[PATCH] KVM: Move common msr handling to arch independent code
[linux-2.6/zen-sources.git] / drivers / kvm / vmx.c
blob5561c5936c3de1451c6472ba88c6e6af3d287602
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "kvm.h"
19 #include "vmx.h"
20 #include "kvm_vmx.h"
21 #include <linux/module.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <asm/io.h>
25 #include <asm/desc.h>
27 #include "segment_descriptor.h"
29 #define MSR_IA32_FEATURE_CONTROL 0x03a
31 MODULE_AUTHOR("Qumranet");
32 MODULE_LICENSE("GPL");
34 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
35 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
37 #ifdef CONFIG_X86_64
38 #define HOST_IS_64 1
39 #else
40 #define HOST_IS_64 0
41 #endif
43 static struct vmcs_descriptor {
44 int size;
45 int order;
46 u32 revision_id;
47 } vmcs_descriptor;
49 #define VMX_SEGMENT_FIELD(seg) \
50 [VCPU_SREG_##seg] = { \
51 .selector = GUEST_##seg##_SELECTOR, \
52 .base = GUEST_##seg##_BASE, \
53 .limit = GUEST_##seg##_LIMIT, \
54 .ar_bytes = GUEST_##seg##_AR_BYTES, \
57 static struct kvm_vmx_segment_field {
58 unsigned selector;
59 unsigned base;
60 unsigned limit;
61 unsigned ar_bytes;
62 } kvm_vmx_segment_fields[] = {
63 VMX_SEGMENT_FIELD(CS),
64 VMX_SEGMENT_FIELD(DS),
65 VMX_SEGMENT_FIELD(ES),
66 VMX_SEGMENT_FIELD(FS),
67 VMX_SEGMENT_FIELD(GS),
68 VMX_SEGMENT_FIELD(SS),
69 VMX_SEGMENT_FIELD(TR),
70 VMX_SEGMENT_FIELD(LDTR),
73 static const u32 vmx_msr_index[] = {
74 #ifdef CONFIG_X86_64
75 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
76 #endif
77 MSR_EFER, MSR_K6_STAR,
79 #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
81 static inline int is_page_fault(u32 intr_info)
83 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
84 INTR_INFO_VALID_MASK)) ==
85 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
88 static inline int is_external_interrupt(u32 intr_info)
90 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
91 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
94 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
96 int i;
98 for (i = 0; i < vcpu->nmsrs; ++i)
99 if (vcpu->guest_msrs[i].index == msr)
100 return &vcpu->guest_msrs[i];
101 return 0;
104 static void vmcs_clear(struct vmcs *vmcs)
106 u64 phys_addr = __pa(vmcs);
107 u8 error;
109 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
110 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
111 : "cc", "memory");
112 if (error)
113 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
114 vmcs, phys_addr);
117 static void __vcpu_clear(void *arg)
119 struct kvm_vcpu *vcpu = arg;
120 int cpu = smp_processor_id();
122 if (vcpu->cpu == cpu)
123 vmcs_clear(vcpu->vmcs);
124 if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
125 per_cpu(current_vmcs, cpu) = NULL;
128 static unsigned long vmcs_readl(unsigned long field)
130 unsigned long value;
132 asm volatile (ASM_VMX_VMREAD_RDX_RAX
133 : "=a"(value) : "d"(field) : "cc");
134 return value;
137 static u16 vmcs_read16(unsigned long field)
139 return vmcs_readl(field);
142 static u32 vmcs_read32(unsigned long field)
144 return vmcs_readl(field);
147 static u64 vmcs_read64(unsigned long field)
149 #ifdef CONFIG_X86_64
150 return vmcs_readl(field);
151 #else
152 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
153 #endif
156 static void vmcs_writel(unsigned long field, unsigned long value)
158 u8 error;
160 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
161 : "=q"(error) : "a"(value), "d"(field) : "cc" );
162 if (error)
163 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
164 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
167 static void vmcs_write16(unsigned long field, u16 value)
169 vmcs_writel(field, value);
172 static void vmcs_write32(unsigned long field, u32 value)
174 vmcs_writel(field, value);
177 static void vmcs_write64(unsigned long field, u64 value)
179 #ifdef CONFIG_X86_64
180 vmcs_writel(field, value);
181 #else
182 vmcs_writel(field, value);
183 asm volatile ("");
184 vmcs_writel(field+1, value >> 32);
185 #endif
189 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
190 * vcpu mutex is already taken.
192 static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
194 u64 phys_addr = __pa(vcpu->vmcs);
195 int cpu;
197 cpu = get_cpu();
199 if (vcpu->cpu != cpu) {
200 smp_call_function(__vcpu_clear, vcpu, 0, 1);
201 vcpu->launched = 0;
204 if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
205 u8 error;
207 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
208 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
209 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
210 : "cc");
211 if (error)
212 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
213 vcpu->vmcs, phys_addr);
216 if (vcpu->cpu != cpu) {
217 struct descriptor_table dt;
218 unsigned long sysenter_esp;
220 vcpu->cpu = cpu;
222 * Linux uses per-cpu TSS and GDT, so set these when switching
223 * processors.
225 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
226 get_gdt(&dt);
227 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
229 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
230 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
232 return vcpu;
235 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
237 put_cpu();
240 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
242 return vmcs_readl(GUEST_RFLAGS);
245 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
247 vmcs_writel(GUEST_RFLAGS, rflags);
250 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
252 unsigned long rip;
253 u32 interruptibility;
255 rip = vmcs_readl(GUEST_RIP);
256 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
257 vmcs_writel(GUEST_RIP, rip);
260 * We emulated an instruction, so temporary interrupt blocking
261 * should be removed, if set.
263 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
264 if (interruptibility & 3)
265 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
266 interruptibility & ~3);
269 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
271 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
272 vmcs_readl(GUEST_RIP));
273 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
274 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
275 GP_VECTOR |
276 INTR_TYPE_EXCEPTION |
277 INTR_INFO_DELIEVER_CODE_MASK |
278 INTR_INFO_VALID_MASK);
282 * reads and returns guest's timestamp counter "register"
283 * guest_tsc = host_tsc + tsc_offset -- 21.3
285 static u64 guest_read_tsc(void)
287 u64 host_tsc, tsc_offset;
289 rdtscll(host_tsc);
290 tsc_offset = vmcs_read64(TSC_OFFSET);
291 return host_tsc + tsc_offset;
295 * writes 'guest_tsc' into guest's timestamp counter "register"
296 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
298 static void guest_write_tsc(u64 guest_tsc)
300 u64 host_tsc;
302 rdtscll(host_tsc);
303 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
306 static void reload_tss(void)
308 #ifndef CONFIG_X86_64
311 * VT restores TR but not its size. Useless.
313 struct descriptor_table gdt;
314 struct segment_descriptor *descs;
316 get_gdt(&gdt);
317 descs = (void *)gdt.base;
318 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
319 load_TR_desc();
320 #endif
324 * Reads an msr value (of 'msr_index') into 'pdata'.
325 * Returns 0 on success, non-0 otherwise.
326 * Assumes vcpu_load() was already called.
328 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
330 u64 data;
331 struct vmx_msr_entry *msr;
333 if (!pdata) {
334 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
335 return -EINVAL;
338 switch (msr_index) {
339 #ifdef CONFIG_X86_64
340 case MSR_FS_BASE:
341 data = vmcs_readl(GUEST_FS_BASE);
342 break;
343 case MSR_GS_BASE:
344 data = vmcs_readl(GUEST_GS_BASE);
345 break;
346 case MSR_EFER:
347 return kvm_get_msr_common(vcpu, msr_index, pdata);
348 #endif
349 case MSR_IA32_TIME_STAMP_COUNTER:
350 data = guest_read_tsc();
351 break;
352 case MSR_IA32_SYSENTER_CS:
353 data = vmcs_read32(GUEST_SYSENTER_CS);
354 break;
355 case MSR_IA32_SYSENTER_EIP:
356 data = vmcs_read32(GUEST_SYSENTER_EIP);
357 break;
358 case MSR_IA32_SYSENTER_ESP:
359 data = vmcs_read32(GUEST_SYSENTER_ESP);
360 break;
361 default:
362 msr = find_msr_entry(vcpu, msr_index);
363 if (msr) {
364 data = msr->data;
365 break;
367 return kvm_get_msr_common(vcpu, msr_index, pdata);
370 *pdata = data;
371 return 0;
375 * Writes msr value into into the appropriate "register".
376 * Returns 0 on success, non-0 otherwise.
377 * Assumes vcpu_load() was already called.
379 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
381 struct vmx_msr_entry *msr;
382 switch (msr_index) {
383 #ifdef CONFIG_X86_64
384 case MSR_EFER:
385 return kvm_set_msr_common(vcpu, msr_index, data);
386 case MSR_FS_BASE:
387 vmcs_writel(GUEST_FS_BASE, data);
388 break;
389 case MSR_GS_BASE:
390 vmcs_writel(GUEST_GS_BASE, data);
391 break;
392 #endif
393 case MSR_IA32_SYSENTER_CS:
394 vmcs_write32(GUEST_SYSENTER_CS, data);
395 break;
396 case MSR_IA32_SYSENTER_EIP:
397 vmcs_write32(GUEST_SYSENTER_EIP, data);
398 break;
399 case MSR_IA32_SYSENTER_ESP:
400 vmcs_write32(GUEST_SYSENTER_ESP, data);
401 break;
402 case MSR_IA32_TIME_STAMP_COUNTER: {
403 guest_write_tsc(data);
404 break;
406 default:
407 msr = find_msr_entry(vcpu, msr_index);
408 if (msr) {
409 msr->data = data;
410 break;
412 return kvm_set_msr_common(vcpu, msr_index, data);
413 msr->data = data;
414 break;
417 return 0;
421 * Sync the rsp and rip registers into the vcpu structure. This allows
422 * registers to be accessed by indexing vcpu->regs.
424 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
426 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
427 vcpu->rip = vmcs_readl(GUEST_RIP);
431 * Syncs rsp and rip back into the vmcs. Should be called after possible
432 * modification.
434 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
436 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
437 vmcs_writel(GUEST_RIP, vcpu->rip);
440 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
442 unsigned long dr7 = 0x400;
443 u32 exception_bitmap;
444 int old_singlestep;
446 exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
447 old_singlestep = vcpu->guest_debug.singlestep;
449 vcpu->guest_debug.enabled = dbg->enabled;
450 if (vcpu->guest_debug.enabled) {
451 int i;
453 dr7 |= 0x200; /* exact */
454 for (i = 0; i < 4; ++i) {
455 if (!dbg->breakpoints[i].enabled)
456 continue;
457 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
458 dr7 |= 2 << (i*2); /* global enable */
459 dr7 |= 0 << (i*4+16); /* execution breakpoint */
462 exception_bitmap |= (1u << 1); /* Trap debug exceptions */
464 vcpu->guest_debug.singlestep = dbg->singlestep;
465 } else {
466 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
467 vcpu->guest_debug.singlestep = 0;
470 if (old_singlestep && !vcpu->guest_debug.singlestep) {
471 unsigned long flags;
473 flags = vmcs_readl(GUEST_RFLAGS);
474 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
475 vmcs_writel(GUEST_RFLAGS, flags);
478 vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
479 vmcs_writel(GUEST_DR7, dr7);
481 return 0;
484 static __init int cpu_has_kvm_support(void)
486 unsigned long ecx = cpuid_ecx(1);
487 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
490 static __init int vmx_disabled_by_bios(void)
492 u64 msr;
494 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
495 return (msr & 5) == 1; /* locked but not enabled */
498 static __init void hardware_enable(void *garbage)
500 int cpu = raw_smp_processor_id();
501 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
502 u64 old;
504 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
505 if ((old & 5) != 5)
506 /* enable and lock */
507 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
508 write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
509 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
510 : "memory", "cc");
513 static void hardware_disable(void *garbage)
515 asm volatile (ASM_VMX_VMXOFF : : : "cc");
518 static __init void setup_vmcs_descriptor(void)
520 u32 vmx_msr_low, vmx_msr_high;
522 rdmsr(MSR_IA32_VMX_BASIC_MSR, vmx_msr_low, vmx_msr_high);
523 vmcs_descriptor.size = vmx_msr_high & 0x1fff;
524 vmcs_descriptor.order = get_order(vmcs_descriptor.size);
525 vmcs_descriptor.revision_id = vmx_msr_low;
528 static struct vmcs *alloc_vmcs_cpu(int cpu)
530 int node = cpu_to_node(cpu);
531 struct page *pages;
532 struct vmcs *vmcs;
534 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
535 if (!pages)
536 return NULL;
537 vmcs = page_address(pages);
538 memset(vmcs, 0, vmcs_descriptor.size);
539 vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
540 return vmcs;
543 static struct vmcs *alloc_vmcs(void)
545 return alloc_vmcs_cpu(smp_processor_id());
548 static void free_vmcs(struct vmcs *vmcs)
550 free_pages((unsigned long)vmcs, vmcs_descriptor.order);
553 static __exit void free_kvm_area(void)
555 int cpu;
557 for_each_online_cpu(cpu)
558 free_vmcs(per_cpu(vmxarea, cpu));
561 extern struct vmcs *alloc_vmcs_cpu(int cpu);
563 static __init int alloc_kvm_area(void)
565 int cpu;
567 for_each_online_cpu(cpu) {
568 struct vmcs *vmcs;
570 vmcs = alloc_vmcs_cpu(cpu);
571 if (!vmcs) {
572 free_kvm_area();
573 return -ENOMEM;
576 per_cpu(vmxarea, cpu) = vmcs;
578 return 0;
581 static __init int hardware_setup(void)
583 setup_vmcs_descriptor();
584 return alloc_kvm_area();
587 static __exit void hardware_unsetup(void)
589 free_kvm_area();
592 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
594 if (vcpu->rmode.active)
595 vmcs_write32(EXCEPTION_BITMAP, ~0);
596 else
597 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
600 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
602 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
604 if (vmcs_readl(sf->base) == save->base) {
605 vmcs_write16(sf->selector, save->selector);
606 vmcs_writel(sf->base, save->base);
607 vmcs_write32(sf->limit, save->limit);
608 vmcs_write32(sf->ar_bytes, save->ar);
609 } else {
610 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
611 << AR_DPL_SHIFT;
612 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
616 static void enter_pmode(struct kvm_vcpu *vcpu)
618 unsigned long flags;
620 vcpu->rmode.active = 0;
622 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
623 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
624 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
626 flags = vmcs_readl(GUEST_RFLAGS);
627 flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
628 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
629 vmcs_writel(GUEST_RFLAGS, flags);
631 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
632 (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
634 update_exception_bitmap(vcpu);
636 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
637 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
638 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
639 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
641 vmcs_write16(GUEST_SS_SELECTOR, 0);
642 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
644 vmcs_write16(GUEST_CS_SELECTOR,
645 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
646 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
649 static int rmode_tss_base(struct kvm* kvm)
651 gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
652 return base_gfn << PAGE_SHIFT;
655 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
657 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
659 save->selector = vmcs_read16(sf->selector);
660 save->base = vmcs_readl(sf->base);
661 save->limit = vmcs_read32(sf->limit);
662 save->ar = vmcs_read32(sf->ar_bytes);
663 vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
664 vmcs_write32(sf->limit, 0xffff);
665 vmcs_write32(sf->ar_bytes, 0xf3);
668 static void enter_rmode(struct kvm_vcpu *vcpu)
670 unsigned long flags;
672 vcpu->rmode.active = 1;
674 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
675 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
677 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
678 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
680 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
681 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
683 flags = vmcs_readl(GUEST_RFLAGS);
684 vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
686 flags |= IOPL_MASK | X86_EFLAGS_VM;
688 vmcs_writel(GUEST_RFLAGS, flags);
689 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
690 update_exception_bitmap(vcpu);
692 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
693 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
694 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
696 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
697 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
698 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
700 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
701 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
702 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
703 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
706 #ifdef CONFIG_X86_64
708 static void enter_lmode(struct kvm_vcpu *vcpu)
710 u32 guest_tr_ar;
712 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
713 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
714 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
715 __FUNCTION__);
716 vmcs_write32(GUEST_TR_AR_BYTES,
717 (guest_tr_ar & ~AR_TYPE_MASK)
718 | AR_TYPE_BUSY_64_TSS);
721 vcpu->shadow_efer |= EFER_LMA;
723 find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
724 vmcs_write32(VM_ENTRY_CONTROLS,
725 vmcs_read32(VM_ENTRY_CONTROLS)
726 | VM_ENTRY_CONTROLS_IA32E_MASK);
729 static void exit_lmode(struct kvm_vcpu *vcpu)
731 vcpu->shadow_efer &= ~EFER_LMA;
733 vmcs_write32(VM_ENTRY_CONTROLS,
734 vmcs_read32(VM_ENTRY_CONTROLS)
735 & ~VM_ENTRY_CONTROLS_IA32E_MASK);
738 #endif
740 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
742 if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
743 enter_pmode(vcpu);
745 if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
746 enter_rmode(vcpu);
748 #ifdef CONFIG_X86_64
749 if (vcpu->shadow_efer & EFER_LME) {
750 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
751 enter_lmode(vcpu);
752 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
753 exit_lmode(vcpu);
755 #endif
757 vmcs_writel(CR0_READ_SHADOW, cr0);
758 vmcs_writel(GUEST_CR0,
759 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
760 vcpu->cr0 = cr0;
764 * Used when restoring the VM to avoid corrupting segment registers
766 static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
768 vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
769 update_exception_bitmap(vcpu);
770 vmcs_writel(CR0_READ_SHADOW, cr0);
771 vmcs_writel(GUEST_CR0,
772 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
773 vcpu->cr0 = cr0;
776 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
778 vmcs_writel(GUEST_CR3, cr3);
781 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
783 vmcs_writel(CR4_READ_SHADOW, cr4);
784 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
785 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
786 vcpu->cr4 = cr4;
789 #ifdef CONFIG_X86_64
791 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
793 struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
795 vcpu->shadow_efer = efer;
796 if (efer & EFER_LMA) {
797 vmcs_write32(VM_ENTRY_CONTROLS,
798 vmcs_read32(VM_ENTRY_CONTROLS) |
799 VM_ENTRY_CONTROLS_IA32E_MASK);
800 msr->data = efer;
802 } else {
803 vmcs_write32(VM_ENTRY_CONTROLS,
804 vmcs_read32(VM_ENTRY_CONTROLS) &
805 ~VM_ENTRY_CONTROLS_IA32E_MASK);
807 msr->data = efer & ~EFER_LME;
811 #endif
813 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
815 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
817 return vmcs_readl(sf->base);
820 static void vmx_get_segment(struct kvm_vcpu *vcpu,
821 struct kvm_segment *var, int seg)
823 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
824 u32 ar;
826 var->base = vmcs_readl(sf->base);
827 var->limit = vmcs_read32(sf->limit);
828 var->selector = vmcs_read16(sf->selector);
829 ar = vmcs_read32(sf->ar_bytes);
830 if (ar & AR_UNUSABLE_MASK)
831 ar = 0;
832 var->type = ar & 15;
833 var->s = (ar >> 4) & 1;
834 var->dpl = (ar >> 5) & 3;
835 var->present = (ar >> 7) & 1;
836 var->avl = (ar >> 12) & 1;
837 var->l = (ar >> 13) & 1;
838 var->db = (ar >> 14) & 1;
839 var->g = (ar >> 15) & 1;
840 var->unusable = (ar >> 16) & 1;
843 static void vmx_set_segment(struct kvm_vcpu *vcpu,
844 struct kvm_segment *var, int seg)
846 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
847 u32 ar;
849 vmcs_writel(sf->base, var->base);
850 vmcs_write32(sf->limit, var->limit);
851 vmcs_write16(sf->selector, var->selector);
852 if (var->unusable)
853 ar = 1 << 16;
854 else {
855 ar = var->type & 15;
856 ar |= (var->s & 1) << 4;
857 ar |= (var->dpl & 3) << 5;
858 ar |= (var->present & 1) << 7;
859 ar |= (var->avl & 1) << 12;
860 ar |= (var->l & 1) << 13;
861 ar |= (var->db & 1) << 14;
862 ar |= (var->g & 1) << 15;
864 if (ar == 0) /* a 0 value means unusable */
865 ar = AR_UNUSABLE_MASK;
866 vmcs_write32(sf->ar_bytes, ar);
869 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
871 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
873 *db = (ar >> 14) & 1;
874 *l = (ar >> 13) & 1;
877 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
879 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
880 dt->base = vmcs_readl(GUEST_IDTR_BASE);
883 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
885 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
886 vmcs_writel(GUEST_IDTR_BASE, dt->base);
889 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
891 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
892 dt->base = vmcs_readl(GUEST_GDTR_BASE);
895 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
897 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
898 vmcs_writel(GUEST_GDTR_BASE, dt->base);
901 static int init_rmode_tss(struct kvm* kvm)
903 struct page *p1, *p2, *p3;
904 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
905 char *page;
907 p1 = _gfn_to_page(kvm, fn++);
908 p2 = _gfn_to_page(kvm, fn++);
909 p3 = _gfn_to_page(kvm, fn);
911 if (!p1 || !p2 || !p3) {
912 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
913 return 0;
916 page = kmap_atomic(p1, KM_USER0);
917 memset(page, 0, PAGE_SIZE);
918 *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
919 kunmap_atomic(page, KM_USER0);
921 page = kmap_atomic(p2, KM_USER0);
922 memset(page, 0, PAGE_SIZE);
923 kunmap_atomic(page, KM_USER0);
925 page = kmap_atomic(p3, KM_USER0);
926 memset(page, 0, PAGE_SIZE);
927 *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
928 kunmap_atomic(page, KM_USER0);
930 return 1;
933 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
935 u32 msr_high, msr_low;
937 rdmsr(msr, msr_low, msr_high);
939 val &= msr_high;
940 val |= msr_low;
941 vmcs_write32(vmcs_field, val);
944 static void seg_setup(int seg)
946 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
948 vmcs_write16(sf->selector, 0);
949 vmcs_writel(sf->base, 0);
950 vmcs_write32(sf->limit, 0xffff);
951 vmcs_write32(sf->ar_bytes, 0x93);
955 * Sets up the vmcs for emulated real mode.
957 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
959 u32 host_sysenter_cs;
960 u32 junk;
961 unsigned long a;
962 struct descriptor_table dt;
963 int i;
964 int ret = 0;
965 int nr_good_msrs;
966 extern asmlinkage void kvm_vmx_return(void);
968 if (!init_rmode_tss(vcpu->kvm)) {
969 ret = -ENOMEM;
970 goto out;
973 memset(vcpu->regs, 0, sizeof(vcpu->regs));
974 vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
975 vcpu->cr8 = 0;
976 vcpu->apic_base = 0xfee00000 |
977 /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
978 MSR_IA32_APICBASE_ENABLE;
980 fx_init(vcpu);
983 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
984 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
986 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
987 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
988 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
989 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
991 seg_setup(VCPU_SREG_DS);
992 seg_setup(VCPU_SREG_ES);
993 seg_setup(VCPU_SREG_FS);
994 seg_setup(VCPU_SREG_GS);
995 seg_setup(VCPU_SREG_SS);
997 vmcs_write16(GUEST_TR_SELECTOR, 0);
998 vmcs_writel(GUEST_TR_BASE, 0);
999 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1000 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1002 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1003 vmcs_writel(GUEST_LDTR_BASE, 0);
1004 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1005 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1007 vmcs_write32(GUEST_SYSENTER_CS, 0);
1008 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1009 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1011 vmcs_writel(GUEST_RFLAGS, 0x02);
1012 vmcs_writel(GUEST_RIP, 0xfff0);
1013 vmcs_writel(GUEST_RSP, 0);
1015 vmcs_writel(GUEST_CR3, 0);
1017 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1018 vmcs_writel(GUEST_DR7, 0x400);
1020 vmcs_writel(GUEST_GDTR_BASE, 0);
1021 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1023 vmcs_writel(GUEST_IDTR_BASE, 0);
1024 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1026 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1027 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1028 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1030 /* I/O */
1031 vmcs_write64(IO_BITMAP_A, 0);
1032 vmcs_write64(IO_BITMAP_B, 0);
1034 guest_write_tsc(0);
1036 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1038 /* Special registers */
1039 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1041 /* Control */
1042 vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS_MSR,
1043 PIN_BASED_VM_EXEC_CONTROL,
1044 PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
1045 | PIN_BASED_NMI_EXITING /* 20.6.1 */
1047 vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS_MSR,
1048 CPU_BASED_VM_EXEC_CONTROL,
1049 CPU_BASED_HLT_EXITING /* 20.6.2 */
1050 | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
1051 | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
1052 | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
1053 | CPU_BASED_INVDPG_EXITING
1054 | CPU_BASED_MOV_DR_EXITING
1055 | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
1058 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1059 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1060 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1061 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1063 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1064 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1065 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1067 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1068 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1069 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1070 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1071 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1072 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1073 #ifdef CONFIG_X86_64
1074 rdmsrl(MSR_FS_BASE, a);
1075 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1076 rdmsrl(MSR_GS_BASE, a);
1077 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1078 #else
1079 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1080 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1081 #endif
1083 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1085 get_idt(&dt);
1086 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1089 vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1091 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1092 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1093 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1094 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1095 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1096 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1098 ret = -ENOMEM;
1099 vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1100 if (!vcpu->guest_msrs)
1101 goto out;
1102 vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1103 if (!vcpu->host_msrs)
1104 goto out_free_guest_msrs;
1106 for (i = 0; i < NR_VMX_MSR; ++i) {
1107 u32 index = vmx_msr_index[i];
1108 u32 data_low, data_high;
1109 u64 data;
1110 int j = vcpu->nmsrs;
1112 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1113 continue;
1114 data = data_low | ((u64)data_high << 32);
1115 vcpu->host_msrs[j].index = index;
1116 vcpu->host_msrs[j].reserved = 0;
1117 vcpu->host_msrs[j].data = data;
1118 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1119 ++vcpu->nmsrs;
1121 printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
1123 nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
1124 vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
1125 virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1126 vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
1127 virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1128 vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
1129 virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
1130 vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS_MSR, VM_EXIT_CONTROLS,
1131 (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
1132 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
1133 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1134 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1137 /* 22.2.1, 20.8.1 */
1138 vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS_MSR,
1139 VM_ENTRY_CONTROLS, 0);
1140 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1142 #ifdef CONFIG_X86_64
1143 vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1144 vmcs_writel(TPR_THRESHOLD, 0);
1145 #endif
1147 vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
1148 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1150 vcpu->cr0 = 0x60000010;
1151 vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1152 vmx_set_cr4(vcpu, 0);
1153 #ifdef CONFIG_X86_64
1154 vmx_set_efer(vcpu, 0);
1155 #endif
1157 return 0;
1159 out_free_guest_msrs:
1160 kfree(vcpu->guest_msrs);
1161 out:
1162 return ret;
1165 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1167 u16 ent[2];
1168 u16 cs;
1169 u16 ip;
1170 unsigned long flags;
1171 unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1172 u16 sp = vmcs_readl(GUEST_RSP);
1173 u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1175 if (sp > ss_limit || sp - 6 > sp) {
1176 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1177 __FUNCTION__,
1178 vmcs_readl(GUEST_RSP),
1179 vmcs_readl(GUEST_SS_BASE),
1180 vmcs_read32(GUEST_SS_LIMIT));
1181 return;
1184 if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1185 sizeof(ent)) {
1186 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1187 return;
1190 flags = vmcs_readl(GUEST_RFLAGS);
1191 cs = vmcs_readl(GUEST_CS_BASE) >> 4;
1192 ip = vmcs_readl(GUEST_RIP);
1195 if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1196 kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1197 kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1198 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1199 return;
1202 vmcs_writel(GUEST_RFLAGS, flags &
1203 ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1204 vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1205 vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1206 vmcs_writel(GUEST_RIP, ent[0]);
1207 vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1210 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1212 int word_index = __ffs(vcpu->irq_summary);
1213 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1214 int irq = word_index * BITS_PER_LONG + bit_index;
1216 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1217 if (!vcpu->irq_pending[word_index])
1218 clear_bit(word_index, &vcpu->irq_summary);
1220 if (vcpu->rmode.active) {
1221 inject_rmode_irq(vcpu, irq);
1222 return;
1224 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1225 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1228 static void kvm_try_inject_irq(struct kvm_vcpu *vcpu)
1230 if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF)
1231 && (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0)
1233 * Interrupts enabled, and not blocked by sti or mov ss. Good.
1235 kvm_do_inject_irq(vcpu);
1236 else
1238 * Interrupts blocked. Wait for unblock.
1240 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1241 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
1242 | CPU_BASED_VIRTUAL_INTR_PENDING);
1245 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1247 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1249 set_debugreg(dbg->bp[0], 0);
1250 set_debugreg(dbg->bp[1], 1);
1251 set_debugreg(dbg->bp[2], 2);
1252 set_debugreg(dbg->bp[3], 3);
1254 if (dbg->singlestep) {
1255 unsigned long flags;
1257 flags = vmcs_readl(GUEST_RFLAGS);
1258 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1259 vmcs_writel(GUEST_RFLAGS, flags);
1263 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1264 int vec, u32 err_code)
1266 if (!vcpu->rmode.active)
1267 return 0;
1269 if (vec == GP_VECTOR && err_code == 0)
1270 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1271 return 1;
1272 return 0;
1275 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1277 u32 intr_info, error_code;
1278 unsigned long cr2, rip;
1279 u32 vect_info;
1280 enum emulation_result er;
1282 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1283 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1285 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1286 !is_page_fault(intr_info)) {
1287 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1288 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1291 if (is_external_interrupt(vect_info)) {
1292 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1293 set_bit(irq, vcpu->irq_pending);
1294 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1297 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1298 asm ("int $2");
1299 return 1;
1301 error_code = 0;
1302 rip = vmcs_readl(GUEST_RIP);
1303 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1304 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1305 if (is_page_fault(intr_info)) {
1306 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1308 spin_lock(&vcpu->kvm->lock);
1309 if (!vcpu->mmu.page_fault(vcpu, cr2, error_code)) {
1310 spin_unlock(&vcpu->kvm->lock);
1311 return 1;
1314 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1315 spin_unlock(&vcpu->kvm->lock);
1317 switch (er) {
1318 case EMULATE_DONE:
1319 return 1;
1320 case EMULATE_DO_MMIO:
1321 ++kvm_stat.mmio_exits;
1322 kvm_run->exit_reason = KVM_EXIT_MMIO;
1323 return 0;
1324 case EMULATE_FAIL:
1325 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1326 break;
1327 default:
1328 BUG();
1332 if (vcpu->rmode.active &&
1333 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1334 error_code))
1335 return 1;
1337 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1338 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1339 return 0;
1341 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1342 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1343 kvm_run->ex.error_code = error_code;
1344 return 0;
1347 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1348 struct kvm_run *kvm_run)
1350 ++kvm_stat.irq_exits;
1351 return 1;
1355 static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
1357 u64 inst;
1358 gva_t rip;
1359 int countr_size;
1360 int i, n;
1362 if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1363 countr_size = 2;
1364 } else {
1365 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1367 countr_size = (cs_ar & AR_L_MASK) ? 8:
1368 (cs_ar & AR_DB_MASK) ? 4: 2;
1371 rip = vmcs_readl(GUEST_RIP);
1372 if (countr_size != 8)
1373 rip += vmcs_readl(GUEST_CS_BASE);
1375 n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1377 for (i = 0; i < n; i++) {
1378 switch (((u8*)&inst)[i]) {
1379 case 0xf0:
1380 case 0xf2:
1381 case 0xf3:
1382 case 0x2e:
1383 case 0x36:
1384 case 0x3e:
1385 case 0x26:
1386 case 0x64:
1387 case 0x65:
1388 case 0x66:
1389 break;
1390 case 0x67:
1391 countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1392 default:
1393 goto done;
1396 return 0;
1397 done:
1398 countr_size *= 8;
1399 *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1400 return 1;
1403 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1405 u64 exit_qualification;
1407 ++kvm_stat.io_exits;
1408 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1409 kvm_run->exit_reason = KVM_EXIT_IO;
1410 if (exit_qualification & 8)
1411 kvm_run->io.direction = KVM_EXIT_IO_IN;
1412 else
1413 kvm_run->io.direction = KVM_EXIT_IO_OUT;
1414 kvm_run->io.size = (exit_qualification & 7) + 1;
1415 kvm_run->io.string = (exit_qualification & 16) != 0;
1416 kvm_run->io.string_down
1417 = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1418 kvm_run->io.rep = (exit_qualification & 32) != 0;
1419 kvm_run->io.port = exit_qualification >> 16;
1420 if (kvm_run->io.string) {
1421 if (!get_io_count(vcpu, &kvm_run->io.count))
1422 return 1;
1423 kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1424 } else
1425 kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
1426 return 0;
1429 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1431 u64 address = vmcs_read64(EXIT_QUALIFICATION);
1432 int instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1433 spin_lock(&vcpu->kvm->lock);
1434 vcpu->mmu.inval_page(vcpu, address);
1435 spin_unlock(&vcpu->kvm->lock);
1436 vmcs_writel(GUEST_RIP, vmcs_readl(GUEST_RIP) + instruction_length);
1437 return 1;
1440 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1442 u64 exit_qualification;
1443 int cr;
1444 int reg;
1446 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1447 cr = exit_qualification & 15;
1448 reg = (exit_qualification >> 8) & 15;
1449 switch ((exit_qualification >> 4) & 3) {
1450 case 0: /* mov to cr */
1451 switch (cr) {
1452 case 0:
1453 vcpu_load_rsp_rip(vcpu);
1454 set_cr0(vcpu, vcpu->regs[reg]);
1455 skip_emulated_instruction(vcpu);
1456 return 1;
1457 case 3:
1458 vcpu_load_rsp_rip(vcpu);
1459 set_cr3(vcpu, vcpu->regs[reg]);
1460 skip_emulated_instruction(vcpu);
1461 return 1;
1462 case 4:
1463 vcpu_load_rsp_rip(vcpu);
1464 set_cr4(vcpu, vcpu->regs[reg]);
1465 skip_emulated_instruction(vcpu);
1466 return 1;
1467 case 8:
1468 vcpu_load_rsp_rip(vcpu);
1469 set_cr8(vcpu, vcpu->regs[reg]);
1470 skip_emulated_instruction(vcpu);
1471 return 1;
1473 break;
1474 case 1: /*mov from cr*/
1475 switch (cr) {
1476 case 3:
1477 vcpu_load_rsp_rip(vcpu);
1478 vcpu->regs[reg] = vcpu->cr3;
1479 vcpu_put_rsp_rip(vcpu);
1480 skip_emulated_instruction(vcpu);
1481 return 1;
1482 case 8:
1483 printk(KERN_DEBUG "handle_cr: read CR8 "
1484 "cpu erratum AA15\n");
1485 vcpu_load_rsp_rip(vcpu);
1486 vcpu->regs[reg] = vcpu->cr8;
1487 vcpu_put_rsp_rip(vcpu);
1488 skip_emulated_instruction(vcpu);
1489 return 1;
1491 break;
1492 case 3: /* lmsw */
1493 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1495 skip_emulated_instruction(vcpu);
1496 return 1;
1497 default:
1498 break;
1500 kvm_run->exit_reason = 0;
1501 printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1502 (int)(exit_qualification >> 4) & 3, cr);
1503 return 0;
1506 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1508 u64 exit_qualification;
1509 unsigned long val;
1510 int dr, reg;
1513 * FIXME: this code assumes the host is debugging the guest.
1514 * need to deal with guest debugging itself too.
1516 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1517 dr = exit_qualification & 7;
1518 reg = (exit_qualification >> 8) & 15;
1519 vcpu_load_rsp_rip(vcpu);
1520 if (exit_qualification & 16) {
1521 /* mov from dr */
1522 switch (dr) {
1523 case 6:
1524 val = 0xffff0ff0;
1525 break;
1526 case 7:
1527 val = 0x400;
1528 break;
1529 default:
1530 val = 0;
1532 vcpu->regs[reg] = val;
1533 } else {
1534 /* mov to dr */
1536 vcpu_put_rsp_rip(vcpu);
1537 skip_emulated_instruction(vcpu);
1538 return 1;
1541 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1543 kvm_run->exit_reason = KVM_EXIT_CPUID;
1544 return 0;
1547 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1549 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1550 u64 data;
1552 if (vmx_get_msr(vcpu, ecx, &data)) {
1553 vmx_inject_gp(vcpu, 0);
1554 return 1;
1557 /* FIXME: handling of bits 32:63 of rax, rdx */
1558 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1559 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1560 skip_emulated_instruction(vcpu);
1561 return 1;
1564 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1566 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1567 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1568 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1570 if (vmx_set_msr(vcpu, ecx, data) != 0) {
1571 vmx_inject_gp(vcpu, 0);
1572 return 1;
1575 skip_emulated_instruction(vcpu);
1576 return 1;
1579 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1580 struct kvm_run *kvm_run)
1582 /* Turn off interrupt window reporting. */
1583 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1584 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL)
1585 & ~CPU_BASED_VIRTUAL_INTR_PENDING);
1586 return 1;
1589 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1591 skip_emulated_instruction(vcpu);
1592 if (vcpu->irq_summary && (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF))
1593 return 1;
1595 kvm_run->exit_reason = KVM_EXIT_HLT;
1596 return 0;
1600 * The exit handlers return 1 if the exit was handled fully and guest execution
1601 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
1602 * to be done to userspace and return 0.
1604 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1605 struct kvm_run *kvm_run) = {
1606 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
1607 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
1608 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
1609 [EXIT_REASON_INVLPG] = handle_invlpg,
1610 [EXIT_REASON_CR_ACCESS] = handle_cr,
1611 [EXIT_REASON_DR_ACCESS] = handle_dr,
1612 [EXIT_REASON_CPUID] = handle_cpuid,
1613 [EXIT_REASON_MSR_READ] = handle_rdmsr,
1614 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
1615 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
1616 [EXIT_REASON_HLT] = handle_halt,
1619 static const int kvm_vmx_max_exit_handlers =
1620 sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1623 * The guest has exited. See if we can fix it or if we need userspace
1624 * assistance.
1626 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1628 u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1629 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1631 if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1632 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1633 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1634 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1635 kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1636 if (exit_reason < kvm_vmx_max_exit_handlers
1637 && kvm_vmx_exit_handlers[exit_reason])
1638 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1639 else {
1640 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1641 kvm_run->hw.hardware_exit_reason = exit_reason;
1643 return 0;
1646 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1648 u8 fail;
1649 u16 fs_sel, gs_sel, ldt_sel;
1650 int fs_gs_ldt_reload_needed;
1652 again:
1654 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1655 * allow segment selectors with cpl > 0 or ti == 1.
1657 fs_sel = read_fs();
1658 gs_sel = read_gs();
1659 ldt_sel = read_ldt();
1660 fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1661 if (!fs_gs_ldt_reload_needed) {
1662 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1663 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1664 } else {
1665 vmcs_write16(HOST_FS_SELECTOR, 0);
1666 vmcs_write16(HOST_GS_SELECTOR, 0);
1669 #ifdef CONFIG_X86_64
1670 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1671 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1672 #else
1673 vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1674 vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1675 #endif
1677 if (vcpu->irq_summary &&
1678 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1679 kvm_try_inject_irq(vcpu);
1681 if (vcpu->guest_debug.enabled)
1682 kvm_guest_debug_pre(vcpu);
1684 fx_save(vcpu->host_fx_image);
1685 fx_restore(vcpu->guest_fx_image);
1687 save_msrs(vcpu->host_msrs, vcpu->nmsrs);
1688 load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1690 asm (
1691 /* Store host registers */
1692 "pushf \n\t"
1693 #ifdef CONFIG_X86_64
1694 "push %%rax; push %%rbx; push %%rdx;"
1695 "push %%rsi; push %%rdi; push %%rbp;"
1696 "push %%r8; push %%r9; push %%r10; push %%r11;"
1697 "push %%r12; push %%r13; push %%r14; push %%r15;"
1698 "push %%rcx \n\t"
1699 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1700 #else
1701 "pusha; push %%ecx \n\t"
1702 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1703 #endif
1704 /* Check if vmlaunch of vmresume is needed */
1705 "cmp $0, %1 \n\t"
1706 /* Load guest registers. Don't clobber flags. */
1707 #ifdef CONFIG_X86_64
1708 "mov %c[cr2](%3), %%rax \n\t"
1709 "mov %%rax, %%cr2 \n\t"
1710 "mov %c[rax](%3), %%rax \n\t"
1711 "mov %c[rbx](%3), %%rbx \n\t"
1712 "mov %c[rdx](%3), %%rdx \n\t"
1713 "mov %c[rsi](%3), %%rsi \n\t"
1714 "mov %c[rdi](%3), %%rdi \n\t"
1715 "mov %c[rbp](%3), %%rbp \n\t"
1716 "mov %c[r8](%3), %%r8 \n\t"
1717 "mov %c[r9](%3), %%r9 \n\t"
1718 "mov %c[r10](%3), %%r10 \n\t"
1719 "mov %c[r11](%3), %%r11 \n\t"
1720 "mov %c[r12](%3), %%r12 \n\t"
1721 "mov %c[r13](%3), %%r13 \n\t"
1722 "mov %c[r14](%3), %%r14 \n\t"
1723 "mov %c[r15](%3), %%r15 \n\t"
1724 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1725 #else
1726 "mov %c[cr2](%3), %%eax \n\t"
1727 "mov %%eax, %%cr2 \n\t"
1728 "mov %c[rax](%3), %%eax \n\t"
1729 "mov %c[rbx](%3), %%ebx \n\t"
1730 "mov %c[rdx](%3), %%edx \n\t"
1731 "mov %c[rsi](%3), %%esi \n\t"
1732 "mov %c[rdi](%3), %%edi \n\t"
1733 "mov %c[rbp](%3), %%ebp \n\t"
1734 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1735 #endif
1736 /* Enter guest mode */
1737 "jne launched \n\t"
1738 ASM_VMX_VMLAUNCH "\n\t"
1739 "jmp kvm_vmx_return \n\t"
1740 "launched: " ASM_VMX_VMRESUME "\n\t"
1741 ".globl kvm_vmx_return \n\t"
1742 "kvm_vmx_return: "
1743 /* Save guest registers, load host registers, keep flags */
1744 #ifdef CONFIG_X86_64
1745 "xchg %3, 0(%%rsp) \n\t"
1746 "mov %%rax, %c[rax](%3) \n\t"
1747 "mov %%rbx, %c[rbx](%3) \n\t"
1748 "pushq 0(%%rsp); popq %c[rcx](%3) \n\t"
1749 "mov %%rdx, %c[rdx](%3) \n\t"
1750 "mov %%rsi, %c[rsi](%3) \n\t"
1751 "mov %%rdi, %c[rdi](%3) \n\t"
1752 "mov %%rbp, %c[rbp](%3) \n\t"
1753 "mov %%r8, %c[r8](%3) \n\t"
1754 "mov %%r9, %c[r9](%3) \n\t"
1755 "mov %%r10, %c[r10](%3) \n\t"
1756 "mov %%r11, %c[r11](%3) \n\t"
1757 "mov %%r12, %c[r12](%3) \n\t"
1758 "mov %%r13, %c[r13](%3) \n\t"
1759 "mov %%r14, %c[r14](%3) \n\t"
1760 "mov %%r15, %c[r15](%3) \n\t"
1761 "mov %%cr2, %%rax \n\t"
1762 "mov %%rax, %c[cr2](%3) \n\t"
1763 "mov 0(%%rsp), %3 \n\t"
1765 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
1766 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
1767 "pop %%rbp; pop %%rdi; pop %%rsi;"
1768 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
1769 #else
1770 "xchg %3, 0(%%esp) \n\t"
1771 "mov %%eax, %c[rax](%3) \n\t"
1772 "mov %%ebx, %c[rbx](%3) \n\t"
1773 "pushl 0(%%esp); popl %c[rcx](%3) \n\t"
1774 "mov %%edx, %c[rdx](%3) \n\t"
1775 "mov %%esi, %c[rsi](%3) \n\t"
1776 "mov %%edi, %c[rdi](%3) \n\t"
1777 "mov %%ebp, %c[rbp](%3) \n\t"
1778 "mov %%cr2, %%eax \n\t"
1779 "mov %%eax, %c[cr2](%3) \n\t"
1780 "mov 0(%%esp), %3 \n\t"
1782 "pop %%ecx; popa \n\t"
1783 #endif
1784 "setbe %0 \n\t"
1785 "popf \n\t"
1786 : "=g" (fail)
1787 : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1788 "c"(vcpu),
1789 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1790 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1791 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1792 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1793 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1794 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1795 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1796 #ifdef CONFIG_X86_64
1797 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1798 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1799 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1800 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1801 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1802 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1803 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1804 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1805 #endif
1806 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1807 : "cc", "memory" );
1809 ++kvm_stat.exits;
1811 save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1812 load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
1814 fx_save(vcpu->guest_fx_image);
1815 fx_restore(vcpu->host_fx_image);
1817 #ifndef CONFIG_X86_64
1818 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
1819 #endif
1821 kvm_run->exit_type = 0;
1822 if (fail) {
1823 kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
1824 kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
1825 } else {
1826 if (fs_gs_ldt_reload_needed) {
1827 load_ldt(ldt_sel);
1828 load_fs(fs_sel);
1830 * If we have to reload gs, we must take care to
1831 * preserve our gs base.
1833 local_irq_disable();
1834 load_gs(gs_sel);
1835 #ifdef CONFIG_X86_64
1836 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
1837 #endif
1838 local_irq_enable();
1840 reload_tss();
1842 vcpu->launched = 1;
1843 kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
1844 if (kvm_handle_exit(kvm_run, vcpu)) {
1845 /* Give scheduler a change to reschedule. */
1846 if (signal_pending(current)) {
1847 ++kvm_stat.signal_exits;
1848 return -EINTR;
1850 kvm_resched(vcpu);
1851 goto again;
1854 return 0;
1857 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1859 vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
1862 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
1863 unsigned long addr,
1864 u32 err_code)
1866 u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1868 ++kvm_stat.pf_guest;
1870 if (is_page_fault(vect_info)) {
1871 printk(KERN_DEBUG "inject_page_fault: "
1872 "double fault 0x%lx @ 0x%lx\n",
1873 addr, vmcs_readl(GUEST_RIP));
1874 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
1875 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1876 DF_VECTOR |
1877 INTR_TYPE_EXCEPTION |
1878 INTR_INFO_DELIEVER_CODE_MASK |
1879 INTR_INFO_VALID_MASK);
1880 return;
1882 vcpu->cr2 = addr;
1883 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
1884 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1885 PF_VECTOR |
1886 INTR_TYPE_EXCEPTION |
1887 INTR_INFO_DELIEVER_CODE_MASK |
1888 INTR_INFO_VALID_MASK);
1892 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
1894 if (vcpu->vmcs) {
1895 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
1896 free_vmcs(vcpu->vmcs);
1897 vcpu->vmcs = NULL;
1901 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
1903 vmx_free_vmcs(vcpu);
1906 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
1908 struct vmcs *vmcs;
1910 vmcs = alloc_vmcs();
1911 if (!vmcs)
1912 return -ENOMEM;
1913 vmcs_clear(vmcs);
1914 vcpu->vmcs = vmcs;
1915 vcpu->launched = 0;
1916 return 0;
1919 static struct kvm_arch_ops vmx_arch_ops = {
1920 .cpu_has_kvm_support = cpu_has_kvm_support,
1921 .disabled_by_bios = vmx_disabled_by_bios,
1922 .hardware_setup = hardware_setup,
1923 .hardware_unsetup = hardware_unsetup,
1924 .hardware_enable = hardware_enable,
1925 .hardware_disable = hardware_disable,
1927 .vcpu_create = vmx_create_vcpu,
1928 .vcpu_free = vmx_free_vcpu,
1930 .vcpu_load = vmx_vcpu_load,
1931 .vcpu_put = vmx_vcpu_put,
1933 .set_guest_debug = set_guest_debug,
1934 .get_msr = vmx_get_msr,
1935 .set_msr = vmx_set_msr,
1936 .get_segment_base = vmx_get_segment_base,
1937 .get_segment = vmx_get_segment,
1938 .set_segment = vmx_set_segment,
1939 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
1940 .set_cr0 = vmx_set_cr0,
1941 .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
1942 .set_cr3 = vmx_set_cr3,
1943 .set_cr4 = vmx_set_cr4,
1944 #ifdef CONFIG_X86_64
1945 .set_efer = vmx_set_efer,
1946 #endif
1947 .get_idt = vmx_get_idt,
1948 .set_idt = vmx_set_idt,
1949 .get_gdt = vmx_get_gdt,
1950 .set_gdt = vmx_set_gdt,
1951 .cache_regs = vcpu_load_rsp_rip,
1952 .decache_regs = vcpu_put_rsp_rip,
1953 .get_rflags = vmx_get_rflags,
1954 .set_rflags = vmx_set_rflags,
1956 .tlb_flush = vmx_flush_tlb,
1957 .inject_page_fault = vmx_inject_page_fault,
1959 .inject_gp = vmx_inject_gp,
1961 .run = vmx_vcpu_run,
1962 .skip_emulated_instruction = skip_emulated_instruction,
1963 .vcpu_setup = vmx_vcpu_setup,
1966 static int __init vmx_init(void)
1968 return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
1971 static void __exit vmx_exit(void)
1973 kvm_exit_arch();
1976 module_init(vmx_init)
1977 module_exit(vmx_exit)