unsigned int sectorsize,
1473 int verbose)
1475 btp->bt_bsize = blocksize;
1476 btp->bt_sshift = ffs(sectorsize) - 1;
1477 btp->bt_smask = sectorsize - 1;
1479 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1480 printk(KERN_WARNING
1481 "XFS: Cannot set_blocksize to %u on device %s\n",
1482 sectorsize, XFS_BUFTARG_NAME(btp));
1483 return EINVAL;
1486 if (verbose &&
1487 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1488 printk(KERN_WARNING
1489 "XFS: %u byte sectors in use on device %s. "
1490 "This is suboptimal; %u or greater is ideal.\n",
1491 sectorsize, XFS_BUFTARG_NAME(btp),
1492 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1495 return 0;
1499 * When allocating the initial buffer target we have not yet
1500 * read in the superblock, so don't know what sized sectors
1501 * are being used is at this early stage. Play safe.
1503 STATIC int
1504 xfs_setsize_buftarg_early(
1505 xfs_buftarg_t *btp,
1506 struct block_device *bdev)
1508 return xfs_setsize_buftarg_flags(btp,
1509 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1513 xfs_setsize_buftarg(
1514 xfs_buftarg_t *btp,
1515 unsigned int blocksize,
1516 unsigned int sectorsize)
1518 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1521 STATIC int
1522 xfs_mapping_buftarg(
1523 xfs_buftarg_t *btp,
1524 struct block_device *bdev)
1526 struct backing_dev_info *bdi;
1527 struct inode *inode;
1528 struct address_space *mapping;
1529 static const struct address_space_operations mapping_aops = {
1530 .sync_page = block_sync_page,
1531 .migratepage = fail_migrate_page,
1534 inode = new_inode(bdev->bd_inode->i_sb);
1535 if (!inode) {
1536 printk(KERN_WARNING
1537 "XFS: Cannot allocate mapping inode for device %s\n",
1538 XFS_BUFTARG_NAME(btp));
1539 return ENOMEM;
1541 inode->i_mode = S_IFBLK;
1542 inode->i_bdev = bdev;
1543 inode->i_rdev = bdev->bd_dev;
1544 bdi = blk_get_backing_dev_info(bdev);
1545 if (!bdi)
1546 bdi = &default_backing_dev_info;
1547 mapping = &inode->i_data;
1548 mapping->a_ops = &mapping_aops;
1549 mapping->backing_dev_info = bdi;
1550 mapping_set_gfp_mask(mapping, GFP_NOFS);
1551 btp->bt_mapping = mapping;
1552 return 0;
1555 STATIC int
1556 xfs_alloc_delwrite_queue(
1557 xfs_buftarg_t *btp)
1559 int error = 0;
1561 INIT_LIST_HEAD(&btp->bt_list);
1562 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1563 spinlock_init(&btp->bt_delwrite_lock, "delwri_lock");
1564 btp->bt_flags = 0;
1565 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1566 if (IS_ERR(btp->bt_task)) {
1567 error = PTR_ERR(btp->bt_task);
1568 goto out_error;
1570 xfs_register_buftarg(btp);
1571 out_error:
1572 return error;
1575 xfs_buftarg_t *
1576 xfs_alloc_buftarg(
1577 struct block_device *bdev,
1578 int external)
1580 xfs_buftarg_t *btp;
1582 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1584 btp->bt_dev = bdev->bd_dev;
1585 btp->bt_bdev = bdev;
1586 if (xfs_setsize_buftarg_early(btp, bdev))
1587 goto error;
1588 if (xfs_mapping_buftarg(btp, bdev))
1589 goto error;
1590 if (xfs_alloc_delwrite_queue(btp))
1591 goto error;
1592 xfs_alloc_bufhash(btp, external);
1593 return btp;
1595 error:
1596 kmem_free(btp, sizeof(*btp));
1597 return NULL;
1602 * Delayed write buffer handling
1604 STATIC void
1605 xfs_buf_delwri_queue(
1606 xfs_buf_t *bp,
1607 int unlock)
1609 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1610 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1612 XB_TRACE(bp, "delwri_q", (long)unlock);
1613 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1615 spin_lock(dwlk);
1616 /* If already in the queue, dequeue and place at tail */
1617 if (!list_empty(&bp->b_list)) {
1618 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1619 if (unlock)
1620 atomic_dec(&bp->b_hold);
1621 list_del(&bp->b_list);
1624 bp->b_flags |= _XBF_DELWRI_Q;
1625 list_add_tail(&bp->b_list, dwq);
1626 bp->b_queuetime = jiffies;
1627 spin_unlock(dwlk);
1629 if (unlock)
1630 xfs_buf_unlock(bp);
1633 void
1634 xfs_buf_delwri_dequeue(
1635 xfs_buf_t *bp)
1637 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1638 int dequeued = 0;
1640 spin_lock(dwlk);
1641 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1642 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1643 list_del_init(&bp->b_list);
1644 dequeued = 1;
1646 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1647 spin_unlock(dwlk);
1649 if (dequeued)
1650 xfs_buf_rele(bp);
1652 XB_TRACE(bp, "delwri_dq", (long)dequeued);
1655 STATIC void
1656 xfs_buf_runall_queues(
1657 struct workqueue_struct *queue)
1659 flush_workqueue(queue);
1662 STATIC int
1663 xfsbufd_wakeup(
1664 int priority,
1665 gfp_t mask)
1667 xfs_buftarg_t *btp;
1669 spin_lock(&xfs_buftarg_lock);
1670 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1671 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1672 continue;
1673 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1674 wake_up_process(btp->bt_task);
1676 spin_unlock(&xfs_buftarg_lock);
1677 return 0;
1680 STATIC int
1681 xfsbufd(
1682 void *data)
1684 struct list_head tmp;
1685 unsigned long age;
1686 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1687 xfs_buf_t *bp, *n;
1688 struct list_head *dwq = &target->bt_delwrite_queue;
1689 spinlock_t *dwlk = &target->bt_delwrite_lock;
1690 int count;
1692 current->flags |= PF_MEMALLOC;
1694 INIT_LIST_HEAD(&tmp);
1695 do {
1696 if (unlikely(freezing(current))) {
1697 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1698 refrigerator();
1699 } else {
1700 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1703 schedule_timeout_interruptible(
1704 xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1706 count = 0;
1707 age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1708 spin_lock(dwlk);
1709 list_for_each_entry_safe(bp, n, dwq, b_list) {
1710 XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1711 ASSERT(bp->b_flags & XBF_DELWRI);
1713 if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1714 if (!test_bit(XBT_FORCE_FLUSH,
1715 &target->bt_flags) &&
1716 time_before(jiffies,
1717 bp->b_queuetime + age)) {
1718 xfs_buf_unlock(bp);
1719 break;
1722 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1723 _XBF_RUN_QUEUES);
1724 bp->b_flags |= XBF_WRITE;
1725 list_move_tail(&bp->b_list, &tmp);
1726 count++;
1729 spin_unlock(dwlk);
1731 while (!list_empty(&tmp)) {
1732 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1733 ASSERT(target == bp->b_target);
1735 list_del_init(&bp->b_list);
1736 xfs_buf_iostrategy(bp);
1739 if (as_list_len > 0)
1740 purge_addresses();
1741 if (count)
1742 blk_run_address_space(target->bt_mapping);
1744 clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1745 } while (!kthread_should_stop());
1747 return 0;
1751 * Go through all incore buffers, and release buffers if they belong to
1752 * the given device. This is used in filesystem error handling to
1753 * preserve the consistency of its metadata.
1756 xfs_flush_buftarg(
1757 xfs_buftarg_t *target,
1758 int wait)
1760 struct list_head tmp;
1761 xfs_buf_t *bp, *n;
1762 int pincount = 0;
1763 struct list_head *dwq = &target->bt_delwrite_queue;
1764 spinlock_t *dwlk = &target->bt_delwrite_lock;
1766 xfs_buf_runall_queues(xfsdatad_workqueue);
1767 xfs_buf_runall_queues(xfslogd_workqueue);
1769 INIT_LIST_HEAD(&tmp);
1770 spin_lock(dwlk);
1771 list_for_each_entry_safe(bp, n, dwq, b_list) {
1772 ASSERT(bp->b_target == target);
1773 ASSERT(bp->b_flags & (XBF_DELWRI | _XBF_DELWRI_Q));
1774 XB_TRACE(bp, "walkq2", (long)xfs_buf_ispin(bp));
1775 if (xfs_buf_ispin(bp)) {
1776 pincount++;
1777 continue;
1780 list_move_tail(&bp->b_list, &tmp);
1782 spin_unlock(dwlk);
1785 * Dropped the delayed write list lock, now walk the temporary list
1787 list_for_each_entry_safe(bp, n, &tmp, b_list) {
1788 xfs_buf_lock(bp);
1789 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|_XBF_RUN_QUEUES);
1790 bp->b_flags |= XBF_WRITE;
1791 if (wait)
1792 bp->b_flags &= ~XBF_ASYNC;
1793 else
1794 list_del_init(&bp->b_list);
1796 xfs_buf_iostrategy(bp);
1799 if (wait)
1800 blk_run_address_space(target->bt_mapping);
1803 * Remaining list items must be flushed before returning
1805 while (!list_empty(&tmp)) {
1806 bp = list_entry(tmp.next, xfs_buf_t, b_list);
1808 list_del_init(&bp->b_list);
1809 xfs_iowait(bp);
1810 xfs_buf_relse(bp);
1813 return pincount;
1816 int __init
1817 xfs_buf_init(void)
1819 #ifdef XFS_BUF_TRACE
1820 xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP);
1821 #endif
1823 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1824 KM_ZONE_HWALIGN, NULL);
1825 if (!xfs_buf_zone)
1826 goto out_free_trace_buf;
1828 xfslogd_workqueue = create_workqueue("xfslogd");
1829 if (!xfslogd_workqueue)
1830 goto out_free_buf_zone;
1832 xfsdatad_workqueue = create_workqueue("xfsdatad");
1833 if (!xfsdatad_workqueue)
1834 goto out_destroy_xfslogd_workqueue;
1836 xfs_buf_shake = kmem_shake_register(xfsbufd_wakeup);
1837 if (!xfs_buf_shake)
1838 goto out_destroy_xfsdatad_workqueue;
1840 return 0;
1842 out_destroy_xfsdatad_workqueue:
1843 destroy_workqueue(xfsdatad_workqueue);
1844 out_destroy_xfslogd_workqueue:
1845 destroy_workqueue(xfslogd_workqueue);
1846 out_free_buf_zone:
1847 kmem_zone_destroy(xfs_buf_zone);
1848 out_free_trace_buf:
1849 #ifdef XFS_BUF_TRACE
1850 ktrace_free(xfs_buf_trace_buf);
1851 #endif
1852 return -ENOMEM;
1855 void
1856 xfs_buf_terminate(void)
1858 kmem_shake_deregister(xfs_buf_shake);
1859 destroy_workqueue(xfsdatad_workqueue);
1860 destroy_workqueue(xfslogd_workqueue);
1861 kmem_zone_destroy(xfs_buf_zone);
1862 #ifdef XFS_BUF_TRACE
1863 ktrace_free(xfs_buf_trace_buf);
1864 #endif