[PATCH] libata: separate out ata_id_major_version()
[linux-2.6/zen-sources.git] / drivers / scsi / libata-core.c
blobd87854e199f610086efeb1ffaeb4c68816b17d9d
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
62 #include "libata.h"
64 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
65 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
66 static void ata_set_mode(struct ata_port *ap);
67 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
68 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
69 static int fgb(u32 bitmap);
70 static int ata_choose_xfer_mode(const struct ata_port *ap,
71 u8 *xfer_mode_out,
72 unsigned int *xfer_shift_out);
74 static unsigned int ata_unique_id = 1;
75 static struct workqueue_struct *ata_wq;
77 int atapi_enabled = 0;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
81 MODULE_AUTHOR("Jeff Garzik");
82 MODULE_DESCRIPTION("Library module for ATA devices");
83 MODULE_LICENSE("GPL");
84 MODULE_VERSION(DRV_VERSION);
87 /**
88 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
89 * @tf: Taskfile to convert
90 * @fis: Buffer into which data will output
91 * @pmp: Port multiplier port
93 * Converts a standard ATA taskfile to a Serial ATA
94 * FIS structure (Register - Host to Device).
96 * LOCKING:
97 * Inherited from caller.
100 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
102 fis[0] = 0x27; /* Register - Host to Device FIS */
103 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
104 bit 7 indicates Command FIS */
105 fis[2] = tf->command;
106 fis[3] = tf->feature;
108 fis[4] = tf->lbal;
109 fis[5] = tf->lbam;
110 fis[6] = tf->lbah;
111 fis[7] = tf->device;
113 fis[8] = tf->hob_lbal;
114 fis[9] = tf->hob_lbam;
115 fis[10] = tf->hob_lbah;
116 fis[11] = tf->hob_feature;
118 fis[12] = tf->nsect;
119 fis[13] = tf->hob_nsect;
120 fis[14] = 0;
121 fis[15] = tf->ctl;
123 fis[16] = 0;
124 fis[17] = 0;
125 fis[18] = 0;
126 fis[19] = 0;
130 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
131 * @fis: Buffer from which data will be input
132 * @tf: Taskfile to output
134 * Converts a serial ATA FIS structure to a standard ATA taskfile.
136 * LOCKING:
137 * Inherited from caller.
140 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
142 tf->command = fis[2]; /* status */
143 tf->feature = fis[3]; /* error */
145 tf->lbal = fis[4];
146 tf->lbam = fis[5];
147 tf->lbah = fis[6];
148 tf->device = fis[7];
150 tf->hob_lbal = fis[8];
151 tf->hob_lbam = fis[9];
152 tf->hob_lbah = fis[10];
154 tf->nsect = fis[12];
155 tf->hob_nsect = fis[13];
158 static const u8 ata_rw_cmds[] = {
159 /* pio multi */
160 ATA_CMD_READ_MULTI,
161 ATA_CMD_WRITE_MULTI,
162 ATA_CMD_READ_MULTI_EXT,
163 ATA_CMD_WRITE_MULTI_EXT,
167 ATA_CMD_WRITE_MULTI_FUA_EXT,
168 /* pio */
169 ATA_CMD_PIO_READ,
170 ATA_CMD_PIO_WRITE,
171 ATA_CMD_PIO_READ_EXT,
172 ATA_CMD_PIO_WRITE_EXT,
177 /* dma */
178 ATA_CMD_READ,
179 ATA_CMD_WRITE,
180 ATA_CMD_READ_EXT,
181 ATA_CMD_WRITE_EXT,
185 ATA_CMD_WRITE_FUA_EXT
189 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
190 * @qc: command to examine and configure
192 * Examine the device configuration and tf->flags to calculate
193 * the proper read/write commands and protocol to use.
195 * LOCKING:
196 * caller.
198 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
200 struct ata_taskfile *tf = &qc->tf;
201 struct ata_device *dev = qc->dev;
202 u8 cmd;
204 int index, fua, lba48, write;
206 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
207 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
208 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
210 if (dev->flags & ATA_DFLAG_PIO) {
211 tf->protocol = ATA_PROT_PIO;
212 index = dev->multi_count ? 0 : 8;
213 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
214 /* Unable to use DMA due to host limitation */
215 tf->protocol = ATA_PROT_PIO;
216 index = dev->multi_count ? 0 : 4;
217 } else {
218 tf->protocol = ATA_PROT_DMA;
219 index = 16;
222 cmd = ata_rw_cmds[index + fua + lba48 + write];
223 if (cmd) {
224 tf->command = cmd;
225 return 0;
227 return -1;
230 static const char * const xfer_mode_str[] = {
231 "UDMA/16",
232 "UDMA/25",
233 "UDMA/33",
234 "UDMA/44",
235 "UDMA/66",
236 "UDMA/100",
237 "UDMA/133",
238 "UDMA7",
239 "MWDMA0",
240 "MWDMA1",
241 "MWDMA2",
242 "PIO0",
243 "PIO1",
244 "PIO2",
245 "PIO3",
246 "PIO4",
250 * ata_udma_string - convert UDMA bit offset to string
251 * @mask: mask of bits supported; only highest bit counts.
253 * Determine string which represents the highest speed
254 * (highest bit in @udma_mask).
256 * LOCKING:
257 * None.
259 * RETURNS:
260 * Constant C string representing highest speed listed in
261 * @udma_mask, or the constant C string "<n/a>".
264 static const char *ata_mode_string(unsigned int mask)
266 int i;
268 for (i = 7; i >= 0; i--)
269 if (mask & (1 << i))
270 goto out;
271 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
272 if (mask & (1 << i))
273 goto out;
274 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
275 if (mask & (1 << i))
276 goto out;
278 return "<n/a>";
280 out:
281 return xfer_mode_str[i];
285 * ata_pio_devchk - PATA device presence detection
286 * @ap: ATA channel to examine
287 * @device: Device to examine (starting at zero)
289 * This technique was originally described in
290 * Hale Landis's ATADRVR (www.ata-atapi.com), and
291 * later found its way into the ATA/ATAPI spec.
293 * Write a pattern to the ATA shadow registers,
294 * and if a device is present, it will respond by
295 * correctly storing and echoing back the
296 * ATA shadow register contents.
298 * LOCKING:
299 * caller.
302 static unsigned int ata_pio_devchk(struct ata_port *ap,
303 unsigned int device)
305 struct ata_ioports *ioaddr = &ap->ioaddr;
306 u8 nsect, lbal;
308 ap->ops->dev_select(ap, device);
310 outb(0x55, ioaddr->nsect_addr);
311 outb(0xaa, ioaddr->lbal_addr);
313 outb(0xaa, ioaddr->nsect_addr);
314 outb(0x55, ioaddr->lbal_addr);
316 outb(0x55, ioaddr->nsect_addr);
317 outb(0xaa, ioaddr->lbal_addr);
319 nsect = inb(ioaddr->nsect_addr);
320 lbal = inb(ioaddr->lbal_addr);
322 if ((nsect == 0x55) && (lbal == 0xaa))
323 return 1; /* we found a device */
325 return 0; /* nothing found */
329 * ata_mmio_devchk - PATA device presence detection
330 * @ap: ATA channel to examine
331 * @device: Device to examine (starting at zero)
333 * This technique was originally described in
334 * Hale Landis's ATADRVR (www.ata-atapi.com), and
335 * later found its way into the ATA/ATAPI spec.
337 * Write a pattern to the ATA shadow registers,
338 * and if a device is present, it will respond by
339 * correctly storing and echoing back the
340 * ATA shadow register contents.
342 * LOCKING:
343 * caller.
346 static unsigned int ata_mmio_devchk(struct ata_port *ap,
347 unsigned int device)
349 struct ata_ioports *ioaddr = &ap->ioaddr;
350 u8 nsect, lbal;
352 ap->ops->dev_select(ap, device);
354 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
355 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
357 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
358 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
360 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
361 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
363 nsect = readb((void __iomem *) ioaddr->nsect_addr);
364 lbal = readb((void __iomem *) ioaddr->lbal_addr);
366 if ((nsect == 0x55) && (lbal == 0xaa))
367 return 1; /* we found a device */
369 return 0; /* nothing found */
373 * ata_devchk - PATA device presence detection
374 * @ap: ATA channel to examine
375 * @device: Device to examine (starting at zero)
377 * Dispatch ATA device presence detection, depending
378 * on whether we are using PIO or MMIO to talk to the
379 * ATA shadow registers.
381 * LOCKING:
382 * caller.
385 static unsigned int ata_devchk(struct ata_port *ap,
386 unsigned int device)
388 if (ap->flags & ATA_FLAG_MMIO)
389 return ata_mmio_devchk(ap, device);
390 return ata_pio_devchk(ap, device);
394 * ata_dev_classify - determine device type based on ATA-spec signature
395 * @tf: ATA taskfile register set for device to be identified
397 * Determine from taskfile register contents whether a device is
398 * ATA or ATAPI, as per "Signature and persistence" section
399 * of ATA/PI spec (volume 1, sect 5.14).
401 * LOCKING:
402 * None.
404 * RETURNS:
405 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
406 * the event of failure.
409 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
411 /* Apple's open source Darwin code hints that some devices only
412 * put a proper signature into the LBA mid/high registers,
413 * So, we only check those. It's sufficient for uniqueness.
416 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
417 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
418 DPRINTK("found ATA device by sig\n");
419 return ATA_DEV_ATA;
422 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
423 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
424 DPRINTK("found ATAPI device by sig\n");
425 return ATA_DEV_ATAPI;
428 DPRINTK("unknown device\n");
429 return ATA_DEV_UNKNOWN;
433 * ata_dev_try_classify - Parse returned ATA device signature
434 * @ap: ATA channel to examine
435 * @device: Device to examine (starting at zero)
436 * @r_err: Value of error register on completion
438 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
439 * an ATA/ATAPI-defined set of values is placed in the ATA
440 * shadow registers, indicating the results of device detection
441 * and diagnostics.
443 * Select the ATA device, and read the values from the ATA shadow
444 * registers. Then parse according to the Error register value,
445 * and the spec-defined values examined by ata_dev_classify().
447 * LOCKING:
448 * caller.
450 * RETURNS:
451 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
454 static unsigned int
455 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
457 struct ata_taskfile tf;
458 unsigned int class;
459 u8 err;
461 ap->ops->dev_select(ap, device);
463 memset(&tf, 0, sizeof(tf));
465 ap->ops->tf_read(ap, &tf);
466 err = tf.feature;
467 if (r_err)
468 *r_err = err;
470 /* see if device passed diags */
471 if (err == 1)
472 /* do nothing */ ;
473 else if ((device == 0) && (err == 0x81))
474 /* do nothing */ ;
475 else
476 return ATA_DEV_NONE;
478 /* determine if device is ATA or ATAPI */
479 class = ata_dev_classify(&tf);
481 if (class == ATA_DEV_UNKNOWN)
482 return ATA_DEV_NONE;
483 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
484 return ATA_DEV_NONE;
485 return class;
489 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
490 * @id: IDENTIFY DEVICE results we will examine
491 * @s: string into which data is output
492 * @ofs: offset into identify device page
493 * @len: length of string to return. must be an even number.
495 * The strings in the IDENTIFY DEVICE page are broken up into
496 * 16-bit chunks. Run through the string, and output each
497 * 8-bit chunk linearly, regardless of platform.
499 * LOCKING:
500 * caller.
503 void ata_dev_id_string(const u16 *id, unsigned char *s,
504 unsigned int ofs, unsigned int len)
506 unsigned int c;
508 while (len > 0) {
509 c = id[ofs] >> 8;
510 *s = c;
511 s++;
513 c = id[ofs] & 0xff;
514 *s = c;
515 s++;
517 ofs++;
518 len -= 2;
523 * ata_dev_id_c_string - Convert IDENTIFY DEVICE page into C string
524 * @id: IDENTIFY DEVICE results we will examine
525 * @s: string into which data is output
526 * @ofs: offset into identify device page
527 * @len: length of string to return. must be an odd number.
529 * This function is identical to ata_dev_id_string except that it
530 * trims trailing spaces and terminates the resulting string with
531 * null. @len must be actual maximum length (even number) + 1.
533 * LOCKING:
534 * caller.
536 void ata_dev_id_c_string(const u16 *id, unsigned char *s,
537 unsigned int ofs, unsigned int len)
539 unsigned char *p;
541 WARN_ON(!(len & 1));
543 ata_dev_id_string(id, s, ofs, len - 1);
545 p = s + strnlen(s, len - 1);
546 while (p > s && p[-1] == ' ')
547 p--;
548 *p = '\0';
551 static u64 ata_id_n_sectors(const u16 *id)
553 if (ata_id_has_lba(id)) {
554 if (ata_id_has_lba48(id))
555 return ata_id_u64(id, 100);
556 else
557 return ata_id_u32(id, 60);
558 } else {
559 if (ata_id_current_chs_valid(id))
560 return ata_id_u32(id, 57);
561 else
562 return id[1] * id[3] * id[6];
567 * ata_noop_dev_select - Select device 0/1 on ATA bus
568 * @ap: ATA channel to manipulate
569 * @device: ATA device (numbered from zero) to select
571 * This function performs no actual function.
573 * May be used as the dev_select() entry in ata_port_operations.
575 * LOCKING:
576 * caller.
578 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
584 * ata_std_dev_select - Select device 0/1 on ATA bus
585 * @ap: ATA channel to manipulate
586 * @device: ATA device (numbered from zero) to select
588 * Use the method defined in the ATA specification to
589 * make either device 0, or device 1, active on the
590 * ATA channel. Works with both PIO and MMIO.
592 * May be used as the dev_select() entry in ata_port_operations.
594 * LOCKING:
595 * caller.
598 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
600 u8 tmp;
602 if (device == 0)
603 tmp = ATA_DEVICE_OBS;
604 else
605 tmp = ATA_DEVICE_OBS | ATA_DEV1;
607 if (ap->flags & ATA_FLAG_MMIO) {
608 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
609 } else {
610 outb(tmp, ap->ioaddr.device_addr);
612 ata_pause(ap); /* needed; also flushes, for mmio */
616 * ata_dev_select - Select device 0/1 on ATA bus
617 * @ap: ATA channel to manipulate
618 * @device: ATA device (numbered from zero) to select
619 * @wait: non-zero to wait for Status register BSY bit to clear
620 * @can_sleep: non-zero if context allows sleeping
622 * Use the method defined in the ATA specification to
623 * make either device 0, or device 1, active on the
624 * ATA channel.
626 * This is a high-level version of ata_std_dev_select(),
627 * which additionally provides the services of inserting
628 * the proper pauses and status polling, where needed.
630 * LOCKING:
631 * caller.
634 void ata_dev_select(struct ata_port *ap, unsigned int device,
635 unsigned int wait, unsigned int can_sleep)
637 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
638 ap->id, device, wait);
640 if (wait)
641 ata_wait_idle(ap);
643 ap->ops->dev_select(ap, device);
645 if (wait) {
646 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
647 msleep(150);
648 ata_wait_idle(ap);
653 * ata_dump_id - IDENTIFY DEVICE info debugging output
654 * @dev: Device whose IDENTIFY DEVICE page we will dump
656 * Dump selected 16-bit words from a detected device's
657 * IDENTIFY PAGE page.
659 * LOCKING:
660 * caller.
663 static inline void ata_dump_id(const struct ata_device *dev)
665 DPRINTK("49==0x%04x "
666 "53==0x%04x "
667 "63==0x%04x "
668 "64==0x%04x "
669 "75==0x%04x \n",
670 dev->id[49],
671 dev->id[53],
672 dev->id[63],
673 dev->id[64],
674 dev->id[75]);
675 DPRINTK("80==0x%04x "
676 "81==0x%04x "
677 "82==0x%04x "
678 "83==0x%04x "
679 "84==0x%04x \n",
680 dev->id[80],
681 dev->id[81],
682 dev->id[82],
683 dev->id[83],
684 dev->id[84]);
685 DPRINTK("88==0x%04x "
686 "93==0x%04x\n",
687 dev->id[88],
688 dev->id[93]);
692 * Compute the PIO modes available for this device. This is not as
693 * trivial as it seems if we must consider early devices correctly.
695 * FIXME: pre IDE drive timing (do we care ?).
698 static unsigned int ata_pio_modes(const struct ata_device *adev)
700 u16 modes;
702 /* Usual case. Word 53 indicates word 64 is valid */
703 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 1)) {
704 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
705 modes <<= 3;
706 modes |= 0x7;
707 return modes;
710 /* If word 64 isn't valid then Word 51 high byte holds the PIO timing
711 number for the maximum. Turn it into a mask and return it */
712 modes = (2 << ((adev->id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF)) - 1 ;
713 return modes;
714 /* But wait.. there's more. Design your standards by committee and
715 you too can get a free iordy field to process. However its the
716 speeds not the modes that are supported... Note drivers using the
717 timing API will get this right anyway */
720 static inline void
721 ata_queue_packet_task(struct ata_port *ap)
723 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
724 queue_work(ata_wq, &ap->packet_task);
727 static inline void
728 ata_queue_pio_task(struct ata_port *ap)
730 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
731 queue_work(ata_wq, &ap->pio_task);
734 static inline void
735 ata_queue_delayed_pio_task(struct ata_port *ap, unsigned long delay)
737 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
738 queue_delayed_work(ata_wq, &ap->pio_task, delay);
742 * ata_flush_pio_tasks - Flush pio_task and packet_task
743 * @ap: the target ata_port
745 * After this function completes, pio_task and packet_task are
746 * guranteed not to be running or scheduled.
748 * LOCKING:
749 * Kernel thread context (may sleep)
752 static void ata_flush_pio_tasks(struct ata_port *ap)
754 int tmp = 0;
755 unsigned long flags;
757 DPRINTK("ENTER\n");
759 spin_lock_irqsave(&ap->host_set->lock, flags);
760 ap->flags |= ATA_FLAG_FLUSH_PIO_TASK;
761 spin_unlock_irqrestore(&ap->host_set->lock, flags);
763 DPRINTK("flush #1\n");
764 flush_workqueue(ata_wq);
767 * At this point, if a task is running, it's guaranteed to see
768 * the FLUSH flag; thus, it will never queue pio tasks again.
769 * Cancel and flush.
771 tmp |= cancel_delayed_work(&ap->pio_task);
772 tmp |= cancel_delayed_work(&ap->packet_task);
773 if (!tmp) {
774 DPRINTK("flush #2\n");
775 flush_workqueue(ata_wq);
778 spin_lock_irqsave(&ap->host_set->lock, flags);
779 ap->flags &= ~ATA_FLAG_FLUSH_PIO_TASK;
780 spin_unlock_irqrestore(&ap->host_set->lock, flags);
782 DPRINTK("EXIT\n");
785 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
787 struct completion *waiting = qc->private_data;
789 qc->ap->ops->tf_read(qc->ap, &qc->tf);
790 complete(waiting);
794 * ata_exec_internal - execute libata internal command
795 * @ap: Port to which the command is sent
796 * @dev: Device to which the command is sent
797 * @tf: Taskfile registers for the command and the result
798 * @dma_dir: Data tranfer direction of the command
799 * @buf: Data buffer of the command
800 * @buflen: Length of data buffer
802 * Executes libata internal command with timeout. @tf contains
803 * command on entry and result on return. Timeout and error
804 * conditions are reported via return value. No recovery action
805 * is taken after a command times out. It's caller's duty to
806 * clean up after timeout.
808 * LOCKING:
809 * None. Should be called with kernel context, might sleep.
812 static unsigned
813 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
814 struct ata_taskfile *tf,
815 int dma_dir, void *buf, unsigned int buflen)
817 u8 command = tf->command;
818 struct ata_queued_cmd *qc;
819 DECLARE_COMPLETION(wait);
820 unsigned long flags;
821 unsigned int err_mask;
823 spin_lock_irqsave(&ap->host_set->lock, flags);
825 qc = ata_qc_new_init(ap, dev);
826 BUG_ON(qc == NULL);
828 qc->tf = *tf;
829 qc->dma_dir = dma_dir;
830 if (dma_dir != DMA_NONE) {
831 ata_sg_init_one(qc, buf, buflen);
832 qc->nsect = buflen / ATA_SECT_SIZE;
835 qc->private_data = &wait;
836 qc->complete_fn = ata_qc_complete_internal;
838 qc->err_mask = ata_qc_issue(qc);
839 if (qc->err_mask)
840 ata_qc_complete(qc);
842 spin_unlock_irqrestore(&ap->host_set->lock, flags);
844 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
845 spin_lock_irqsave(&ap->host_set->lock, flags);
847 /* We're racing with irq here. If we lose, the
848 * following test prevents us from completing the qc
849 * again. If completion irq occurs after here but
850 * before the caller cleans up, it will result in a
851 * spurious interrupt. We can live with that.
853 if (qc->flags & ATA_QCFLAG_ACTIVE) {
854 qc->err_mask = AC_ERR_TIMEOUT;
855 ata_qc_complete(qc);
856 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
857 ap->id, command);
860 spin_unlock_irqrestore(&ap->host_set->lock, flags);
863 *tf = qc->tf;
864 err_mask = qc->err_mask;
866 ata_qc_free(qc);
868 return err_mask;
872 * ata_pio_need_iordy - check if iordy needed
873 * @adev: ATA device
875 * Check if the current speed of the device requires IORDY. Used
876 * by various controllers for chip configuration.
879 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
881 int pio;
882 int speed = adev->pio_mode - XFER_PIO_0;
884 if (speed < 2)
885 return 0;
886 if (speed > 2)
887 return 1;
889 /* If we have no drive specific rule, then PIO 2 is non IORDY */
891 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
892 pio = adev->id[ATA_ID_EIDE_PIO];
893 /* Is the speed faster than the drive allows non IORDY ? */
894 if (pio) {
895 /* This is cycle times not frequency - watch the logic! */
896 if (pio > 240) /* PIO2 is 240nS per cycle */
897 return 1;
898 return 0;
901 return 0;
905 * ata_dev_identify - obtain IDENTIFY x DEVICE page
906 * @ap: port on which device we wish to probe resides
907 * @device: device bus address, starting at zero
909 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
910 * command, and read back the 512-byte device information page.
911 * The device information page is fed to us via the standard
912 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
913 * using standard PIO-IN paths)
915 * After reading the device information page, we use several
916 * bits of information from it to initialize data structures
917 * that will be used during the lifetime of the ata_device.
918 * Other data from the info page is used to disqualify certain
919 * older ATA devices we do not wish to support.
921 * LOCKING:
922 * Inherited from caller. Some functions called by this function
923 * obtain the host_set lock.
926 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
928 struct ata_device *dev = &ap->device[device];
929 unsigned int major_version;
930 unsigned long xfer_modes;
931 unsigned int using_edd;
932 struct ata_taskfile tf;
933 unsigned int err_mask;
934 int rc;
936 if (!ata_dev_present(dev)) {
937 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
938 ap->id, device);
939 return;
942 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
943 using_edd = 0;
944 else
945 using_edd = 1;
947 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
949 WARN_ON(dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ATAPI &&
950 dev->class != ATA_DEV_NONE);
952 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
954 retry:
955 ata_tf_init(ap, &tf, device);
957 if (dev->class == ATA_DEV_ATA) {
958 tf.command = ATA_CMD_ID_ATA;
959 DPRINTK("do ATA identify\n");
960 } else {
961 tf.command = ATA_CMD_ID_ATAPI;
962 DPRINTK("do ATAPI identify\n");
965 tf.protocol = ATA_PROT_PIO;
967 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
968 dev->id, sizeof(dev->id));
970 if (err_mask) {
971 if (err_mask & ~AC_ERR_DEV)
972 goto err_out;
975 * arg! EDD works for all test cases, but seems to return
976 * the ATA signature for some ATAPI devices. Until the
977 * reason for this is found and fixed, we fix up the mess
978 * here. If IDENTIFY DEVICE returns command aborted
979 * (as ATAPI devices do), then we issue an
980 * IDENTIFY PACKET DEVICE.
982 * ATA software reset (SRST, the default) does not appear
983 * to have this problem.
985 if ((using_edd) && (dev->class == ATA_DEV_ATA)) {
986 u8 err = tf.feature;
987 if (err & ATA_ABORTED) {
988 dev->class = ATA_DEV_ATAPI;
989 goto retry;
992 goto err_out;
995 swap_buf_le16(dev->id, ATA_ID_WORDS);
997 /* print device capabilities */
998 printk(KERN_DEBUG "ata%u: dev %u cfg "
999 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1000 ap->id, device, dev->id[49],
1001 dev->id[82], dev->id[83], dev->id[84],
1002 dev->id[85], dev->id[86], dev->id[87],
1003 dev->id[88]);
1006 * common ATA, ATAPI feature tests
1009 /* we require DMA support (bits 8 of word 49) */
1010 if (!ata_id_has_dma(dev->id)) {
1011 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1012 goto err_out_nosup;
1015 /* quick-n-dirty find max transfer mode; for printk only */
1016 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1017 if (!xfer_modes)
1018 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1019 if (!xfer_modes)
1020 xfer_modes = ata_pio_modes(dev);
1022 ata_dump_id(dev);
1024 /* ATA-specific feature tests */
1025 if (dev->class == ATA_DEV_ATA) {
1026 dev->n_sectors = ata_id_n_sectors(dev->id);
1028 if (!ata_id_is_ata(dev->id)) /* sanity check */
1029 goto err_out_nosup;
1031 /* get major version */
1032 major_version = ata_id_major_version(dev->id);
1035 * The exact sequence expected by certain pre-ATA4 drives is:
1036 * SRST RESET
1037 * IDENTIFY
1038 * INITIALIZE DEVICE PARAMETERS
1039 * anything else..
1040 * Some drives were very specific about that exact sequence.
1042 if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
1043 ata_dev_init_params(ap, dev);
1045 /* current CHS translation info (id[53-58]) might be
1046 * changed. reread the identify device info.
1048 ata_dev_reread_id(ap, dev);
1051 if (ata_id_has_lba(dev->id)) {
1052 dev->flags |= ATA_DFLAG_LBA;
1054 if (ata_id_has_lba48(dev->id))
1055 dev->flags |= ATA_DFLAG_LBA48;
1057 /* print device info to dmesg */
1058 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1059 ap->id, device,
1060 major_version,
1061 ata_mode_string(xfer_modes),
1062 (unsigned long long)dev->n_sectors,
1063 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1064 } else {
1065 /* CHS */
1067 /* Default translation */
1068 dev->cylinders = dev->id[1];
1069 dev->heads = dev->id[3];
1070 dev->sectors = dev->id[6];
1072 if (ata_id_current_chs_valid(dev->id)) {
1073 /* Current CHS translation is valid. */
1074 dev->cylinders = dev->id[54];
1075 dev->heads = dev->id[55];
1076 dev->sectors = dev->id[56];
1079 /* print device info to dmesg */
1080 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1081 ap->id, device,
1082 major_version,
1083 ata_mode_string(xfer_modes),
1084 (unsigned long long)dev->n_sectors,
1085 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1089 ap->host->max_cmd_len = 16;
1092 /* ATAPI-specific feature tests */
1093 else if (dev->class == ATA_DEV_ATAPI) {
1094 if (ata_id_is_ata(dev->id)) /* sanity check */
1095 goto err_out_nosup;
1097 rc = atapi_cdb_len(dev->id);
1098 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1099 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1100 goto err_out_nosup;
1102 ap->cdb_len = (unsigned int) rc;
1103 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1105 /* print device info to dmesg */
1106 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1107 ap->id, device,
1108 ata_mode_string(xfer_modes));
1111 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1112 return;
1114 err_out_nosup:
1115 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1116 ap->id, device);
1117 err_out:
1118 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1119 DPRINTK("EXIT, err\n");
1123 static inline u8 ata_dev_knobble(const struct ata_port *ap)
1125 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1129 * ata_dev_config - Run device specific handlers & check for SATA->PATA bridges
1130 * @ap: Bus
1131 * @i: Device
1133 * LOCKING:
1136 void ata_dev_config(struct ata_port *ap, unsigned int i)
1138 /* limit bridge transfers to udma5, 200 sectors */
1139 if (ata_dev_knobble(ap)) {
1140 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1141 ap->id, ap->device->devno);
1142 ap->udma_mask &= ATA_UDMA5;
1143 ap->host->max_sectors = ATA_MAX_SECTORS;
1144 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1145 ap->device[i].flags |= ATA_DFLAG_LOCK_SECTORS;
1148 if (ap->ops->dev_config)
1149 ap->ops->dev_config(ap, &ap->device[i]);
1153 * ata_bus_probe - Reset and probe ATA bus
1154 * @ap: Bus to probe
1156 * Master ATA bus probing function. Initiates a hardware-dependent
1157 * bus reset, then attempts to identify any devices found on
1158 * the bus.
1160 * LOCKING:
1161 * PCI/etc. bus probe sem.
1163 * RETURNS:
1164 * Zero on success, non-zero on error.
1167 static int ata_bus_probe(struct ata_port *ap)
1169 unsigned int i, found = 0;
1171 if (ap->ops->probe_reset) {
1172 unsigned int classes[ATA_MAX_DEVICES];
1173 int rc;
1175 ata_port_probe(ap);
1177 rc = ap->ops->probe_reset(ap, classes);
1178 if (rc == 0) {
1179 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1180 if (classes[i] == ATA_DEV_UNKNOWN)
1181 classes[i] = ATA_DEV_NONE;
1182 ap->device[i].class = classes[i];
1184 } else {
1185 printk(KERN_ERR "ata%u: probe reset failed, "
1186 "disabling port\n", ap->id);
1187 ata_port_disable(ap);
1189 } else
1190 ap->ops->phy_reset(ap);
1192 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1193 goto err_out;
1195 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1196 ata_dev_identify(ap, i);
1197 if (ata_dev_present(&ap->device[i])) {
1198 found = 1;
1199 ata_dev_config(ap,i);
1203 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1204 goto err_out_disable;
1206 ata_set_mode(ap);
1207 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1208 goto err_out_disable;
1210 return 0;
1212 err_out_disable:
1213 ap->ops->port_disable(ap);
1214 err_out:
1215 return -1;
1219 * ata_port_probe - Mark port as enabled
1220 * @ap: Port for which we indicate enablement
1222 * Modify @ap data structure such that the system
1223 * thinks that the entire port is enabled.
1225 * LOCKING: host_set lock, or some other form of
1226 * serialization.
1229 void ata_port_probe(struct ata_port *ap)
1231 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1235 * sata_print_link_status - Print SATA link status
1236 * @ap: SATA port to printk link status about
1238 * This function prints link speed and status of a SATA link.
1240 * LOCKING:
1241 * None.
1243 static void sata_print_link_status(struct ata_port *ap)
1245 u32 sstatus, tmp;
1246 const char *speed;
1248 if (!ap->ops->scr_read)
1249 return;
1251 sstatus = scr_read(ap, SCR_STATUS);
1253 if (sata_dev_present(ap)) {
1254 tmp = (sstatus >> 4) & 0xf;
1255 if (tmp & (1 << 0))
1256 speed = "1.5";
1257 else if (tmp & (1 << 1))
1258 speed = "3.0";
1259 else
1260 speed = "<unknown>";
1261 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1262 ap->id, speed, sstatus);
1263 } else {
1264 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1265 ap->id, sstatus);
1270 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1271 * @ap: SATA port associated with target SATA PHY.
1273 * This function issues commands to standard SATA Sxxx
1274 * PHY registers, to wake up the phy (and device), and
1275 * clear any reset condition.
1277 * LOCKING:
1278 * PCI/etc. bus probe sem.
1281 void __sata_phy_reset(struct ata_port *ap)
1283 u32 sstatus;
1284 unsigned long timeout = jiffies + (HZ * 5);
1286 if (ap->flags & ATA_FLAG_SATA_RESET) {
1287 /* issue phy wake/reset */
1288 scr_write_flush(ap, SCR_CONTROL, 0x301);
1289 /* Couldn't find anything in SATA I/II specs, but
1290 * AHCI-1.1 10.4.2 says at least 1 ms. */
1291 mdelay(1);
1293 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1295 /* wait for phy to become ready, if necessary */
1296 do {
1297 msleep(200);
1298 sstatus = scr_read(ap, SCR_STATUS);
1299 if ((sstatus & 0xf) != 1)
1300 break;
1301 } while (time_before(jiffies, timeout));
1303 /* print link status */
1304 sata_print_link_status(ap);
1306 /* TODO: phy layer with polling, timeouts, etc. */
1307 if (sata_dev_present(ap))
1308 ata_port_probe(ap);
1309 else
1310 ata_port_disable(ap);
1312 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1313 return;
1315 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1316 ata_port_disable(ap);
1317 return;
1320 ap->cbl = ATA_CBL_SATA;
1324 * sata_phy_reset - Reset SATA bus.
1325 * @ap: SATA port associated with target SATA PHY.
1327 * This function resets the SATA bus, and then probes
1328 * the bus for devices.
1330 * LOCKING:
1331 * PCI/etc. bus probe sem.
1334 void sata_phy_reset(struct ata_port *ap)
1336 __sata_phy_reset(ap);
1337 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1338 return;
1339 ata_bus_reset(ap);
1343 * ata_port_disable - Disable port.
1344 * @ap: Port to be disabled.
1346 * Modify @ap data structure such that the system
1347 * thinks that the entire port is disabled, and should
1348 * never attempt to probe or communicate with devices
1349 * on this port.
1351 * LOCKING: host_set lock, or some other form of
1352 * serialization.
1355 void ata_port_disable(struct ata_port *ap)
1357 ap->device[0].class = ATA_DEV_NONE;
1358 ap->device[1].class = ATA_DEV_NONE;
1359 ap->flags |= ATA_FLAG_PORT_DISABLED;
1363 * This mode timing computation functionality is ported over from
1364 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1367 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1368 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1369 * for PIO 5, which is a nonstandard extension and UDMA6, which
1370 * is currently supported only by Maxtor drives.
1373 static const struct ata_timing ata_timing[] = {
1375 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1376 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1377 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1378 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1380 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1381 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1382 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1384 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1386 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1387 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1388 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1390 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1391 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1392 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1394 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1395 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1396 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1398 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1399 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1400 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1402 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1404 { 0xFF }
1407 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1408 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1410 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1412 q->setup = EZ(t->setup * 1000, T);
1413 q->act8b = EZ(t->act8b * 1000, T);
1414 q->rec8b = EZ(t->rec8b * 1000, T);
1415 q->cyc8b = EZ(t->cyc8b * 1000, T);
1416 q->active = EZ(t->active * 1000, T);
1417 q->recover = EZ(t->recover * 1000, T);
1418 q->cycle = EZ(t->cycle * 1000, T);
1419 q->udma = EZ(t->udma * 1000, UT);
1422 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1423 struct ata_timing *m, unsigned int what)
1425 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1426 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1427 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1428 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1429 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1430 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1431 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1432 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1435 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1437 const struct ata_timing *t;
1439 for (t = ata_timing; t->mode != speed; t++)
1440 if (t->mode == 0xFF)
1441 return NULL;
1442 return t;
1445 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1446 struct ata_timing *t, int T, int UT)
1448 const struct ata_timing *s;
1449 struct ata_timing p;
1452 * Find the mode.
1455 if (!(s = ata_timing_find_mode(speed)))
1456 return -EINVAL;
1458 memcpy(t, s, sizeof(*s));
1461 * If the drive is an EIDE drive, it can tell us it needs extended
1462 * PIO/MW_DMA cycle timing.
1465 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1466 memset(&p, 0, sizeof(p));
1467 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1468 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1469 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1470 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1471 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1473 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1477 * Convert the timing to bus clock counts.
1480 ata_timing_quantize(t, t, T, UT);
1483 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1484 * S.M.A.R.T * and some other commands. We have to ensure that the
1485 * DMA cycle timing is slower/equal than the fastest PIO timing.
1488 if (speed > XFER_PIO_4) {
1489 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1490 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1494 * Lengthen active & recovery time so that cycle time is correct.
1497 if (t->act8b + t->rec8b < t->cyc8b) {
1498 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1499 t->rec8b = t->cyc8b - t->act8b;
1502 if (t->active + t->recover < t->cycle) {
1503 t->active += (t->cycle - (t->active + t->recover)) / 2;
1504 t->recover = t->cycle - t->active;
1507 return 0;
1510 static const struct {
1511 unsigned int shift;
1512 u8 base;
1513 } xfer_mode_classes[] = {
1514 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1515 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1516 { ATA_SHIFT_PIO, XFER_PIO_0 },
1519 static u8 base_from_shift(unsigned int shift)
1521 int i;
1523 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1524 if (xfer_mode_classes[i].shift == shift)
1525 return xfer_mode_classes[i].base;
1527 return 0xff;
1530 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1532 int ofs, idx;
1533 u8 base;
1535 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1536 return;
1538 if (dev->xfer_shift == ATA_SHIFT_PIO)
1539 dev->flags |= ATA_DFLAG_PIO;
1541 ata_dev_set_xfermode(ap, dev);
1543 base = base_from_shift(dev->xfer_shift);
1544 ofs = dev->xfer_mode - base;
1545 idx = ofs + dev->xfer_shift;
1546 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1548 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1549 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1551 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1552 ap->id, dev->devno, xfer_mode_str[idx]);
1555 static int ata_host_set_pio(struct ata_port *ap)
1557 unsigned int mask;
1558 int x, i;
1559 u8 base, xfer_mode;
1561 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1562 x = fgb(mask);
1563 if (x < 0) {
1564 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1565 return -1;
1568 base = base_from_shift(ATA_SHIFT_PIO);
1569 xfer_mode = base + x;
1571 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1572 (int)base, (int)xfer_mode, mask, x);
1574 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1575 struct ata_device *dev = &ap->device[i];
1576 if (ata_dev_present(dev)) {
1577 dev->pio_mode = xfer_mode;
1578 dev->xfer_mode = xfer_mode;
1579 dev->xfer_shift = ATA_SHIFT_PIO;
1580 if (ap->ops->set_piomode)
1581 ap->ops->set_piomode(ap, dev);
1585 return 0;
1588 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1589 unsigned int xfer_shift)
1591 int i;
1593 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1594 struct ata_device *dev = &ap->device[i];
1595 if (ata_dev_present(dev)) {
1596 dev->dma_mode = xfer_mode;
1597 dev->xfer_mode = xfer_mode;
1598 dev->xfer_shift = xfer_shift;
1599 if (ap->ops->set_dmamode)
1600 ap->ops->set_dmamode(ap, dev);
1606 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1607 * @ap: port on which timings will be programmed
1609 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1611 * LOCKING:
1612 * PCI/etc. bus probe sem.
1614 static void ata_set_mode(struct ata_port *ap)
1616 unsigned int xfer_shift;
1617 u8 xfer_mode;
1618 int rc;
1620 /* step 1: always set host PIO timings */
1621 rc = ata_host_set_pio(ap);
1622 if (rc)
1623 goto err_out;
1625 /* step 2: choose the best data xfer mode */
1626 xfer_mode = xfer_shift = 0;
1627 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1628 if (rc)
1629 goto err_out;
1631 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1632 if (xfer_shift != ATA_SHIFT_PIO)
1633 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1635 /* step 4: update devices' xfer mode */
1636 ata_dev_set_mode(ap, &ap->device[0]);
1637 ata_dev_set_mode(ap, &ap->device[1]);
1639 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1640 return;
1642 if (ap->ops->post_set_mode)
1643 ap->ops->post_set_mode(ap);
1645 return;
1647 err_out:
1648 ata_port_disable(ap);
1652 * ata_tf_to_host - issue ATA taskfile to host controller
1653 * @ap: port to which command is being issued
1654 * @tf: ATA taskfile register set
1656 * Issues ATA taskfile register set to ATA host controller,
1657 * with proper synchronization with interrupt handler and
1658 * other threads.
1660 * LOCKING:
1661 * spin_lock_irqsave(host_set lock)
1664 static inline void ata_tf_to_host(struct ata_port *ap,
1665 const struct ata_taskfile *tf)
1667 ap->ops->tf_load(ap, tf);
1668 ap->ops->exec_command(ap, tf);
1672 * ata_busy_sleep - sleep until BSY clears, or timeout
1673 * @ap: port containing status register to be polled
1674 * @tmout_pat: impatience timeout
1675 * @tmout: overall timeout
1677 * Sleep until ATA Status register bit BSY clears,
1678 * or a timeout occurs.
1680 * LOCKING: None.
1683 unsigned int ata_busy_sleep (struct ata_port *ap,
1684 unsigned long tmout_pat, unsigned long tmout)
1686 unsigned long timer_start, timeout;
1687 u8 status;
1689 status = ata_busy_wait(ap, ATA_BUSY, 300);
1690 timer_start = jiffies;
1691 timeout = timer_start + tmout_pat;
1692 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1693 msleep(50);
1694 status = ata_busy_wait(ap, ATA_BUSY, 3);
1697 if (status & ATA_BUSY)
1698 printk(KERN_WARNING "ata%u is slow to respond, "
1699 "please be patient\n", ap->id);
1701 timeout = timer_start + tmout;
1702 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1703 msleep(50);
1704 status = ata_chk_status(ap);
1707 if (status & ATA_BUSY) {
1708 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1709 ap->id, tmout / HZ);
1710 return 1;
1713 return 0;
1716 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1718 struct ata_ioports *ioaddr = &ap->ioaddr;
1719 unsigned int dev0 = devmask & (1 << 0);
1720 unsigned int dev1 = devmask & (1 << 1);
1721 unsigned long timeout;
1723 /* if device 0 was found in ata_devchk, wait for its
1724 * BSY bit to clear
1726 if (dev0)
1727 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1729 /* if device 1 was found in ata_devchk, wait for
1730 * register access, then wait for BSY to clear
1732 timeout = jiffies + ATA_TMOUT_BOOT;
1733 while (dev1) {
1734 u8 nsect, lbal;
1736 ap->ops->dev_select(ap, 1);
1737 if (ap->flags & ATA_FLAG_MMIO) {
1738 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1739 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1740 } else {
1741 nsect = inb(ioaddr->nsect_addr);
1742 lbal = inb(ioaddr->lbal_addr);
1744 if ((nsect == 1) && (lbal == 1))
1745 break;
1746 if (time_after(jiffies, timeout)) {
1747 dev1 = 0;
1748 break;
1750 msleep(50); /* give drive a breather */
1752 if (dev1)
1753 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1755 /* is all this really necessary? */
1756 ap->ops->dev_select(ap, 0);
1757 if (dev1)
1758 ap->ops->dev_select(ap, 1);
1759 if (dev0)
1760 ap->ops->dev_select(ap, 0);
1764 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1765 * @ap: Port to reset and probe
1767 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1768 * probe the bus. Not often used these days.
1770 * LOCKING:
1771 * PCI/etc. bus probe sem.
1772 * Obtains host_set lock.
1776 static unsigned int ata_bus_edd(struct ata_port *ap)
1778 struct ata_taskfile tf;
1779 unsigned long flags;
1781 /* set up execute-device-diag (bus reset) taskfile */
1782 /* also, take interrupts to a known state (disabled) */
1783 DPRINTK("execute-device-diag\n");
1784 ata_tf_init(ap, &tf, 0);
1785 tf.ctl |= ATA_NIEN;
1786 tf.command = ATA_CMD_EDD;
1787 tf.protocol = ATA_PROT_NODATA;
1789 /* do bus reset */
1790 spin_lock_irqsave(&ap->host_set->lock, flags);
1791 ata_tf_to_host(ap, &tf);
1792 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1794 /* spec says at least 2ms. but who knows with those
1795 * crazy ATAPI devices...
1797 msleep(150);
1799 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1802 static unsigned int ata_bus_softreset(struct ata_port *ap,
1803 unsigned int devmask)
1805 struct ata_ioports *ioaddr = &ap->ioaddr;
1807 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1809 /* software reset. causes dev0 to be selected */
1810 if (ap->flags & ATA_FLAG_MMIO) {
1811 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1812 udelay(20); /* FIXME: flush */
1813 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1814 udelay(20); /* FIXME: flush */
1815 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1816 } else {
1817 outb(ap->ctl, ioaddr->ctl_addr);
1818 udelay(10);
1819 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1820 udelay(10);
1821 outb(ap->ctl, ioaddr->ctl_addr);
1824 /* spec mandates ">= 2ms" before checking status.
1825 * We wait 150ms, because that was the magic delay used for
1826 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1827 * between when the ATA command register is written, and then
1828 * status is checked. Because waiting for "a while" before
1829 * checking status is fine, post SRST, we perform this magic
1830 * delay here as well.
1832 msleep(150);
1834 ata_bus_post_reset(ap, devmask);
1836 return 0;
1840 * ata_bus_reset - reset host port and associated ATA channel
1841 * @ap: port to reset
1843 * This is typically the first time we actually start issuing
1844 * commands to the ATA channel. We wait for BSY to clear, then
1845 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1846 * result. Determine what devices, if any, are on the channel
1847 * by looking at the device 0/1 error register. Look at the signature
1848 * stored in each device's taskfile registers, to determine if
1849 * the device is ATA or ATAPI.
1851 * LOCKING:
1852 * PCI/etc. bus probe sem.
1853 * Obtains host_set lock.
1855 * SIDE EFFECTS:
1856 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1859 void ata_bus_reset(struct ata_port *ap)
1861 struct ata_ioports *ioaddr = &ap->ioaddr;
1862 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1863 u8 err;
1864 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
1866 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
1868 /* determine if device 0/1 are present */
1869 if (ap->flags & ATA_FLAG_SATA_RESET)
1870 dev0 = 1;
1871 else {
1872 dev0 = ata_devchk(ap, 0);
1873 if (slave_possible)
1874 dev1 = ata_devchk(ap, 1);
1877 if (dev0)
1878 devmask |= (1 << 0);
1879 if (dev1)
1880 devmask |= (1 << 1);
1882 /* select device 0 again */
1883 ap->ops->dev_select(ap, 0);
1885 /* issue bus reset */
1886 if (ap->flags & ATA_FLAG_SRST)
1887 rc = ata_bus_softreset(ap, devmask);
1888 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
1889 /* set up device control */
1890 if (ap->flags & ATA_FLAG_MMIO)
1891 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1892 else
1893 outb(ap->ctl, ioaddr->ctl_addr);
1894 rc = ata_bus_edd(ap);
1897 if (rc)
1898 goto err_out;
1901 * determine by signature whether we have ATA or ATAPI devices
1903 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1904 if ((slave_possible) && (err != 0x81))
1905 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1907 /* re-enable interrupts */
1908 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
1909 ata_irq_on(ap);
1911 /* is double-select really necessary? */
1912 if (ap->device[1].class != ATA_DEV_NONE)
1913 ap->ops->dev_select(ap, 1);
1914 if (ap->device[0].class != ATA_DEV_NONE)
1915 ap->ops->dev_select(ap, 0);
1917 /* if no devices were detected, disable this port */
1918 if ((ap->device[0].class == ATA_DEV_NONE) &&
1919 (ap->device[1].class == ATA_DEV_NONE))
1920 goto err_out;
1922 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
1923 /* set up device control for ATA_FLAG_SATA_RESET */
1924 if (ap->flags & ATA_FLAG_MMIO)
1925 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1926 else
1927 outb(ap->ctl, ioaddr->ctl_addr);
1930 DPRINTK("EXIT\n");
1931 return;
1933 err_out:
1934 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
1935 ap->ops->port_disable(ap);
1937 DPRINTK("EXIT\n");
1940 static int sata_phy_resume(struct ata_port *ap)
1942 unsigned long timeout = jiffies + (HZ * 5);
1943 u32 sstatus;
1945 scr_write_flush(ap, SCR_CONTROL, 0x300);
1947 /* Wait for phy to become ready, if necessary. */
1948 do {
1949 msleep(200);
1950 sstatus = scr_read(ap, SCR_STATUS);
1951 if ((sstatus & 0xf) != 1)
1952 return 0;
1953 } while (time_before(jiffies, timeout));
1955 return -1;
1959 * ata_std_probeinit - initialize probing
1960 * @ap: port to be probed
1962 * @ap is about to be probed. Initialize it. This function is
1963 * to be used as standard callback for ata_drive_probe_reset().
1965 * NOTE!!! Do not use this function as probeinit if a low level
1966 * driver implements only hardreset. Just pass NULL as probeinit
1967 * in that case. Using this function is probably okay but doing
1968 * so makes reset sequence different from the original
1969 * ->phy_reset implementation and Jeff nervous. :-P
1971 extern void ata_std_probeinit(struct ata_port *ap)
1973 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read) {
1974 sata_phy_resume(ap);
1975 if (sata_dev_present(ap))
1976 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1981 * ata_std_softreset - reset host port via ATA SRST
1982 * @ap: port to reset
1983 * @verbose: fail verbosely
1984 * @classes: resulting classes of attached devices
1986 * Reset host port using ATA SRST. This function is to be used
1987 * as standard callback for ata_drive_*_reset() functions.
1989 * LOCKING:
1990 * Kernel thread context (may sleep)
1992 * RETURNS:
1993 * 0 on success, -errno otherwise.
1995 int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
1997 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1998 unsigned int devmask = 0, err_mask;
1999 u8 err;
2001 DPRINTK("ENTER\n");
2003 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2004 classes[0] = ATA_DEV_NONE;
2005 goto out;
2008 /* determine if device 0/1 are present */
2009 if (ata_devchk(ap, 0))
2010 devmask |= (1 << 0);
2011 if (slave_possible && ata_devchk(ap, 1))
2012 devmask |= (1 << 1);
2014 /* select device 0 again */
2015 ap->ops->dev_select(ap, 0);
2017 /* issue bus reset */
2018 DPRINTK("about to softreset, devmask=%x\n", devmask);
2019 err_mask = ata_bus_softreset(ap, devmask);
2020 if (err_mask) {
2021 if (verbose)
2022 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2023 ap->id, err_mask);
2024 else
2025 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2026 err_mask);
2027 return -EIO;
2030 /* determine by signature whether we have ATA or ATAPI devices */
2031 classes[0] = ata_dev_try_classify(ap, 0, &err);
2032 if (slave_possible && err != 0x81)
2033 classes[1] = ata_dev_try_classify(ap, 1, &err);
2035 out:
2036 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2037 return 0;
2041 * sata_std_hardreset - reset host port via SATA phy reset
2042 * @ap: port to reset
2043 * @verbose: fail verbosely
2044 * @class: resulting class of attached device
2046 * SATA phy-reset host port using DET bits of SControl register.
2047 * This function is to be used as standard callback for
2048 * ata_drive_*_reset().
2050 * LOCKING:
2051 * Kernel thread context (may sleep)
2053 * RETURNS:
2054 * 0 on success, -errno otherwise.
2056 int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2058 DPRINTK("ENTER\n");
2060 /* Issue phy wake/reset */
2061 scr_write_flush(ap, SCR_CONTROL, 0x301);
2064 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2065 * 10.4.2 says at least 1 ms.
2067 msleep(1);
2069 /* Bring phy back */
2070 sata_phy_resume(ap);
2072 /* TODO: phy layer with polling, timeouts, etc. */
2073 if (!sata_dev_present(ap)) {
2074 *class = ATA_DEV_NONE;
2075 DPRINTK("EXIT, link offline\n");
2076 return 0;
2079 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2080 if (verbose)
2081 printk(KERN_ERR "ata%u: COMRESET failed "
2082 "(device not ready)\n", ap->id);
2083 else
2084 DPRINTK("EXIT, device not ready\n");
2085 return -EIO;
2088 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2090 *class = ata_dev_try_classify(ap, 0, NULL);
2092 DPRINTK("EXIT, class=%u\n", *class);
2093 return 0;
2097 * ata_std_postreset - standard postreset callback
2098 * @ap: the target ata_port
2099 * @classes: classes of attached devices
2101 * This function is invoked after a successful reset. Note that
2102 * the device might have been reset more than once using
2103 * different reset methods before postreset is invoked.
2104 * postreset is also reponsible for setting cable type.
2106 * This function is to be used as standard callback for
2107 * ata_drive_*_reset().
2109 * LOCKING:
2110 * Kernel thread context (may sleep)
2112 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2114 DPRINTK("ENTER\n");
2116 /* set cable type */
2117 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2118 ap->cbl = ATA_CBL_SATA;
2120 /* print link status */
2121 if (ap->cbl == ATA_CBL_SATA)
2122 sata_print_link_status(ap);
2124 /* re-enable interrupts */
2125 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2126 ata_irq_on(ap);
2128 /* is double-select really necessary? */
2129 if (classes[0] != ATA_DEV_NONE)
2130 ap->ops->dev_select(ap, 1);
2131 if (classes[1] != ATA_DEV_NONE)
2132 ap->ops->dev_select(ap, 0);
2134 /* bail out if no device is present */
2135 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2136 DPRINTK("EXIT, no device\n");
2137 return;
2140 /* set up device control */
2141 if (ap->ioaddr.ctl_addr) {
2142 if (ap->flags & ATA_FLAG_MMIO)
2143 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2144 else
2145 outb(ap->ctl, ap->ioaddr.ctl_addr);
2148 DPRINTK("EXIT\n");
2152 * ata_std_probe_reset - standard probe reset method
2153 * @ap: prot to perform probe-reset
2154 * @classes: resulting classes of attached devices
2156 * The stock off-the-shelf ->probe_reset method.
2158 * LOCKING:
2159 * Kernel thread context (may sleep)
2161 * RETURNS:
2162 * 0 on success, -errno otherwise.
2164 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2166 ata_reset_fn_t hardreset;
2168 hardreset = NULL;
2169 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2170 hardreset = sata_std_hardreset;
2172 return ata_drive_probe_reset(ap, ata_std_probeinit,
2173 ata_std_softreset, hardreset,
2174 ata_std_postreset, classes);
2177 static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2178 ata_postreset_fn_t postreset,
2179 unsigned int *classes)
2181 int i, rc;
2183 for (i = 0; i < ATA_MAX_DEVICES; i++)
2184 classes[i] = ATA_DEV_UNKNOWN;
2186 rc = reset(ap, 0, classes);
2187 if (rc)
2188 return rc;
2190 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2191 * is complete and convert all ATA_DEV_UNKNOWN to
2192 * ATA_DEV_NONE.
2194 for (i = 0; i < ATA_MAX_DEVICES; i++)
2195 if (classes[i] != ATA_DEV_UNKNOWN)
2196 break;
2198 if (i < ATA_MAX_DEVICES)
2199 for (i = 0; i < ATA_MAX_DEVICES; i++)
2200 if (classes[i] == ATA_DEV_UNKNOWN)
2201 classes[i] = ATA_DEV_NONE;
2203 if (postreset)
2204 postreset(ap, classes);
2206 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2210 * ata_drive_probe_reset - Perform probe reset with given methods
2211 * @ap: port to reset
2212 * @probeinit: probeinit method (can be NULL)
2213 * @softreset: softreset method (can be NULL)
2214 * @hardreset: hardreset method (can be NULL)
2215 * @postreset: postreset method (can be NULL)
2216 * @classes: resulting classes of attached devices
2218 * Reset the specified port and classify attached devices using
2219 * given methods. This function prefers softreset but tries all
2220 * possible reset sequences to reset and classify devices. This
2221 * function is intended to be used for constructing ->probe_reset
2222 * callback by low level drivers.
2224 * Reset methods should follow the following rules.
2226 * - Return 0 on sucess, -errno on failure.
2227 * - If classification is supported, fill classes[] with
2228 * recognized class codes.
2229 * - If classification is not supported, leave classes[] alone.
2230 * - If verbose is non-zero, print error message on failure;
2231 * otherwise, shut up.
2233 * LOCKING:
2234 * Kernel thread context (may sleep)
2236 * RETURNS:
2237 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2238 * if classification fails, and any error code from reset
2239 * methods.
2241 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2242 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2243 ata_postreset_fn_t postreset, unsigned int *classes)
2245 int rc = -EINVAL;
2247 if (probeinit)
2248 probeinit(ap);
2250 if (softreset) {
2251 rc = do_probe_reset(ap, softreset, postreset, classes);
2252 if (rc == 0)
2253 return 0;
2256 if (!hardreset)
2257 return rc;
2259 rc = do_probe_reset(ap, hardreset, postreset, classes);
2260 if (rc == 0 || rc != -ENODEV)
2261 return rc;
2263 if (softreset)
2264 rc = do_probe_reset(ap, softreset, postreset, classes);
2266 return rc;
2269 static void ata_pr_blacklisted(const struct ata_port *ap,
2270 const struct ata_device *dev)
2272 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2273 ap->id, dev->devno);
2276 static const char * const ata_dma_blacklist [] = {
2277 "WDC AC11000H",
2278 "WDC AC22100H",
2279 "WDC AC32500H",
2280 "WDC AC33100H",
2281 "WDC AC31600H",
2282 "WDC AC32100H",
2283 "WDC AC23200L",
2284 "Compaq CRD-8241B",
2285 "CRD-8400B",
2286 "CRD-8480B",
2287 "CRD-8482B",
2288 "CRD-84",
2289 "SanDisk SDP3B",
2290 "SanDisk SDP3B-64",
2291 "SANYO CD-ROM CRD",
2292 "HITACHI CDR-8",
2293 "HITACHI CDR-8335",
2294 "HITACHI CDR-8435",
2295 "Toshiba CD-ROM XM-6202B",
2296 "TOSHIBA CD-ROM XM-1702BC",
2297 "CD-532E-A",
2298 "E-IDE CD-ROM CR-840",
2299 "CD-ROM Drive/F5A",
2300 "WPI CDD-820",
2301 "SAMSUNG CD-ROM SC-148C",
2302 "SAMSUNG CD-ROM SC",
2303 "SanDisk SDP3B-64",
2304 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2305 "_NEC DV5800A",
2308 static int ata_dma_blacklisted(const struct ata_device *dev)
2310 unsigned char model_num[41];
2311 int i;
2313 ata_dev_id_c_string(dev->id, model_num, ATA_ID_PROD_OFS,
2314 sizeof(model_num));
2316 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2317 if (!strcmp(ata_dma_blacklist[i], model_num))
2318 return 1;
2320 return 0;
2323 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
2325 const struct ata_device *master, *slave;
2326 unsigned int mask;
2328 master = &ap->device[0];
2329 slave = &ap->device[1];
2331 WARN_ON(!ata_dev_present(master) && !ata_dev_present(slave));
2333 if (shift == ATA_SHIFT_UDMA) {
2334 mask = ap->udma_mask;
2335 if (ata_dev_present(master)) {
2336 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
2337 if (ata_dma_blacklisted(master)) {
2338 mask = 0;
2339 ata_pr_blacklisted(ap, master);
2342 if (ata_dev_present(slave)) {
2343 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
2344 if (ata_dma_blacklisted(slave)) {
2345 mask = 0;
2346 ata_pr_blacklisted(ap, slave);
2350 else if (shift == ATA_SHIFT_MWDMA) {
2351 mask = ap->mwdma_mask;
2352 if (ata_dev_present(master)) {
2353 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2354 if (ata_dma_blacklisted(master)) {
2355 mask = 0;
2356 ata_pr_blacklisted(ap, master);
2359 if (ata_dev_present(slave)) {
2360 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2361 if (ata_dma_blacklisted(slave)) {
2362 mask = 0;
2363 ata_pr_blacklisted(ap, slave);
2367 else if (shift == ATA_SHIFT_PIO) {
2368 mask = ap->pio_mask;
2369 if (ata_dev_present(master)) {
2370 /* spec doesn't return explicit support for
2371 * PIO0-2, so we fake it
2373 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2374 tmp_mode <<= 3;
2375 tmp_mode |= 0x7;
2376 mask &= tmp_mode;
2378 if (ata_dev_present(slave)) {
2379 /* spec doesn't return explicit support for
2380 * PIO0-2, so we fake it
2382 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2383 tmp_mode <<= 3;
2384 tmp_mode |= 0x7;
2385 mask &= tmp_mode;
2388 else {
2389 mask = 0xffffffff; /* shut up compiler warning */
2390 BUG();
2393 return mask;
2396 /* find greatest bit */
2397 static int fgb(u32 bitmap)
2399 unsigned int i;
2400 int x = -1;
2402 for (i = 0; i < 32; i++)
2403 if (bitmap & (1 << i))
2404 x = i;
2406 return x;
2410 * ata_choose_xfer_mode - attempt to find best transfer mode
2411 * @ap: Port for which an xfer mode will be selected
2412 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2413 * @xfer_shift_out: (output) bit shift that selects this mode
2415 * Based on host and device capabilities, determine the
2416 * maximum transfer mode that is amenable to all.
2418 * LOCKING:
2419 * PCI/etc. bus probe sem.
2421 * RETURNS:
2422 * Zero on success, negative on error.
2425 static int ata_choose_xfer_mode(const struct ata_port *ap,
2426 u8 *xfer_mode_out,
2427 unsigned int *xfer_shift_out)
2429 unsigned int mask, shift;
2430 int x, i;
2432 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2433 shift = xfer_mode_classes[i].shift;
2434 mask = ata_get_mode_mask(ap, shift);
2436 x = fgb(mask);
2437 if (x >= 0) {
2438 *xfer_mode_out = xfer_mode_classes[i].base + x;
2439 *xfer_shift_out = shift;
2440 return 0;
2444 return -1;
2448 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2449 * @ap: Port associated with device @dev
2450 * @dev: Device to which command will be sent
2452 * Issue SET FEATURES - XFER MODE command to device @dev
2453 * on port @ap.
2455 * LOCKING:
2456 * PCI/etc. bus probe sem.
2459 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2461 struct ata_taskfile tf;
2463 /* set up set-features taskfile */
2464 DPRINTK("set features - xfer mode\n");
2466 ata_tf_init(ap, &tf, dev->devno);
2467 tf.command = ATA_CMD_SET_FEATURES;
2468 tf.feature = SETFEATURES_XFER;
2469 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2470 tf.protocol = ATA_PROT_NODATA;
2471 tf.nsect = dev->xfer_mode;
2473 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2474 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2475 ap->id);
2476 ata_port_disable(ap);
2479 DPRINTK("EXIT\n");
2483 * ata_dev_reread_id - Reread the device identify device info
2484 * @ap: port where the device is
2485 * @dev: device to reread the identify device info
2487 * LOCKING:
2490 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
2492 struct ata_taskfile tf;
2494 ata_tf_init(ap, &tf, dev->devno);
2496 if (dev->class == ATA_DEV_ATA) {
2497 tf.command = ATA_CMD_ID_ATA;
2498 DPRINTK("do ATA identify\n");
2499 } else {
2500 tf.command = ATA_CMD_ID_ATAPI;
2501 DPRINTK("do ATAPI identify\n");
2504 tf.flags |= ATA_TFLAG_DEVICE;
2505 tf.protocol = ATA_PROT_PIO;
2507 if (ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
2508 dev->id, sizeof(dev->id)))
2509 goto err_out;
2511 swap_buf_le16(dev->id, ATA_ID_WORDS);
2513 ata_dump_id(dev);
2515 DPRINTK("EXIT\n");
2517 return;
2518 err_out:
2519 printk(KERN_ERR "ata%u: failed to reread ID, disabled\n", ap->id);
2520 ata_port_disable(ap);
2524 * ata_dev_init_params - Issue INIT DEV PARAMS command
2525 * @ap: Port associated with device @dev
2526 * @dev: Device to which command will be sent
2528 * LOCKING:
2531 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
2533 struct ata_taskfile tf;
2534 u16 sectors = dev->id[6];
2535 u16 heads = dev->id[3];
2537 /* Number of sectors per track 1-255. Number of heads 1-16 */
2538 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2539 return;
2541 /* set up init dev params taskfile */
2542 DPRINTK("init dev params \n");
2544 ata_tf_init(ap, &tf, dev->devno);
2545 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2546 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2547 tf.protocol = ATA_PROT_NODATA;
2548 tf.nsect = sectors;
2549 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2551 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2552 printk(KERN_ERR "ata%u: failed to init parameters, disabled\n",
2553 ap->id);
2554 ata_port_disable(ap);
2557 DPRINTK("EXIT\n");
2561 * ata_sg_clean - Unmap DMA memory associated with command
2562 * @qc: Command containing DMA memory to be released
2564 * Unmap all mapped DMA memory associated with this command.
2566 * LOCKING:
2567 * spin_lock_irqsave(host_set lock)
2570 static void ata_sg_clean(struct ata_queued_cmd *qc)
2572 struct ata_port *ap = qc->ap;
2573 struct scatterlist *sg = qc->__sg;
2574 int dir = qc->dma_dir;
2575 void *pad_buf = NULL;
2577 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2578 WARN_ON(sg == NULL);
2580 if (qc->flags & ATA_QCFLAG_SINGLE)
2581 WARN_ON(qc->n_elem != 1);
2583 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2585 /* if we padded the buffer out to 32-bit bound, and data
2586 * xfer direction is from-device, we must copy from the
2587 * pad buffer back into the supplied buffer
2589 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2590 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2592 if (qc->flags & ATA_QCFLAG_SG) {
2593 if (qc->n_elem)
2594 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2595 /* restore last sg */
2596 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2597 if (pad_buf) {
2598 struct scatterlist *psg = &qc->pad_sgent;
2599 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2600 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2601 kunmap_atomic(addr, KM_IRQ0);
2603 } else {
2604 if (sg_dma_len(&sg[0]) > 0)
2605 dma_unmap_single(ap->host_set->dev,
2606 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2607 dir);
2608 /* restore sg */
2609 sg->length += qc->pad_len;
2610 if (pad_buf)
2611 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2612 pad_buf, qc->pad_len);
2615 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2616 qc->__sg = NULL;
2620 * ata_fill_sg - Fill PCI IDE PRD table
2621 * @qc: Metadata associated with taskfile to be transferred
2623 * Fill PCI IDE PRD (scatter-gather) table with segments
2624 * associated with the current disk command.
2626 * LOCKING:
2627 * spin_lock_irqsave(host_set lock)
2630 static void ata_fill_sg(struct ata_queued_cmd *qc)
2632 struct ata_port *ap = qc->ap;
2633 struct scatterlist *sg;
2634 unsigned int idx;
2636 WARN_ON(qc->__sg == NULL);
2637 WARN_ON(qc->n_elem == 0);
2639 idx = 0;
2640 ata_for_each_sg(sg, qc) {
2641 u32 addr, offset;
2642 u32 sg_len, len;
2644 /* determine if physical DMA addr spans 64K boundary.
2645 * Note h/w doesn't support 64-bit, so we unconditionally
2646 * truncate dma_addr_t to u32.
2648 addr = (u32) sg_dma_address(sg);
2649 sg_len = sg_dma_len(sg);
2651 while (sg_len) {
2652 offset = addr & 0xffff;
2653 len = sg_len;
2654 if ((offset + sg_len) > 0x10000)
2655 len = 0x10000 - offset;
2657 ap->prd[idx].addr = cpu_to_le32(addr);
2658 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2659 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2661 idx++;
2662 sg_len -= len;
2663 addr += len;
2667 if (idx)
2668 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2671 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2672 * @qc: Metadata associated with taskfile to check
2674 * Allow low-level driver to filter ATA PACKET commands, returning
2675 * a status indicating whether or not it is OK to use DMA for the
2676 * supplied PACKET command.
2678 * LOCKING:
2679 * spin_lock_irqsave(host_set lock)
2681 * RETURNS: 0 when ATAPI DMA can be used
2682 * nonzero otherwise
2684 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2686 struct ata_port *ap = qc->ap;
2687 int rc = 0; /* Assume ATAPI DMA is OK by default */
2689 if (ap->ops->check_atapi_dma)
2690 rc = ap->ops->check_atapi_dma(qc);
2692 return rc;
2695 * ata_qc_prep - Prepare taskfile for submission
2696 * @qc: Metadata associated with taskfile to be prepared
2698 * Prepare ATA taskfile for submission.
2700 * LOCKING:
2701 * spin_lock_irqsave(host_set lock)
2703 void ata_qc_prep(struct ata_queued_cmd *qc)
2705 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2706 return;
2708 ata_fill_sg(qc);
2712 * ata_sg_init_one - Associate command with memory buffer
2713 * @qc: Command to be associated
2714 * @buf: Memory buffer
2715 * @buflen: Length of memory buffer, in bytes.
2717 * Initialize the data-related elements of queued_cmd @qc
2718 * to point to a single memory buffer, @buf of byte length @buflen.
2720 * LOCKING:
2721 * spin_lock_irqsave(host_set lock)
2724 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2726 struct scatterlist *sg;
2728 qc->flags |= ATA_QCFLAG_SINGLE;
2730 memset(&qc->sgent, 0, sizeof(qc->sgent));
2731 qc->__sg = &qc->sgent;
2732 qc->n_elem = 1;
2733 qc->orig_n_elem = 1;
2734 qc->buf_virt = buf;
2736 sg = qc->__sg;
2737 sg_init_one(sg, buf, buflen);
2741 * ata_sg_init - Associate command with scatter-gather table.
2742 * @qc: Command to be associated
2743 * @sg: Scatter-gather table.
2744 * @n_elem: Number of elements in s/g table.
2746 * Initialize the data-related elements of queued_cmd @qc
2747 * to point to a scatter-gather table @sg, containing @n_elem
2748 * elements.
2750 * LOCKING:
2751 * spin_lock_irqsave(host_set lock)
2754 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2755 unsigned int n_elem)
2757 qc->flags |= ATA_QCFLAG_SG;
2758 qc->__sg = sg;
2759 qc->n_elem = n_elem;
2760 qc->orig_n_elem = n_elem;
2764 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2765 * @qc: Command with memory buffer to be mapped.
2767 * DMA-map the memory buffer associated with queued_cmd @qc.
2769 * LOCKING:
2770 * spin_lock_irqsave(host_set lock)
2772 * RETURNS:
2773 * Zero on success, negative on error.
2776 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2778 struct ata_port *ap = qc->ap;
2779 int dir = qc->dma_dir;
2780 struct scatterlist *sg = qc->__sg;
2781 dma_addr_t dma_address;
2783 /* we must lengthen transfers to end on a 32-bit boundary */
2784 qc->pad_len = sg->length & 3;
2785 if (qc->pad_len) {
2786 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2787 struct scatterlist *psg = &qc->pad_sgent;
2789 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
2791 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2793 if (qc->tf.flags & ATA_TFLAG_WRITE)
2794 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2795 qc->pad_len);
2797 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2798 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2799 /* trim sg */
2800 sg->length -= qc->pad_len;
2802 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2803 sg->length, qc->pad_len);
2806 if (!sg->length) {
2807 sg_dma_address(sg) = 0;
2808 goto skip_map;
2811 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2812 sg->length, dir);
2813 if (dma_mapping_error(dma_address)) {
2814 /* restore sg */
2815 sg->length += qc->pad_len;
2816 return -1;
2819 sg_dma_address(sg) = dma_address;
2820 skip_map:
2821 sg_dma_len(sg) = sg->length;
2823 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2824 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2826 return 0;
2830 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2831 * @qc: Command with scatter-gather table to be mapped.
2833 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2835 * LOCKING:
2836 * spin_lock_irqsave(host_set lock)
2838 * RETURNS:
2839 * Zero on success, negative on error.
2843 static int ata_sg_setup(struct ata_queued_cmd *qc)
2845 struct ata_port *ap = qc->ap;
2846 struct scatterlist *sg = qc->__sg;
2847 struct scatterlist *lsg = &sg[qc->n_elem - 1];
2848 int n_elem, pre_n_elem, dir, trim_sg = 0;
2850 VPRINTK("ENTER, ata%u\n", ap->id);
2851 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
2853 /* we must lengthen transfers to end on a 32-bit boundary */
2854 qc->pad_len = lsg->length & 3;
2855 if (qc->pad_len) {
2856 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2857 struct scatterlist *psg = &qc->pad_sgent;
2858 unsigned int offset;
2860 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
2862 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2865 * psg->page/offset are used to copy to-be-written
2866 * data in this function or read data in ata_sg_clean.
2868 offset = lsg->offset + lsg->length - qc->pad_len;
2869 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
2870 psg->offset = offset_in_page(offset);
2872 if (qc->tf.flags & ATA_TFLAG_WRITE) {
2873 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2874 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
2875 kunmap_atomic(addr, KM_IRQ0);
2878 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2879 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2880 /* trim last sg */
2881 lsg->length -= qc->pad_len;
2882 if (lsg->length == 0)
2883 trim_sg = 1;
2885 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2886 qc->n_elem - 1, lsg->length, qc->pad_len);
2889 pre_n_elem = qc->n_elem;
2890 if (trim_sg && pre_n_elem)
2891 pre_n_elem--;
2893 if (!pre_n_elem) {
2894 n_elem = 0;
2895 goto skip_map;
2898 dir = qc->dma_dir;
2899 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
2900 if (n_elem < 1) {
2901 /* restore last sg */
2902 lsg->length += qc->pad_len;
2903 return -1;
2906 DPRINTK("%d sg elements mapped\n", n_elem);
2908 skip_map:
2909 qc->n_elem = n_elem;
2911 return 0;
2915 * ata_poll_qc_complete - turn irq back on and finish qc
2916 * @qc: Command to complete
2917 * @err_mask: ATA status register content
2919 * LOCKING:
2920 * None. (grabs host lock)
2923 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
2925 struct ata_port *ap = qc->ap;
2926 unsigned long flags;
2928 spin_lock_irqsave(&ap->host_set->lock, flags);
2929 ap->flags &= ~ATA_FLAG_NOINTR;
2930 ata_irq_on(ap);
2931 ata_qc_complete(qc);
2932 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2936 * ata_pio_poll - poll using PIO, depending on current state
2937 * @ap: the target ata_port
2939 * LOCKING:
2940 * None. (executing in kernel thread context)
2942 * RETURNS:
2943 * timeout value to use
2946 static unsigned long ata_pio_poll(struct ata_port *ap)
2948 struct ata_queued_cmd *qc;
2949 u8 status;
2950 unsigned int poll_state = HSM_ST_UNKNOWN;
2951 unsigned int reg_state = HSM_ST_UNKNOWN;
2953 qc = ata_qc_from_tag(ap, ap->active_tag);
2954 WARN_ON(qc == NULL);
2956 switch (ap->hsm_task_state) {
2957 case HSM_ST:
2958 case HSM_ST_POLL:
2959 poll_state = HSM_ST_POLL;
2960 reg_state = HSM_ST;
2961 break;
2962 case HSM_ST_LAST:
2963 case HSM_ST_LAST_POLL:
2964 poll_state = HSM_ST_LAST_POLL;
2965 reg_state = HSM_ST_LAST;
2966 break;
2967 default:
2968 BUG();
2969 break;
2972 status = ata_chk_status(ap);
2973 if (status & ATA_BUSY) {
2974 if (time_after(jiffies, ap->pio_task_timeout)) {
2975 qc->err_mask |= AC_ERR_TIMEOUT;
2976 ap->hsm_task_state = HSM_ST_TMOUT;
2977 return 0;
2979 ap->hsm_task_state = poll_state;
2980 return ATA_SHORT_PAUSE;
2983 ap->hsm_task_state = reg_state;
2984 return 0;
2988 * ata_pio_complete - check if drive is busy or idle
2989 * @ap: the target ata_port
2991 * LOCKING:
2992 * None. (executing in kernel thread context)
2994 * RETURNS:
2995 * Non-zero if qc completed, zero otherwise.
2998 static int ata_pio_complete (struct ata_port *ap)
3000 struct ata_queued_cmd *qc;
3001 u8 drv_stat;
3004 * This is purely heuristic. This is a fast path. Sometimes when
3005 * we enter, BSY will be cleared in a chk-status or two. If not,
3006 * the drive is probably seeking or something. Snooze for a couple
3007 * msecs, then chk-status again. If still busy, fall back to
3008 * HSM_ST_POLL state.
3010 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3011 if (drv_stat & ATA_BUSY) {
3012 msleep(2);
3013 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3014 if (drv_stat & ATA_BUSY) {
3015 ap->hsm_task_state = HSM_ST_LAST_POLL;
3016 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3017 return 0;
3021 qc = ata_qc_from_tag(ap, ap->active_tag);
3022 WARN_ON(qc == NULL);
3024 drv_stat = ata_wait_idle(ap);
3025 if (!ata_ok(drv_stat)) {
3026 qc->err_mask |= __ac_err_mask(drv_stat);
3027 ap->hsm_task_state = HSM_ST_ERR;
3028 return 0;
3031 ap->hsm_task_state = HSM_ST_IDLE;
3033 WARN_ON(qc->err_mask);
3034 ata_poll_qc_complete(qc);
3036 /* another command may start at this point */
3038 return 1;
3043 * swap_buf_le16 - swap halves of 16-bit words in place
3044 * @buf: Buffer to swap
3045 * @buf_words: Number of 16-bit words in buffer.
3047 * Swap halves of 16-bit words if needed to convert from
3048 * little-endian byte order to native cpu byte order, or
3049 * vice-versa.
3051 * LOCKING:
3052 * Inherited from caller.
3054 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3056 #ifdef __BIG_ENDIAN
3057 unsigned int i;
3059 for (i = 0; i < buf_words; i++)
3060 buf[i] = le16_to_cpu(buf[i]);
3061 #endif /* __BIG_ENDIAN */
3065 * ata_mmio_data_xfer - Transfer data by MMIO
3066 * @ap: port to read/write
3067 * @buf: data buffer
3068 * @buflen: buffer length
3069 * @write_data: read/write
3071 * Transfer data from/to the device data register by MMIO.
3073 * LOCKING:
3074 * Inherited from caller.
3077 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3078 unsigned int buflen, int write_data)
3080 unsigned int i;
3081 unsigned int words = buflen >> 1;
3082 u16 *buf16 = (u16 *) buf;
3083 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3085 /* Transfer multiple of 2 bytes */
3086 if (write_data) {
3087 for (i = 0; i < words; i++)
3088 writew(le16_to_cpu(buf16[i]), mmio);
3089 } else {
3090 for (i = 0; i < words; i++)
3091 buf16[i] = cpu_to_le16(readw(mmio));
3094 /* Transfer trailing 1 byte, if any. */
3095 if (unlikely(buflen & 0x01)) {
3096 u16 align_buf[1] = { 0 };
3097 unsigned char *trailing_buf = buf + buflen - 1;
3099 if (write_data) {
3100 memcpy(align_buf, trailing_buf, 1);
3101 writew(le16_to_cpu(align_buf[0]), mmio);
3102 } else {
3103 align_buf[0] = cpu_to_le16(readw(mmio));
3104 memcpy(trailing_buf, align_buf, 1);
3110 * ata_pio_data_xfer - Transfer data by PIO
3111 * @ap: port to read/write
3112 * @buf: data buffer
3113 * @buflen: buffer length
3114 * @write_data: read/write
3116 * Transfer data from/to the device data register by PIO.
3118 * LOCKING:
3119 * Inherited from caller.
3122 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3123 unsigned int buflen, int write_data)
3125 unsigned int words = buflen >> 1;
3127 /* Transfer multiple of 2 bytes */
3128 if (write_data)
3129 outsw(ap->ioaddr.data_addr, buf, words);
3130 else
3131 insw(ap->ioaddr.data_addr, buf, words);
3133 /* Transfer trailing 1 byte, if any. */
3134 if (unlikely(buflen & 0x01)) {
3135 u16 align_buf[1] = { 0 };
3136 unsigned char *trailing_buf = buf + buflen - 1;
3138 if (write_data) {
3139 memcpy(align_buf, trailing_buf, 1);
3140 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3141 } else {
3142 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3143 memcpy(trailing_buf, align_buf, 1);
3149 * ata_data_xfer - Transfer data from/to the data register.
3150 * @ap: port to read/write
3151 * @buf: data buffer
3152 * @buflen: buffer length
3153 * @do_write: read/write
3155 * Transfer data from/to the device data register.
3157 * LOCKING:
3158 * Inherited from caller.
3161 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3162 unsigned int buflen, int do_write)
3164 /* Make the crap hardware pay the costs not the good stuff */
3165 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3166 unsigned long flags;
3167 local_irq_save(flags);
3168 if (ap->flags & ATA_FLAG_MMIO)
3169 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3170 else
3171 ata_pio_data_xfer(ap, buf, buflen, do_write);
3172 local_irq_restore(flags);
3173 } else {
3174 if (ap->flags & ATA_FLAG_MMIO)
3175 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3176 else
3177 ata_pio_data_xfer(ap, buf, buflen, do_write);
3182 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3183 * @qc: Command on going
3185 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3187 * LOCKING:
3188 * Inherited from caller.
3191 static void ata_pio_sector(struct ata_queued_cmd *qc)
3193 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3194 struct scatterlist *sg = qc->__sg;
3195 struct ata_port *ap = qc->ap;
3196 struct page *page;
3197 unsigned int offset;
3198 unsigned char *buf;
3200 if (qc->cursect == (qc->nsect - 1))
3201 ap->hsm_task_state = HSM_ST_LAST;
3203 page = sg[qc->cursg].page;
3204 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3206 /* get the current page and offset */
3207 page = nth_page(page, (offset >> PAGE_SHIFT));
3208 offset %= PAGE_SIZE;
3210 buf = kmap(page) + offset;
3212 qc->cursect++;
3213 qc->cursg_ofs++;
3215 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3216 qc->cursg++;
3217 qc->cursg_ofs = 0;
3220 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3222 /* do the actual data transfer */
3223 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3224 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3226 kunmap(page);
3230 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3231 * @qc: Command on going
3232 * @bytes: number of bytes
3234 * Transfer Transfer data from/to the ATAPI device.
3236 * LOCKING:
3237 * Inherited from caller.
3241 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3243 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3244 struct scatterlist *sg = qc->__sg;
3245 struct ata_port *ap = qc->ap;
3246 struct page *page;
3247 unsigned char *buf;
3248 unsigned int offset, count;
3250 if (qc->curbytes + bytes >= qc->nbytes)
3251 ap->hsm_task_state = HSM_ST_LAST;
3253 next_sg:
3254 if (unlikely(qc->cursg >= qc->n_elem)) {
3256 * The end of qc->sg is reached and the device expects
3257 * more data to transfer. In order not to overrun qc->sg
3258 * and fulfill length specified in the byte count register,
3259 * - for read case, discard trailing data from the device
3260 * - for write case, padding zero data to the device
3262 u16 pad_buf[1] = { 0 };
3263 unsigned int words = bytes >> 1;
3264 unsigned int i;
3266 if (words) /* warning if bytes > 1 */
3267 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3268 ap->id, bytes);
3270 for (i = 0; i < words; i++)
3271 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3273 ap->hsm_task_state = HSM_ST_LAST;
3274 return;
3277 sg = &qc->__sg[qc->cursg];
3279 page = sg->page;
3280 offset = sg->offset + qc->cursg_ofs;
3282 /* get the current page and offset */
3283 page = nth_page(page, (offset >> PAGE_SHIFT));
3284 offset %= PAGE_SIZE;
3286 /* don't overrun current sg */
3287 count = min(sg->length - qc->cursg_ofs, bytes);
3289 /* don't cross page boundaries */
3290 count = min(count, (unsigned int)PAGE_SIZE - offset);
3292 buf = kmap(page) + offset;
3294 bytes -= count;
3295 qc->curbytes += count;
3296 qc->cursg_ofs += count;
3298 if (qc->cursg_ofs == sg->length) {
3299 qc->cursg++;
3300 qc->cursg_ofs = 0;
3303 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3305 /* do the actual data transfer */
3306 ata_data_xfer(ap, buf, count, do_write);
3308 kunmap(page);
3310 if (bytes)
3311 goto next_sg;
3315 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3316 * @qc: Command on going
3318 * Transfer Transfer data from/to the ATAPI device.
3320 * LOCKING:
3321 * Inherited from caller.
3324 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3326 struct ata_port *ap = qc->ap;
3327 struct ata_device *dev = qc->dev;
3328 unsigned int ireason, bc_lo, bc_hi, bytes;
3329 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3331 ap->ops->tf_read(ap, &qc->tf);
3332 ireason = qc->tf.nsect;
3333 bc_lo = qc->tf.lbam;
3334 bc_hi = qc->tf.lbah;
3335 bytes = (bc_hi << 8) | bc_lo;
3337 /* shall be cleared to zero, indicating xfer of data */
3338 if (ireason & (1 << 0))
3339 goto err_out;
3341 /* make sure transfer direction matches expected */
3342 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3343 if (do_write != i_write)
3344 goto err_out;
3346 __atapi_pio_bytes(qc, bytes);
3348 return;
3350 err_out:
3351 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3352 ap->id, dev->devno);
3353 qc->err_mask |= AC_ERR_HSM;
3354 ap->hsm_task_state = HSM_ST_ERR;
3358 * ata_pio_block - start PIO on a block
3359 * @ap: the target ata_port
3361 * LOCKING:
3362 * None. (executing in kernel thread context)
3365 static void ata_pio_block(struct ata_port *ap)
3367 struct ata_queued_cmd *qc;
3368 u8 status;
3371 * This is purely heuristic. This is a fast path.
3372 * Sometimes when we enter, BSY will be cleared in
3373 * a chk-status or two. If not, the drive is probably seeking
3374 * or something. Snooze for a couple msecs, then
3375 * chk-status again. If still busy, fall back to
3376 * HSM_ST_POLL state.
3378 status = ata_busy_wait(ap, ATA_BUSY, 5);
3379 if (status & ATA_BUSY) {
3380 msleep(2);
3381 status = ata_busy_wait(ap, ATA_BUSY, 10);
3382 if (status & ATA_BUSY) {
3383 ap->hsm_task_state = HSM_ST_POLL;
3384 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3385 return;
3389 qc = ata_qc_from_tag(ap, ap->active_tag);
3390 WARN_ON(qc == NULL);
3392 /* check error */
3393 if (status & (ATA_ERR | ATA_DF)) {
3394 qc->err_mask |= AC_ERR_DEV;
3395 ap->hsm_task_state = HSM_ST_ERR;
3396 return;
3399 /* transfer data if any */
3400 if (is_atapi_taskfile(&qc->tf)) {
3401 /* DRQ=0 means no more data to transfer */
3402 if ((status & ATA_DRQ) == 0) {
3403 ap->hsm_task_state = HSM_ST_LAST;
3404 return;
3407 atapi_pio_bytes(qc);
3408 } else {
3409 /* handle BSY=0, DRQ=0 as error */
3410 if ((status & ATA_DRQ) == 0) {
3411 qc->err_mask |= AC_ERR_HSM;
3412 ap->hsm_task_state = HSM_ST_ERR;
3413 return;
3416 ata_pio_sector(qc);
3420 static void ata_pio_error(struct ata_port *ap)
3422 struct ata_queued_cmd *qc;
3424 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3426 qc = ata_qc_from_tag(ap, ap->active_tag);
3427 WARN_ON(qc == NULL);
3429 /* make sure qc->err_mask is available to
3430 * know what's wrong and recover
3432 WARN_ON(qc->err_mask == 0);
3434 ap->hsm_task_state = HSM_ST_IDLE;
3436 ata_poll_qc_complete(qc);
3439 static void ata_pio_task(void *_data)
3441 struct ata_port *ap = _data;
3442 unsigned long timeout;
3443 int qc_completed;
3445 fsm_start:
3446 timeout = 0;
3447 qc_completed = 0;
3449 switch (ap->hsm_task_state) {
3450 case HSM_ST_IDLE:
3451 return;
3453 case HSM_ST:
3454 ata_pio_block(ap);
3455 break;
3457 case HSM_ST_LAST:
3458 qc_completed = ata_pio_complete(ap);
3459 break;
3461 case HSM_ST_POLL:
3462 case HSM_ST_LAST_POLL:
3463 timeout = ata_pio_poll(ap);
3464 break;
3466 case HSM_ST_TMOUT:
3467 case HSM_ST_ERR:
3468 ata_pio_error(ap);
3469 return;
3472 if (timeout)
3473 ata_queue_delayed_pio_task(ap, timeout);
3474 else if (!qc_completed)
3475 goto fsm_start;
3479 * ata_qc_timeout - Handle timeout of queued command
3480 * @qc: Command that timed out
3482 * Some part of the kernel (currently, only the SCSI layer)
3483 * has noticed that the active command on port @ap has not
3484 * completed after a specified length of time. Handle this
3485 * condition by disabling DMA (if necessary) and completing
3486 * transactions, with error if necessary.
3488 * This also handles the case of the "lost interrupt", where
3489 * for some reason (possibly hardware bug, possibly driver bug)
3490 * an interrupt was not delivered to the driver, even though the
3491 * transaction completed successfully.
3493 * LOCKING:
3494 * Inherited from SCSI layer (none, can sleep)
3497 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3499 struct ata_port *ap = qc->ap;
3500 struct ata_host_set *host_set = ap->host_set;
3501 u8 host_stat = 0, drv_stat;
3502 unsigned long flags;
3504 DPRINTK("ENTER\n");
3506 ata_flush_pio_tasks(ap);
3507 ap->hsm_task_state = HSM_ST_IDLE;
3509 spin_lock_irqsave(&host_set->lock, flags);
3511 switch (qc->tf.protocol) {
3513 case ATA_PROT_DMA:
3514 case ATA_PROT_ATAPI_DMA:
3515 host_stat = ap->ops->bmdma_status(ap);
3517 /* before we do anything else, clear DMA-Start bit */
3518 ap->ops->bmdma_stop(qc);
3520 /* fall through */
3522 default:
3523 ata_altstatus(ap);
3524 drv_stat = ata_chk_status(ap);
3526 /* ack bmdma irq events */
3527 ap->ops->irq_clear(ap);
3529 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3530 ap->id, qc->tf.command, drv_stat, host_stat);
3532 /* complete taskfile transaction */
3533 qc->err_mask |= ac_err_mask(drv_stat);
3534 break;
3537 spin_unlock_irqrestore(&host_set->lock, flags);
3539 ata_eh_qc_complete(qc);
3541 DPRINTK("EXIT\n");
3545 * ata_eng_timeout - Handle timeout of queued command
3546 * @ap: Port on which timed-out command is active
3548 * Some part of the kernel (currently, only the SCSI layer)
3549 * has noticed that the active command on port @ap has not
3550 * completed after a specified length of time. Handle this
3551 * condition by disabling DMA (if necessary) and completing
3552 * transactions, with error if necessary.
3554 * This also handles the case of the "lost interrupt", where
3555 * for some reason (possibly hardware bug, possibly driver bug)
3556 * an interrupt was not delivered to the driver, even though the
3557 * transaction completed successfully.
3559 * LOCKING:
3560 * Inherited from SCSI layer (none, can sleep)
3563 void ata_eng_timeout(struct ata_port *ap)
3565 DPRINTK("ENTER\n");
3567 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
3569 DPRINTK("EXIT\n");
3573 * ata_qc_new - Request an available ATA command, for queueing
3574 * @ap: Port associated with device @dev
3575 * @dev: Device from whom we request an available command structure
3577 * LOCKING:
3578 * None.
3581 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3583 struct ata_queued_cmd *qc = NULL;
3584 unsigned int i;
3586 for (i = 0; i < ATA_MAX_QUEUE; i++)
3587 if (!test_and_set_bit(i, &ap->qactive)) {
3588 qc = ata_qc_from_tag(ap, i);
3589 break;
3592 if (qc)
3593 qc->tag = i;
3595 return qc;
3599 * ata_qc_new_init - Request an available ATA command, and initialize it
3600 * @ap: Port associated with device @dev
3601 * @dev: Device from whom we request an available command structure
3603 * LOCKING:
3604 * None.
3607 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3608 struct ata_device *dev)
3610 struct ata_queued_cmd *qc;
3612 qc = ata_qc_new(ap);
3613 if (qc) {
3614 qc->scsicmd = NULL;
3615 qc->ap = ap;
3616 qc->dev = dev;
3618 ata_qc_reinit(qc);
3621 return qc;
3625 * ata_qc_free - free unused ata_queued_cmd
3626 * @qc: Command to complete
3628 * Designed to free unused ata_queued_cmd object
3629 * in case something prevents using it.
3631 * LOCKING:
3632 * spin_lock_irqsave(host_set lock)
3634 void ata_qc_free(struct ata_queued_cmd *qc)
3636 struct ata_port *ap = qc->ap;
3637 unsigned int tag;
3639 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3641 qc->flags = 0;
3642 tag = qc->tag;
3643 if (likely(ata_tag_valid(tag))) {
3644 if (tag == ap->active_tag)
3645 ap->active_tag = ATA_TAG_POISON;
3646 qc->tag = ATA_TAG_POISON;
3647 clear_bit(tag, &ap->qactive);
3651 void __ata_qc_complete(struct ata_queued_cmd *qc)
3653 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3654 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3656 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3657 ata_sg_clean(qc);
3659 /* atapi: mark qc as inactive to prevent the interrupt handler
3660 * from completing the command twice later, before the error handler
3661 * is called. (when rc != 0 and atapi request sense is needed)
3663 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3665 /* call completion callback */
3666 qc->complete_fn(qc);
3669 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3671 struct ata_port *ap = qc->ap;
3673 switch (qc->tf.protocol) {
3674 case ATA_PROT_DMA:
3675 case ATA_PROT_ATAPI_DMA:
3676 return 1;
3678 case ATA_PROT_ATAPI:
3679 case ATA_PROT_PIO:
3680 case ATA_PROT_PIO_MULT:
3681 if (ap->flags & ATA_FLAG_PIO_DMA)
3682 return 1;
3684 /* fall through */
3686 default:
3687 return 0;
3690 /* never reached */
3694 * ata_qc_issue - issue taskfile to device
3695 * @qc: command to issue to device
3697 * Prepare an ATA command to submission to device.
3698 * This includes mapping the data into a DMA-able
3699 * area, filling in the S/G table, and finally
3700 * writing the taskfile to hardware, starting the command.
3702 * LOCKING:
3703 * spin_lock_irqsave(host_set lock)
3705 * RETURNS:
3706 * Zero on success, AC_ERR_* mask on failure
3709 unsigned int ata_qc_issue(struct ata_queued_cmd *qc)
3711 struct ata_port *ap = qc->ap;
3713 if (ata_should_dma_map(qc)) {
3714 if (qc->flags & ATA_QCFLAG_SG) {
3715 if (ata_sg_setup(qc))
3716 goto sg_err;
3717 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3718 if (ata_sg_setup_one(qc))
3719 goto sg_err;
3721 } else {
3722 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3725 ap->ops->qc_prep(qc);
3727 qc->ap->active_tag = qc->tag;
3728 qc->flags |= ATA_QCFLAG_ACTIVE;
3730 return ap->ops->qc_issue(qc);
3732 sg_err:
3733 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3734 return AC_ERR_SYSTEM;
3739 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3740 * @qc: command to issue to device
3742 * Using various libata functions and hooks, this function
3743 * starts an ATA command. ATA commands are grouped into
3744 * classes called "protocols", and issuing each type of protocol
3745 * is slightly different.
3747 * May be used as the qc_issue() entry in ata_port_operations.
3749 * LOCKING:
3750 * spin_lock_irqsave(host_set lock)
3752 * RETURNS:
3753 * Zero on success, AC_ERR_* mask on failure
3756 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3758 struct ata_port *ap = qc->ap;
3760 ata_dev_select(ap, qc->dev->devno, 1, 0);
3762 switch (qc->tf.protocol) {
3763 case ATA_PROT_NODATA:
3764 ata_tf_to_host(ap, &qc->tf);
3765 break;
3767 case ATA_PROT_DMA:
3768 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3769 ap->ops->bmdma_setup(qc); /* set up bmdma */
3770 ap->ops->bmdma_start(qc); /* initiate bmdma */
3771 break;
3773 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3774 ata_qc_set_polling(qc);
3775 ata_tf_to_host(ap, &qc->tf);
3776 ap->hsm_task_state = HSM_ST;
3777 ata_queue_pio_task(ap);
3778 break;
3780 case ATA_PROT_ATAPI:
3781 ata_qc_set_polling(qc);
3782 ata_tf_to_host(ap, &qc->tf);
3783 ata_queue_packet_task(ap);
3784 break;
3786 case ATA_PROT_ATAPI_NODATA:
3787 ap->flags |= ATA_FLAG_NOINTR;
3788 ata_tf_to_host(ap, &qc->tf);
3789 ata_queue_packet_task(ap);
3790 break;
3792 case ATA_PROT_ATAPI_DMA:
3793 ap->flags |= ATA_FLAG_NOINTR;
3794 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3795 ap->ops->bmdma_setup(qc); /* set up bmdma */
3796 ata_queue_packet_task(ap);
3797 break;
3799 default:
3800 WARN_ON(1);
3801 return AC_ERR_SYSTEM;
3804 return 0;
3808 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
3809 * @qc: Info associated with this ATA transaction.
3811 * LOCKING:
3812 * spin_lock_irqsave(host_set lock)
3815 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3817 struct ata_port *ap = qc->ap;
3818 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3819 u8 dmactl;
3820 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3822 /* load PRD table addr. */
3823 mb(); /* make sure PRD table writes are visible to controller */
3824 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3826 /* specify data direction, triple-check start bit is clear */
3827 dmactl = readb(mmio + ATA_DMA_CMD);
3828 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3829 if (!rw)
3830 dmactl |= ATA_DMA_WR;
3831 writeb(dmactl, mmio + ATA_DMA_CMD);
3833 /* issue r/w command */
3834 ap->ops->exec_command(ap, &qc->tf);
3838 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
3839 * @qc: Info associated with this ATA transaction.
3841 * LOCKING:
3842 * spin_lock_irqsave(host_set lock)
3845 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3847 struct ata_port *ap = qc->ap;
3848 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3849 u8 dmactl;
3851 /* start host DMA transaction */
3852 dmactl = readb(mmio + ATA_DMA_CMD);
3853 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3855 /* Strictly, one may wish to issue a readb() here, to
3856 * flush the mmio write. However, control also passes
3857 * to the hardware at this point, and it will interrupt
3858 * us when we are to resume control. So, in effect,
3859 * we don't care when the mmio write flushes.
3860 * Further, a read of the DMA status register _immediately_
3861 * following the write may not be what certain flaky hardware
3862 * is expected, so I think it is best to not add a readb()
3863 * without first all the MMIO ATA cards/mobos.
3864 * Or maybe I'm just being paranoid.
3869 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3870 * @qc: Info associated with this ATA transaction.
3872 * LOCKING:
3873 * spin_lock_irqsave(host_set lock)
3876 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3878 struct ata_port *ap = qc->ap;
3879 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3880 u8 dmactl;
3882 /* load PRD table addr. */
3883 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3885 /* specify data direction, triple-check start bit is clear */
3886 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3887 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3888 if (!rw)
3889 dmactl |= ATA_DMA_WR;
3890 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3892 /* issue r/w command */
3893 ap->ops->exec_command(ap, &qc->tf);
3897 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3898 * @qc: Info associated with this ATA transaction.
3900 * LOCKING:
3901 * spin_lock_irqsave(host_set lock)
3904 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3906 struct ata_port *ap = qc->ap;
3907 u8 dmactl;
3909 /* start host DMA transaction */
3910 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3911 outb(dmactl | ATA_DMA_START,
3912 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3917 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3918 * @qc: Info associated with this ATA transaction.
3920 * Writes the ATA_DMA_START flag to the DMA command register.
3922 * May be used as the bmdma_start() entry in ata_port_operations.
3924 * LOCKING:
3925 * spin_lock_irqsave(host_set lock)
3927 void ata_bmdma_start(struct ata_queued_cmd *qc)
3929 if (qc->ap->flags & ATA_FLAG_MMIO)
3930 ata_bmdma_start_mmio(qc);
3931 else
3932 ata_bmdma_start_pio(qc);
3937 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3938 * @qc: Info associated with this ATA transaction.
3940 * Writes address of PRD table to device's PRD Table Address
3941 * register, sets the DMA control register, and calls
3942 * ops->exec_command() to start the transfer.
3944 * May be used as the bmdma_setup() entry in ata_port_operations.
3946 * LOCKING:
3947 * spin_lock_irqsave(host_set lock)
3949 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3951 if (qc->ap->flags & ATA_FLAG_MMIO)
3952 ata_bmdma_setup_mmio(qc);
3953 else
3954 ata_bmdma_setup_pio(qc);
3959 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
3960 * @ap: Port associated with this ATA transaction.
3962 * Clear interrupt and error flags in DMA status register.
3964 * May be used as the irq_clear() entry in ata_port_operations.
3966 * LOCKING:
3967 * spin_lock_irqsave(host_set lock)
3970 void ata_bmdma_irq_clear(struct ata_port *ap)
3972 if (ap->flags & ATA_FLAG_MMIO) {
3973 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3974 writeb(readb(mmio), mmio);
3975 } else {
3976 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3977 outb(inb(addr), addr);
3984 * ata_bmdma_status - Read PCI IDE BMDMA status
3985 * @ap: Port associated with this ATA transaction.
3987 * Read and return BMDMA status register.
3989 * May be used as the bmdma_status() entry in ata_port_operations.
3991 * LOCKING:
3992 * spin_lock_irqsave(host_set lock)
3995 u8 ata_bmdma_status(struct ata_port *ap)
3997 u8 host_stat;
3998 if (ap->flags & ATA_FLAG_MMIO) {
3999 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4000 host_stat = readb(mmio + ATA_DMA_STATUS);
4001 } else
4002 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
4003 return host_stat;
4008 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
4009 * @qc: Command we are ending DMA for
4011 * Clears the ATA_DMA_START flag in the dma control register
4013 * May be used as the bmdma_stop() entry in ata_port_operations.
4015 * LOCKING:
4016 * spin_lock_irqsave(host_set lock)
4019 void ata_bmdma_stop(struct ata_queued_cmd *qc)
4021 struct ata_port *ap = qc->ap;
4022 if (ap->flags & ATA_FLAG_MMIO) {
4023 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4025 /* clear start/stop bit */
4026 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
4027 mmio + ATA_DMA_CMD);
4028 } else {
4029 /* clear start/stop bit */
4030 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
4031 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4034 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
4035 ata_altstatus(ap); /* dummy read */
4039 * ata_host_intr - Handle host interrupt for given (port, task)
4040 * @ap: Port on which interrupt arrived (possibly...)
4041 * @qc: Taskfile currently active in engine
4043 * Handle host interrupt for given queued command. Currently,
4044 * only DMA interrupts are handled. All other commands are
4045 * handled via polling with interrupts disabled (nIEN bit).
4047 * LOCKING:
4048 * spin_lock_irqsave(host_set lock)
4050 * RETURNS:
4051 * One if interrupt was handled, zero if not (shared irq).
4054 inline unsigned int ata_host_intr (struct ata_port *ap,
4055 struct ata_queued_cmd *qc)
4057 u8 status, host_stat;
4059 switch (qc->tf.protocol) {
4061 case ATA_PROT_DMA:
4062 case ATA_PROT_ATAPI_DMA:
4063 case ATA_PROT_ATAPI:
4064 /* check status of DMA engine */
4065 host_stat = ap->ops->bmdma_status(ap);
4066 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4068 /* if it's not our irq... */
4069 if (!(host_stat & ATA_DMA_INTR))
4070 goto idle_irq;
4072 /* before we do anything else, clear DMA-Start bit */
4073 ap->ops->bmdma_stop(qc);
4075 /* fall through */
4077 case ATA_PROT_ATAPI_NODATA:
4078 case ATA_PROT_NODATA:
4079 /* check altstatus */
4080 status = ata_altstatus(ap);
4081 if (status & ATA_BUSY)
4082 goto idle_irq;
4084 /* check main status, clearing INTRQ */
4085 status = ata_chk_status(ap);
4086 if (unlikely(status & ATA_BUSY))
4087 goto idle_irq;
4088 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4089 ap->id, qc->tf.protocol, status);
4091 /* ack bmdma irq events */
4092 ap->ops->irq_clear(ap);
4094 /* complete taskfile transaction */
4095 qc->err_mask |= ac_err_mask(status);
4096 ata_qc_complete(qc);
4097 break;
4099 default:
4100 goto idle_irq;
4103 return 1; /* irq handled */
4105 idle_irq:
4106 ap->stats.idle_irq++;
4108 #ifdef ATA_IRQ_TRAP
4109 if ((ap->stats.idle_irq % 1000) == 0) {
4110 handled = 1;
4111 ata_irq_ack(ap, 0); /* debug trap */
4112 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4114 #endif
4115 return 0; /* irq not handled */
4119 * ata_interrupt - Default ATA host interrupt handler
4120 * @irq: irq line (unused)
4121 * @dev_instance: pointer to our ata_host_set information structure
4122 * @regs: unused
4124 * Default interrupt handler for PCI IDE devices. Calls
4125 * ata_host_intr() for each port that is not disabled.
4127 * LOCKING:
4128 * Obtains host_set lock during operation.
4130 * RETURNS:
4131 * IRQ_NONE or IRQ_HANDLED.
4134 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4136 struct ata_host_set *host_set = dev_instance;
4137 unsigned int i;
4138 unsigned int handled = 0;
4139 unsigned long flags;
4141 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4142 spin_lock_irqsave(&host_set->lock, flags);
4144 for (i = 0; i < host_set->n_ports; i++) {
4145 struct ata_port *ap;
4147 ap = host_set->ports[i];
4148 if (ap &&
4149 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
4150 struct ata_queued_cmd *qc;
4152 qc = ata_qc_from_tag(ap, ap->active_tag);
4153 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4154 (qc->flags & ATA_QCFLAG_ACTIVE))
4155 handled |= ata_host_intr(ap, qc);
4159 spin_unlock_irqrestore(&host_set->lock, flags);
4161 return IRQ_RETVAL(handled);
4165 * atapi_packet_task - Write CDB bytes to hardware
4166 * @_data: Port to which ATAPI device is attached.
4168 * When device has indicated its readiness to accept
4169 * a CDB, this function is called. Send the CDB.
4170 * If DMA is to be performed, exit immediately.
4171 * Otherwise, we are in polling mode, so poll
4172 * status under operation succeeds or fails.
4174 * LOCKING:
4175 * Kernel thread context (may sleep)
4178 static void atapi_packet_task(void *_data)
4180 struct ata_port *ap = _data;
4181 struct ata_queued_cmd *qc;
4182 u8 status;
4184 qc = ata_qc_from_tag(ap, ap->active_tag);
4185 WARN_ON(qc == NULL);
4186 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4188 /* sleep-wait for BSY to clear */
4189 DPRINTK("busy wait\n");
4190 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
4191 qc->err_mask |= AC_ERR_TIMEOUT;
4192 goto err_out;
4195 /* make sure DRQ is set */
4196 status = ata_chk_status(ap);
4197 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
4198 qc->err_mask |= AC_ERR_HSM;
4199 goto err_out;
4202 /* send SCSI cdb */
4203 DPRINTK("send cdb\n");
4204 WARN_ON(ap->cdb_len < 12);
4206 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4207 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4208 unsigned long flags;
4210 /* Once we're done issuing command and kicking bmdma,
4211 * irq handler takes over. To not lose irq, we need
4212 * to clear NOINTR flag before sending cdb, but
4213 * interrupt handler shouldn't be invoked before we're
4214 * finished. Hence, the following locking.
4216 spin_lock_irqsave(&ap->host_set->lock, flags);
4217 ap->flags &= ~ATA_FLAG_NOINTR;
4218 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4219 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4220 ap->ops->bmdma_start(qc); /* initiate bmdma */
4221 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4222 } else {
4223 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4225 /* PIO commands are handled by polling */
4226 ap->hsm_task_state = HSM_ST;
4227 ata_queue_pio_task(ap);
4230 return;
4232 err_out:
4233 ata_poll_qc_complete(qc);
4238 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4239 * without filling any other registers
4241 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4242 u8 cmd)
4244 struct ata_taskfile tf;
4245 int err;
4247 ata_tf_init(ap, &tf, dev->devno);
4249 tf.command = cmd;
4250 tf.flags |= ATA_TFLAG_DEVICE;
4251 tf.protocol = ATA_PROT_NODATA;
4253 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4254 if (err)
4255 printk(KERN_ERR "%s: ata command failed: %d\n",
4256 __FUNCTION__, err);
4258 return err;
4261 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4263 u8 cmd;
4265 if (!ata_try_flush_cache(dev))
4266 return 0;
4268 if (ata_id_has_flush_ext(dev->id))
4269 cmd = ATA_CMD_FLUSH_EXT;
4270 else
4271 cmd = ATA_CMD_FLUSH;
4273 return ata_do_simple_cmd(ap, dev, cmd);
4276 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4278 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4281 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4283 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4287 * ata_device_resume - wakeup a previously suspended devices
4288 * @ap: port the device is connected to
4289 * @dev: the device to resume
4291 * Kick the drive back into action, by sending it an idle immediate
4292 * command and making sure its transfer mode matches between drive
4293 * and host.
4296 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4298 if (ap->flags & ATA_FLAG_SUSPENDED) {
4299 ap->flags &= ~ATA_FLAG_SUSPENDED;
4300 ata_set_mode(ap);
4302 if (!ata_dev_present(dev))
4303 return 0;
4304 if (dev->class == ATA_DEV_ATA)
4305 ata_start_drive(ap, dev);
4307 return 0;
4311 * ata_device_suspend - prepare a device for suspend
4312 * @ap: port the device is connected to
4313 * @dev: the device to suspend
4315 * Flush the cache on the drive, if appropriate, then issue a
4316 * standbynow command.
4318 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
4320 if (!ata_dev_present(dev))
4321 return 0;
4322 if (dev->class == ATA_DEV_ATA)
4323 ata_flush_cache(ap, dev);
4325 ata_standby_drive(ap, dev);
4326 ap->flags |= ATA_FLAG_SUSPENDED;
4327 return 0;
4331 * ata_port_start - Set port up for dma.
4332 * @ap: Port to initialize
4334 * Called just after data structures for each port are
4335 * initialized. Allocates space for PRD table.
4337 * May be used as the port_start() entry in ata_port_operations.
4339 * LOCKING:
4340 * Inherited from caller.
4343 int ata_port_start (struct ata_port *ap)
4345 struct device *dev = ap->host_set->dev;
4346 int rc;
4348 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4349 if (!ap->prd)
4350 return -ENOMEM;
4352 rc = ata_pad_alloc(ap, dev);
4353 if (rc) {
4354 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4355 return rc;
4358 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4360 return 0;
4365 * ata_port_stop - Undo ata_port_start()
4366 * @ap: Port to shut down
4368 * Frees the PRD table.
4370 * May be used as the port_stop() entry in ata_port_operations.
4372 * LOCKING:
4373 * Inherited from caller.
4376 void ata_port_stop (struct ata_port *ap)
4378 struct device *dev = ap->host_set->dev;
4380 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4381 ata_pad_free(ap, dev);
4384 void ata_host_stop (struct ata_host_set *host_set)
4386 if (host_set->mmio_base)
4387 iounmap(host_set->mmio_base);
4392 * ata_host_remove - Unregister SCSI host structure with upper layers
4393 * @ap: Port to unregister
4394 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4396 * LOCKING:
4397 * Inherited from caller.
4400 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4402 struct Scsi_Host *sh = ap->host;
4404 DPRINTK("ENTER\n");
4406 if (do_unregister)
4407 scsi_remove_host(sh);
4409 ap->ops->port_stop(ap);
4413 * ata_host_init - Initialize an ata_port structure
4414 * @ap: Structure to initialize
4415 * @host: associated SCSI mid-layer structure
4416 * @host_set: Collection of hosts to which @ap belongs
4417 * @ent: Probe information provided by low-level driver
4418 * @port_no: Port number associated with this ata_port
4420 * Initialize a new ata_port structure, and its associated
4421 * scsi_host.
4423 * LOCKING:
4424 * Inherited from caller.
4427 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4428 struct ata_host_set *host_set,
4429 const struct ata_probe_ent *ent, unsigned int port_no)
4431 unsigned int i;
4433 host->max_id = 16;
4434 host->max_lun = 1;
4435 host->max_channel = 1;
4436 host->unique_id = ata_unique_id++;
4437 host->max_cmd_len = 12;
4439 ap->flags = ATA_FLAG_PORT_DISABLED;
4440 ap->id = host->unique_id;
4441 ap->host = host;
4442 ap->ctl = ATA_DEVCTL_OBS;
4443 ap->host_set = host_set;
4444 ap->port_no = port_no;
4445 ap->hard_port_no =
4446 ent->legacy_mode ? ent->hard_port_no : port_no;
4447 ap->pio_mask = ent->pio_mask;
4448 ap->mwdma_mask = ent->mwdma_mask;
4449 ap->udma_mask = ent->udma_mask;
4450 ap->flags |= ent->host_flags;
4451 ap->ops = ent->port_ops;
4452 ap->cbl = ATA_CBL_NONE;
4453 ap->active_tag = ATA_TAG_POISON;
4454 ap->last_ctl = 0xFF;
4456 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
4457 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4458 INIT_LIST_HEAD(&ap->eh_done_q);
4460 for (i = 0; i < ATA_MAX_DEVICES; i++)
4461 ap->device[i].devno = i;
4463 #ifdef ATA_IRQ_TRAP
4464 ap->stats.unhandled_irq = 1;
4465 ap->stats.idle_irq = 1;
4466 #endif
4468 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4472 * ata_host_add - Attach low-level ATA driver to system
4473 * @ent: Information provided by low-level driver
4474 * @host_set: Collections of ports to which we add
4475 * @port_no: Port number associated with this host
4477 * Attach low-level ATA driver to system.
4479 * LOCKING:
4480 * PCI/etc. bus probe sem.
4482 * RETURNS:
4483 * New ata_port on success, for NULL on error.
4486 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4487 struct ata_host_set *host_set,
4488 unsigned int port_no)
4490 struct Scsi_Host *host;
4491 struct ata_port *ap;
4492 int rc;
4494 DPRINTK("ENTER\n");
4495 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4496 if (!host)
4497 return NULL;
4499 ap = (struct ata_port *) &host->hostdata[0];
4501 ata_host_init(ap, host, host_set, ent, port_no);
4503 rc = ap->ops->port_start(ap);
4504 if (rc)
4505 goto err_out;
4507 return ap;
4509 err_out:
4510 scsi_host_put(host);
4511 return NULL;
4515 * ata_device_add - Register hardware device with ATA and SCSI layers
4516 * @ent: Probe information describing hardware device to be registered
4518 * This function processes the information provided in the probe
4519 * information struct @ent, allocates the necessary ATA and SCSI
4520 * host information structures, initializes them, and registers
4521 * everything with requisite kernel subsystems.
4523 * This function requests irqs, probes the ATA bus, and probes
4524 * the SCSI bus.
4526 * LOCKING:
4527 * PCI/etc. bus probe sem.
4529 * RETURNS:
4530 * Number of ports registered. Zero on error (no ports registered).
4533 int ata_device_add(const struct ata_probe_ent *ent)
4535 unsigned int count = 0, i;
4536 struct device *dev = ent->dev;
4537 struct ata_host_set *host_set;
4539 DPRINTK("ENTER\n");
4540 /* alloc a container for our list of ATA ports (buses) */
4541 host_set = kzalloc(sizeof(struct ata_host_set) +
4542 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4543 if (!host_set)
4544 return 0;
4545 spin_lock_init(&host_set->lock);
4547 host_set->dev = dev;
4548 host_set->n_ports = ent->n_ports;
4549 host_set->irq = ent->irq;
4550 host_set->mmio_base = ent->mmio_base;
4551 host_set->private_data = ent->private_data;
4552 host_set->ops = ent->port_ops;
4554 /* register each port bound to this device */
4555 for (i = 0; i < ent->n_ports; i++) {
4556 struct ata_port *ap;
4557 unsigned long xfer_mode_mask;
4559 ap = ata_host_add(ent, host_set, i);
4560 if (!ap)
4561 goto err_out;
4563 host_set->ports[i] = ap;
4564 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4565 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4566 (ap->pio_mask << ATA_SHIFT_PIO);
4568 /* print per-port info to dmesg */
4569 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4570 "bmdma 0x%lX irq %lu\n",
4571 ap->id,
4572 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4573 ata_mode_string(xfer_mode_mask),
4574 ap->ioaddr.cmd_addr,
4575 ap->ioaddr.ctl_addr,
4576 ap->ioaddr.bmdma_addr,
4577 ent->irq);
4579 ata_chk_status(ap);
4580 host_set->ops->irq_clear(ap);
4581 count++;
4584 if (!count)
4585 goto err_free_ret;
4587 /* obtain irq, that is shared between channels */
4588 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4589 DRV_NAME, host_set))
4590 goto err_out;
4592 /* perform each probe synchronously */
4593 DPRINTK("probe begin\n");
4594 for (i = 0; i < count; i++) {
4595 struct ata_port *ap;
4596 int rc;
4598 ap = host_set->ports[i];
4600 DPRINTK("ata%u: bus probe begin\n", ap->id);
4601 rc = ata_bus_probe(ap);
4602 DPRINTK("ata%u: bus probe end\n", ap->id);
4604 if (rc) {
4605 /* FIXME: do something useful here?
4606 * Current libata behavior will
4607 * tear down everything when
4608 * the module is removed
4609 * or the h/w is unplugged.
4613 rc = scsi_add_host(ap->host, dev);
4614 if (rc) {
4615 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4616 ap->id);
4617 /* FIXME: do something useful here */
4618 /* FIXME: handle unconditional calls to
4619 * scsi_scan_host and ata_host_remove, below,
4620 * at the very least
4625 /* probes are done, now scan each port's disk(s) */
4626 DPRINTK("host probe begin\n");
4627 for (i = 0; i < count; i++) {
4628 struct ata_port *ap = host_set->ports[i];
4630 ata_scsi_scan_host(ap);
4633 dev_set_drvdata(dev, host_set);
4635 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4636 return ent->n_ports; /* success */
4638 err_out:
4639 for (i = 0; i < count; i++) {
4640 ata_host_remove(host_set->ports[i], 1);
4641 scsi_host_put(host_set->ports[i]->host);
4643 err_free_ret:
4644 kfree(host_set);
4645 VPRINTK("EXIT, returning 0\n");
4646 return 0;
4650 * ata_host_set_remove - PCI layer callback for device removal
4651 * @host_set: ATA host set that was removed
4653 * Unregister all objects associated with this host set. Free those
4654 * objects.
4656 * LOCKING:
4657 * Inherited from calling layer (may sleep).
4660 void ata_host_set_remove(struct ata_host_set *host_set)
4662 struct ata_port *ap;
4663 unsigned int i;
4665 for (i = 0; i < host_set->n_ports; i++) {
4666 ap = host_set->ports[i];
4667 scsi_remove_host(ap->host);
4670 free_irq(host_set->irq, host_set);
4672 for (i = 0; i < host_set->n_ports; i++) {
4673 ap = host_set->ports[i];
4675 ata_scsi_release(ap->host);
4677 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4678 struct ata_ioports *ioaddr = &ap->ioaddr;
4680 if (ioaddr->cmd_addr == 0x1f0)
4681 release_region(0x1f0, 8);
4682 else if (ioaddr->cmd_addr == 0x170)
4683 release_region(0x170, 8);
4686 scsi_host_put(ap->host);
4689 if (host_set->ops->host_stop)
4690 host_set->ops->host_stop(host_set);
4692 kfree(host_set);
4696 * ata_scsi_release - SCSI layer callback hook for host unload
4697 * @host: libata host to be unloaded
4699 * Performs all duties necessary to shut down a libata port...
4700 * Kill port kthread, disable port, and release resources.
4702 * LOCKING:
4703 * Inherited from SCSI layer.
4705 * RETURNS:
4706 * One.
4709 int ata_scsi_release(struct Scsi_Host *host)
4711 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4713 DPRINTK("ENTER\n");
4715 ap->ops->port_disable(ap);
4716 ata_host_remove(ap, 0);
4718 DPRINTK("EXIT\n");
4719 return 1;
4723 * ata_std_ports - initialize ioaddr with standard port offsets.
4724 * @ioaddr: IO address structure to be initialized
4726 * Utility function which initializes data_addr, error_addr,
4727 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4728 * device_addr, status_addr, and command_addr to standard offsets
4729 * relative to cmd_addr.
4731 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4734 void ata_std_ports(struct ata_ioports *ioaddr)
4736 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4737 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4738 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4739 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4740 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4741 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4742 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4743 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4744 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4745 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4749 #ifdef CONFIG_PCI
4751 void ata_pci_host_stop (struct ata_host_set *host_set)
4753 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4755 pci_iounmap(pdev, host_set->mmio_base);
4759 * ata_pci_remove_one - PCI layer callback for device removal
4760 * @pdev: PCI device that was removed
4762 * PCI layer indicates to libata via this hook that
4763 * hot-unplug or module unload event has occurred.
4764 * Handle this by unregistering all objects associated
4765 * with this PCI device. Free those objects. Then finally
4766 * release PCI resources and disable device.
4768 * LOCKING:
4769 * Inherited from PCI layer (may sleep).
4772 void ata_pci_remove_one (struct pci_dev *pdev)
4774 struct device *dev = pci_dev_to_dev(pdev);
4775 struct ata_host_set *host_set = dev_get_drvdata(dev);
4777 ata_host_set_remove(host_set);
4778 pci_release_regions(pdev);
4779 pci_disable_device(pdev);
4780 dev_set_drvdata(dev, NULL);
4783 /* move to PCI subsystem */
4784 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
4786 unsigned long tmp = 0;
4788 switch (bits->width) {
4789 case 1: {
4790 u8 tmp8 = 0;
4791 pci_read_config_byte(pdev, bits->reg, &tmp8);
4792 tmp = tmp8;
4793 break;
4795 case 2: {
4796 u16 tmp16 = 0;
4797 pci_read_config_word(pdev, bits->reg, &tmp16);
4798 tmp = tmp16;
4799 break;
4801 case 4: {
4802 u32 tmp32 = 0;
4803 pci_read_config_dword(pdev, bits->reg, &tmp32);
4804 tmp = tmp32;
4805 break;
4808 default:
4809 return -EINVAL;
4812 tmp &= bits->mask;
4814 return (tmp == bits->val) ? 1 : 0;
4817 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4819 pci_save_state(pdev);
4820 pci_disable_device(pdev);
4821 pci_set_power_state(pdev, PCI_D3hot);
4822 return 0;
4825 int ata_pci_device_resume(struct pci_dev *pdev)
4827 pci_set_power_state(pdev, PCI_D0);
4828 pci_restore_state(pdev);
4829 pci_enable_device(pdev);
4830 pci_set_master(pdev);
4831 return 0;
4833 #endif /* CONFIG_PCI */
4836 static int __init ata_init(void)
4838 ata_wq = create_workqueue("ata");
4839 if (!ata_wq)
4840 return -ENOMEM;
4842 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4843 return 0;
4846 static void __exit ata_exit(void)
4848 destroy_workqueue(ata_wq);
4851 module_init(ata_init);
4852 module_exit(ata_exit);
4854 static unsigned long ratelimit_time;
4855 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4857 int ata_ratelimit(void)
4859 int rc;
4860 unsigned long flags;
4862 spin_lock_irqsave(&ata_ratelimit_lock, flags);
4864 if (time_after(jiffies, ratelimit_time)) {
4865 rc = 1;
4866 ratelimit_time = jiffies + (HZ/5);
4867 } else
4868 rc = 0;
4870 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4872 return rc;
4876 * libata is essentially a library of internal helper functions for
4877 * low-level ATA host controller drivers. As such, the API/ABI is
4878 * likely to change as new drivers are added and updated.
4879 * Do not depend on ABI/API stability.
4882 EXPORT_SYMBOL_GPL(ata_std_bios_param);
4883 EXPORT_SYMBOL_GPL(ata_std_ports);
4884 EXPORT_SYMBOL_GPL(ata_device_add);
4885 EXPORT_SYMBOL_GPL(ata_host_set_remove);
4886 EXPORT_SYMBOL_GPL(ata_sg_init);
4887 EXPORT_SYMBOL_GPL(ata_sg_init_one);
4888 EXPORT_SYMBOL_GPL(__ata_qc_complete);
4889 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4890 EXPORT_SYMBOL_GPL(ata_eng_timeout);
4891 EXPORT_SYMBOL_GPL(ata_tf_load);
4892 EXPORT_SYMBOL_GPL(ata_tf_read);
4893 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4894 EXPORT_SYMBOL_GPL(ata_std_dev_select);
4895 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4896 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4897 EXPORT_SYMBOL_GPL(ata_check_status);
4898 EXPORT_SYMBOL_GPL(ata_altstatus);
4899 EXPORT_SYMBOL_GPL(ata_exec_command);
4900 EXPORT_SYMBOL_GPL(ata_port_start);
4901 EXPORT_SYMBOL_GPL(ata_port_stop);
4902 EXPORT_SYMBOL_GPL(ata_host_stop);
4903 EXPORT_SYMBOL_GPL(ata_interrupt);
4904 EXPORT_SYMBOL_GPL(ata_qc_prep);
4905 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4906 EXPORT_SYMBOL_GPL(ata_bmdma_start);
4907 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4908 EXPORT_SYMBOL_GPL(ata_bmdma_status);
4909 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4910 EXPORT_SYMBOL_GPL(ata_port_probe);
4911 EXPORT_SYMBOL_GPL(sata_phy_reset);
4912 EXPORT_SYMBOL_GPL(__sata_phy_reset);
4913 EXPORT_SYMBOL_GPL(ata_bus_reset);
4914 EXPORT_SYMBOL_GPL(ata_std_probeinit);
4915 EXPORT_SYMBOL_GPL(ata_std_softreset);
4916 EXPORT_SYMBOL_GPL(sata_std_hardreset);
4917 EXPORT_SYMBOL_GPL(ata_std_postreset);
4918 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
4919 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
4920 EXPORT_SYMBOL_GPL(ata_port_disable);
4921 EXPORT_SYMBOL_GPL(ata_ratelimit);
4922 EXPORT_SYMBOL_GPL(ata_busy_sleep);
4923 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4924 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
4925 EXPORT_SYMBOL_GPL(ata_scsi_timed_out);
4926 EXPORT_SYMBOL_GPL(ata_scsi_error);
4927 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4928 EXPORT_SYMBOL_GPL(ata_scsi_release);
4929 EXPORT_SYMBOL_GPL(ata_host_intr);
4930 EXPORT_SYMBOL_GPL(ata_dev_classify);
4931 EXPORT_SYMBOL_GPL(ata_dev_id_string);
4932 EXPORT_SYMBOL_GPL(ata_dev_id_c_string);
4933 EXPORT_SYMBOL_GPL(ata_dev_config);
4934 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
4935 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
4936 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
4938 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
4939 EXPORT_SYMBOL_GPL(ata_timing_compute);
4940 EXPORT_SYMBOL_GPL(ata_timing_merge);
4942 #ifdef CONFIG_PCI
4943 EXPORT_SYMBOL_GPL(pci_test_config_bits);
4944 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
4945 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4946 EXPORT_SYMBOL_GPL(ata_pci_init_one);
4947 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
4948 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
4949 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
4950 #endif /* CONFIG_PCI */
4952 EXPORT_SYMBOL_GPL(ata_device_suspend);
4953 EXPORT_SYMBOL_GPL(ata_device_resume);
4954 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
4955 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);