PM: Introduce PM_EVENT_HIBERNATE callback state
[linux-2.6/zen-sources.git] / drivers / ata / libata-core.c
blob4cf8662df99ea875feb85ffa7f743f48423def45
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/highmem.h>
50 #include <linux/spinlock.h>
51 #include <linux/blkdev.h>
52 #include <linux/delay.h>
53 #include <linux/timer.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/jiffies.h>
59 #include <linux/scatterlist.h>
60 #include <linux/io.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/semaphore.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
69 #include "libata.h"
72 /* debounce timing parameters in msecs { interval, duration, timeout } */
73 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
74 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
75 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
77 static unsigned int ata_dev_init_params(struct ata_device *dev,
78 u16 heads, u16 sectors);
79 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
80 static unsigned int ata_dev_set_feature(struct ata_device *dev,
81 u8 enable, u8 feature);
82 static void ata_dev_xfermask(struct ata_device *dev);
83 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
85 unsigned int ata_print_id = 1;
86 static struct workqueue_struct *ata_wq;
88 struct workqueue_struct *ata_aux_wq;
90 struct ata_force_param {
91 const char *name;
92 unsigned int cbl;
93 int spd_limit;
94 unsigned long xfer_mask;
95 unsigned int horkage_on;
96 unsigned int horkage_off;
99 struct ata_force_ent {
100 int port;
101 int device;
102 struct ata_force_param param;
105 static struct ata_force_ent *ata_force_tbl;
106 static int ata_force_tbl_size;
108 static char ata_force_param_buf[PAGE_SIZE] __initdata;
109 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0444);
110 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
112 int atapi_enabled = 1;
113 module_param(atapi_enabled, int, 0444);
114 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
116 int atapi_dmadir = 0;
117 module_param(atapi_dmadir, int, 0444);
118 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
120 int atapi_passthru16 = 1;
121 module_param(atapi_passthru16, int, 0444);
122 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
124 int libata_fua = 0;
125 module_param_named(fua, libata_fua, int, 0444);
126 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
128 static int ata_ignore_hpa;
129 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
130 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
132 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
133 module_param_named(dma, libata_dma_mask, int, 0444);
134 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
136 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
137 module_param(ata_probe_timeout, int, 0444);
138 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
140 int libata_noacpi = 0;
141 module_param_named(noacpi, libata_noacpi, int, 0444);
142 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
144 int libata_allow_tpm = 0;
145 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
146 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
148 MODULE_AUTHOR("Jeff Garzik");
149 MODULE_DESCRIPTION("Library module for ATA devices");
150 MODULE_LICENSE("GPL");
151 MODULE_VERSION(DRV_VERSION);
155 * ata_force_cbl - force cable type according to libata.force
156 * @link: ATA link of interest
158 * Force cable type according to libata.force and whine about it.
159 * The last entry which has matching port number is used, so it
160 * can be specified as part of device force parameters. For
161 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
162 * same effect.
164 * LOCKING:
165 * EH context.
167 void ata_force_cbl(struct ata_port *ap)
169 int i;
171 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
172 const struct ata_force_ent *fe = &ata_force_tbl[i];
174 if (fe->port != -1 && fe->port != ap->print_id)
175 continue;
177 if (fe->param.cbl == ATA_CBL_NONE)
178 continue;
180 ap->cbl = fe->param.cbl;
181 ata_port_printk(ap, KERN_NOTICE,
182 "FORCE: cable set to %s\n", fe->param.name);
183 return;
188 * ata_force_spd_limit - force SATA spd limit according to libata.force
189 * @link: ATA link of interest
191 * Force SATA spd limit according to libata.force and whine about
192 * it. When only the port part is specified (e.g. 1:), the limit
193 * applies to all links connected to both the host link and all
194 * fan-out ports connected via PMP. If the device part is
195 * specified as 0 (e.g. 1.00:), it specifies the first fan-out
196 * link not the host link. Device number 15 always points to the
197 * host link whether PMP is attached or not.
199 * LOCKING:
200 * EH context.
202 static void ata_force_spd_limit(struct ata_link *link)
204 int linkno, i;
206 if (ata_is_host_link(link))
207 linkno = 15;
208 else
209 linkno = link->pmp;
211 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
212 const struct ata_force_ent *fe = &ata_force_tbl[i];
214 if (fe->port != -1 && fe->port != link->ap->print_id)
215 continue;
217 if (fe->device != -1 && fe->device != linkno)
218 continue;
220 if (!fe->param.spd_limit)
221 continue;
223 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
224 ata_link_printk(link, KERN_NOTICE,
225 "FORCE: PHY spd limit set to %s\n", fe->param.name);
226 return;
231 * ata_force_xfermask - force xfermask according to libata.force
232 * @dev: ATA device of interest
234 * Force xfer_mask according to libata.force and whine about it.
235 * For consistency with link selection, device number 15 selects
236 * the first device connected to the host link.
238 * LOCKING:
239 * EH context.
241 static void ata_force_xfermask(struct ata_device *dev)
243 int devno = dev->link->pmp + dev->devno;
244 int alt_devno = devno;
245 int i;
247 /* allow n.15 for the first device attached to host port */
248 if (ata_is_host_link(dev->link) && devno == 0)
249 alt_devno = 15;
251 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
252 const struct ata_force_ent *fe = &ata_force_tbl[i];
253 unsigned long pio_mask, mwdma_mask, udma_mask;
255 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
256 continue;
258 if (fe->device != -1 && fe->device != devno &&
259 fe->device != alt_devno)
260 continue;
262 if (!fe->param.xfer_mask)
263 continue;
265 ata_unpack_xfermask(fe->param.xfer_mask,
266 &pio_mask, &mwdma_mask, &udma_mask);
267 if (udma_mask)
268 dev->udma_mask = udma_mask;
269 else if (mwdma_mask) {
270 dev->udma_mask = 0;
271 dev->mwdma_mask = mwdma_mask;
272 } else {
273 dev->udma_mask = 0;
274 dev->mwdma_mask = 0;
275 dev->pio_mask = pio_mask;
278 ata_dev_printk(dev, KERN_NOTICE,
279 "FORCE: xfer_mask set to %s\n", fe->param.name);
280 return;
285 * ata_force_horkage - force horkage according to libata.force
286 * @dev: ATA device of interest
288 * Force horkage according to libata.force and whine about it.
289 * For consistency with link selection, device number 15 selects
290 * the first device connected to the host link.
292 * LOCKING:
293 * EH context.
295 static void ata_force_horkage(struct ata_device *dev)
297 int devno = dev->link->pmp + dev->devno;
298 int alt_devno = devno;
299 int i;
301 /* allow n.15 for the first device attached to host port */
302 if (ata_is_host_link(dev->link) && devno == 0)
303 alt_devno = 15;
305 for (i = 0; i < ata_force_tbl_size; i++) {
306 const struct ata_force_ent *fe = &ata_force_tbl[i];
308 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
309 continue;
311 if (fe->device != -1 && fe->device != devno &&
312 fe->device != alt_devno)
313 continue;
315 if (!(~dev->horkage & fe->param.horkage_on) &&
316 !(dev->horkage & fe->param.horkage_off))
317 continue;
319 dev->horkage |= fe->param.horkage_on;
320 dev->horkage &= ~fe->param.horkage_off;
322 ata_dev_printk(dev, KERN_NOTICE,
323 "FORCE: horkage modified (%s)\n", fe->param.name);
328 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
329 * @tf: Taskfile to convert
330 * @pmp: Port multiplier port
331 * @is_cmd: This FIS is for command
332 * @fis: Buffer into which data will output
334 * Converts a standard ATA taskfile to a Serial ATA
335 * FIS structure (Register - Host to Device).
337 * LOCKING:
338 * Inherited from caller.
340 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
342 fis[0] = 0x27; /* Register - Host to Device FIS */
343 fis[1] = pmp & 0xf; /* Port multiplier number*/
344 if (is_cmd)
345 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
347 fis[2] = tf->command;
348 fis[3] = tf->feature;
350 fis[4] = tf->lbal;
351 fis[5] = tf->lbam;
352 fis[6] = tf->lbah;
353 fis[7] = tf->device;
355 fis[8] = tf->hob_lbal;
356 fis[9] = tf->hob_lbam;
357 fis[10] = tf->hob_lbah;
358 fis[11] = tf->hob_feature;
360 fis[12] = tf->nsect;
361 fis[13] = tf->hob_nsect;
362 fis[14] = 0;
363 fis[15] = tf->ctl;
365 fis[16] = 0;
366 fis[17] = 0;
367 fis[18] = 0;
368 fis[19] = 0;
372 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
373 * @fis: Buffer from which data will be input
374 * @tf: Taskfile to output
376 * Converts a serial ATA FIS structure to a standard ATA taskfile.
378 * LOCKING:
379 * Inherited from caller.
382 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
384 tf->command = fis[2]; /* status */
385 tf->feature = fis[3]; /* error */
387 tf->lbal = fis[4];
388 tf->lbam = fis[5];
389 tf->lbah = fis[6];
390 tf->device = fis[7];
392 tf->hob_lbal = fis[8];
393 tf->hob_lbam = fis[9];
394 tf->hob_lbah = fis[10];
396 tf->nsect = fis[12];
397 tf->hob_nsect = fis[13];
400 static const u8 ata_rw_cmds[] = {
401 /* pio multi */
402 ATA_CMD_READ_MULTI,
403 ATA_CMD_WRITE_MULTI,
404 ATA_CMD_READ_MULTI_EXT,
405 ATA_CMD_WRITE_MULTI_EXT,
409 ATA_CMD_WRITE_MULTI_FUA_EXT,
410 /* pio */
411 ATA_CMD_PIO_READ,
412 ATA_CMD_PIO_WRITE,
413 ATA_CMD_PIO_READ_EXT,
414 ATA_CMD_PIO_WRITE_EXT,
419 /* dma */
420 ATA_CMD_READ,
421 ATA_CMD_WRITE,
422 ATA_CMD_READ_EXT,
423 ATA_CMD_WRITE_EXT,
427 ATA_CMD_WRITE_FUA_EXT
431 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
432 * @tf: command to examine and configure
433 * @dev: device tf belongs to
435 * Examine the device configuration and tf->flags to calculate
436 * the proper read/write commands and protocol to use.
438 * LOCKING:
439 * caller.
441 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
443 u8 cmd;
445 int index, fua, lba48, write;
447 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
448 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
449 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
451 if (dev->flags & ATA_DFLAG_PIO) {
452 tf->protocol = ATA_PROT_PIO;
453 index = dev->multi_count ? 0 : 8;
454 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
455 /* Unable to use DMA due to host limitation */
456 tf->protocol = ATA_PROT_PIO;
457 index = dev->multi_count ? 0 : 8;
458 } else {
459 tf->protocol = ATA_PROT_DMA;
460 index = 16;
463 cmd = ata_rw_cmds[index + fua + lba48 + write];
464 if (cmd) {
465 tf->command = cmd;
466 return 0;
468 return -1;
472 * ata_tf_read_block - Read block address from ATA taskfile
473 * @tf: ATA taskfile of interest
474 * @dev: ATA device @tf belongs to
476 * LOCKING:
477 * None.
479 * Read block address from @tf. This function can handle all
480 * three address formats - LBA, LBA48 and CHS. tf->protocol and
481 * flags select the address format to use.
483 * RETURNS:
484 * Block address read from @tf.
486 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
488 u64 block = 0;
490 if (tf->flags & ATA_TFLAG_LBA) {
491 if (tf->flags & ATA_TFLAG_LBA48) {
492 block |= (u64)tf->hob_lbah << 40;
493 block |= (u64)tf->hob_lbam << 32;
494 block |= tf->hob_lbal << 24;
495 } else
496 block |= (tf->device & 0xf) << 24;
498 block |= tf->lbah << 16;
499 block |= tf->lbam << 8;
500 block |= tf->lbal;
501 } else {
502 u32 cyl, head, sect;
504 cyl = tf->lbam | (tf->lbah << 8);
505 head = tf->device & 0xf;
506 sect = tf->lbal;
508 block = (cyl * dev->heads + head) * dev->sectors + sect;
511 return block;
515 * ata_build_rw_tf - Build ATA taskfile for given read/write request
516 * @tf: Target ATA taskfile
517 * @dev: ATA device @tf belongs to
518 * @block: Block address
519 * @n_block: Number of blocks
520 * @tf_flags: RW/FUA etc...
521 * @tag: tag
523 * LOCKING:
524 * None.
526 * Build ATA taskfile @tf for read/write request described by
527 * @block, @n_block, @tf_flags and @tag on @dev.
529 * RETURNS:
531 * 0 on success, -ERANGE if the request is too large for @dev,
532 * -EINVAL if the request is invalid.
534 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
535 u64 block, u32 n_block, unsigned int tf_flags,
536 unsigned int tag)
538 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
539 tf->flags |= tf_flags;
541 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
542 /* yay, NCQ */
543 if (!lba_48_ok(block, n_block))
544 return -ERANGE;
546 tf->protocol = ATA_PROT_NCQ;
547 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
549 if (tf->flags & ATA_TFLAG_WRITE)
550 tf->command = ATA_CMD_FPDMA_WRITE;
551 else
552 tf->command = ATA_CMD_FPDMA_READ;
554 tf->nsect = tag << 3;
555 tf->hob_feature = (n_block >> 8) & 0xff;
556 tf->feature = n_block & 0xff;
558 tf->hob_lbah = (block >> 40) & 0xff;
559 tf->hob_lbam = (block >> 32) & 0xff;
560 tf->hob_lbal = (block >> 24) & 0xff;
561 tf->lbah = (block >> 16) & 0xff;
562 tf->lbam = (block >> 8) & 0xff;
563 tf->lbal = block & 0xff;
565 tf->device = 1 << 6;
566 if (tf->flags & ATA_TFLAG_FUA)
567 tf->device |= 1 << 7;
568 } else if (dev->flags & ATA_DFLAG_LBA) {
569 tf->flags |= ATA_TFLAG_LBA;
571 if (lba_28_ok(block, n_block)) {
572 /* use LBA28 */
573 tf->device |= (block >> 24) & 0xf;
574 } else if (lba_48_ok(block, n_block)) {
575 if (!(dev->flags & ATA_DFLAG_LBA48))
576 return -ERANGE;
578 /* use LBA48 */
579 tf->flags |= ATA_TFLAG_LBA48;
581 tf->hob_nsect = (n_block >> 8) & 0xff;
583 tf->hob_lbah = (block >> 40) & 0xff;
584 tf->hob_lbam = (block >> 32) & 0xff;
585 tf->hob_lbal = (block >> 24) & 0xff;
586 } else
587 /* request too large even for LBA48 */
588 return -ERANGE;
590 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
591 return -EINVAL;
593 tf->nsect = n_block & 0xff;
595 tf->lbah = (block >> 16) & 0xff;
596 tf->lbam = (block >> 8) & 0xff;
597 tf->lbal = block & 0xff;
599 tf->device |= ATA_LBA;
600 } else {
601 /* CHS */
602 u32 sect, head, cyl, track;
604 /* The request -may- be too large for CHS addressing. */
605 if (!lba_28_ok(block, n_block))
606 return -ERANGE;
608 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
609 return -EINVAL;
611 /* Convert LBA to CHS */
612 track = (u32)block / dev->sectors;
613 cyl = track / dev->heads;
614 head = track % dev->heads;
615 sect = (u32)block % dev->sectors + 1;
617 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
618 (u32)block, track, cyl, head, sect);
620 /* Check whether the converted CHS can fit.
621 Cylinder: 0-65535
622 Head: 0-15
623 Sector: 1-255*/
624 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
625 return -ERANGE;
627 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
628 tf->lbal = sect;
629 tf->lbam = cyl;
630 tf->lbah = cyl >> 8;
631 tf->device |= head;
634 return 0;
638 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
639 * @pio_mask: pio_mask
640 * @mwdma_mask: mwdma_mask
641 * @udma_mask: udma_mask
643 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
644 * unsigned int xfer_mask.
646 * LOCKING:
647 * None.
649 * RETURNS:
650 * Packed xfer_mask.
652 unsigned long ata_pack_xfermask(unsigned long pio_mask,
653 unsigned long mwdma_mask,
654 unsigned long udma_mask)
656 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
657 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
658 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
662 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
663 * @xfer_mask: xfer_mask to unpack
664 * @pio_mask: resulting pio_mask
665 * @mwdma_mask: resulting mwdma_mask
666 * @udma_mask: resulting udma_mask
668 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
669 * Any NULL distination masks will be ignored.
671 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
672 unsigned long *mwdma_mask, unsigned long *udma_mask)
674 if (pio_mask)
675 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
676 if (mwdma_mask)
677 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
678 if (udma_mask)
679 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
682 static const struct ata_xfer_ent {
683 int shift, bits;
684 u8 base;
685 } ata_xfer_tbl[] = {
686 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
687 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
688 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
689 { -1, },
693 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
694 * @xfer_mask: xfer_mask of interest
696 * Return matching XFER_* value for @xfer_mask. Only the highest
697 * bit of @xfer_mask is considered.
699 * LOCKING:
700 * None.
702 * RETURNS:
703 * Matching XFER_* value, 0xff if no match found.
705 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
707 int highbit = fls(xfer_mask) - 1;
708 const struct ata_xfer_ent *ent;
710 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
711 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
712 return ent->base + highbit - ent->shift;
713 return 0xff;
717 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
718 * @xfer_mode: XFER_* of interest
720 * Return matching xfer_mask for @xfer_mode.
722 * LOCKING:
723 * None.
725 * RETURNS:
726 * Matching xfer_mask, 0 if no match found.
728 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
730 const struct ata_xfer_ent *ent;
732 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
733 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
734 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
735 & ~((1 << ent->shift) - 1);
736 return 0;
740 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
741 * @xfer_mode: XFER_* of interest
743 * Return matching xfer_shift for @xfer_mode.
745 * LOCKING:
746 * None.
748 * RETURNS:
749 * Matching xfer_shift, -1 if no match found.
751 int ata_xfer_mode2shift(unsigned long xfer_mode)
753 const struct ata_xfer_ent *ent;
755 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
756 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
757 return ent->shift;
758 return -1;
762 * ata_mode_string - convert xfer_mask to string
763 * @xfer_mask: mask of bits supported; only highest bit counts.
765 * Determine string which represents the highest speed
766 * (highest bit in @modemask).
768 * LOCKING:
769 * None.
771 * RETURNS:
772 * Constant C string representing highest speed listed in
773 * @mode_mask, or the constant C string "<n/a>".
775 const char *ata_mode_string(unsigned long xfer_mask)
777 static const char * const xfer_mode_str[] = {
778 "PIO0",
779 "PIO1",
780 "PIO2",
781 "PIO3",
782 "PIO4",
783 "PIO5",
784 "PIO6",
785 "MWDMA0",
786 "MWDMA1",
787 "MWDMA2",
788 "MWDMA3",
789 "MWDMA4",
790 "UDMA/16",
791 "UDMA/25",
792 "UDMA/33",
793 "UDMA/44",
794 "UDMA/66",
795 "UDMA/100",
796 "UDMA/133",
797 "UDMA7",
799 int highbit;
801 highbit = fls(xfer_mask) - 1;
802 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
803 return xfer_mode_str[highbit];
804 return "<n/a>";
807 static const char *sata_spd_string(unsigned int spd)
809 static const char * const spd_str[] = {
810 "1.5 Gbps",
811 "3.0 Gbps",
814 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
815 return "<unknown>";
816 return spd_str[spd - 1];
819 void ata_dev_disable(struct ata_device *dev)
821 if (ata_dev_enabled(dev)) {
822 if (ata_msg_drv(dev->link->ap))
823 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
824 ata_acpi_on_disable(dev);
825 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
826 ATA_DNXFER_QUIET);
827 dev->class++;
831 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
833 struct ata_link *link = dev->link;
834 struct ata_port *ap = link->ap;
835 u32 scontrol;
836 unsigned int err_mask;
837 int rc;
840 * disallow DIPM for drivers which haven't set
841 * ATA_FLAG_IPM. This is because when DIPM is enabled,
842 * phy ready will be set in the interrupt status on
843 * state changes, which will cause some drivers to
844 * think there are errors - additionally drivers will
845 * need to disable hot plug.
847 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
848 ap->pm_policy = NOT_AVAILABLE;
849 return -EINVAL;
853 * For DIPM, we will only enable it for the
854 * min_power setting.
856 * Why? Because Disks are too stupid to know that
857 * If the host rejects a request to go to SLUMBER
858 * they should retry at PARTIAL, and instead it
859 * just would give up. So, for medium_power to
860 * work at all, we need to only allow HIPM.
862 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
863 if (rc)
864 return rc;
866 switch (policy) {
867 case MIN_POWER:
868 /* no restrictions on IPM transitions */
869 scontrol &= ~(0x3 << 8);
870 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
871 if (rc)
872 return rc;
874 /* enable DIPM */
875 if (dev->flags & ATA_DFLAG_DIPM)
876 err_mask = ata_dev_set_feature(dev,
877 SETFEATURES_SATA_ENABLE, SATA_DIPM);
878 break;
879 case MEDIUM_POWER:
880 /* allow IPM to PARTIAL */
881 scontrol &= ~(0x1 << 8);
882 scontrol |= (0x2 << 8);
883 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
884 if (rc)
885 return rc;
888 * we don't have to disable DIPM since IPM flags
889 * disallow transitions to SLUMBER, which effectively
890 * disable DIPM if it does not support PARTIAL
892 break;
893 case NOT_AVAILABLE:
894 case MAX_PERFORMANCE:
895 /* disable all IPM transitions */
896 scontrol |= (0x3 << 8);
897 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
898 if (rc)
899 return rc;
902 * we don't have to disable DIPM since IPM flags
903 * disallow all transitions which effectively
904 * disable DIPM anyway.
906 break;
909 /* FIXME: handle SET FEATURES failure */
910 (void) err_mask;
912 return 0;
916 * ata_dev_enable_pm - enable SATA interface power management
917 * @dev: device to enable power management
918 * @policy: the link power management policy
920 * Enable SATA Interface power management. This will enable
921 * Device Interface Power Management (DIPM) for min_power
922 * policy, and then call driver specific callbacks for
923 * enabling Host Initiated Power management.
925 * Locking: Caller.
926 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
928 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
930 int rc = 0;
931 struct ata_port *ap = dev->link->ap;
933 /* set HIPM first, then DIPM */
934 if (ap->ops->enable_pm)
935 rc = ap->ops->enable_pm(ap, policy);
936 if (rc)
937 goto enable_pm_out;
938 rc = ata_dev_set_dipm(dev, policy);
940 enable_pm_out:
941 if (rc)
942 ap->pm_policy = MAX_PERFORMANCE;
943 else
944 ap->pm_policy = policy;
945 return /* rc */; /* hopefully we can use 'rc' eventually */
948 #ifdef CONFIG_PM
950 * ata_dev_disable_pm - disable SATA interface power management
951 * @dev: device to disable power management
953 * Disable SATA Interface power management. This will disable
954 * Device Interface Power Management (DIPM) without changing
955 * policy, call driver specific callbacks for disabling Host
956 * Initiated Power management.
958 * Locking: Caller.
959 * Returns: void
961 static void ata_dev_disable_pm(struct ata_device *dev)
963 struct ata_port *ap = dev->link->ap;
965 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
966 if (ap->ops->disable_pm)
967 ap->ops->disable_pm(ap);
969 #endif /* CONFIG_PM */
971 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
973 ap->pm_policy = policy;
974 ap->link.eh_info.action |= ATA_EHI_LPM;
975 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
976 ata_port_schedule_eh(ap);
979 #ifdef CONFIG_PM
980 static void ata_lpm_enable(struct ata_host *host)
982 struct ata_link *link;
983 struct ata_port *ap;
984 struct ata_device *dev;
985 int i;
987 for (i = 0; i < host->n_ports; i++) {
988 ap = host->ports[i];
989 ata_port_for_each_link(link, ap) {
990 ata_link_for_each_dev(dev, link)
991 ata_dev_disable_pm(dev);
996 static void ata_lpm_disable(struct ata_host *host)
998 int i;
1000 for (i = 0; i < host->n_ports; i++) {
1001 struct ata_port *ap = host->ports[i];
1002 ata_lpm_schedule(ap, ap->pm_policy);
1005 #endif /* CONFIG_PM */
1009 * ata_devchk - PATA device presence detection
1010 * @ap: ATA channel to examine
1011 * @device: Device to examine (starting at zero)
1013 * This technique was originally described in
1014 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1015 * later found its way into the ATA/ATAPI spec.
1017 * Write a pattern to the ATA shadow registers,
1018 * and if a device is present, it will respond by
1019 * correctly storing and echoing back the
1020 * ATA shadow register contents.
1022 * LOCKING:
1023 * caller.
1026 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1028 struct ata_ioports *ioaddr = &ap->ioaddr;
1029 u8 nsect, lbal;
1031 ap->ops->dev_select(ap, device);
1033 iowrite8(0x55, ioaddr->nsect_addr);
1034 iowrite8(0xaa, ioaddr->lbal_addr);
1036 iowrite8(0xaa, ioaddr->nsect_addr);
1037 iowrite8(0x55, ioaddr->lbal_addr);
1039 iowrite8(0x55, ioaddr->nsect_addr);
1040 iowrite8(0xaa, ioaddr->lbal_addr);
1042 nsect = ioread8(ioaddr->nsect_addr);
1043 lbal = ioread8(ioaddr->lbal_addr);
1045 if ((nsect == 0x55) && (lbal == 0xaa))
1046 return 1; /* we found a device */
1048 return 0; /* nothing found */
1052 * ata_dev_classify - determine device type based on ATA-spec signature
1053 * @tf: ATA taskfile register set for device to be identified
1055 * Determine from taskfile register contents whether a device is
1056 * ATA or ATAPI, as per "Signature and persistence" section
1057 * of ATA/PI spec (volume 1, sect 5.14).
1059 * LOCKING:
1060 * None.
1062 * RETURNS:
1063 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1064 * %ATA_DEV_UNKNOWN the event of failure.
1066 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1068 /* Apple's open source Darwin code hints that some devices only
1069 * put a proper signature into the LBA mid/high registers,
1070 * So, we only check those. It's sufficient for uniqueness.
1072 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1073 * signatures for ATA and ATAPI devices attached on SerialATA,
1074 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1075 * spec has never mentioned about using different signatures
1076 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1077 * Multiplier specification began to use 0x69/0x96 to identify
1078 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1079 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1080 * 0x69/0x96 shortly and described them as reserved for
1081 * SerialATA.
1083 * We follow the current spec and consider that 0x69/0x96
1084 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1086 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1087 DPRINTK("found ATA device by sig\n");
1088 return ATA_DEV_ATA;
1091 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1092 DPRINTK("found ATAPI device by sig\n");
1093 return ATA_DEV_ATAPI;
1096 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1097 DPRINTK("found PMP device by sig\n");
1098 return ATA_DEV_PMP;
1101 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1102 printk(KERN_INFO "ata: SEMB device ignored\n");
1103 return ATA_DEV_SEMB_UNSUP; /* not yet */
1106 DPRINTK("unknown device\n");
1107 return ATA_DEV_UNKNOWN;
1111 * ata_dev_try_classify - Parse returned ATA device signature
1112 * @dev: ATA device to classify (starting at zero)
1113 * @present: device seems present
1114 * @r_err: Value of error register on completion
1116 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1117 * an ATA/ATAPI-defined set of values is placed in the ATA
1118 * shadow registers, indicating the results of device detection
1119 * and diagnostics.
1121 * Select the ATA device, and read the values from the ATA shadow
1122 * registers. Then parse according to the Error register value,
1123 * and the spec-defined values examined by ata_dev_classify().
1125 * LOCKING:
1126 * caller.
1128 * RETURNS:
1129 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1131 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
1132 u8 *r_err)
1134 struct ata_port *ap = dev->link->ap;
1135 struct ata_taskfile tf;
1136 unsigned int class;
1137 u8 err;
1139 ap->ops->dev_select(ap, dev->devno);
1141 memset(&tf, 0, sizeof(tf));
1143 ap->ops->tf_read(ap, &tf);
1144 err = tf.feature;
1145 if (r_err)
1146 *r_err = err;
1148 /* see if device passed diags: continue and warn later */
1149 if (err == 0)
1150 /* diagnostic fail : do nothing _YET_ */
1151 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1152 else if (err == 1)
1153 /* do nothing */ ;
1154 else if ((dev->devno == 0) && (err == 0x81))
1155 /* do nothing */ ;
1156 else
1157 return ATA_DEV_NONE;
1159 /* determine if device is ATA or ATAPI */
1160 class = ata_dev_classify(&tf);
1162 if (class == ATA_DEV_UNKNOWN) {
1163 /* If the device failed diagnostic, it's likely to
1164 * have reported incorrect device signature too.
1165 * Assume ATA device if the device seems present but
1166 * device signature is invalid with diagnostic
1167 * failure.
1169 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1170 class = ATA_DEV_ATA;
1171 else
1172 class = ATA_DEV_NONE;
1173 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
1174 class = ATA_DEV_NONE;
1176 return class;
1180 * ata_id_string - Convert IDENTIFY DEVICE page into string
1181 * @id: IDENTIFY DEVICE results we will examine
1182 * @s: string into which data is output
1183 * @ofs: offset into identify device page
1184 * @len: length of string to return. must be an even number.
1186 * The strings in the IDENTIFY DEVICE page are broken up into
1187 * 16-bit chunks. Run through the string, and output each
1188 * 8-bit chunk linearly, regardless of platform.
1190 * LOCKING:
1191 * caller.
1194 void ata_id_string(const u16 *id, unsigned char *s,
1195 unsigned int ofs, unsigned int len)
1197 unsigned int c;
1199 while (len > 0) {
1200 c = id[ofs] >> 8;
1201 *s = c;
1202 s++;
1204 c = id[ofs] & 0xff;
1205 *s = c;
1206 s++;
1208 ofs++;
1209 len -= 2;
1214 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1215 * @id: IDENTIFY DEVICE results we will examine
1216 * @s: string into which data is output
1217 * @ofs: offset into identify device page
1218 * @len: length of string to return. must be an odd number.
1220 * This function is identical to ata_id_string except that it
1221 * trims trailing spaces and terminates the resulting string with
1222 * null. @len must be actual maximum length (even number) + 1.
1224 * LOCKING:
1225 * caller.
1227 void ata_id_c_string(const u16 *id, unsigned char *s,
1228 unsigned int ofs, unsigned int len)
1230 unsigned char *p;
1232 WARN_ON(!(len & 1));
1234 ata_id_string(id, s, ofs, len - 1);
1236 p = s + strnlen(s, len - 1);
1237 while (p > s && p[-1] == ' ')
1238 p--;
1239 *p = '\0';
1242 static u64 ata_id_n_sectors(const u16 *id)
1244 if (ata_id_has_lba(id)) {
1245 if (ata_id_has_lba48(id))
1246 return ata_id_u64(id, 100);
1247 else
1248 return ata_id_u32(id, 60);
1249 } else {
1250 if (ata_id_current_chs_valid(id))
1251 return ata_id_u32(id, 57);
1252 else
1253 return id[1] * id[3] * id[6];
1257 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1259 u64 sectors = 0;
1261 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1262 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1263 sectors |= (tf->hob_lbal & 0xff) << 24;
1264 sectors |= (tf->lbah & 0xff) << 16;
1265 sectors |= (tf->lbam & 0xff) << 8;
1266 sectors |= (tf->lbal & 0xff);
1268 return ++sectors;
1271 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1273 u64 sectors = 0;
1275 sectors |= (tf->device & 0x0f) << 24;
1276 sectors |= (tf->lbah & 0xff) << 16;
1277 sectors |= (tf->lbam & 0xff) << 8;
1278 sectors |= (tf->lbal & 0xff);
1280 return ++sectors;
1284 * ata_read_native_max_address - Read native max address
1285 * @dev: target device
1286 * @max_sectors: out parameter for the result native max address
1288 * Perform an LBA48 or LBA28 native size query upon the device in
1289 * question.
1291 * RETURNS:
1292 * 0 on success, -EACCES if command is aborted by the drive.
1293 * -EIO on other errors.
1295 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1297 unsigned int err_mask;
1298 struct ata_taskfile tf;
1299 int lba48 = ata_id_has_lba48(dev->id);
1301 ata_tf_init(dev, &tf);
1303 /* always clear all address registers */
1304 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1306 if (lba48) {
1307 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1308 tf.flags |= ATA_TFLAG_LBA48;
1309 } else
1310 tf.command = ATA_CMD_READ_NATIVE_MAX;
1312 tf.protocol |= ATA_PROT_NODATA;
1313 tf.device |= ATA_LBA;
1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1316 if (err_mask) {
1317 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1318 "max address (err_mask=0x%x)\n", err_mask);
1319 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1320 return -EACCES;
1321 return -EIO;
1324 if (lba48)
1325 *max_sectors = ata_tf_to_lba48(&tf);
1326 else
1327 *max_sectors = ata_tf_to_lba(&tf);
1328 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1329 (*max_sectors)--;
1330 return 0;
1334 * ata_set_max_sectors - Set max sectors
1335 * @dev: target device
1336 * @new_sectors: new max sectors value to set for the device
1338 * Set max sectors of @dev to @new_sectors.
1340 * RETURNS:
1341 * 0 on success, -EACCES if command is aborted or denied (due to
1342 * previous non-volatile SET_MAX) by the drive. -EIO on other
1343 * errors.
1345 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1347 unsigned int err_mask;
1348 struct ata_taskfile tf;
1349 int lba48 = ata_id_has_lba48(dev->id);
1351 new_sectors--;
1353 ata_tf_init(dev, &tf);
1355 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1357 if (lba48) {
1358 tf.command = ATA_CMD_SET_MAX_EXT;
1359 tf.flags |= ATA_TFLAG_LBA48;
1361 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1362 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1363 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1364 } else {
1365 tf.command = ATA_CMD_SET_MAX;
1367 tf.device |= (new_sectors >> 24) & 0xf;
1370 tf.protocol |= ATA_PROT_NODATA;
1371 tf.device |= ATA_LBA;
1373 tf.lbal = (new_sectors >> 0) & 0xff;
1374 tf.lbam = (new_sectors >> 8) & 0xff;
1375 tf.lbah = (new_sectors >> 16) & 0xff;
1377 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1378 if (err_mask) {
1379 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1380 "max address (err_mask=0x%x)\n", err_mask);
1381 if (err_mask == AC_ERR_DEV &&
1382 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1383 return -EACCES;
1384 return -EIO;
1387 return 0;
1391 * ata_hpa_resize - Resize a device with an HPA set
1392 * @dev: Device to resize
1394 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1395 * it if required to the full size of the media. The caller must check
1396 * the drive has the HPA feature set enabled.
1398 * RETURNS:
1399 * 0 on success, -errno on failure.
1401 static int ata_hpa_resize(struct ata_device *dev)
1403 struct ata_eh_context *ehc = &dev->link->eh_context;
1404 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1405 u64 sectors = ata_id_n_sectors(dev->id);
1406 u64 native_sectors;
1407 int rc;
1409 /* do we need to do it? */
1410 if (dev->class != ATA_DEV_ATA ||
1411 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1412 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1413 return 0;
1415 /* read native max address */
1416 rc = ata_read_native_max_address(dev, &native_sectors);
1417 if (rc) {
1418 /* If HPA isn't going to be unlocked, skip HPA
1419 * resizing from the next try.
1421 if (!ata_ignore_hpa) {
1422 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1423 "broken, will skip HPA handling\n");
1424 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1426 /* we can continue if device aborted the command */
1427 if (rc == -EACCES)
1428 rc = 0;
1431 return rc;
1434 /* nothing to do? */
1435 if (native_sectors <= sectors || !ata_ignore_hpa) {
1436 if (!print_info || native_sectors == sectors)
1437 return 0;
1439 if (native_sectors > sectors)
1440 ata_dev_printk(dev, KERN_INFO,
1441 "HPA detected: current %llu, native %llu\n",
1442 (unsigned long long)sectors,
1443 (unsigned long long)native_sectors);
1444 else if (native_sectors < sectors)
1445 ata_dev_printk(dev, KERN_WARNING,
1446 "native sectors (%llu) is smaller than "
1447 "sectors (%llu)\n",
1448 (unsigned long long)native_sectors,
1449 (unsigned long long)sectors);
1450 return 0;
1453 /* let's unlock HPA */
1454 rc = ata_set_max_sectors(dev, native_sectors);
1455 if (rc == -EACCES) {
1456 /* if device aborted the command, skip HPA resizing */
1457 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1458 "(%llu -> %llu), skipping HPA handling\n",
1459 (unsigned long long)sectors,
1460 (unsigned long long)native_sectors);
1461 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1462 return 0;
1463 } else if (rc)
1464 return rc;
1466 /* re-read IDENTIFY data */
1467 rc = ata_dev_reread_id(dev, 0);
1468 if (rc) {
1469 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1470 "data after HPA resizing\n");
1471 return rc;
1474 if (print_info) {
1475 u64 new_sectors = ata_id_n_sectors(dev->id);
1476 ata_dev_printk(dev, KERN_INFO,
1477 "HPA unlocked: %llu -> %llu, native %llu\n",
1478 (unsigned long long)sectors,
1479 (unsigned long long)new_sectors,
1480 (unsigned long long)native_sectors);
1483 return 0;
1487 * ata_noop_dev_select - Select device 0/1 on ATA bus
1488 * @ap: ATA channel to manipulate
1489 * @device: ATA device (numbered from zero) to select
1491 * This function performs no actual function.
1493 * May be used as the dev_select() entry in ata_port_operations.
1495 * LOCKING:
1496 * caller.
1498 void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1504 * ata_std_dev_select - Select device 0/1 on ATA bus
1505 * @ap: ATA channel to manipulate
1506 * @device: ATA device (numbered from zero) to select
1508 * Use the method defined in the ATA specification to
1509 * make either device 0, or device 1, active on the
1510 * ATA channel. Works with both PIO and MMIO.
1512 * May be used as the dev_select() entry in ata_port_operations.
1514 * LOCKING:
1515 * caller.
1518 void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1520 u8 tmp;
1522 if (device == 0)
1523 tmp = ATA_DEVICE_OBS;
1524 else
1525 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1527 iowrite8(tmp, ap->ioaddr.device_addr);
1528 ata_pause(ap); /* needed; also flushes, for mmio */
1532 * ata_dev_select - Select device 0/1 on ATA bus
1533 * @ap: ATA channel to manipulate
1534 * @device: ATA device (numbered from zero) to select
1535 * @wait: non-zero to wait for Status register BSY bit to clear
1536 * @can_sleep: non-zero if context allows sleeping
1538 * Use the method defined in the ATA specification to
1539 * make either device 0, or device 1, active on the
1540 * ATA channel.
1542 * This is a high-level version of ata_std_dev_select(),
1543 * which additionally provides the services of inserting
1544 * the proper pauses and status polling, where needed.
1546 * LOCKING:
1547 * caller.
1550 void ata_dev_select(struct ata_port *ap, unsigned int device,
1551 unsigned int wait, unsigned int can_sleep)
1553 if (ata_msg_probe(ap))
1554 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1555 "device %u, wait %u\n", device, wait);
1557 if (wait)
1558 ata_wait_idle(ap);
1560 ap->ops->dev_select(ap, device);
1562 if (wait) {
1563 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1564 msleep(150);
1565 ata_wait_idle(ap);
1570 * ata_dump_id - IDENTIFY DEVICE info debugging output
1571 * @id: IDENTIFY DEVICE page to dump
1573 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1574 * page.
1576 * LOCKING:
1577 * caller.
1580 static inline void ata_dump_id(const u16 *id)
1582 DPRINTK("49==0x%04x "
1583 "53==0x%04x "
1584 "63==0x%04x "
1585 "64==0x%04x "
1586 "75==0x%04x \n",
1587 id[49],
1588 id[53],
1589 id[63],
1590 id[64],
1591 id[75]);
1592 DPRINTK("80==0x%04x "
1593 "81==0x%04x "
1594 "82==0x%04x "
1595 "83==0x%04x "
1596 "84==0x%04x \n",
1597 id[80],
1598 id[81],
1599 id[82],
1600 id[83],
1601 id[84]);
1602 DPRINTK("88==0x%04x "
1603 "93==0x%04x\n",
1604 id[88],
1605 id[93]);
1609 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1610 * @id: IDENTIFY data to compute xfer mask from
1612 * Compute the xfermask for this device. This is not as trivial
1613 * as it seems if we must consider early devices correctly.
1615 * FIXME: pre IDE drive timing (do we care ?).
1617 * LOCKING:
1618 * None.
1620 * RETURNS:
1621 * Computed xfermask
1623 unsigned long ata_id_xfermask(const u16 *id)
1625 unsigned long pio_mask, mwdma_mask, udma_mask;
1627 /* Usual case. Word 53 indicates word 64 is valid */
1628 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1629 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1630 pio_mask <<= 3;
1631 pio_mask |= 0x7;
1632 } else {
1633 /* If word 64 isn't valid then Word 51 high byte holds
1634 * the PIO timing number for the maximum. Turn it into
1635 * a mask.
1637 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1638 if (mode < 5) /* Valid PIO range */
1639 pio_mask = (2 << mode) - 1;
1640 else
1641 pio_mask = 1;
1643 /* But wait.. there's more. Design your standards by
1644 * committee and you too can get a free iordy field to
1645 * process. However its the speeds not the modes that
1646 * are supported... Note drivers using the timing API
1647 * will get this right anyway
1651 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1653 if (ata_id_is_cfa(id)) {
1655 * Process compact flash extended modes
1657 int pio = id[163] & 0x7;
1658 int dma = (id[163] >> 3) & 7;
1660 if (pio)
1661 pio_mask |= (1 << 5);
1662 if (pio > 1)
1663 pio_mask |= (1 << 6);
1664 if (dma)
1665 mwdma_mask |= (1 << 3);
1666 if (dma > 1)
1667 mwdma_mask |= (1 << 4);
1670 udma_mask = 0;
1671 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1672 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1674 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1678 * ata_pio_queue_task - Queue port_task
1679 * @ap: The ata_port to queue port_task for
1680 * @fn: workqueue function to be scheduled
1681 * @data: data for @fn to use
1682 * @delay: delay time for workqueue function
1684 * Schedule @fn(@data) for execution after @delay jiffies using
1685 * port_task. There is one port_task per port and it's the
1686 * user(low level driver)'s responsibility to make sure that only
1687 * one task is active at any given time.
1689 * libata core layer takes care of synchronization between
1690 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1691 * synchronization.
1693 * LOCKING:
1694 * Inherited from caller.
1696 static void ata_pio_queue_task(struct ata_port *ap, void *data,
1697 unsigned long delay)
1699 ap->port_task_data = data;
1701 /* may fail if ata_port_flush_task() in progress */
1702 queue_delayed_work(ata_wq, &ap->port_task, delay);
1706 * ata_port_flush_task - Flush port_task
1707 * @ap: The ata_port to flush port_task for
1709 * After this function completes, port_task is guranteed not to
1710 * be running or scheduled.
1712 * LOCKING:
1713 * Kernel thread context (may sleep)
1715 void ata_port_flush_task(struct ata_port *ap)
1717 DPRINTK("ENTER\n");
1719 cancel_rearming_delayed_work(&ap->port_task);
1721 if (ata_msg_ctl(ap))
1722 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1725 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1727 struct completion *waiting = qc->private_data;
1729 complete(waiting);
1733 * ata_exec_internal_sg - execute libata internal command
1734 * @dev: Device to which the command is sent
1735 * @tf: Taskfile registers for the command and the result
1736 * @cdb: CDB for packet command
1737 * @dma_dir: Data tranfer direction of the command
1738 * @sgl: sg list for the data buffer of the command
1739 * @n_elem: Number of sg entries
1740 * @timeout: Timeout in msecs (0 for default)
1742 * Executes libata internal command with timeout. @tf contains
1743 * command on entry and result on return. Timeout and error
1744 * conditions are reported via return value. No recovery action
1745 * is taken after a command times out. It's caller's duty to
1746 * clean up after timeout.
1748 * LOCKING:
1749 * None. Should be called with kernel context, might sleep.
1751 * RETURNS:
1752 * Zero on success, AC_ERR_* mask on failure
1754 unsigned ata_exec_internal_sg(struct ata_device *dev,
1755 struct ata_taskfile *tf, const u8 *cdb,
1756 int dma_dir, struct scatterlist *sgl,
1757 unsigned int n_elem, unsigned long timeout)
1759 struct ata_link *link = dev->link;
1760 struct ata_port *ap = link->ap;
1761 u8 command = tf->command;
1762 struct ata_queued_cmd *qc;
1763 unsigned int tag, preempted_tag;
1764 u32 preempted_sactive, preempted_qc_active;
1765 int preempted_nr_active_links;
1766 DECLARE_COMPLETION_ONSTACK(wait);
1767 unsigned long flags;
1768 unsigned int err_mask;
1769 int rc;
1771 spin_lock_irqsave(ap->lock, flags);
1773 /* no internal command while frozen */
1774 if (ap->pflags & ATA_PFLAG_FROZEN) {
1775 spin_unlock_irqrestore(ap->lock, flags);
1776 return AC_ERR_SYSTEM;
1779 /* initialize internal qc */
1781 /* XXX: Tag 0 is used for drivers with legacy EH as some
1782 * drivers choke if any other tag is given. This breaks
1783 * ata_tag_internal() test for those drivers. Don't use new
1784 * EH stuff without converting to it.
1786 if (ap->ops->error_handler)
1787 tag = ATA_TAG_INTERNAL;
1788 else
1789 tag = 0;
1791 if (test_and_set_bit(tag, &ap->qc_allocated))
1792 BUG();
1793 qc = __ata_qc_from_tag(ap, tag);
1795 qc->tag = tag;
1796 qc->scsicmd = NULL;
1797 qc->ap = ap;
1798 qc->dev = dev;
1799 ata_qc_reinit(qc);
1801 preempted_tag = link->active_tag;
1802 preempted_sactive = link->sactive;
1803 preempted_qc_active = ap->qc_active;
1804 preempted_nr_active_links = ap->nr_active_links;
1805 link->active_tag = ATA_TAG_POISON;
1806 link->sactive = 0;
1807 ap->qc_active = 0;
1808 ap->nr_active_links = 0;
1810 /* prepare & issue qc */
1811 qc->tf = *tf;
1812 if (cdb)
1813 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1814 qc->flags |= ATA_QCFLAG_RESULT_TF;
1815 qc->dma_dir = dma_dir;
1816 if (dma_dir != DMA_NONE) {
1817 unsigned int i, buflen = 0;
1818 struct scatterlist *sg;
1820 for_each_sg(sgl, sg, n_elem, i)
1821 buflen += sg->length;
1823 ata_sg_init(qc, sgl, n_elem);
1824 qc->nbytes = buflen;
1827 qc->private_data = &wait;
1828 qc->complete_fn = ata_qc_complete_internal;
1830 ata_qc_issue(qc);
1832 spin_unlock_irqrestore(ap->lock, flags);
1834 if (!timeout)
1835 timeout = ata_probe_timeout * 1000 / HZ;
1837 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1839 ata_port_flush_task(ap);
1841 if (!rc) {
1842 spin_lock_irqsave(ap->lock, flags);
1844 /* We're racing with irq here. If we lose, the
1845 * following test prevents us from completing the qc
1846 * twice. If we win, the port is frozen and will be
1847 * cleaned up by ->post_internal_cmd().
1849 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1850 qc->err_mask |= AC_ERR_TIMEOUT;
1852 if (ap->ops->error_handler)
1853 ata_port_freeze(ap);
1854 else
1855 ata_qc_complete(qc);
1857 if (ata_msg_warn(ap))
1858 ata_dev_printk(dev, KERN_WARNING,
1859 "qc timeout (cmd 0x%x)\n", command);
1862 spin_unlock_irqrestore(ap->lock, flags);
1865 /* do post_internal_cmd */
1866 if (ap->ops->post_internal_cmd)
1867 ap->ops->post_internal_cmd(qc);
1869 /* perform minimal error analysis */
1870 if (qc->flags & ATA_QCFLAG_FAILED) {
1871 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1872 qc->err_mask |= AC_ERR_DEV;
1874 if (!qc->err_mask)
1875 qc->err_mask |= AC_ERR_OTHER;
1877 if (qc->err_mask & ~AC_ERR_OTHER)
1878 qc->err_mask &= ~AC_ERR_OTHER;
1881 /* finish up */
1882 spin_lock_irqsave(ap->lock, flags);
1884 *tf = qc->result_tf;
1885 err_mask = qc->err_mask;
1887 ata_qc_free(qc);
1888 link->active_tag = preempted_tag;
1889 link->sactive = preempted_sactive;
1890 ap->qc_active = preempted_qc_active;
1891 ap->nr_active_links = preempted_nr_active_links;
1893 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1894 * Until those drivers are fixed, we detect the condition
1895 * here, fail the command with AC_ERR_SYSTEM and reenable the
1896 * port.
1898 * Note that this doesn't change any behavior as internal
1899 * command failure results in disabling the device in the
1900 * higher layer for LLDDs without new reset/EH callbacks.
1902 * Kill the following code as soon as those drivers are fixed.
1904 if (ap->flags & ATA_FLAG_DISABLED) {
1905 err_mask |= AC_ERR_SYSTEM;
1906 ata_port_probe(ap);
1909 spin_unlock_irqrestore(ap->lock, flags);
1911 return err_mask;
1915 * ata_exec_internal - execute libata internal command
1916 * @dev: Device to which the command is sent
1917 * @tf: Taskfile registers for the command and the result
1918 * @cdb: CDB for packet command
1919 * @dma_dir: Data tranfer direction of the command
1920 * @buf: Data buffer of the command
1921 * @buflen: Length of data buffer
1922 * @timeout: Timeout in msecs (0 for default)
1924 * Wrapper around ata_exec_internal_sg() which takes simple
1925 * buffer instead of sg list.
1927 * LOCKING:
1928 * None. Should be called with kernel context, might sleep.
1930 * RETURNS:
1931 * Zero on success, AC_ERR_* mask on failure
1933 unsigned ata_exec_internal(struct ata_device *dev,
1934 struct ata_taskfile *tf, const u8 *cdb,
1935 int dma_dir, void *buf, unsigned int buflen,
1936 unsigned long timeout)
1938 struct scatterlist *psg = NULL, sg;
1939 unsigned int n_elem = 0;
1941 if (dma_dir != DMA_NONE) {
1942 WARN_ON(!buf);
1943 sg_init_one(&sg, buf, buflen);
1944 psg = &sg;
1945 n_elem++;
1948 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1949 timeout);
1953 * ata_do_simple_cmd - execute simple internal command
1954 * @dev: Device to which the command is sent
1955 * @cmd: Opcode to execute
1957 * Execute a 'simple' command, that only consists of the opcode
1958 * 'cmd' itself, without filling any other registers
1960 * LOCKING:
1961 * Kernel thread context (may sleep).
1963 * RETURNS:
1964 * Zero on success, AC_ERR_* mask on failure
1966 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1968 struct ata_taskfile tf;
1970 ata_tf_init(dev, &tf);
1972 tf.command = cmd;
1973 tf.flags |= ATA_TFLAG_DEVICE;
1974 tf.protocol = ATA_PROT_NODATA;
1976 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1980 * ata_pio_need_iordy - check if iordy needed
1981 * @adev: ATA device
1983 * Check if the current speed of the device requires IORDY. Used
1984 * by various controllers for chip configuration.
1987 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1989 /* Controller doesn't support IORDY. Probably a pointless check
1990 as the caller should know this */
1991 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1992 return 0;
1993 /* PIO3 and higher it is mandatory */
1994 if (adev->pio_mode > XFER_PIO_2)
1995 return 1;
1996 /* We turn it on when possible */
1997 if (ata_id_has_iordy(adev->id))
1998 return 1;
1999 return 0;
2003 * ata_pio_mask_no_iordy - Return the non IORDY mask
2004 * @adev: ATA device
2006 * Compute the highest mode possible if we are not using iordy. Return
2007 * -1 if no iordy mode is available.
2010 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2012 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2013 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
2014 u16 pio = adev->id[ATA_ID_EIDE_PIO];
2015 /* Is the speed faster than the drive allows non IORDY ? */
2016 if (pio) {
2017 /* This is cycle times not frequency - watch the logic! */
2018 if (pio > 240) /* PIO2 is 240nS per cycle */
2019 return 3 << ATA_SHIFT_PIO;
2020 return 7 << ATA_SHIFT_PIO;
2023 return 3 << ATA_SHIFT_PIO;
2027 * ata_dev_read_id - Read ID data from the specified device
2028 * @dev: target device
2029 * @p_class: pointer to class of the target device (may be changed)
2030 * @flags: ATA_READID_* flags
2031 * @id: buffer to read IDENTIFY data into
2033 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2034 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2035 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2036 * for pre-ATA4 drives.
2038 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2039 * now we abort if we hit that case.
2041 * LOCKING:
2042 * Kernel thread context (may sleep)
2044 * RETURNS:
2045 * 0 on success, -errno otherwise.
2047 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2048 unsigned int flags, u16 *id)
2050 struct ata_port *ap = dev->link->ap;
2051 unsigned int class = *p_class;
2052 struct ata_taskfile tf;
2053 unsigned int err_mask = 0;
2054 const char *reason;
2055 int may_fallback = 1, tried_spinup = 0;
2056 int rc;
2058 if (ata_msg_ctl(ap))
2059 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
2061 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
2062 retry:
2063 ata_tf_init(dev, &tf);
2065 switch (class) {
2066 case ATA_DEV_ATA:
2067 tf.command = ATA_CMD_ID_ATA;
2068 break;
2069 case ATA_DEV_ATAPI:
2070 tf.command = ATA_CMD_ID_ATAPI;
2071 break;
2072 default:
2073 rc = -ENODEV;
2074 reason = "unsupported class";
2075 goto err_out;
2078 tf.protocol = ATA_PROT_PIO;
2080 /* Some devices choke if TF registers contain garbage. Make
2081 * sure those are properly initialized.
2083 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2085 /* Device presence detection is unreliable on some
2086 * controllers. Always poll IDENTIFY if available.
2088 tf.flags |= ATA_TFLAG_POLLING;
2090 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2091 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2092 if (err_mask) {
2093 if (err_mask & AC_ERR_NODEV_HINT) {
2094 DPRINTK("ata%u.%d: NODEV after polling detection\n",
2095 ap->print_id, dev->devno);
2096 return -ENOENT;
2099 /* Device or controller might have reported the wrong
2100 * device class. Give a shot at the other IDENTIFY if
2101 * the current one is aborted by the device.
2103 if (may_fallback &&
2104 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2105 may_fallback = 0;
2107 if (class == ATA_DEV_ATA)
2108 class = ATA_DEV_ATAPI;
2109 else
2110 class = ATA_DEV_ATA;
2111 goto retry;
2114 rc = -EIO;
2115 reason = "I/O error";
2116 goto err_out;
2119 /* Falling back doesn't make sense if ID data was read
2120 * successfully at least once.
2122 may_fallback = 0;
2124 swap_buf_le16(id, ATA_ID_WORDS);
2126 /* sanity check */
2127 rc = -EINVAL;
2128 reason = "device reports invalid type";
2130 if (class == ATA_DEV_ATA) {
2131 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2132 goto err_out;
2133 } else {
2134 if (ata_id_is_ata(id))
2135 goto err_out;
2138 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2139 tried_spinup = 1;
2141 * Drive powered-up in standby mode, and requires a specific
2142 * SET_FEATURES spin-up subcommand before it will accept
2143 * anything other than the original IDENTIFY command.
2145 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2146 if (err_mask && id[2] != 0x738c) {
2147 rc = -EIO;
2148 reason = "SPINUP failed";
2149 goto err_out;
2152 * If the drive initially returned incomplete IDENTIFY info,
2153 * we now must reissue the IDENTIFY command.
2155 if (id[2] == 0x37c8)
2156 goto retry;
2159 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2161 * The exact sequence expected by certain pre-ATA4 drives is:
2162 * SRST RESET
2163 * IDENTIFY (optional in early ATA)
2164 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2165 * anything else..
2166 * Some drives were very specific about that exact sequence.
2168 * Note that ATA4 says lba is mandatory so the second check
2169 * shoud never trigger.
2171 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2172 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2173 if (err_mask) {
2174 rc = -EIO;
2175 reason = "INIT_DEV_PARAMS failed";
2176 goto err_out;
2179 /* current CHS translation info (id[53-58]) might be
2180 * changed. reread the identify device info.
2182 flags &= ~ATA_READID_POSTRESET;
2183 goto retry;
2187 *p_class = class;
2189 return 0;
2191 err_out:
2192 if (ata_msg_warn(ap))
2193 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2194 "(%s, err_mask=0x%x)\n", reason, err_mask);
2195 return rc;
2198 static inline u8 ata_dev_knobble(struct ata_device *dev)
2200 struct ata_port *ap = dev->link->ap;
2201 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2204 static void ata_dev_config_ncq(struct ata_device *dev,
2205 char *desc, size_t desc_sz)
2207 struct ata_port *ap = dev->link->ap;
2208 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2210 if (!ata_id_has_ncq(dev->id)) {
2211 desc[0] = '\0';
2212 return;
2214 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2215 snprintf(desc, desc_sz, "NCQ (not used)");
2216 return;
2218 if (ap->flags & ATA_FLAG_NCQ) {
2219 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2220 dev->flags |= ATA_DFLAG_NCQ;
2223 if (hdepth >= ddepth)
2224 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2225 else
2226 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2230 * ata_dev_configure - Configure the specified ATA/ATAPI device
2231 * @dev: Target device to configure
2233 * Configure @dev according to @dev->id. Generic and low-level
2234 * driver specific fixups are also applied.
2236 * LOCKING:
2237 * Kernel thread context (may sleep)
2239 * RETURNS:
2240 * 0 on success, -errno otherwise
2242 int ata_dev_configure(struct ata_device *dev)
2244 struct ata_port *ap = dev->link->ap;
2245 struct ata_eh_context *ehc = &dev->link->eh_context;
2246 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2247 const u16 *id = dev->id;
2248 unsigned long xfer_mask;
2249 char revbuf[7]; /* XYZ-99\0 */
2250 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2251 char modelbuf[ATA_ID_PROD_LEN+1];
2252 int rc;
2254 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2255 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2256 __FUNCTION__);
2257 return 0;
2260 if (ata_msg_probe(ap))
2261 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
2263 /* set horkage */
2264 dev->horkage |= ata_dev_blacklisted(dev);
2265 ata_force_horkage(dev);
2267 /* let ACPI work its magic */
2268 rc = ata_acpi_on_devcfg(dev);
2269 if (rc)
2270 return rc;
2272 /* massage HPA, do it early as it might change IDENTIFY data */
2273 rc = ata_hpa_resize(dev);
2274 if (rc)
2275 return rc;
2277 /* print device capabilities */
2278 if (ata_msg_probe(ap))
2279 ata_dev_printk(dev, KERN_DEBUG,
2280 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2281 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2282 __FUNCTION__,
2283 id[49], id[82], id[83], id[84],
2284 id[85], id[86], id[87], id[88]);
2286 /* initialize to-be-configured parameters */
2287 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2288 dev->max_sectors = 0;
2289 dev->cdb_len = 0;
2290 dev->n_sectors = 0;
2291 dev->cylinders = 0;
2292 dev->heads = 0;
2293 dev->sectors = 0;
2296 * common ATA, ATAPI feature tests
2299 /* find max transfer mode; for printk only */
2300 xfer_mask = ata_id_xfermask(id);
2302 if (ata_msg_probe(ap))
2303 ata_dump_id(id);
2305 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2306 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2307 sizeof(fwrevbuf));
2309 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2310 sizeof(modelbuf));
2312 /* ATA-specific feature tests */
2313 if (dev->class == ATA_DEV_ATA) {
2314 if (ata_id_is_cfa(id)) {
2315 if (id[162] & 1) /* CPRM may make this media unusable */
2316 ata_dev_printk(dev, KERN_WARNING,
2317 "supports DRM functions and may "
2318 "not be fully accessable.\n");
2319 snprintf(revbuf, 7, "CFA");
2320 } else {
2321 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2322 /* Warn the user if the device has TPM extensions */
2323 if (ata_id_has_tpm(id))
2324 ata_dev_printk(dev, KERN_WARNING,
2325 "supports DRM functions and may "
2326 "not be fully accessable.\n");
2329 dev->n_sectors = ata_id_n_sectors(id);
2331 if (dev->id[59] & 0x100)
2332 dev->multi_count = dev->id[59] & 0xff;
2334 if (ata_id_has_lba(id)) {
2335 const char *lba_desc;
2336 char ncq_desc[20];
2338 lba_desc = "LBA";
2339 dev->flags |= ATA_DFLAG_LBA;
2340 if (ata_id_has_lba48(id)) {
2341 dev->flags |= ATA_DFLAG_LBA48;
2342 lba_desc = "LBA48";
2344 if (dev->n_sectors >= (1UL << 28) &&
2345 ata_id_has_flush_ext(id))
2346 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2349 /* config NCQ */
2350 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2352 /* print device info to dmesg */
2353 if (ata_msg_drv(ap) && print_info) {
2354 ata_dev_printk(dev, KERN_INFO,
2355 "%s: %s, %s, max %s\n",
2356 revbuf, modelbuf, fwrevbuf,
2357 ata_mode_string(xfer_mask));
2358 ata_dev_printk(dev, KERN_INFO,
2359 "%Lu sectors, multi %u: %s %s\n",
2360 (unsigned long long)dev->n_sectors,
2361 dev->multi_count, lba_desc, ncq_desc);
2363 } else {
2364 /* CHS */
2366 /* Default translation */
2367 dev->cylinders = id[1];
2368 dev->heads = id[3];
2369 dev->sectors = id[6];
2371 if (ata_id_current_chs_valid(id)) {
2372 /* Current CHS translation is valid. */
2373 dev->cylinders = id[54];
2374 dev->heads = id[55];
2375 dev->sectors = id[56];
2378 /* print device info to dmesg */
2379 if (ata_msg_drv(ap) && print_info) {
2380 ata_dev_printk(dev, KERN_INFO,
2381 "%s: %s, %s, max %s\n",
2382 revbuf, modelbuf, fwrevbuf,
2383 ata_mode_string(xfer_mask));
2384 ata_dev_printk(dev, KERN_INFO,
2385 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2386 (unsigned long long)dev->n_sectors,
2387 dev->multi_count, dev->cylinders,
2388 dev->heads, dev->sectors);
2392 dev->cdb_len = 16;
2395 /* ATAPI-specific feature tests */
2396 else if (dev->class == ATA_DEV_ATAPI) {
2397 const char *cdb_intr_string = "";
2398 const char *atapi_an_string = "";
2399 u32 sntf;
2401 rc = atapi_cdb_len(id);
2402 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2403 if (ata_msg_warn(ap))
2404 ata_dev_printk(dev, KERN_WARNING,
2405 "unsupported CDB len\n");
2406 rc = -EINVAL;
2407 goto err_out_nosup;
2409 dev->cdb_len = (unsigned int) rc;
2411 /* Enable ATAPI AN if both the host and device have
2412 * the support. If PMP is attached, SNTF is required
2413 * to enable ATAPI AN to discern between PHY status
2414 * changed notifications and ATAPI ANs.
2416 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2417 (!ap->nr_pmp_links ||
2418 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2419 unsigned int err_mask;
2421 /* issue SET feature command to turn this on */
2422 err_mask = ata_dev_set_feature(dev,
2423 SETFEATURES_SATA_ENABLE, SATA_AN);
2424 if (err_mask)
2425 ata_dev_printk(dev, KERN_ERR,
2426 "failed to enable ATAPI AN "
2427 "(err_mask=0x%x)\n", err_mask);
2428 else {
2429 dev->flags |= ATA_DFLAG_AN;
2430 atapi_an_string = ", ATAPI AN";
2434 if (ata_id_cdb_intr(dev->id)) {
2435 dev->flags |= ATA_DFLAG_CDB_INTR;
2436 cdb_intr_string = ", CDB intr";
2439 /* print device info to dmesg */
2440 if (ata_msg_drv(ap) && print_info)
2441 ata_dev_printk(dev, KERN_INFO,
2442 "ATAPI: %s, %s, max %s%s%s\n",
2443 modelbuf, fwrevbuf,
2444 ata_mode_string(xfer_mask),
2445 cdb_intr_string, atapi_an_string);
2448 /* determine max_sectors */
2449 dev->max_sectors = ATA_MAX_SECTORS;
2450 if (dev->flags & ATA_DFLAG_LBA48)
2451 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2453 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2454 if (ata_id_has_hipm(dev->id))
2455 dev->flags |= ATA_DFLAG_HIPM;
2456 if (ata_id_has_dipm(dev->id))
2457 dev->flags |= ATA_DFLAG_DIPM;
2460 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2461 200 sectors */
2462 if (ata_dev_knobble(dev)) {
2463 if (ata_msg_drv(ap) && print_info)
2464 ata_dev_printk(dev, KERN_INFO,
2465 "applying bridge limits\n");
2466 dev->udma_mask &= ATA_UDMA5;
2467 dev->max_sectors = ATA_MAX_SECTORS;
2470 if ((dev->class == ATA_DEV_ATAPI) &&
2471 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2472 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2473 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2476 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2477 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2478 dev->max_sectors);
2480 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2481 dev->horkage |= ATA_HORKAGE_IPM;
2483 /* reset link pm_policy for this port to no pm */
2484 ap->pm_policy = MAX_PERFORMANCE;
2487 if (ap->ops->dev_config)
2488 ap->ops->dev_config(dev);
2490 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2491 /* Let the user know. We don't want to disallow opens for
2492 rescue purposes, or in case the vendor is just a blithering
2493 idiot. Do this after the dev_config call as some controllers
2494 with buggy firmware may want to avoid reporting false device
2495 bugs */
2497 if (print_info) {
2498 ata_dev_printk(dev, KERN_WARNING,
2499 "Drive reports diagnostics failure. This may indicate a drive\n");
2500 ata_dev_printk(dev, KERN_WARNING,
2501 "fault or invalid emulation. Contact drive vendor for information.\n");
2505 if (ata_msg_probe(ap))
2506 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2507 __FUNCTION__, ata_chk_status(ap));
2508 return 0;
2510 err_out_nosup:
2511 if (ata_msg_probe(ap))
2512 ata_dev_printk(dev, KERN_DEBUG,
2513 "%s: EXIT, err\n", __FUNCTION__);
2514 return rc;
2518 * ata_cable_40wire - return 40 wire cable type
2519 * @ap: port
2521 * Helper method for drivers which want to hardwire 40 wire cable
2522 * detection.
2525 int ata_cable_40wire(struct ata_port *ap)
2527 return ATA_CBL_PATA40;
2531 * ata_cable_80wire - return 80 wire cable type
2532 * @ap: port
2534 * Helper method for drivers which want to hardwire 80 wire cable
2535 * detection.
2538 int ata_cable_80wire(struct ata_port *ap)
2540 return ATA_CBL_PATA80;
2544 * ata_cable_unknown - return unknown PATA cable.
2545 * @ap: port
2547 * Helper method for drivers which have no PATA cable detection.
2550 int ata_cable_unknown(struct ata_port *ap)
2552 return ATA_CBL_PATA_UNK;
2556 * ata_cable_ignore - return ignored PATA cable.
2557 * @ap: port
2559 * Helper method for drivers which don't use cable type to limit
2560 * transfer mode.
2562 int ata_cable_ignore(struct ata_port *ap)
2564 return ATA_CBL_PATA_IGN;
2568 * ata_cable_sata - return SATA cable type
2569 * @ap: port
2571 * Helper method for drivers which have SATA cables
2574 int ata_cable_sata(struct ata_port *ap)
2576 return ATA_CBL_SATA;
2580 * ata_bus_probe - Reset and probe ATA bus
2581 * @ap: Bus to probe
2583 * Master ATA bus probing function. Initiates a hardware-dependent
2584 * bus reset, then attempts to identify any devices found on
2585 * the bus.
2587 * LOCKING:
2588 * PCI/etc. bus probe sem.
2590 * RETURNS:
2591 * Zero on success, negative errno otherwise.
2594 int ata_bus_probe(struct ata_port *ap)
2596 unsigned int classes[ATA_MAX_DEVICES];
2597 int tries[ATA_MAX_DEVICES];
2598 int rc;
2599 struct ata_device *dev;
2601 ata_port_probe(ap);
2603 ata_link_for_each_dev(dev, &ap->link)
2604 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2606 retry:
2607 ata_link_for_each_dev(dev, &ap->link) {
2608 /* If we issue an SRST then an ATA drive (not ATAPI)
2609 * may change configuration and be in PIO0 timing. If
2610 * we do a hard reset (or are coming from power on)
2611 * this is true for ATA or ATAPI. Until we've set a
2612 * suitable controller mode we should not touch the
2613 * bus as we may be talking too fast.
2615 dev->pio_mode = XFER_PIO_0;
2617 /* If the controller has a pio mode setup function
2618 * then use it to set the chipset to rights. Don't
2619 * touch the DMA setup as that will be dealt with when
2620 * configuring devices.
2622 if (ap->ops->set_piomode)
2623 ap->ops->set_piomode(ap, dev);
2626 /* reset and determine device classes */
2627 ap->ops->phy_reset(ap);
2629 ata_link_for_each_dev(dev, &ap->link) {
2630 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2631 dev->class != ATA_DEV_UNKNOWN)
2632 classes[dev->devno] = dev->class;
2633 else
2634 classes[dev->devno] = ATA_DEV_NONE;
2636 dev->class = ATA_DEV_UNKNOWN;
2639 ata_port_probe(ap);
2641 /* read IDENTIFY page and configure devices. We have to do the identify
2642 specific sequence bass-ackwards so that PDIAG- is released by
2643 the slave device */
2645 ata_link_for_each_dev(dev, &ap->link) {
2646 if (tries[dev->devno])
2647 dev->class = classes[dev->devno];
2649 if (!ata_dev_enabled(dev))
2650 continue;
2652 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2653 dev->id);
2654 if (rc)
2655 goto fail;
2658 /* Now ask for the cable type as PDIAG- should have been released */
2659 if (ap->ops->cable_detect)
2660 ap->cbl = ap->ops->cable_detect(ap);
2662 /* We may have SATA bridge glue hiding here irrespective of the
2663 reported cable types and sensed types */
2664 ata_link_for_each_dev(dev, &ap->link) {
2665 if (!ata_dev_enabled(dev))
2666 continue;
2667 /* SATA drives indicate we have a bridge. We don't know which
2668 end of the link the bridge is which is a problem */
2669 if (ata_id_is_sata(dev->id))
2670 ap->cbl = ATA_CBL_SATA;
2673 /* After the identify sequence we can now set up the devices. We do
2674 this in the normal order so that the user doesn't get confused */
2676 ata_link_for_each_dev(dev, &ap->link) {
2677 if (!ata_dev_enabled(dev))
2678 continue;
2680 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2681 rc = ata_dev_configure(dev);
2682 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2683 if (rc)
2684 goto fail;
2687 /* configure transfer mode */
2688 rc = ata_set_mode(&ap->link, &dev);
2689 if (rc)
2690 goto fail;
2692 ata_link_for_each_dev(dev, &ap->link)
2693 if (ata_dev_enabled(dev))
2694 return 0;
2696 /* no device present, disable port */
2697 ata_port_disable(ap);
2698 return -ENODEV;
2700 fail:
2701 tries[dev->devno]--;
2703 switch (rc) {
2704 case -EINVAL:
2705 /* eeek, something went very wrong, give up */
2706 tries[dev->devno] = 0;
2707 break;
2709 case -ENODEV:
2710 /* give it just one more chance */
2711 tries[dev->devno] = min(tries[dev->devno], 1);
2712 case -EIO:
2713 if (tries[dev->devno] == 1) {
2714 /* This is the last chance, better to slow
2715 * down than lose it.
2717 sata_down_spd_limit(&ap->link);
2718 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2722 if (!tries[dev->devno])
2723 ata_dev_disable(dev);
2725 goto retry;
2729 * ata_port_probe - Mark port as enabled
2730 * @ap: Port for which we indicate enablement
2732 * Modify @ap data structure such that the system
2733 * thinks that the entire port is enabled.
2735 * LOCKING: host lock, or some other form of
2736 * serialization.
2739 void ata_port_probe(struct ata_port *ap)
2741 ap->flags &= ~ATA_FLAG_DISABLED;
2745 * sata_print_link_status - Print SATA link status
2746 * @link: SATA link to printk link status about
2748 * This function prints link speed and status of a SATA link.
2750 * LOCKING:
2751 * None.
2753 void sata_print_link_status(struct ata_link *link)
2755 u32 sstatus, scontrol, tmp;
2757 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2758 return;
2759 sata_scr_read(link, SCR_CONTROL, &scontrol);
2761 if (ata_link_online(link)) {
2762 tmp = (sstatus >> 4) & 0xf;
2763 ata_link_printk(link, KERN_INFO,
2764 "SATA link up %s (SStatus %X SControl %X)\n",
2765 sata_spd_string(tmp), sstatus, scontrol);
2766 } else {
2767 ata_link_printk(link, KERN_INFO,
2768 "SATA link down (SStatus %X SControl %X)\n",
2769 sstatus, scontrol);
2774 * ata_dev_pair - return other device on cable
2775 * @adev: device
2777 * Obtain the other device on the same cable, or if none is
2778 * present NULL is returned
2781 struct ata_device *ata_dev_pair(struct ata_device *adev)
2783 struct ata_link *link = adev->link;
2784 struct ata_device *pair = &link->device[1 - adev->devno];
2785 if (!ata_dev_enabled(pair))
2786 return NULL;
2787 return pair;
2791 * ata_port_disable - Disable port.
2792 * @ap: Port to be disabled.
2794 * Modify @ap data structure such that the system
2795 * thinks that the entire port is disabled, and should
2796 * never attempt to probe or communicate with devices
2797 * on this port.
2799 * LOCKING: host lock, or some other form of
2800 * serialization.
2803 void ata_port_disable(struct ata_port *ap)
2805 ap->link.device[0].class = ATA_DEV_NONE;
2806 ap->link.device[1].class = ATA_DEV_NONE;
2807 ap->flags |= ATA_FLAG_DISABLED;
2811 * sata_down_spd_limit - adjust SATA spd limit downward
2812 * @link: Link to adjust SATA spd limit for
2814 * Adjust SATA spd limit of @link downward. Note that this
2815 * function only adjusts the limit. The change must be applied
2816 * using sata_set_spd().
2818 * LOCKING:
2819 * Inherited from caller.
2821 * RETURNS:
2822 * 0 on success, negative errno on failure
2824 int sata_down_spd_limit(struct ata_link *link)
2826 u32 sstatus, spd, mask;
2827 int rc, highbit;
2829 if (!sata_scr_valid(link))
2830 return -EOPNOTSUPP;
2832 /* If SCR can be read, use it to determine the current SPD.
2833 * If not, use cached value in link->sata_spd.
2835 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2836 if (rc == 0)
2837 spd = (sstatus >> 4) & 0xf;
2838 else
2839 spd = link->sata_spd;
2841 mask = link->sata_spd_limit;
2842 if (mask <= 1)
2843 return -EINVAL;
2845 /* unconditionally mask off the highest bit */
2846 highbit = fls(mask) - 1;
2847 mask &= ~(1 << highbit);
2849 /* Mask off all speeds higher than or equal to the current
2850 * one. Force 1.5Gbps if current SPD is not available.
2852 if (spd > 1)
2853 mask &= (1 << (spd - 1)) - 1;
2854 else
2855 mask &= 1;
2857 /* were we already at the bottom? */
2858 if (!mask)
2859 return -EINVAL;
2861 link->sata_spd_limit = mask;
2863 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2864 sata_spd_string(fls(mask)));
2866 return 0;
2869 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2871 struct ata_link *host_link = &link->ap->link;
2872 u32 limit, target, spd;
2874 limit = link->sata_spd_limit;
2876 /* Don't configure downstream link faster than upstream link.
2877 * It doesn't speed up anything and some PMPs choke on such
2878 * configuration.
2880 if (!ata_is_host_link(link) && host_link->sata_spd)
2881 limit &= (1 << host_link->sata_spd) - 1;
2883 if (limit == UINT_MAX)
2884 target = 0;
2885 else
2886 target = fls(limit);
2888 spd = (*scontrol >> 4) & 0xf;
2889 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2891 return spd != target;
2895 * sata_set_spd_needed - is SATA spd configuration needed
2896 * @link: Link in question
2898 * Test whether the spd limit in SControl matches
2899 * @link->sata_spd_limit. This function is used to determine
2900 * whether hardreset is necessary to apply SATA spd
2901 * configuration.
2903 * LOCKING:
2904 * Inherited from caller.
2906 * RETURNS:
2907 * 1 if SATA spd configuration is needed, 0 otherwise.
2909 int sata_set_spd_needed(struct ata_link *link)
2911 u32 scontrol;
2913 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2914 return 1;
2916 return __sata_set_spd_needed(link, &scontrol);
2920 * sata_set_spd - set SATA spd according to spd limit
2921 * @link: Link to set SATA spd for
2923 * Set SATA spd of @link according to sata_spd_limit.
2925 * LOCKING:
2926 * Inherited from caller.
2928 * RETURNS:
2929 * 0 if spd doesn't need to be changed, 1 if spd has been
2930 * changed. Negative errno if SCR registers are inaccessible.
2932 int sata_set_spd(struct ata_link *link)
2934 u32 scontrol;
2935 int rc;
2937 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2938 return rc;
2940 if (!__sata_set_spd_needed(link, &scontrol))
2941 return 0;
2943 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2944 return rc;
2946 return 1;
2950 * This mode timing computation functionality is ported over from
2951 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2954 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2955 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2956 * for UDMA6, which is currently supported only by Maxtor drives.
2958 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2961 static const struct ata_timing ata_timing[] = {
2962 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2963 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2964 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2965 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2966 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2967 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2968 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2969 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2971 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2972 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2973 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2975 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2976 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2977 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2978 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2979 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2981 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2982 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2983 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2984 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2985 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2986 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2987 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2988 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2990 { 0xFF }
2993 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2994 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2996 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2998 q->setup = EZ(t->setup * 1000, T);
2999 q->act8b = EZ(t->act8b * 1000, T);
3000 q->rec8b = EZ(t->rec8b * 1000, T);
3001 q->cyc8b = EZ(t->cyc8b * 1000, T);
3002 q->active = EZ(t->active * 1000, T);
3003 q->recover = EZ(t->recover * 1000, T);
3004 q->cycle = EZ(t->cycle * 1000, T);
3005 q->udma = EZ(t->udma * 1000, UT);
3008 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3009 struct ata_timing *m, unsigned int what)
3011 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3012 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3013 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3014 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3015 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3016 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3017 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3018 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3021 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3023 const struct ata_timing *t = ata_timing;
3025 while (xfer_mode > t->mode)
3026 t++;
3028 if (xfer_mode == t->mode)
3029 return t;
3030 return NULL;
3033 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3034 struct ata_timing *t, int T, int UT)
3036 const struct ata_timing *s;
3037 struct ata_timing p;
3040 * Find the mode.
3043 if (!(s = ata_timing_find_mode(speed)))
3044 return -EINVAL;
3046 memcpy(t, s, sizeof(*s));
3049 * If the drive is an EIDE drive, it can tell us it needs extended
3050 * PIO/MW_DMA cycle timing.
3053 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3054 memset(&p, 0, sizeof(p));
3055 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3056 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3057 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3058 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3059 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3061 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3065 * Convert the timing to bus clock counts.
3068 ata_timing_quantize(t, t, T, UT);
3071 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3072 * S.M.A.R.T * and some other commands. We have to ensure that the
3073 * DMA cycle timing is slower/equal than the fastest PIO timing.
3076 if (speed > XFER_PIO_6) {
3077 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3078 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3082 * Lengthen active & recovery time so that cycle time is correct.
3085 if (t->act8b + t->rec8b < t->cyc8b) {
3086 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3087 t->rec8b = t->cyc8b - t->act8b;
3090 if (t->active + t->recover < t->cycle) {
3091 t->active += (t->cycle - (t->active + t->recover)) / 2;
3092 t->recover = t->cycle - t->active;
3095 /* In a few cases quantisation may produce enough errors to
3096 leave t->cycle too low for the sum of active and recovery
3097 if so we must correct this */
3098 if (t->active + t->recover > t->cycle)
3099 t->cycle = t->active + t->recover;
3101 return 0;
3105 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3106 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3107 * @cycle: cycle duration in ns
3109 * Return matching xfer mode for @cycle. The returned mode is of
3110 * the transfer type specified by @xfer_shift. If @cycle is too
3111 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3112 * than the fastest known mode, the fasted mode is returned.
3114 * LOCKING:
3115 * None.
3117 * RETURNS:
3118 * Matching xfer_mode, 0xff if no match found.
3120 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3122 u8 base_mode = 0xff, last_mode = 0xff;
3123 const struct ata_xfer_ent *ent;
3124 const struct ata_timing *t;
3126 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3127 if (ent->shift == xfer_shift)
3128 base_mode = ent->base;
3130 for (t = ata_timing_find_mode(base_mode);
3131 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3132 unsigned short this_cycle;
3134 switch (xfer_shift) {
3135 case ATA_SHIFT_PIO:
3136 case ATA_SHIFT_MWDMA:
3137 this_cycle = t->cycle;
3138 break;
3139 case ATA_SHIFT_UDMA:
3140 this_cycle = t->udma;
3141 break;
3142 default:
3143 return 0xff;
3146 if (cycle > this_cycle)
3147 break;
3149 last_mode = t->mode;
3152 return last_mode;
3156 * ata_down_xfermask_limit - adjust dev xfer masks downward
3157 * @dev: Device to adjust xfer masks
3158 * @sel: ATA_DNXFER_* selector
3160 * Adjust xfer masks of @dev downward. Note that this function
3161 * does not apply the change. Invoking ata_set_mode() afterwards
3162 * will apply the limit.
3164 * LOCKING:
3165 * Inherited from caller.
3167 * RETURNS:
3168 * 0 on success, negative errno on failure
3170 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3172 char buf[32];
3173 unsigned long orig_mask, xfer_mask;
3174 unsigned long pio_mask, mwdma_mask, udma_mask;
3175 int quiet, highbit;
3177 quiet = !!(sel & ATA_DNXFER_QUIET);
3178 sel &= ~ATA_DNXFER_QUIET;
3180 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3181 dev->mwdma_mask,
3182 dev->udma_mask);
3183 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3185 switch (sel) {
3186 case ATA_DNXFER_PIO:
3187 highbit = fls(pio_mask) - 1;
3188 pio_mask &= ~(1 << highbit);
3189 break;
3191 case ATA_DNXFER_DMA:
3192 if (udma_mask) {
3193 highbit = fls(udma_mask) - 1;
3194 udma_mask &= ~(1 << highbit);
3195 if (!udma_mask)
3196 return -ENOENT;
3197 } else if (mwdma_mask) {
3198 highbit = fls(mwdma_mask) - 1;
3199 mwdma_mask &= ~(1 << highbit);
3200 if (!mwdma_mask)
3201 return -ENOENT;
3203 break;
3205 case ATA_DNXFER_40C:
3206 udma_mask &= ATA_UDMA_MASK_40C;
3207 break;
3209 case ATA_DNXFER_FORCE_PIO0:
3210 pio_mask &= 1;
3211 case ATA_DNXFER_FORCE_PIO:
3212 mwdma_mask = 0;
3213 udma_mask = 0;
3214 break;
3216 default:
3217 BUG();
3220 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3222 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3223 return -ENOENT;
3225 if (!quiet) {
3226 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3227 snprintf(buf, sizeof(buf), "%s:%s",
3228 ata_mode_string(xfer_mask),
3229 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3230 else
3231 snprintf(buf, sizeof(buf), "%s",
3232 ata_mode_string(xfer_mask));
3234 ata_dev_printk(dev, KERN_WARNING,
3235 "limiting speed to %s\n", buf);
3238 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3239 &dev->udma_mask);
3241 return 0;
3244 static int ata_dev_set_mode(struct ata_device *dev)
3246 struct ata_eh_context *ehc = &dev->link->eh_context;
3247 const char *dev_err_whine = "";
3248 int ign_dev_err = 0;
3249 unsigned int err_mask;
3250 int rc;
3252 dev->flags &= ~ATA_DFLAG_PIO;
3253 if (dev->xfer_shift == ATA_SHIFT_PIO)
3254 dev->flags |= ATA_DFLAG_PIO;
3256 err_mask = ata_dev_set_xfermode(dev);
3258 if (err_mask & ~AC_ERR_DEV)
3259 goto fail;
3261 /* revalidate */
3262 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3263 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3264 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3265 if (rc)
3266 return rc;
3268 /* Old CFA may refuse this command, which is just fine */
3269 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
3270 ign_dev_err = 1;
3272 /* Some very old devices and some bad newer ones fail any kind of
3273 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3274 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3275 dev->pio_mode <= XFER_PIO_2)
3276 ign_dev_err = 1;
3278 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3279 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3280 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3281 dev->dma_mode == XFER_MW_DMA_0 &&
3282 (dev->id[63] >> 8) & 1)
3283 ign_dev_err = 1;
3285 /* if the device is actually configured correctly, ignore dev err */
3286 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3287 ign_dev_err = 1;
3289 if (err_mask & AC_ERR_DEV) {
3290 if (!ign_dev_err)
3291 goto fail;
3292 else
3293 dev_err_whine = " (device error ignored)";
3296 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3297 dev->xfer_shift, (int)dev->xfer_mode);
3299 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3300 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3301 dev_err_whine);
3303 return 0;
3305 fail:
3306 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3307 "(err_mask=0x%x)\n", err_mask);
3308 return -EIO;
3312 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3313 * @link: link on which timings will be programmed
3314 * @r_failed_dev: out parameter for failed device
3316 * Standard implementation of the function used to tune and set
3317 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3318 * ata_dev_set_mode() fails, pointer to the failing device is
3319 * returned in @r_failed_dev.
3321 * LOCKING:
3322 * PCI/etc. bus probe sem.
3324 * RETURNS:
3325 * 0 on success, negative errno otherwise
3328 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3330 struct ata_port *ap = link->ap;
3331 struct ata_device *dev;
3332 int rc = 0, used_dma = 0, found = 0;
3334 /* step 1: calculate xfer_mask */
3335 ata_link_for_each_dev(dev, link) {
3336 unsigned long pio_mask, dma_mask;
3337 unsigned int mode_mask;
3339 if (!ata_dev_enabled(dev))
3340 continue;
3342 mode_mask = ATA_DMA_MASK_ATA;
3343 if (dev->class == ATA_DEV_ATAPI)
3344 mode_mask = ATA_DMA_MASK_ATAPI;
3345 else if (ata_id_is_cfa(dev->id))
3346 mode_mask = ATA_DMA_MASK_CFA;
3348 ata_dev_xfermask(dev);
3349 ata_force_xfermask(dev);
3351 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3352 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3354 if (libata_dma_mask & mode_mask)
3355 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3356 else
3357 dma_mask = 0;
3359 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3360 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3362 found = 1;
3363 if (dev->dma_mode != 0xff)
3364 used_dma = 1;
3366 if (!found)
3367 goto out;
3369 /* step 2: always set host PIO timings */
3370 ata_link_for_each_dev(dev, link) {
3371 if (!ata_dev_enabled(dev))
3372 continue;
3374 if (dev->pio_mode == 0xff) {
3375 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3376 rc = -EINVAL;
3377 goto out;
3380 dev->xfer_mode = dev->pio_mode;
3381 dev->xfer_shift = ATA_SHIFT_PIO;
3382 if (ap->ops->set_piomode)
3383 ap->ops->set_piomode(ap, dev);
3386 /* step 3: set host DMA timings */
3387 ata_link_for_each_dev(dev, link) {
3388 if (!ata_dev_enabled(dev) || dev->dma_mode == 0xff)
3389 continue;
3391 dev->xfer_mode = dev->dma_mode;
3392 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3393 if (ap->ops->set_dmamode)
3394 ap->ops->set_dmamode(ap, dev);
3397 /* step 4: update devices' xfer mode */
3398 ata_link_for_each_dev(dev, link) {
3399 /* don't update suspended devices' xfer mode */
3400 if (!ata_dev_enabled(dev))
3401 continue;
3403 rc = ata_dev_set_mode(dev);
3404 if (rc)
3405 goto out;
3408 /* Record simplex status. If we selected DMA then the other
3409 * host channels are not permitted to do so.
3411 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3412 ap->host->simplex_claimed = ap;
3414 out:
3415 if (rc)
3416 *r_failed_dev = dev;
3417 return rc;
3421 * ata_tf_to_host - issue ATA taskfile to host controller
3422 * @ap: port to which command is being issued
3423 * @tf: ATA taskfile register set
3425 * Issues ATA taskfile register set to ATA host controller,
3426 * with proper synchronization with interrupt handler and
3427 * other threads.
3429 * LOCKING:
3430 * spin_lock_irqsave(host lock)
3433 static inline void ata_tf_to_host(struct ata_port *ap,
3434 const struct ata_taskfile *tf)
3436 ap->ops->tf_load(ap, tf);
3437 ap->ops->exec_command(ap, tf);
3441 * ata_busy_sleep - sleep until BSY clears, or timeout
3442 * @ap: port containing status register to be polled
3443 * @tmout_pat: impatience timeout
3444 * @tmout: overall timeout
3446 * Sleep until ATA Status register bit BSY clears,
3447 * or a timeout occurs.
3449 * LOCKING:
3450 * Kernel thread context (may sleep).
3452 * RETURNS:
3453 * 0 on success, -errno otherwise.
3455 int ata_busy_sleep(struct ata_port *ap,
3456 unsigned long tmout_pat, unsigned long tmout)
3458 unsigned long timer_start, timeout;
3459 u8 status;
3461 status = ata_busy_wait(ap, ATA_BUSY, 300);
3462 timer_start = jiffies;
3463 timeout = timer_start + tmout_pat;
3464 while (status != 0xff && (status & ATA_BUSY) &&
3465 time_before(jiffies, timeout)) {
3466 msleep(50);
3467 status = ata_busy_wait(ap, ATA_BUSY, 3);
3470 if (status != 0xff && (status & ATA_BUSY))
3471 ata_port_printk(ap, KERN_WARNING,
3472 "port is slow to respond, please be patient "
3473 "(Status 0x%x)\n", status);
3475 timeout = timer_start + tmout;
3476 while (status != 0xff && (status & ATA_BUSY) &&
3477 time_before(jiffies, timeout)) {
3478 msleep(50);
3479 status = ata_chk_status(ap);
3482 if (status == 0xff)
3483 return -ENODEV;
3485 if (status & ATA_BUSY) {
3486 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3487 "(%lu secs, Status 0x%x)\n",
3488 tmout / HZ, status);
3489 return -EBUSY;
3492 return 0;
3496 * ata_wait_after_reset - wait before checking status after reset
3497 * @ap: port containing status register to be polled
3498 * @deadline: deadline jiffies for the operation
3500 * After reset, we need to pause a while before reading status.
3501 * Also, certain combination of controller and device report 0xff
3502 * for some duration (e.g. until SATA PHY is up and running)
3503 * which is interpreted as empty port in ATA world. This
3504 * function also waits for such devices to get out of 0xff
3505 * status.
3507 * LOCKING:
3508 * Kernel thread context (may sleep).
3510 void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3512 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3514 if (time_before(until, deadline))
3515 deadline = until;
3517 /* Spec mandates ">= 2ms" before checking status. We wait
3518 * 150ms, because that was the magic delay used for ATAPI
3519 * devices in Hale Landis's ATADRVR, for the period of time
3520 * between when the ATA command register is written, and then
3521 * status is checked. Because waiting for "a while" before
3522 * checking status is fine, post SRST, we perform this magic
3523 * delay here as well.
3525 * Old drivers/ide uses the 2mS rule and then waits for ready.
3527 msleep(150);
3529 /* Wait for 0xff to clear. Some SATA devices take a long time
3530 * to clear 0xff after reset. For example, HHD424020F7SV00
3531 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3532 * than that.
3534 * Note that some PATA controllers (pata_ali) explode if
3535 * status register is read more than once when there's no
3536 * device attached.
3538 if (ap->flags & ATA_FLAG_SATA) {
3539 while (1) {
3540 u8 status = ata_chk_status(ap);
3542 if (status != 0xff || time_after(jiffies, deadline))
3543 return;
3545 msleep(50);
3551 * ata_wait_ready - sleep until BSY clears, or timeout
3552 * @ap: port containing status register to be polled
3553 * @deadline: deadline jiffies for the operation
3555 * Sleep until ATA Status register bit BSY clears, or timeout
3556 * occurs.
3558 * LOCKING:
3559 * Kernel thread context (may sleep).
3561 * RETURNS:
3562 * 0 on success, -errno otherwise.
3564 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3566 unsigned long start = jiffies;
3567 int warned = 0;
3569 while (1) {
3570 u8 status = ata_chk_status(ap);
3571 unsigned long now = jiffies;
3573 if (!(status & ATA_BUSY))
3574 return 0;
3575 if (!ata_link_online(&ap->link) && status == 0xff)
3576 return -ENODEV;
3577 if (time_after(now, deadline))
3578 return -EBUSY;
3580 if (!warned && time_after(now, start + 5 * HZ) &&
3581 (deadline - now > 3 * HZ)) {
3582 ata_port_printk(ap, KERN_WARNING,
3583 "port is slow to respond, please be patient "
3584 "(Status 0x%x)\n", status);
3585 warned = 1;
3588 msleep(50);
3592 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3593 unsigned long deadline)
3595 struct ata_ioports *ioaddr = &ap->ioaddr;
3596 unsigned int dev0 = devmask & (1 << 0);
3597 unsigned int dev1 = devmask & (1 << 1);
3598 int rc, ret = 0;
3600 /* if device 0 was found in ata_devchk, wait for its
3601 * BSY bit to clear
3603 if (dev0) {
3604 rc = ata_wait_ready(ap, deadline);
3605 if (rc) {
3606 if (rc != -ENODEV)
3607 return rc;
3608 ret = rc;
3612 /* if device 1 was found in ata_devchk, wait for register
3613 * access briefly, then wait for BSY to clear.
3615 if (dev1) {
3616 int i;
3618 ap->ops->dev_select(ap, 1);
3620 /* Wait for register access. Some ATAPI devices fail
3621 * to set nsect/lbal after reset, so don't waste too
3622 * much time on it. We're gonna wait for !BSY anyway.
3624 for (i = 0; i < 2; i++) {
3625 u8 nsect, lbal;
3627 nsect = ioread8(ioaddr->nsect_addr);
3628 lbal = ioread8(ioaddr->lbal_addr);
3629 if ((nsect == 1) && (lbal == 1))
3630 break;
3631 msleep(50); /* give drive a breather */
3634 rc = ata_wait_ready(ap, deadline);
3635 if (rc) {
3636 if (rc != -ENODEV)
3637 return rc;
3638 ret = rc;
3642 /* is all this really necessary? */
3643 ap->ops->dev_select(ap, 0);
3644 if (dev1)
3645 ap->ops->dev_select(ap, 1);
3646 if (dev0)
3647 ap->ops->dev_select(ap, 0);
3649 return ret;
3652 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3653 unsigned long deadline)
3655 struct ata_ioports *ioaddr = &ap->ioaddr;
3657 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3659 /* software reset. causes dev0 to be selected */
3660 iowrite8(ap->ctl, ioaddr->ctl_addr);
3661 udelay(20); /* FIXME: flush */
3662 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3663 udelay(20); /* FIXME: flush */
3664 iowrite8(ap->ctl, ioaddr->ctl_addr);
3666 /* wait a while before checking status */
3667 ata_wait_after_reset(ap, deadline);
3669 /* Before we perform post reset processing we want to see if
3670 * the bus shows 0xFF because the odd clown forgets the D7
3671 * pulldown resistor.
3673 if (ata_chk_status(ap) == 0xFF)
3674 return -ENODEV;
3676 return ata_bus_post_reset(ap, devmask, deadline);
3680 * ata_bus_reset - reset host port and associated ATA channel
3681 * @ap: port to reset
3683 * This is typically the first time we actually start issuing
3684 * commands to the ATA channel. We wait for BSY to clear, then
3685 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3686 * result. Determine what devices, if any, are on the channel
3687 * by looking at the device 0/1 error register. Look at the signature
3688 * stored in each device's taskfile registers, to determine if
3689 * the device is ATA or ATAPI.
3691 * LOCKING:
3692 * PCI/etc. bus probe sem.
3693 * Obtains host lock.
3695 * SIDE EFFECTS:
3696 * Sets ATA_FLAG_DISABLED if bus reset fails.
3699 void ata_bus_reset(struct ata_port *ap)
3701 struct ata_device *device = ap->link.device;
3702 struct ata_ioports *ioaddr = &ap->ioaddr;
3703 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3704 u8 err;
3705 unsigned int dev0, dev1 = 0, devmask = 0;
3706 int rc;
3708 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3710 /* determine if device 0/1 are present */
3711 if (ap->flags & ATA_FLAG_SATA_RESET)
3712 dev0 = 1;
3713 else {
3714 dev0 = ata_devchk(ap, 0);
3715 if (slave_possible)
3716 dev1 = ata_devchk(ap, 1);
3719 if (dev0)
3720 devmask |= (1 << 0);
3721 if (dev1)
3722 devmask |= (1 << 1);
3724 /* select device 0 again */
3725 ap->ops->dev_select(ap, 0);
3727 /* issue bus reset */
3728 if (ap->flags & ATA_FLAG_SRST) {
3729 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3730 if (rc && rc != -ENODEV)
3731 goto err_out;
3735 * determine by signature whether we have ATA or ATAPI devices
3737 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3738 if ((slave_possible) && (err != 0x81))
3739 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3741 /* is double-select really necessary? */
3742 if (device[1].class != ATA_DEV_NONE)
3743 ap->ops->dev_select(ap, 1);
3744 if (device[0].class != ATA_DEV_NONE)
3745 ap->ops->dev_select(ap, 0);
3747 /* if no devices were detected, disable this port */
3748 if ((device[0].class == ATA_DEV_NONE) &&
3749 (device[1].class == ATA_DEV_NONE))
3750 goto err_out;
3752 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3753 /* set up device control for ATA_FLAG_SATA_RESET */
3754 iowrite8(ap->ctl, ioaddr->ctl_addr);
3757 DPRINTK("EXIT\n");
3758 return;
3760 err_out:
3761 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3762 ata_port_disable(ap);
3764 DPRINTK("EXIT\n");
3768 * sata_link_debounce - debounce SATA phy status
3769 * @link: ATA link to debounce SATA phy status for
3770 * @params: timing parameters { interval, duratinon, timeout } in msec
3771 * @deadline: deadline jiffies for the operation
3773 * Make sure SStatus of @link reaches stable state, determined by
3774 * holding the same value where DET is not 1 for @duration polled
3775 * every @interval, before @timeout. Timeout constraints the
3776 * beginning of the stable state. Because DET gets stuck at 1 on
3777 * some controllers after hot unplugging, this functions waits
3778 * until timeout then returns 0 if DET is stable at 1.
3780 * @timeout is further limited by @deadline. The sooner of the
3781 * two is used.
3783 * LOCKING:
3784 * Kernel thread context (may sleep)
3786 * RETURNS:
3787 * 0 on success, -errno on failure.
3789 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3790 unsigned long deadline)
3792 unsigned long interval_msec = params[0];
3793 unsigned long duration = msecs_to_jiffies(params[1]);
3794 unsigned long last_jiffies, t;
3795 u32 last, cur;
3796 int rc;
3798 t = jiffies + msecs_to_jiffies(params[2]);
3799 if (time_before(t, deadline))
3800 deadline = t;
3802 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3803 return rc;
3804 cur &= 0xf;
3806 last = cur;
3807 last_jiffies = jiffies;
3809 while (1) {
3810 msleep(interval_msec);
3811 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3812 return rc;
3813 cur &= 0xf;
3815 /* DET stable? */
3816 if (cur == last) {
3817 if (cur == 1 && time_before(jiffies, deadline))
3818 continue;
3819 if (time_after(jiffies, last_jiffies + duration))
3820 return 0;
3821 continue;
3824 /* unstable, start over */
3825 last = cur;
3826 last_jiffies = jiffies;
3828 /* Check deadline. If debouncing failed, return
3829 * -EPIPE to tell upper layer to lower link speed.
3831 if (time_after(jiffies, deadline))
3832 return -EPIPE;
3837 * sata_link_resume - resume SATA link
3838 * @link: ATA link to resume SATA
3839 * @params: timing parameters { interval, duratinon, timeout } in msec
3840 * @deadline: deadline jiffies for the operation
3842 * Resume SATA phy @link and debounce it.
3844 * LOCKING:
3845 * Kernel thread context (may sleep)
3847 * RETURNS:
3848 * 0 on success, -errno on failure.
3850 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3851 unsigned long deadline)
3853 u32 scontrol;
3854 int rc;
3856 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3857 return rc;
3859 scontrol = (scontrol & 0x0f0) | 0x300;
3861 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3862 return rc;
3864 /* Some PHYs react badly if SStatus is pounded immediately
3865 * after resuming. Delay 200ms before debouncing.
3867 msleep(200);
3869 return sata_link_debounce(link, params, deadline);
3873 * ata_std_prereset - prepare for reset
3874 * @link: ATA link to be reset
3875 * @deadline: deadline jiffies for the operation
3877 * @link is about to be reset. Initialize it. Failure from
3878 * prereset makes libata abort whole reset sequence and give up
3879 * that port, so prereset should be best-effort. It does its
3880 * best to prepare for reset sequence but if things go wrong, it
3881 * should just whine, not fail.
3883 * LOCKING:
3884 * Kernel thread context (may sleep)
3886 * RETURNS:
3887 * 0 on success, -errno otherwise.
3889 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3891 struct ata_port *ap = link->ap;
3892 struct ata_eh_context *ehc = &link->eh_context;
3893 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3894 int rc;
3896 /* handle link resume */
3897 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3898 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3899 ehc->i.action |= ATA_EH_HARDRESET;
3901 /* Some PMPs don't work with only SRST, force hardreset if PMP
3902 * is supported.
3904 if (ap->flags & ATA_FLAG_PMP)
3905 ehc->i.action |= ATA_EH_HARDRESET;
3907 /* if we're about to do hardreset, nothing more to do */
3908 if (ehc->i.action & ATA_EH_HARDRESET)
3909 return 0;
3911 /* if SATA, resume link */
3912 if (ap->flags & ATA_FLAG_SATA) {
3913 rc = sata_link_resume(link, timing, deadline);
3914 /* whine about phy resume failure but proceed */
3915 if (rc && rc != -EOPNOTSUPP)
3916 ata_link_printk(link, KERN_WARNING, "failed to resume "
3917 "link for reset (errno=%d)\n", rc);
3920 /* Wait for !BSY if the controller can wait for the first D2H
3921 * Reg FIS and we don't know that no device is attached.
3923 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3924 rc = ata_wait_ready(ap, deadline);
3925 if (rc && rc != -ENODEV) {
3926 ata_link_printk(link, KERN_WARNING, "device not ready "
3927 "(errno=%d), forcing hardreset\n", rc);
3928 ehc->i.action |= ATA_EH_HARDRESET;
3932 return 0;
3936 * ata_std_softreset - reset host port via ATA SRST
3937 * @link: ATA link to reset
3938 * @classes: resulting classes of attached devices
3939 * @deadline: deadline jiffies for the operation
3941 * Reset host port using ATA SRST.
3943 * LOCKING:
3944 * Kernel thread context (may sleep)
3946 * RETURNS:
3947 * 0 on success, -errno otherwise.
3949 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3950 unsigned long deadline)
3952 struct ata_port *ap = link->ap;
3953 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3954 unsigned int devmask = 0;
3955 int rc;
3956 u8 err;
3958 DPRINTK("ENTER\n");
3960 if (ata_link_offline(link)) {
3961 classes[0] = ATA_DEV_NONE;
3962 goto out;
3965 /* determine if device 0/1 are present */
3966 if (ata_devchk(ap, 0))
3967 devmask |= (1 << 0);
3968 if (slave_possible && ata_devchk(ap, 1))
3969 devmask |= (1 << 1);
3971 /* select device 0 again */
3972 ap->ops->dev_select(ap, 0);
3974 /* issue bus reset */
3975 DPRINTK("about to softreset, devmask=%x\n", devmask);
3976 rc = ata_bus_softreset(ap, devmask, deadline);
3977 /* if link is occupied, -ENODEV too is an error */
3978 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3979 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3980 return rc;
3983 /* determine by signature whether we have ATA or ATAPI devices */
3984 classes[0] = ata_dev_try_classify(&link->device[0],
3985 devmask & (1 << 0), &err);
3986 if (slave_possible && err != 0x81)
3987 classes[1] = ata_dev_try_classify(&link->device[1],
3988 devmask & (1 << 1), &err);
3990 out:
3991 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3992 return 0;
3996 * sata_link_hardreset - reset link via SATA phy reset
3997 * @link: link to reset
3998 * @timing: timing parameters { interval, duratinon, timeout } in msec
3999 * @deadline: deadline jiffies for the operation
4001 * SATA phy-reset @link using DET bits of SControl register.
4003 * LOCKING:
4004 * Kernel thread context (may sleep)
4006 * RETURNS:
4007 * 0 on success, -errno otherwise.
4009 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4010 unsigned long deadline)
4012 u32 scontrol;
4013 int rc;
4015 DPRINTK("ENTER\n");
4017 if (sata_set_spd_needed(link)) {
4018 /* SATA spec says nothing about how to reconfigure
4019 * spd. To be on the safe side, turn off phy during
4020 * reconfiguration. This works for at least ICH7 AHCI
4021 * and Sil3124.
4023 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4024 goto out;
4026 scontrol = (scontrol & 0x0f0) | 0x304;
4028 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4029 goto out;
4031 sata_set_spd(link);
4034 /* issue phy wake/reset */
4035 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4036 goto out;
4038 scontrol = (scontrol & 0x0f0) | 0x301;
4040 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4041 goto out;
4043 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4044 * 10.4.2 says at least 1 ms.
4046 msleep(1);
4048 /* bring link back */
4049 rc = sata_link_resume(link, timing, deadline);
4050 out:
4051 DPRINTK("EXIT, rc=%d\n", rc);
4052 return rc;
4056 * sata_std_hardreset - reset host port via SATA phy reset
4057 * @link: link to reset
4058 * @class: resulting class of attached device
4059 * @deadline: deadline jiffies for the operation
4061 * SATA phy-reset host port using DET bits of SControl register,
4062 * wait for !BSY and classify the attached device.
4064 * LOCKING:
4065 * Kernel thread context (may sleep)
4067 * RETURNS:
4068 * 0 on success, -errno otherwise.
4070 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4071 unsigned long deadline)
4073 struct ata_port *ap = link->ap;
4074 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4075 int rc;
4077 DPRINTK("ENTER\n");
4079 /* do hardreset */
4080 rc = sata_link_hardreset(link, timing, deadline);
4081 if (rc) {
4082 ata_link_printk(link, KERN_ERR,
4083 "COMRESET failed (errno=%d)\n", rc);
4084 return rc;
4087 /* TODO: phy layer with polling, timeouts, etc. */
4088 if (ata_link_offline(link)) {
4089 *class = ATA_DEV_NONE;
4090 DPRINTK("EXIT, link offline\n");
4091 return 0;
4094 /* wait a while before checking status */
4095 ata_wait_after_reset(ap, deadline);
4097 /* If PMP is supported, we have to do follow-up SRST. Note
4098 * that some PMPs don't send D2H Reg FIS after hardreset at
4099 * all if the first port is empty. Wait for it just for a
4100 * second and request follow-up SRST.
4102 if (ap->flags & ATA_FLAG_PMP) {
4103 ata_wait_ready(ap, jiffies + HZ);
4104 return -EAGAIN;
4107 rc = ata_wait_ready(ap, deadline);
4108 /* link occupied, -ENODEV too is an error */
4109 if (rc) {
4110 ata_link_printk(link, KERN_ERR,
4111 "COMRESET failed (errno=%d)\n", rc);
4112 return rc;
4115 ap->ops->dev_select(ap, 0); /* probably unnecessary */
4117 *class = ata_dev_try_classify(link->device, 1, NULL);
4119 DPRINTK("EXIT, class=%u\n", *class);
4120 return 0;
4124 * ata_std_postreset - standard postreset callback
4125 * @link: the target ata_link
4126 * @classes: classes of attached devices
4128 * This function is invoked after a successful reset. Note that
4129 * the device might have been reset more than once using
4130 * different reset methods before postreset is invoked.
4132 * LOCKING:
4133 * Kernel thread context (may sleep)
4135 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4137 struct ata_port *ap = link->ap;
4138 u32 serror;
4140 DPRINTK("ENTER\n");
4142 /* print link status */
4143 sata_print_link_status(link);
4145 /* clear SError */
4146 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
4147 sata_scr_write(link, SCR_ERROR, serror);
4148 link->eh_info.serror = 0;
4150 /* is double-select really necessary? */
4151 if (classes[0] != ATA_DEV_NONE)
4152 ap->ops->dev_select(ap, 1);
4153 if (classes[1] != ATA_DEV_NONE)
4154 ap->ops->dev_select(ap, 0);
4156 /* bail out if no device is present */
4157 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
4158 DPRINTK("EXIT, no device\n");
4159 return;
4162 /* set up device control */
4163 if (ap->ioaddr.ctl_addr)
4164 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
4166 DPRINTK("EXIT\n");
4170 * ata_dev_same_device - Determine whether new ID matches configured device
4171 * @dev: device to compare against
4172 * @new_class: class of the new device
4173 * @new_id: IDENTIFY page of the new device
4175 * Compare @new_class and @new_id against @dev and determine
4176 * whether @dev is the device indicated by @new_class and
4177 * @new_id.
4179 * LOCKING:
4180 * None.
4182 * RETURNS:
4183 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4185 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4186 const u16 *new_id)
4188 const u16 *old_id = dev->id;
4189 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4190 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4192 if (dev->class != new_class) {
4193 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4194 dev->class, new_class);
4195 return 0;
4198 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4199 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4200 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4201 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4203 if (strcmp(model[0], model[1])) {
4204 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4205 "'%s' != '%s'\n", model[0], model[1]);
4206 return 0;
4209 if (strcmp(serial[0], serial[1])) {
4210 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4211 "'%s' != '%s'\n", serial[0], serial[1]);
4212 return 0;
4215 return 1;
4219 * ata_dev_reread_id - Re-read IDENTIFY data
4220 * @dev: target ATA device
4221 * @readid_flags: read ID flags
4223 * Re-read IDENTIFY page and make sure @dev is still attached to
4224 * the port.
4226 * LOCKING:
4227 * Kernel thread context (may sleep)
4229 * RETURNS:
4230 * 0 on success, negative errno otherwise
4232 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4234 unsigned int class = dev->class;
4235 u16 *id = (void *)dev->link->ap->sector_buf;
4236 int rc;
4238 /* read ID data */
4239 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4240 if (rc)
4241 return rc;
4243 /* is the device still there? */
4244 if (!ata_dev_same_device(dev, class, id))
4245 return -ENODEV;
4247 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4248 return 0;
4252 * ata_dev_revalidate - Revalidate ATA device
4253 * @dev: device to revalidate
4254 * @new_class: new class code
4255 * @readid_flags: read ID flags
4257 * Re-read IDENTIFY page, make sure @dev is still attached to the
4258 * port and reconfigure it according to the new IDENTIFY page.
4260 * LOCKING:
4261 * Kernel thread context (may sleep)
4263 * RETURNS:
4264 * 0 on success, negative errno otherwise
4266 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4267 unsigned int readid_flags)
4269 u64 n_sectors = dev->n_sectors;
4270 int rc;
4272 if (!ata_dev_enabled(dev))
4273 return -ENODEV;
4275 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4276 if (ata_class_enabled(new_class) &&
4277 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4278 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4279 dev->class, new_class);
4280 rc = -ENODEV;
4281 goto fail;
4284 /* re-read ID */
4285 rc = ata_dev_reread_id(dev, readid_flags);
4286 if (rc)
4287 goto fail;
4289 /* configure device according to the new ID */
4290 rc = ata_dev_configure(dev);
4291 if (rc)
4292 goto fail;
4294 /* verify n_sectors hasn't changed */
4295 if (dev->class == ATA_DEV_ATA && n_sectors &&
4296 dev->n_sectors != n_sectors) {
4297 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4298 "%llu != %llu\n",
4299 (unsigned long long)n_sectors,
4300 (unsigned long long)dev->n_sectors);
4302 /* restore original n_sectors */
4303 dev->n_sectors = n_sectors;
4305 rc = -ENODEV;
4306 goto fail;
4309 return 0;
4311 fail:
4312 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4313 return rc;
4316 struct ata_blacklist_entry {
4317 const char *model_num;
4318 const char *model_rev;
4319 unsigned long horkage;
4322 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4323 /* Devices with DMA related problems under Linux */
4324 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4325 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4326 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4327 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4328 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4329 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4330 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4331 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4332 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4333 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4334 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4335 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4336 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4337 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4338 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4339 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4340 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4341 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4342 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4343 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4344 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4345 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4346 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4347 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4348 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4349 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4350 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4351 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4352 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4353 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4354 /* Odd clown on sil3726/4726 PMPs */
4355 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4356 ATA_HORKAGE_SKIP_PM },
4358 /* Weird ATAPI devices */
4359 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4361 /* Devices we expect to fail diagnostics */
4363 /* Devices where NCQ should be avoided */
4364 /* NCQ is slow */
4365 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4366 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4367 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4368 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4369 /* NCQ is broken */
4370 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4371 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4372 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4373 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4375 /* Blacklist entries taken from Silicon Image 3124/3132
4376 Windows driver .inf file - also several Linux problem reports */
4377 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4378 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4379 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4381 /* devices which puke on READ_NATIVE_MAX */
4382 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4383 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4384 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4385 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4387 /* Devices which report 1 sector over size HPA */
4388 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4389 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4390 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4392 /* Devices which get the IVB wrong */
4393 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4394 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4395 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4396 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4397 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4399 /* End Marker */
4403 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4405 const char *p;
4406 int len;
4409 * check for trailing wildcard: *\0
4411 p = strchr(patt, wildchar);
4412 if (p && ((*(p + 1)) == 0))
4413 len = p - patt;
4414 else {
4415 len = strlen(name);
4416 if (!len) {
4417 if (!*patt)
4418 return 0;
4419 return -1;
4423 return strncmp(patt, name, len);
4426 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4428 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4429 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4430 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4432 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4433 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4435 while (ad->model_num) {
4436 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4437 if (ad->model_rev == NULL)
4438 return ad->horkage;
4439 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4440 return ad->horkage;
4442 ad++;
4444 return 0;
4447 static int ata_dma_blacklisted(const struct ata_device *dev)
4449 /* We don't support polling DMA.
4450 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4451 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4453 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4454 (dev->flags & ATA_DFLAG_CDB_INTR))
4455 return 1;
4456 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4460 * ata_is_40wire - check drive side detection
4461 * @dev: device
4463 * Perform drive side detection decoding, allowing for device vendors
4464 * who can't follow the documentation.
4467 static int ata_is_40wire(struct ata_device *dev)
4469 if (dev->horkage & ATA_HORKAGE_IVB)
4470 return ata_drive_40wire_relaxed(dev->id);
4471 return ata_drive_40wire(dev->id);
4475 * ata_dev_xfermask - Compute supported xfermask of the given device
4476 * @dev: Device to compute xfermask for
4478 * Compute supported xfermask of @dev and store it in
4479 * dev->*_mask. This function is responsible for applying all
4480 * known limits including host controller limits, device
4481 * blacklist, etc...
4483 * LOCKING:
4484 * None.
4486 static void ata_dev_xfermask(struct ata_device *dev)
4488 struct ata_link *link = dev->link;
4489 struct ata_port *ap = link->ap;
4490 struct ata_host *host = ap->host;
4491 unsigned long xfer_mask;
4493 /* controller modes available */
4494 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4495 ap->mwdma_mask, ap->udma_mask);
4497 /* drive modes available */
4498 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4499 dev->mwdma_mask, dev->udma_mask);
4500 xfer_mask &= ata_id_xfermask(dev->id);
4503 * CFA Advanced TrueIDE timings are not allowed on a shared
4504 * cable
4506 if (ata_dev_pair(dev)) {
4507 /* No PIO5 or PIO6 */
4508 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4509 /* No MWDMA3 or MWDMA 4 */
4510 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4513 if (ata_dma_blacklisted(dev)) {
4514 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4515 ata_dev_printk(dev, KERN_WARNING,
4516 "device is on DMA blacklist, disabling DMA\n");
4519 if ((host->flags & ATA_HOST_SIMPLEX) &&
4520 host->simplex_claimed && host->simplex_claimed != ap) {
4521 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4522 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4523 "other device, disabling DMA\n");
4526 if (ap->flags & ATA_FLAG_NO_IORDY)
4527 xfer_mask &= ata_pio_mask_no_iordy(dev);
4529 if (ap->ops->mode_filter)
4530 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4532 /* Apply cable rule here. Don't apply it early because when
4533 * we handle hot plug the cable type can itself change.
4534 * Check this last so that we know if the transfer rate was
4535 * solely limited by the cable.
4536 * Unknown or 80 wire cables reported host side are checked
4537 * drive side as well. Cases where we know a 40wire cable
4538 * is used safely for 80 are not checked here.
4540 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4541 /* UDMA/44 or higher would be available */
4542 if ((ap->cbl == ATA_CBL_PATA40) ||
4543 (ata_is_40wire(dev) &&
4544 (ap->cbl == ATA_CBL_PATA_UNK ||
4545 ap->cbl == ATA_CBL_PATA80))) {
4546 ata_dev_printk(dev, KERN_WARNING,
4547 "limited to UDMA/33 due to 40-wire cable\n");
4548 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4551 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4552 &dev->mwdma_mask, &dev->udma_mask);
4556 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4557 * @dev: Device to which command will be sent
4559 * Issue SET FEATURES - XFER MODE command to device @dev
4560 * on port @ap.
4562 * LOCKING:
4563 * PCI/etc. bus probe sem.
4565 * RETURNS:
4566 * 0 on success, AC_ERR_* mask otherwise.
4569 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4571 struct ata_taskfile tf;
4572 unsigned int err_mask;
4574 /* set up set-features taskfile */
4575 DPRINTK("set features - xfer mode\n");
4577 /* Some controllers and ATAPI devices show flaky interrupt
4578 * behavior after setting xfer mode. Use polling instead.
4580 ata_tf_init(dev, &tf);
4581 tf.command = ATA_CMD_SET_FEATURES;
4582 tf.feature = SETFEATURES_XFER;
4583 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4584 tf.protocol = ATA_PROT_NODATA;
4585 /* If we are using IORDY we must send the mode setting command */
4586 if (ata_pio_need_iordy(dev))
4587 tf.nsect = dev->xfer_mode;
4588 /* If the device has IORDY and the controller does not - turn it off */
4589 else if (ata_id_has_iordy(dev->id))
4590 tf.nsect = 0x01;
4591 else /* In the ancient relic department - skip all of this */
4592 return 0;
4594 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4596 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4597 return err_mask;
4600 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4601 * @dev: Device to which command will be sent
4602 * @enable: Whether to enable or disable the feature
4603 * @feature: The sector count represents the feature to set
4605 * Issue SET FEATURES - SATA FEATURES command to device @dev
4606 * on port @ap with sector count
4608 * LOCKING:
4609 * PCI/etc. bus probe sem.
4611 * RETURNS:
4612 * 0 on success, AC_ERR_* mask otherwise.
4614 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4615 u8 feature)
4617 struct ata_taskfile tf;
4618 unsigned int err_mask;
4620 /* set up set-features taskfile */
4621 DPRINTK("set features - SATA features\n");
4623 ata_tf_init(dev, &tf);
4624 tf.command = ATA_CMD_SET_FEATURES;
4625 tf.feature = enable;
4626 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4627 tf.protocol = ATA_PROT_NODATA;
4628 tf.nsect = feature;
4630 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4632 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4633 return err_mask;
4637 * ata_dev_init_params - Issue INIT DEV PARAMS command
4638 * @dev: Device to which command will be sent
4639 * @heads: Number of heads (taskfile parameter)
4640 * @sectors: Number of sectors (taskfile parameter)
4642 * LOCKING:
4643 * Kernel thread context (may sleep)
4645 * RETURNS:
4646 * 0 on success, AC_ERR_* mask otherwise.
4648 static unsigned int ata_dev_init_params(struct ata_device *dev,
4649 u16 heads, u16 sectors)
4651 struct ata_taskfile tf;
4652 unsigned int err_mask;
4654 /* Number of sectors per track 1-255. Number of heads 1-16 */
4655 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4656 return AC_ERR_INVALID;
4658 /* set up init dev params taskfile */
4659 DPRINTK("init dev params \n");
4661 ata_tf_init(dev, &tf);
4662 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4663 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4664 tf.protocol = ATA_PROT_NODATA;
4665 tf.nsect = sectors;
4666 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4668 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4669 /* A clean abort indicates an original or just out of spec drive
4670 and we should continue as we issue the setup based on the
4671 drive reported working geometry */
4672 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4673 err_mask = 0;
4675 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4676 return err_mask;
4680 * ata_sg_clean - Unmap DMA memory associated with command
4681 * @qc: Command containing DMA memory to be released
4683 * Unmap all mapped DMA memory associated with this command.
4685 * LOCKING:
4686 * spin_lock_irqsave(host lock)
4688 void ata_sg_clean(struct ata_queued_cmd *qc)
4690 struct ata_port *ap = qc->ap;
4691 struct scatterlist *sg = qc->sg;
4692 int dir = qc->dma_dir;
4694 WARN_ON(sg == NULL);
4696 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4698 if (qc->n_elem)
4699 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4701 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4702 qc->sg = NULL;
4706 * ata_fill_sg - Fill PCI IDE PRD table
4707 * @qc: Metadata associated with taskfile to be transferred
4709 * Fill PCI IDE PRD (scatter-gather) table with segments
4710 * associated with the current disk command.
4712 * LOCKING:
4713 * spin_lock_irqsave(host lock)
4716 static void ata_fill_sg(struct ata_queued_cmd *qc)
4718 struct ata_port *ap = qc->ap;
4719 struct scatterlist *sg;
4720 unsigned int si, pi;
4722 pi = 0;
4723 for_each_sg(qc->sg, sg, qc->n_elem, si) {
4724 u32 addr, offset;
4725 u32 sg_len, len;
4727 /* determine if physical DMA addr spans 64K boundary.
4728 * Note h/w doesn't support 64-bit, so we unconditionally
4729 * truncate dma_addr_t to u32.
4731 addr = (u32) sg_dma_address(sg);
4732 sg_len = sg_dma_len(sg);
4734 while (sg_len) {
4735 offset = addr & 0xffff;
4736 len = sg_len;
4737 if ((offset + sg_len) > 0x10000)
4738 len = 0x10000 - offset;
4740 ap->prd[pi].addr = cpu_to_le32(addr);
4741 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
4742 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
4744 pi++;
4745 sg_len -= len;
4746 addr += len;
4750 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4754 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4755 * @qc: Metadata associated with taskfile to be transferred
4757 * Fill PCI IDE PRD (scatter-gather) table with segments
4758 * associated with the current disk command. Perform the fill
4759 * so that we avoid writing any length 64K records for
4760 * controllers that don't follow the spec.
4762 * LOCKING:
4763 * spin_lock_irqsave(host lock)
4766 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4768 struct ata_port *ap = qc->ap;
4769 struct scatterlist *sg;
4770 unsigned int si, pi;
4772 pi = 0;
4773 for_each_sg(qc->sg, sg, qc->n_elem, si) {
4774 u32 addr, offset;
4775 u32 sg_len, len, blen;
4777 /* determine if physical DMA addr spans 64K boundary.
4778 * Note h/w doesn't support 64-bit, so we unconditionally
4779 * truncate dma_addr_t to u32.
4781 addr = (u32) sg_dma_address(sg);
4782 sg_len = sg_dma_len(sg);
4784 while (sg_len) {
4785 offset = addr & 0xffff;
4786 len = sg_len;
4787 if ((offset + sg_len) > 0x10000)
4788 len = 0x10000 - offset;
4790 blen = len & 0xffff;
4791 ap->prd[pi].addr = cpu_to_le32(addr);
4792 if (blen == 0) {
4793 /* Some PATA chipsets like the CS5530 can't
4794 cope with 0x0000 meaning 64K as the spec says */
4795 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
4796 blen = 0x8000;
4797 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
4799 ap->prd[pi].flags_len = cpu_to_le32(blen);
4800 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
4802 pi++;
4803 sg_len -= len;
4804 addr += len;
4808 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4812 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4813 * @qc: Metadata associated with taskfile to check
4815 * Allow low-level driver to filter ATA PACKET commands, returning
4816 * a status indicating whether or not it is OK to use DMA for the
4817 * supplied PACKET command.
4819 * LOCKING:
4820 * spin_lock_irqsave(host lock)
4822 * RETURNS: 0 when ATAPI DMA can be used
4823 * nonzero otherwise
4825 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4827 struct ata_port *ap = qc->ap;
4829 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4830 * few ATAPI devices choke on such DMA requests.
4832 if (unlikely(qc->nbytes & 15))
4833 return 1;
4835 if (ap->ops->check_atapi_dma)
4836 return ap->ops->check_atapi_dma(qc);
4838 return 0;
4842 * ata_std_qc_defer - Check whether a qc needs to be deferred
4843 * @qc: ATA command in question
4845 * Non-NCQ commands cannot run with any other command, NCQ or
4846 * not. As upper layer only knows the queue depth, we are
4847 * responsible for maintaining exclusion. This function checks
4848 * whether a new command @qc can be issued.
4850 * LOCKING:
4851 * spin_lock_irqsave(host lock)
4853 * RETURNS:
4854 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4856 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4858 struct ata_link *link = qc->dev->link;
4860 if (qc->tf.protocol == ATA_PROT_NCQ) {
4861 if (!ata_tag_valid(link->active_tag))
4862 return 0;
4863 } else {
4864 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4865 return 0;
4868 return ATA_DEFER_LINK;
4872 * ata_qc_prep - Prepare taskfile for submission
4873 * @qc: Metadata associated with taskfile to be prepared
4875 * Prepare ATA taskfile for submission.
4877 * LOCKING:
4878 * spin_lock_irqsave(host lock)
4880 void ata_qc_prep(struct ata_queued_cmd *qc)
4882 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4883 return;
4885 ata_fill_sg(qc);
4889 * ata_dumb_qc_prep - Prepare taskfile for submission
4890 * @qc: Metadata associated with taskfile to be prepared
4892 * Prepare ATA taskfile for submission.
4894 * LOCKING:
4895 * spin_lock_irqsave(host lock)
4897 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4899 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4900 return;
4902 ata_fill_sg_dumb(qc);
4905 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4908 * ata_sg_init - Associate command with scatter-gather table.
4909 * @qc: Command to be associated
4910 * @sg: Scatter-gather table.
4911 * @n_elem: Number of elements in s/g table.
4913 * Initialize the data-related elements of queued_cmd @qc
4914 * to point to a scatter-gather table @sg, containing @n_elem
4915 * elements.
4917 * LOCKING:
4918 * spin_lock_irqsave(host lock)
4920 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4921 unsigned int n_elem)
4923 qc->sg = sg;
4924 qc->n_elem = n_elem;
4925 qc->cursg = qc->sg;
4929 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4930 * @qc: Command with scatter-gather table to be mapped.
4932 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4934 * LOCKING:
4935 * spin_lock_irqsave(host lock)
4937 * RETURNS:
4938 * Zero on success, negative on error.
4941 static int ata_sg_setup(struct ata_queued_cmd *qc)
4943 struct ata_port *ap = qc->ap;
4944 unsigned int n_elem;
4946 VPRINTK("ENTER, ata%u\n", ap->print_id);
4948 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4949 if (n_elem < 1)
4950 return -1;
4952 DPRINTK("%d sg elements mapped\n", n_elem);
4954 qc->n_elem = n_elem;
4955 qc->flags |= ATA_QCFLAG_DMAMAP;
4957 return 0;
4961 * swap_buf_le16 - swap halves of 16-bit words in place
4962 * @buf: Buffer to swap
4963 * @buf_words: Number of 16-bit words in buffer.
4965 * Swap halves of 16-bit words if needed to convert from
4966 * little-endian byte order to native cpu byte order, or
4967 * vice-versa.
4969 * LOCKING:
4970 * Inherited from caller.
4972 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4974 #ifdef __BIG_ENDIAN
4975 unsigned int i;
4977 for (i = 0; i < buf_words; i++)
4978 buf[i] = le16_to_cpu(buf[i]);
4979 #endif /* __BIG_ENDIAN */
4983 * ata_data_xfer - Transfer data by PIO
4984 * @dev: device to target
4985 * @buf: data buffer
4986 * @buflen: buffer length
4987 * @rw: read/write
4989 * Transfer data from/to the device data register by PIO.
4991 * LOCKING:
4992 * Inherited from caller.
4994 * RETURNS:
4995 * Bytes consumed.
4997 unsigned int ata_data_xfer(struct ata_device *dev, unsigned char *buf,
4998 unsigned int buflen, int rw)
5000 struct ata_port *ap = dev->link->ap;
5001 void __iomem *data_addr = ap->ioaddr.data_addr;
5002 unsigned int words = buflen >> 1;
5004 /* Transfer multiple of 2 bytes */
5005 if (rw == READ)
5006 ioread16_rep(data_addr, buf, words);
5007 else
5008 iowrite16_rep(data_addr, buf, words);
5010 /* Transfer trailing 1 byte, if any. */
5011 if (unlikely(buflen & 0x01)) {
5012 __le16 align_buf[1] = { 0 };
5013 unsigned char *trailing_buf = buf + buflen - 1;
5015 if (rw == READ) {
5016 align_buf[0] = cpu_to_le16(ioread16(data_addr));
5017 memcpy(trailing_buf, align_buf, 1);
5018 } else {
5019 memcpy(align_buf, trailing_buf, 1);
5020 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
5022 words++;
5025 return words << 1;
5029 * ata_data_xfer_noirq - Transfer data by PIO
5030 * @dev: device to target
5031 * @buf: data buffer
5032 * @buflen: buffer length
5033 * @rw: read/write
5035 * Transfer data from/to the device data register by PIO. Do the
5036 * transfer with interrupts disabled.
5038 * LOCKING:
5039 * Inherited from caller.
5041 * RETURNS:
5042 * Bytes consumed.
5044 unsigned int ata_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
5045 unsigned int buflen, int rw)
5047 unsigned long flags;
5048 unsigned int consumed;
5050 local_irq_save(flags);
5051 consumed = ata_data_xfer(dev, buf, buflen, rw);
5052 local_irq_restore(flags);
5054 return consumed;
5059 * ata_pio_sector - Transfer a sector of data.
5060 * @qc: Command on going
5062 * Transfer qc->sect_size bytes of data from/to the ATA device.
5064 * LOCKING:
5065 * Inherited from caller.
5068 static void ata_pio_sector(struct ata_queued_cmd *qc)
5070 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5071 struct ata_port *ap = qc->ap;
5072 struct page *page;
5073 unsigned int offset;
5074 unsigned char *buf;
5076 if (qc->curbytes == qc->nbytes - qc->sect_size)
5077 ap->hsm_task_state = HSM_ST_LAST;
5079 page = sg_page(qc->cursg);
5080 offset = qc->cursg->offset + qc->cursg_ofs;
5082 /* get the current page and offset */
5083 page = nth_page(page, (offset >> PAGE_SHIFT));
5084 offset %= PAGE_SIZE;
5086 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5088 if (PageHighMem(page)) {
5089 unsigned long flags;
5091 /* FIXME: use a bounce buffer */
5092 local_irq_save(flags);
5093 buf = kmap_atomic(page, KM_IRQ0);
5095 /* do the actual data transfer */
5096 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5098 kunmap_atomic(buf, KM_IRQ0);
5099 local_irq_restore(flags);
5100 } else {
5101 buf = page_address(page);
5102 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5105 qc->curbytes += qc->sect_size;
5106 qc->cursg_ofs += qc->sect_size;
5108 if (qc->cursg_ofs == qc->cursg->length) {
5109 qc->cursg = sg_next(qc->cursg);
5110 qc->cursg_ofs = 0;
5115 * ata_pio_sectors - Transfer one or many sectors.
5116 * @qc: Command on going
5118 * Transfer one or many sectors of data from/to the
5119 * ATA device for the DRQ request.
5121 * LOCKING:
5122 * Inherited from caller.
5125 static void ata_pio_sectors(struct ata_queued_cmd *qc)
5127 if (is_multi_taskfile(&qc->tf)) {
5128 /* READ/WRITE MULTIPLE */
5129 unsigned int nsect;
5131 WARN_ON(qc->dev->multi_count == 0);
5133 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
5134 qc->dev->multi_count);
5135 while (nsect--)
5136 ata_pio_sector(qc);
5137 } else
5138 ata_pio_sector(qc);
5140 ata_altstatus(qc->ap); /* flush */
5144 * atapi_send_cdb - Write CDB bytes to hardware
5145 * @ap: Port to which ATAPI device is attached.
5146 * @qc: Taskfile currently active
5148 * When device has indicated its readiness to accept
5149 * a CDB, this function is called. Send the CDB.
5151 * LOCKING:
5152 * caller.
5155 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5157 /* send SCSI cdb */
5158 DPRINTK("send cdb\n");
5159 WARN_ON(qc->dev->cdb_len < 12);
5161 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
5162 ata_altstatus(ap); /* flush */
5164 switch (qc->tf.protocol) {
5165 case ATAPI_PROT_PIO:
5166 ap->hsm_task_state = HSM_ST;
5167 break;
5168 case ATAPI_PROT_NODATA:
5169 ap->hsm_task_state = HSM_ST_LAST;
5170 break;
5171 case ATAPI_PROT_DMA:
5172 ap->hsm_task_state = HSM_ST_LAST;
5173 /* initiate bmdma */
5174 ap->ops->bmdma_start(qc);
5175 break;
5180 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5181 * @qc: Command on going
5182 * @bytes: number of bytes
5184 * Transfer Transfer data from/to the ATAPI device.
5186 * LOCKING:
5187 * Inherited from caller.
5190 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5192 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
5193 struct ata_port *ap = qc->ap;
5194 struct ata_device *dev = qc->dev;
5195 struct ata_eh_info *ehi = &dev->link->eh_info;
5196 struct scatterlist *sg;
5197 struct page *page;
5198 unsigned char *buf;
5199 unsigned int offset, count, consumed;
5201 next_sg:
5202 sg = qc->cursg;
5203 if (unlikely(!sg)) {
5204 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
5205 "buf=%u cur=%u bytes=%u",
5206 qc->nbytes, qc->curbytes, bytes);
5207 return -1;
5210 page = sg_page(sg);
5211 offset = sg->offset + qc->cursg_ofs;
5213 /* get the current page and offset */
5214 page = nth_page(page, (offset >> PAGE_SHIFT));
5215 offset %= PAGE_SIZE;
5217 /* don't overrun current sg */
5218 count = min(sg->length - qc->cursg_ofs, bytes);
5220 /* don't cross page boundaries */
5221 count = min(count, (unsigned int)PAGE_SIZE - offset);
5223 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5225 if (PageHighMem(page)) {
5226 unsigned long flags;
5228 /* FIXME: use bounce buffer */
5229 local_irq_save(flags);
5230 buf = kmap_atomic(page, KM_IRQ0);
5232 /* do the actual data transfer */
5233 consumed = ap->ops->data_xfer(dev, buf + offset, count, rw);
5235 kunmap_atomic(buf, KM_IRQ0);
5236 local_irq_restore(flags);
5237 } else {
5238 buf = page_address(page);
5239 consumed = ap->ops->data_xfer(dev, buf + offset, count, rw);
5242 bytes -= min(bytes, consumed);
5243 qc->curbytes += count;
5244 qc->cursg_ofs += count;
5246 if (qc->cursg_ofs == sg->length) {
5247 qc->cursg = sg_next(qc->cursg);
5248 qc->cursg_ofs = 0;
5251 /* consumed can be larger than count only for the last transfer */
5252 WARN_ON(qc->cursg && count != consumed);
5254 if (bytes)
5255 goto next_sg;
5256 return 0;
5260 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5261 * @qc: Command on going
5263 * Transfer Transfer data from/to the ATAPI device.
5265 * LOCKING:
5266 * Inherited from caller.
5269 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5271 struct ata_port *ap = qc->ap;
5272 struct ata_device *dev = qc->dev;
5273 struct ata_eh_info *ehi = &dev->link->eh_info;
5274 unsigned int ireason, bc_lo, bc_hi, bytes;
5275 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5277 /* Abuse qc->result_tf for temp storage of intermediate TF
5278 * here to save some kernel stack usage.
5279 * For normal completion, qc->result_tf is not relevant. For
5280 * error, qc->result_tf is later overwritten by ata_qc_complete().
5281 * So, the correctness of qc->result_tf is not affected.
5283 ap->ops->tf_read(ap, &qc->result_tf);
5284 ireason = qc->result_tf.nsect;
5285 bc_lo = qc->result_tf.lbam;
5286 bc_hi = qc->result_tf.lbah;
5287 bytes = (bc_hi << 8) | bc_lo;
5289 /* shall be cleared to zero, indicating xfer of data */
5290 if (unlikely(ireason & (1 << 0)))
5291 goto atapi_check;
5293 /* make sure transfer direction matches expected */
5294 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5295 if (unlikely(do_write != i_write))
5296 goto atapi_check;
5298 if (unlikely(!bytes))
5299 goto atapi_check;
5301 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
5303 if (unlikely(__atapi_pio_bytes(qc, bytes)))
5304 goto err_out;
5305 ata_altstatus(ap); /* flush */
5307 return;
5309 atapi_check:
5310 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
5311 ireason, bytes);
5312 err_out:
5313 qc->err_mask |= AC_ERR_HSM;
5314 ap->hsm_task_state = HSM_ST_ERR;
5318 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5319 * @ap: the target ata_port
5320 * @qc: qc on going
5322 * RETURNS:
5323 * 1 if ok in workqueue, 0 otherwise.
5326 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
5328 if (qc->tf.flags & ATA_TFLAG_POLLING)
5329 return 1;
5331 if (ap->hsm_task_state == HSM_ST_FIRST) {
5332 if (qc->tf.protocol == ATA_PROT_PIO &&
5333 (qc->tf.flags & ATA_TFLAG_WRITE))
5334 return 1;
5336 if (ata_is_atapi(qc->tf.protocol) &&
5337 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5338 return 1;
5341 return 0;
5345 * ata_hsm_qc_complete - finish a qc running on standard HSM
5346 * @qc: Command to complete
5347 * @in_wq: 1 if called from workqueue, 0 otherwise
5349 * Finish @qc which is running on standard HSM.
5351 * LOCKING:
5352 * If @in_wq is zero, spin_lock_irqsave(host lock).
5353 * Otherwise, none on entry and grabs host lock.
5355 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5357 struct ata_port *ap = qc->ap;
5358 unsigned long flags;
5360 if (ap->ops->error_handler) {
5361 if (in_wq) {
5362 spin_lock_irqsave(ap->lock, flags);
5364 /* EH might have kicked in while host lock is
5365 * released.
5367 qc = ata_qc_from_tag(ap, qc->tag);
5368 if (qc) {
5369 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5370 ap->ops->irq_on(ap);
5371 ata_qc_complete(qc);
5372 } else
5373 ata_port_freeze(ap);
5376 spin_unlock_irqrestore(ap->lock, flags);
5377 } else {
5378 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5379 ata_qc_complete(qc);
5380 else
5381 ata_port_freeze(ap);
5383 } else {
5384 if (in_wq) {
5385 spin_lock_irqsave(ap->lock, flags);
5386 ap->ops->irq_on(ap);
5387 ata_qc_complete(qc);
5388 spin_unlock_irqrestore(ap->lock, flags);
5389 } else
5390 ata_qc_complete(qc);
5395 * ata_hsm_move - move the HSM to the next state.
5396 * @ap: the target ata_port
5397 * @qc: qc on going
5398 * @status: current device status
5399 * @in_wq: 1 if called from workqueue, 0 otherwise
5401 * RETURNS:
5402 * 1 when poll next status needed, 0 otherwise.
5404 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5405 u8 status, int in_wq)
5407 unsigned long flags = 0;
5408 int poll_next;
5410 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5412 /* Make sure ata_qc_issue_prot() does not throw things
5413 * like DMA polling into the workqueue. Notice that
5414 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5416 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5418 fsm_start:
5419 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5420 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5422 switch (ap->hsm_task_state) {
5423 case HSM_ST_FIRST:
5424 /* Send first data block or PACKET CDB */
5426 /* If polling, we will stay in the work queue after
5427 * sending the data. Otherwise, interrupt handler
5428 * takes over after sending the data.
5430 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5432 /* check device status */
5433 if (unlikely((status & ATA_DRQ) == 0)) {
5434 /* handle BSY=0, DRQ=0 as error */
5435 if (likely(status & (ATA_ERR | ATA_DF)))
5436 /* device stops HSM for abort/error */
5437 qc->err_mask |= AC_ERR_DEV;
5438 else
5439 /* HSM violation. Let EH handle this */
5440 qc->err_mask |= AC_ERR_HSM;
5442 ap->hsm_task_state = HSM_ST_ERR;
5443 goto fsm_start;
5446 /* Device should not ask for data transfer (DRQ=1)
5447 * when it finds something wrong.
5448 * We ignore DRQ here and stop the HSM by
5449 * changing hsm_task_state to HSM_ST_ERR and
5450 * let the EH abort the command or reset the device.
5452 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5453 /* Some ATAPI tape drives forget to clear the ERR bit
5454 * when doing the next command (mostly request sense).
5455 * We ignore ERR here to workaround and proceed sending
5456 * the CDB.
5458 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5459 ata_port_printk(ap, KERN_WARNING,
5460 "DRQ=1 with device error, "
5461 "dev_stat 0x%X\n", status);
5462 qc->err_mask |= AC_ERR_HSM;
5463 ap->hsm_task_state = HSM_ST_ERR;
5464 goto fsm_start;
5468 /* Send the CDB (atapi) or the first data block (ata pio out).
5469 * During the state transition, interrupt handler shouldn't
5470 * be invoked before the data transfer is complete and
5471 * hsm_task_state is changed. Hence, the following locking.
5473 if (in_wq)
5474 spin_lock_irqsave(ap->lock, flags);
5476 if (qc->tf.protocol == ATA_PROT_PIO) {
5477 /* PIO data out protocol.
5478 * send first data block.
5481 /* ata_pio_sectors() might change the state
5482 * to HSM_ST_LAST. so, the state is changed here
5483 * before ata_pio_sectors().
5485 ap->hsm_task_state = HSM_ST;
5486 ata_pio_sectors(qc);
5487 } else
5488 /* send CDB */
5489 atapi_send_cdb(ap, qc);
5491 if (in_wq)
5492 spin_unlock_irqrestore(ap->lock, flags);
5494 /* if polling, ata_pio_task() handles the rest.
5495 * otherwise, interrupt handler takes over from here.
5497 break;
5499 case HSM_ST:
5500 /* complete command or read/write the data register */
5501 if (qc->tf.protocol == ATAPI_PROT_PIO) {
5502 /* ATAPI PIO protocol */
5503 if ((status & ATA_DRQ) == 0) {
5504 /* No more data to transfer or device error.
5505 * Device error will be tagged in HSM_ST_LAST.
5507 ap->hsm_task_state = HSM_ST_LAST;
5508 goto fsm_start;
5511 /* Device should not ask for data transfer (DRQ=1)
5512 * when it finds something wrong.
5513 * We ignore DRQ here and stop the HSM by
5514 * changing hsm_task_state to HSM_ST_ERR and
5515 * let the EH abort the command or reset the device.
5517 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5518 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5519 "device error, dev_stat 0x%X\n",
5520 status);
5521 qc->err_mask |= AC_ERR_HSM;
5522 ap->hsm_task_state = HSM_ST_ERR;
5523 goto fsm_start;
5526 atapi_pio_bytes(qc);
5528 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5529 /* bad ireason reported by device */
5530 goto fsm_start;
5532 } else {
5533 /* ATA PIO protocol */
5534 if (unlikely((status & ATA_DRQ) == 0)) {
5535 /* handle BSY=0, DRQ=0 as error */
5536 if (likely(status & (ATA_ERR | ATA_DF)))
5537 /* device stops HSM for abort/error */
5538 qc->err_mask |= AC_ERR_DEV;
5539 else
5540 /* HSM violation. Let EH handle this.
5541 * Phantom devices also trigger this
5542 * condition. Mark hint.
5544 qc->err_mask |= AC_ERR_HSM |
5545 AC_ERR_NODEV_HINT;
5547 ap->hsm_task_state = HSM_ST_ERR;
5548 goto fsm_start;
5551 /* For PIO reads, some devices may ask for
5552 * data transfer (DRQ=1) alone with ERR=1.
5553 * We respect DRQ here and transfer one
5554 * block of junk data before changing the
5555 * hsm_task_state to HSM_ST_ERR.
5557 * For PIO writes, ERR=1 DRQ=1 doesn't make
5558 * sense since the data block has been
5559 * transferred to the device.
5561 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5562 /* data might be corrputed */
5563 qc->err_mask |= AC_ERR_DEV;
5565 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5566 ata_pio_sectors(qc);
5567 status = ata_wait_idle(ap);
5570 if (status & (ATA_BUSY | ATA_DRQ))
5571 qc->err_mask |= AC_ERR_HSM;
5573 /* ata_pio_sectors() might change the
5574 * state to HSM_ST_LAST. so, the state
5575 * is changed after ata_pio_sectors().
5577 ap->hsm_task_state = HSM_ST_ERR;
5578 goto fsm_start;
5581 ata_pio_sectors(qc);
5583 if (ap->hsm_task_state == HSM_ST_LAST &&
5584 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5585 /* all data read */
5586 status = ata_wait_idle(ap);
5587 goto fsm_start;
5591 poll_next = 1;
5592 break;
5594 case HSM_ST_LAST:
5595 if (unlikely(!ata_ok(status))) {
5596 qc->err_mask |= __ac_err_mask(status);
5597 ap->hsm_task_state = HSM_ST_ERR;
5598 goto fsm_start;
5601 /* no more data to transfer */
5602 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5603 ap->print_id, qc->dev->devno, status);
5605 WARN_ON(qc->err_mask);
5607 ap->hsm_task_state = HSM_ST_IDLE;
5609 /* complete taskfile transaction */
5610 ata_hsm_qc_complete(qc, in_wq);
5612 poll_next = 0;
5613 break;
5615 case HSM_ST_ERR:
5616 /* make sure qc->err_mask is available to
5617 * know what's wrong and recover
5619 WARN_ON(qc->err_mask == 0);
5621 ap->hsm_task_state = HSM_ST_IDLE;
5623 /* complete taskfile transaction */
5624 ata_hsm_qc_complete(qc, in_wq);
5626 poll_next = 0;
5627 break;
5628 default:
5629 poll_next = 0;
5630 BUG();
5633 return poll_next;
5636 static void ata_pio_task(struct work_struct *work)
5638 struct ata_port *ap =
5639 container_of(work, struct ata_port, port_task.work);
5640 struct ata_queued_cmd *qc = ap->port_task_data;
5641 u8 status;
5642 int poll_next;
5644 fsm_start:
5645 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5648 * This is purely heuristic. This is a fast path.
5649 * Sometimes when we enter, BSY will be cleared in
5650 * a chk-status or two. If not, the drive is probably seeking
5651 * or something. Snooze for a couple msecs, then
5652 * chk-status again. If still busy, queue delayed work.
5654 status = ata_busy_wait(ap, ATA_BUSY, 5);
5655 if (status & ATA_BUSY) {
5656 msleep(2);
5657 status = ata_busy_wait(ap, ATA_BUSY, 10);
5658 if (status & ATA_BUSY) {
5659 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
5660 return;
5664 /* move the HSM */
5665 poll_next = ata_hsm_move(ap, qc, status, 1);
5667 /* another command or interrupt handler
5668 * may be running at this point.
5670 if (poll_next)
5671 goto fsm_start;
5675 * ata_qc_new - Request an available ATA command, for queueing
5676 * @ap: Port associated with device @dev
5677 * @dev: Device from whom we request an available command structure
5679 * LOCKING:
5680 * None.
5683 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5685 struct ata_queued_cmd *qc = NULL;
5686 unsigned int i;
5688 /* no command while frozen */
5689 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5690 return NULL;
5692 /* the last tag is reserved for internal command. */
5693 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5694 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5695 qc = __ata_qc_from_tag(ap, i);
5696 break;
5699 if (qc)
5700 qc->tag = i;
5702 return qc;
5706 * ata_qc_new_init - Request an available ATA command, and initialize it
5707 * @dev: Device from whom we request an available command structure
5709 * LOCKING:
5710 * None.
5713 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5715 struct ata_port *ap = dev->link->ap;
5716 struct ata_queued_cmd *qc;
5718 qc = ata_qc_new(ap);
5719 if (qc) {
5720 qc->scsicmd = NULL;
5721 qc->ap = ap;
5722 qc->dev = dev;
5724 ata_qc_reinit(qc);
5727 return qc;
5731 * ata_qc_free - free unused ata_queued_cmd
5732 * @qc: Command to complete
5734 * Designed to free unused ata_queued_cmd object
5735 * in case something prevents using it.
5737 * LOCKING:
5738 * spin_lock_irqsave(host lock)
5740 void ata_qc_free(struct ata_queued_cmd *qc)
5742 struct ata_port *ap = qc->ap;
5743 unsigned int tag;
5745 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5747 qc->flags = 0;
5748 tag = qc->tag;
5749 if (likely(ata_tag_valid(tag))) {
5750 qc->tag = ATA_TAG_POISON;
5751 clear_bit(tag, &ap->qc_allocated);
5755 void __ata_qc_complete(struct ata_queued_cmd *qc)
5757 struct ata_port *ap = qc->ap;
5758 struct ata_link *link = qc->dev->link;
5760 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5761 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5763 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5764 ata_sg_clean(qc);
5766 /* command should be marked inactive atomically with qc completion */
5767 if (qc->tf.protocol == ATA_PROT_NCQ) {
5768 link->sactive &= ~(1 << qc->tag);
5769 if (!link->sactive)
5770 ap->nr_active_links--;
5771 } else {
5772 link->active_tag = ATA_TAG_POISON;
5773 ap->nr_active_links--;
5776 /* clear exclusive status */
5777 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5778 ap->excl_link == link))
5779 ap->excl_link = NULL;
5781 /* atapi: mark qc as inactive to prevent the interrupt handler
5782 * from completing the command twice later, before the error handler
5783 * is called. (when rc != 0 and atapi request sense is needed)
5785 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5786 ap->qc_active &= ~(1 << qc->tag);
5788 /* call completion callback */
5789 qc->complete_fn(qc);
5792 static void fill_result_tf(struct ata_queued_cmd *qc)
5794 struct ata_port *ap = qc->ap;
5796 qc->result_tf.flags = qc->tf.flags;
5797 ap->ops->tf_read(ap, &qc->result_tf);
5800 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5802 struct ata_device *dev = qc->dev;
5804 if (ata_tag_internal(qc->tag))
5805 return;
5807 if (ata_is_nodata(qc->tf.protocol))
5808 return;
5810 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5811 return;
5813 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5817 * ata_qc_complete - Complete an active ATA command
5818 * @qc: Command to complete
5819 * @err_mask: ATA Status register contents
5821 * Indicate to the mid and upper layers that an ATA
5822 * command has completed, with either an ok or not-ok status.
5824 * LOCKING:
5825 * spin_lock_irqsave(host lock)
5827 void ata_qc_complete(struct ata_queued_cmd *qc)
5829 struct ata_port *ap = qc->ap;
5831 /* XXX: New EH and old EH use different mechanisms to
5832 * synchronize EH with regular execution path.
5834 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5835 * Normal execution path is responsible for not accessing a
5836 * failed qc. libata core enforces the rule by returning NULL
5837 * from ata_qc_from_tag() for failed qcs.
5839 * Old EH depends on ata_qc_complete() nullifying completion
5840 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5841 * not synchronize with interrupt handler. Only PIO task is
5842 * taken care of.
5844 if (ap->ops->error_handler) {
5845 struct ata_device *dev = qc->dev;
5846 struct ata_eh_info *ehi = &dev->link->eh_info;
5848 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5850 if (unlikely(qc->err_mask))
5851 qc->flags |= ATA_QCFLAG_FAILED;
5853 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5854 if (!ata_tag_internal(qc->tag)) {
5855 /* always fill result TF for failed qc */
5856 fill_result_tf(qc);
5857 ata_qc_schedule_eh(qc);
5858 return;
5862 /* read result TF if requested */
5863 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5864 fill_result_tf(qc);
5866 /* Some commands need post-processing after successful
5867 * completion.
5869 switch (qc->tf.command) {
5870 case ATA_CMD_SET_FEATURES:
5871 if (qc->tf.feature != SETFEATURES_WC_ON &&
5872 qc->tf.feature != SETFEATURES_WC_OFF)
5873 break;
5874 /* fall through */
5875 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5876 case ATA_CMD_SET_MULTI: /* multi_count changed */
5877 /* revalidate device */
5878 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5879 ata_port_schedule_eh(ap);
5880 break;
5882 case ATA_CMD_SLEEP:
5883 dev->flags |= ATA_DFLAG_SLEEPING;
5884 break;
5887 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5888 ata_verify_xfer(qc);
5890 __ata_qc_complete(qc);
5891 } else {
5892 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5893 return;
5895 /* read result TF if failed or requested */
5896 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5897 fill_result_tf(qc);
5899 __ata_qc_complete(qc);
5904 * ata_qc_complete_multiple - Complete multiple qcs successfully
5905 * @ap: port in question
5906 * @qc_active: new qc_active mask
5907 * @finish_qc: LLDD callback invoked before completing a qc
5909 * Complete in-flight commands. This functions is meant to be
5910 * called from low-level driver's interrupt routine to complete
5911 * requests normally. ap->qc_active and @qc_active is compared
5912 * and commands are completed accordingly.
5914 * LOCKING:
5915 * spin_lock_irqsave(host lock)
5917 * RETURNS:
5918 * Number of completed commands on success, -errno otherwise.
5920 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5921 void (*finish_qc)(struct ata_queued_cmd *))
5923 int nr_done = 0;
5924 u32 done_mask;
5925 int i;
5927 done_mask = ap->qc_active ^ qc_active;
5929 if (unlikely(done_mask & qc_active)) {
5930 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5931 "(%08x->%08x)\n", ap->qc_active, qc_active);
5932 return -EINVAL;
5935 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5936 struct ata_queued_cmd *qc;
5938 if (!(done_mask & (1 << i)))
5939 continue;
5941 if ((qc = ata_qc_from_tag(ap, i))) {
5942 if (finish_qc)
5943 finish_qc(qc);
5944 ata_qc_complete(qc);
5945 nr_done++;
5949 return nr_done;
5953 * ata_qc_issue - issue taskfile to device
5954 * @qc: command to issue to device
5956 * Prepare an ATA command to submission to device.
5957 * This includes mapping the data into a DMA-able
5958 * area, filling in the S/G table, and finally
5959 * writing the taskfile to hardware, starting the command.
5961 * LOCKING:
5962 * spin_lock_irqsave(host lock)
5964 void ata_qc_issue(struct ata_queued_cmd *qc)
5966 struct ata_port *ap = qc->ap;
5967 struct ata_link *link = qc->dev->link;
5968 u8 prot = qc->tf.protocol;
5970 /* Make sure only one non-NCQ command is outstanding. The
5971 * check is skipped for old EH because it reuses active qc to
5972 * request ATAPI sense.
5974 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5976 if (ata_is_ncq(prot)) {
5977 WARN_ON(link->sactive & (1 << qc->tag));
5979 if (!link->sactive)
5980 ap->nr_active_links++;
5981 link->sactive |= 1 << qc->tag;
5982 } else {
5983 WARN_ON(link->sactive);
5985 ap->nr_active_links++;
5986 link->active_tag = qc->tag;
5989 qc->flags |= ATA_QCFLAG_ACTIVE;
5990 ap->qc_active |= 1 << qc->tag;
5992 /* We guarantee to LLDs that they will have at least one
5993 * non-zero sg if the command is a data command.
5995 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5997 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5998 (ap->flags & ATA_FLAG_PIO_DMA)))
5999 if (ata_sg_setup(qc))
6000 goto sg_err;
6002 /* if device is sleeping, schedule softreset and abort the link */
6003 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
6004 link->eh_info.action |= ATA_EH_SOFTRESET;
6005 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
6006 ata_link_abort(link);
6007 return;
6010 ap->ops->qc_prep(qc);
6012 qc->err_mask |= ap->ops->qc_issue(qc);
6013 if (unlikely(qc->err_mask))
6014 goto err;
6015 return;
6017 sg_err:
6018 qc->err_mask |= AC_ERR_SYSTEM;
6019 err:
6020 ata_qc_complete(qc);
6024 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6025 * @qc: command to issue to device
6027 * Using various libata functions and hooks, this function
6028 * starts an ATA command. ATA commands are grouped into
6029 * classes called "protocols", and issuing each type of protocol
6030 * is slightly different.
6032 * May be used as the qc_issue() entry in ata_port_operations.
6034 * LOCKING:
6035 * spin_lock_irqsave(host lock)
6037 * RETURNS:
6038 * Zero on success, AC_ERR_* mask on failure
6041 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
6043 struct ata_port *ap = qc->ap;
6045 /* Use polling pio if the LLD doesn't handle
6046 * interrupt driven pio and atapi CDB interrupt.
6048 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6049 switch (qc->tf.protocol) {
6050 case ATA_PROT_PIO:
6051 case ATA_PROT_NODATA:
6052 case ATAPI_PROT_PIO:
6053 case ATAPI_PROT_NODATA:
6054 qc->tf.flags |= ATA_TFLAG_POLLING;
6055 break;
6056 case ATAPI_PROT_DMA:
6057 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
6058 /* see ata_dma_blacklisted() */
6059 BUG();
6060 break;
6061 default:
6062 break;
6066 /* select the device */
6067 ata_dev_select(ap, qc->dev->devno, 1, 0);
6069 /* start the command */
6070 switch (qc->tf.protocol) {
6071 case ATA_PROT_NODATA:
6072 if (qc->tf.flags & ATA_TFLAG_POLLING)
6073 ata_qc_set_polling(qc);
6075 ata_tf_to_host(ap, &qc->tf);
6076 ap->hsm_task_state = HSM_ST_LAST;
6078 if (qc->tf.flags & ATA_TFLAG_POLLING)
6079 ata_pio_queue_task(ap, qc, 0);
6081 break;
6083 case ATA_PROT_DMA:
6084 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6086 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6087 ap->ops->bmdma_setup(qc); /* set up bmdma */
6088 ap->ops->bmdma_start(qc); /* initiate bmdma */
6089 ap->hsm_task_state = HSM_ST_LAST;
6090 break;
6092 case ATA_PROT_PIO:
6093 if (qc->tf.flags & ATA_TFLAG_POLLING)
6094 ata_qc_set_polling(qc);
6096 ata_tf_to_host(ap, &qc->tf);
6098 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6099 /* PIO data out protocol */
6100 ap->hsm_task_state = HSM_ST_FIRST;
6101 ata_pio_queue_task(ap, qc, 0);
6103 /* always send first data block using
6104 * the ata_pio_task() codepath.
6106 } else {
6107 /* PIO data in protocol */
6108 ap->hsm_task_state = HSM_ST;
6110 if (qc->tf.flags & ATA_TFLAG_POLLING)
6111 ata_pio_queue_task(ap, qc, 0);
6113 /* if polling, ata_pio_task() handles the rest.
6114 * otherwise, interrupt handler takes over from here.
6118 break;
6120 case ATAPI_PROT_PIO:
6121 case ATAPI_PROT_NODATA:
6122 if (qc->tf.flags & ATA_TFLAG_POLLING)
6123 ata_qc_set_polling(qc);
6125 ata_tf_to_host(ap, &qc->tf);
6127 ap->hsm_task_state = HSM_ST_FIRST;
6129 /* send cdb by polling if no cdb interrupt */
6130 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6131 (qc->tf.flags & ATA_TFLAG_POLLING))
6132 ata_pio_queue_task(ap, qc, 0);
6133 break;
6135 case ATAPI_PROT_DMA:
6136 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6138 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6139 ap->ops->bmdma_setup(qc); /* set up bmdma */
6140 ap->hsm_task_state = HSM_ST_FIRST;
6142 /* send cdb by polling if no cdb interrupt */
6143 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6144 ata_pio_queue_task(ap, qc, 0);
6145 break;
6147 default:
6148 WARN_ON(1);
6149 return AC_ERR_SYSTEM;
6152 return 0;
6156 * ata_host_intr - Handle host interrupt for given (port, task)
6157 * @ap: Port on which interrupt arrived (possibly...)
6158 * @qc: Taskfile currently active in engine
6160 * Handle host interrupt for given queued command. Currently,
6161 * only DMA interrupts are handled. All other commands are
6162 * handled via polling with interrupts disabled (nIEN bit).
6164 * LOCKING:
6165 * spin_lock_irqsave(host lock)
6167 * RETURNS:
6168 * One if interrupt was handled, zero if not (shared irq).
6171 inline unsigned int ata_host_intr(struct ata_port *ap,
6172 struct ata_queued_cmd *qc)
6174 struct ata_eh_info *ehi = &ap->link.eh_info;
6175 u8 status, host_stat = 0;
6177 VPRINTK("ata%u: protocol %d task_state %d\n",
6178 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
6180 /* Check whether we are expecting interrupt in this state */
6181 switch (ap->hsm_task_state) {
6182 case HSM_ST_FIRST:
6183 /* Some pre-ATAPI-4 devices assert INTRQ
6184 * at this state when ready to receive CDB.
6187 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6188 * The flag was turned on only for atapi devices. No
6189 * need to check ata_is_atapi(qc->tf.protocol) again.
6191 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6192 goto idle_irq;
6193 break;
6194 case HSM_ST_LAST:
6195 if (qc->tf.protocol == ATA_PROT_DMA ||
6196 qc->tf.protocol == ATAPI_PROT_DMA) {
6197 /* check status of DMA engine */
6198 host_stat = ap->ops->bmdma_status(ap);
6199 VPRINTK("ata%u: host_stat 0x%X\n",
6200 ap->print_id, host_stat);
6202 /* if it's not our irq... */
6203 if (!(host_stat & ATA_DMA_INTR))
6204 goto idle_irq;
6206 /* before we do anything else, clear DMA-Start bit */
6207 ap->ops->bmdma_stop(qc);
6209 if (unlikely(host_stat & ATA_DMA_ERR)) {
6210 /* error when transfering data to/from memory */
6211 qc->err_mask |= AC_ERR_HOST_BUS;
6212 ap->hsm_task_state = HSM_ST_ERR;
6215 break;
6216 case HSM_ST:
6217 break;
6218 default:
6219 goto idle_irq;
6222 /* check altstatus */
6223 status = ata_altstatus(ap);
6224 if (status & ATA_BUSY)
6225 goto idle_irq;
6227 /* check main status, clearing INTRQ */
6228 status = ata_chk_status(ap);
6229 if (unlikely(status & ATA_BUSY))
6230 goto idle_irq;
6232 /* ack bmdma irq events */
6233 ap->ops->irq_clear(ap);
6235 ata_hsm_move(ap, qc, status, 0);
6237 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6238 qc->tf.protocol == ATAPI_PROT_DMA))
6239 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6241 return 1; /* irq handled */
6243 idle_irq:
6244 ap->stats.idle_irq++;
6246 #ifdef ATA_IRQ_TRAP
6247 if ((ap->stats.idle_irq % 1000) == 0) {
6248 ata_chk_status(ap);
6249 ap->ops->irq_clear(ap);
6250 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
6251 return 1;
6253 #endif
6254 return 0; /* irq not handled */
6258 * ata_interrupt - Default ATA host interrupt handler
6259 * @irq: irq line (unused)
6260 * @dev_instance: pointer to our ata_host information structure
6262 * Default interrupt handler for PCI IDE devices. Calls
6263 * ata_host_intr() for each port that is not disabled.
6265 * LOCKING:
6266 * Obtains host lock during operation.
6268 * RETURNS:
6269 * IRQ_NONE or IRQ_HANDLED.
6272 irqreturn_t ata_interrupt(int irq, void *dev_instance)
6274 struct ata_host *host = dev_instance;
6275 unsigned int i;
6276 unsigned int handled = 0;
6277 unsigned long flags;
6279 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6280 spin_lock_irqsave(&host->lock, flags);
6282 for (i = 0; i < host->n_ports; i++) {
6283 struct ata_port *ap;
6285 ap = host->ports[i];
6286 if (ap &&
6287 !(ap->flags & ATA_FLAG_DISABLED)) {
6288 struct ata_queued_cmd *qc;
6290 qc = ata_qc_from_tag(ap, ap->link.active_tag);
6291 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
6292 (qc->flags & ATA_QCFLAG_ACTIVE))
6293 handled |= ata_host_intr(ap, qc);
6297 spin_unlock_irqrestore(&host->lock, flags);
6299 return IRQ_RETVAL(handled);
6303 * sata_scr_valid - test whether SCRs are accessible
6304 * @link: ATA link to test SCR accessibility for
6306 * Test whether SCRs are accessible for @link.
6308 * LOCKING:
6309 * None.
6311 * RETURNS:
6312 * 1 if SCRs are accessible, 0 otherwise.
6314 int sata_scr_valid(struct ata_link *link)
6316 struct ata_port *ap = link->ap;
6318 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
6322 * sata_scr_read - read SCR register of the specified port
6323 * @link: ATA link to read SCR for
6324 * @reg: SCR to read
6325 * @val: Place to store read value
6327 * Read SCR register @reg of @link into *@val. This function is
6328 * guaranteed to succeed if @link is ap->link, the cable type of
6329 * the port is SATA and the port implements ->scr_read.
6331 * LOCKING:
6332 * None if @link is ap->link. Kernel thread context otherwise.
6334 * RETURNS:
6335 * 0 on success, negative errno on failure.
6337 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
6339 if (ata_is_host_link(link)) {
6340 struct ata_port *ap = link->ap;
6342 if (sata_scr_valid(link))
6343 return ap->ops->scr_read(ap, reg, val);
6344 return -EOPNOTSUPP;
6347 return sata_pmp_scr_read(link, reg, val);
6351 * sata_scr_write - write SCR register of the specified port
6352 * @link: ATA link to write SCR for
6353 * @reg: SCR to write
6354 * @val: value to write
6356 * Write @val to SCR register @reg of @link. This function is
6357 * guaranteed to succeed if @link is ap->link, the cable type of
6358 * the port is SATA and the port implements ->scr_read.
6360 * LOCKING:
6361 * None if @link is ap->link. Kernel thread context otherwise.
6363 * RETURNS:
6364 * 0 on success, negative errno on failure.
6366 int sata_scr_write(struct ata_link *link, int reg, u32 val)
6368 if (ata_is_host_link(link)) {
6369 struct ata_port *ap = link->ap;
6371 if (sata_scr_valid(link))
6372 return ap->ops->scr_write(ap, reg, val);
6373 return -EOPNOTSUPP;
6376 return sata_pmp_scr_write(link, reg, val);
6380 * sata_scr_write_flush - write SCR register of the specified port and flush
6381 * @link: ATA link to write SCR for
6382 * @reg: SCR to write
6383 * @val: value to write
6385 * This function is identical to sata_scr_write() except that this
6386 * function performs flush after writing to the register.
6388 * LOCKING:
6389 * None if @link is ap->link. Kernel thread context otherwise.
6391 * RETURNS:
6392 * 0 on success, negative errno on failure.
6394 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6396 if (ata_is_host_link(link)) {
6397 struct ata_port *ap = link->ap;
6398 int rc;
6400 if (sata_scr_valid(link)) {
6401 rc = ap->ops->scr_write(ap, reg, val);
6402 if (rc == 0)
6403 rc = ap->ops->scr_read(ap, reg, &val);
6404 return rc;
6406 return -EOPNOTSUPP;
6409 return sata_pmp_scr_write(link, reg, val);
6413 * ata_link_online - test whether the given link is online
6414 * @link: ATA link to test
6416 * Test whether @link is online. Note that this function returns
6417 * 0 if online status of @link cannot be obtained, so
6418 * ata_link_online(link) != !ata_link_offline(link).
6420 * LOCKING:
6421 * None.
6423 * RETURNS:
6424 * 1 if the port online status is available and online.
6426 int ata_link_online(struct ata_link *link)
6428 u32 sstatus;
6430 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6431 (sstatus & 0xf) == 0x3)
6432 return 1;
6433 return 0;
6437 * ata_link_offline - test whether the given link is offline
6438 * @link: ATA link to test
6440 * Test whether @link is offline. Note that this function
6441 * returns 0 if offline status of @link cannot be obtained, so
6442 * ata_link_online(link) != !ata_link_offline(link).
6444 * LOCKING:
6445 * None.
6447 * RETURNS:
6448 * 1 if the port offline status is available and offline.
6450 int ata_link_offline(struct ata_link *link)
6452 u32 sstatus;
6454 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6455 (sstatus & 0xf) != 0x3)
6456 return 1;
6457 return 0;
6460 int ata_flush_cache(struct ata_device *dev)
6462 unsigned int err_mask;
6463 u8 cmd;
6465 if (!ata_try_flush_cache(dev))
6466 return 0;
6468 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6469 cmd = ATA_CMD_FLUSH_EXT;
6470 else
6471 cmd = ATA_CMD_FLUSH;
6473 /* This is wrong. On a failed flush we get back the LBA of the lost
6474 sector and we should (assuming it wasn't aborted as unknown) issue
6475 a further flush command to continue the writeback until it
6476 does not error */
6477 err_mask = ata_do_simple_cmd(dev, cmd);
6478 if (err_mask) {
6479 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6480 return -EIO;
6483 return 0;
6486 #ifdef CONFIG_PM
6487 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6488 unsigned int action, unsigned int ehi_flags,
6489 int wait)
6491 unsigned long flags;
6492 int i, rc;
6494 for (i = 0; i < host->n_ports; i++) {
6495 struct ata_port *ap = host->ports[i];
6496 struct ata_link *link;
6498 /* Previous resume operation might still be in
6499 * progress. Wait for PM_PENDING to clear.
6501 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6502 ata_port_wait_eh(ap);
6503 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6506 /* request PM ops to EH */
6507 spin_lock_irqsave(ap->lock, flags);
6509 ap->pm_mesg = mesg;
6510 if (wait) {
6511 rc = 0;
6512 ap->pm_result = &rc;
6515 ap->pflags |= ATA_PFLAG_PM_PENDING;
6516 __ata_port_for_each_link(link, ap) {
6517 link->eh_info.action |= action;
6518 link->eh_info.flags |= ehi_flags;
6521 ata_port_schedule_eh(ap);
6523 spin_unlock_irqrestore(ap->lock, flags);
6525 /* wait and check result */
6526 if (wait) {
6527 ata_port_wait_eh(ap);
6528 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6529 if (rc)
6530 return rc;
6534 return 0;
6538 * ata_host_suspend - suspend host
6539 * @host: host to suspend
6540 * @mesg: PM message
6542 * Suspend @host. Actual operation is performed by EH. This
6543 * function requests EH to perform PM operations and waits for EH
6544 * to finish.
6546 * LOCKING:
6547 * Kernel thread context (may sleep).
6549 * RETURNS:
6550 * 0 on success, -errno on failure.
6552 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6554 int rc;
6557 * disable link pm on all ports before requesting
6558 * any pm activity
6560 ata_lpm_enable(host);
6562 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6563 if (rc == 0)
6564 host->dev->power.power_state = mesg;
6565 return rc;
6569 * ata_host_resume - resume host
6570 * @host: host to resume
6572 * Resume @host. Actual operation is performed by EH. This
6573 * function requests EH to perform PM operations and returns.
6574 * Note that all resume operations are performed parallely.
6576 * LOCKING:
6577 * Kernel thread context (may sleep).
6579 void ata_host_resume(struct ata_host *host)
6581 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6582 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6583 host->dev->power.power_state = PMSG_ON;
6585 /* reenable link pm */
6586 ata_lpm_disable(host);
6588 #endif
6591 * ata_port_start - Set port up for dma.
6592 * @ap: Port to initialize
6594 * Called just after data structures for each port are
6595 * initialized. Allocates space for PRD table.
6597 * May be used as the port_start() entry in ata_port_operations.
6599 * LOCKING:
6600 * Inherited from caller.
6602 int ata_port_start(struct ata_port *ap)
6604 struct device *dev = ap->dev;
6606 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6607 GFP_KERNEL);
6608 if (!ap->prd)
6609 return -ENOMEM;
6611 return 0;
6615 * ata_dev_init - Initialize an ata_device structure
6616 * @dev: Device structure to initialize
6618 * Initialize @dev in preparation for probing.
6620 * LOCKING:
6621 * Inherited from caller.
6623 void ata_dev_init(struct ata_device *dev)
6625 struct ata_link *link = dev->link;
6626 struct ata_port *ap = link->ap;
6627 unsigned long flags;
6629 /* SATA spd limit is bound to the first device */
6630 link->sata_spd_limit = link->hw_sata_spd_limit;
6631 link->sata_spd = 0;
6633 /* High bits of dev->flags are used to record warm plug
6634 * requests which occur asynchronously. Synchronize using
6635 * host lock.
6637 spin_lock_irqsave(ap->lock, flags);
6638 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6639 dev->horkage = 0;
6640 spin_unlock_irqrestore(ap->lock, flags);
6642 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6643 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6644 dev->pio_mask = UINT_MAX;
6645 dev->mwdma_mask = UINT_MAX;
6646 dev->udma_mask = UINT_MAX;
6650 * ata_link_init - Initialize an ata_link structure
6651 * @ap: ATA port link is attached to
6652 * @link: Link structure to initialize
6653 * @pmp: Port multiplier port number
6655 * Initialize @link.
6657 * LOCKING:
6658 * Kernel thread context (may sleep)
6660 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6662 int i;
6664 /* clear everything except for devices */
6665 memset(link, 0, offsetof(struct ata_link, device[0]));
6667 link->ap = ap;
6668 link->pmp = pmp;
6669 link->active_tag = ATA_TAG_POISON;
6670 link->hw_sata_spd_limit = UINT_MAX;
6672 /* can't use iterator, ap isn't initialized yet */
6673 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6674 struct ata_device *dev = &link->device[i];
6676 dev->link = link;
6677 dev->devno = dev - link->device;
6678 ata_dev_init(dev);
6683 * sata_link_init_spd - Initialize link->sata_spd_limit
6684 * @link: Link to configure sata_spd_limit for
6686 * Initialize @link->[hw_]sata_spd_limit to the currently
6687 * configured value.
6689 * LOCKING:
6690 * Kernel thread context (may sleep).
6692 * RETURNS:
6693 * 0 on success, -errno on failure.
6695 int sata_link_init_spd(struct ata_link *link)
6697 u32 scontrol;
6698 u8 spd;
6699 int rc;
6701 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6702 if (rc)
6703 return rc;
6705 spd = (scontrol >> 4) & 0xf;
6706 if (spd)
6707 link->hw_sata_spd_limit &= (1 << spd) - 1;
6709 ata_force_spd_limit(link);
6711 link->sata_spd_limit = link->hw_sata_spd_limit;
6713 return 0;
6717 * ata_port_alloc - allocate and initialize basic ATA port resources
6718 * @host: ATA host this allocated port belongs to
6720 * Allocate and initialize basic ATA port resources.
6722 * RETURNS:
6723 * Allocate ATA port on success, NULL on failure.
6725 * LOCKING:
6726 * Inherited from calling layer (may sleep).
6728 struct ata_port *ata_port_alloc(struct ata_host *host)
6730 struct ata_port *ap;
6732 DPRINTK("ENTER\n");
6734 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6735 if (!ap)
6736 return NULL;
6738 ap->pflags |= ATA_PFLAG_INITIALIZING;
6739 ap->lock = &host->lock;
6740 ap->flags = ATA_FLAG_DISABLED;
6741 ap->print_id = -1;
6742 ap->ctl = ATA_DEVCTL_OBS;
6743 ap->host = host;
6744 ap->dev = host->dev;
6745 ap->last_ctl = 0xFF;
6747 #if defined(ATA_VERBOSE_DEBUG)
6748 /* turn on all debugging levels */
6749 ap->msg_enable = 0x00FF;
6750 #elif defined(ATA_DEBUG)
6751 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6752 #else
6753 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6754 #endif
6756 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
6757 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6758 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6759 INIT_LIST_HEAD(&ap->eh_done_q);
6760 init_waitqueue_head(&ap->eh_wait_q);
6761 init_timer_deferrable(&ap->fastdrain_timer);
6762 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6763 ap->fastdrain_timer.data = (unsigned long)ap;
6765 ap->cbl = ATA_CBL_NONE;
6767 ata_link_init(ap, &ap->link, 0);
6769 #ifdef ATA_IRQ_TRAP
6770 ap->stats.unhandled_irq = 1;
6771 ap->stats.idle_irq = 1;
6772 #endif
6773 return ap;
6776 static void ata_host_release(struct device *gendev, void *res)
6778 struct ata_host *host = dev_get_drvdata(gendev);
6779 int i;
6781 for (i = 0; i < host->n_ports; i++) {
6782 struct ata_port *ap = host->ports[i];
6784 if (!ap)
6785 continue;
6787 if (ap->scsi_host)
6788 scsi_host_put(ap->scsi_host);
6790 kfree(ap->pmp_link);
6791 kfree(ap);
6792 host->ports[i] = NULL;
6795 dev_set_drvdata(gendev, NULL);
6799 * ata_host_alloc - allocate and init basic ATA host resources
6800 * @dev: generic device this host is associated with
6801 * @max_ports: maximum number of ATA ports associated with this host
6803 * Allocate and initialize basic ATA host resources. LLD calls
6804 * this function to allocate a host, initializes it fully and
6805 * attaches it using ata_host_register().
6807 * @max_ports ports are allocated and host->n_ports is
6808 * initialized to @max_ports. The caller is allowed to decrease
6809 * host->n_ports before calling ata_host_register(). The unused
6810 * ports will be automatically freed on registration.
6812 * RETURNS:
6813 * Allocate ATA host on success, NULL on failure.
6815 * LOCKING:
6816 * Inherited from calling layer (may sleep).
6818 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6820 struct ata_host *host;
6821 size_t sz;
6822 int i;
6824 DPRINTK("ENTER\n");
6826 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6827 return NULL;
6829 /* alloc a container for our list of ATA ports (buses) */
6830 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6831 /* alloc a container for our list of ATA ports (buses) */
6832 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6833 if (!host)
6834 goto err_out;
6836 devres_add(dev, host);
6837 dev_set_drvdata(dev, host);
6839 spin_lock_init(&host->lock);
6840 host->dev = dev;
6841 host->n_ports = max_ports;
6843 /* allocate ports bound to this host */
6844 for (i = 0; i < max_ports; i++) {
6845 struct ata_port *ap;
6847 ap = ata_port_alloc(host);
6848 if (!ap)
6849 goto err_out;
6851 ap->port_no = i;
6852 host->ports[i] = ap;
6855 devres_remove_group(dev, NULL);
6856 return host;
6858 err_out:
6859 devres_release_group(dev, NULL);
6860 return NULL;
6864 * ata_host_alloc_pinfo - alloc host and init with port_info array
6865 * @dev: generic device this host is associated with
6866 * @ppi: array of ATA port_info to initialize host with
6867 * @n_ports: number of ATA ports attached to this host
6869 * Allocate ATA host and initialize with info from @ppi. If NULL
6870 * terminated, @ppi may contain fewer entries than @n_ports. The
6871 * last entry will be used for the remaining ports.
6873 * RETURNS:
6874 * Allocate ATA host on success, NULL on failure.
6876 * LOCKING:
6877 * Inherited from calling layer (may sleep).
6879 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6880 const struct ata_port_info * const * ppi,
6881 int n_ports)
6883 const struct ata_port_info *pi;
6884 struct ata_host *host;
6885 int i, j;
6887 host = ata_host_alloc(dev, n_ports);
6888 if (!host)
6889 return NULL;
6891 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6892 struct ata_port *ap = host->ports[i];
6894 if (ppi[j])
6895 pi = ppi[j++];
6897 ap->pio_mask = pi->pio_mask;
6898 ap->mwdma_mask = pi->mwdma_mask;
6899 ap->udma_mask = pi->udma_mask;
6900 ap->flags |= pi->flags;
6901 ap->link.flags |= pi->link_flags;
6902 ap->ops = pi->port_ops;
6904 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6905 host->ops = pi->port_ops;
6906 if (!host->private_data && pi->private_data)
6907 host->private_data = pi->private_data;
6910 return host;
6913 static void ata_host_stop(struct device *gendev, void *res)
6915 struct ata_host *host = dev_get_drvdata(gendev);
6916 int i;
6918 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6920 for (i = 0; i < host->n_ports; i++) {
6921 struct ata_port *ap = host->ports[i];
6923 if (ap->ops->port_stop)
6924 ap->ops->port_stop(ap);
6927 if (host->ops->host_stop)
6928 host->ops->host_stop(host);
6932 * ata_host_start - start and freeze ports of an ATA host
6933 * @host: ATA host to start ports for
6935 * Start and then freeze ports of @host. Started status is
6936 * recorded in host->flags, so this function can be called
6937 * multiple times. Ports are guaranteed to get started only
6938 * once. If host->ops isn't initialized yet, its set to the
6939 * first non-dummy port ops.
6941 * LOCKING:
6942 * Inherited from calling layer (may sleep).
6944 * RETURNS:
6945 * 0 if all ports are started successfully, -errno otherwise.
6947 int ata_host_start(struct ata_host *host)
6949 int have_stop = 0;
6950 void *start_dr = NULL;
6951 int i, rc;
6953 if (host->flags & ATA_HOST_STARTED)
6954 return 0;
6956 for (i = 0; i < host->n_ports; i++) {
6957 struct ata_port *ap = host->ports[i];
6959 if (!host->ops && !ata_port_is_dummy(ap))
6960 host->ops = ap->ops;
6962 if (ap->ops->port_stop)
6963 have_stop = 1;
6966 if (host->ops->host_stop)
6967 have_stop = 1;
6969 if (have_stop) {
6970 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6971 if (!start_dr)
6972 return -ENOMEM;
6975 for (i = 0; i < host->n_ports; i++) {
6976 struct ata_port *ap = host->ports[i];
6978 if (ap->ops->port_start) {
6979 rc = ap->ops->port_start(ap);
6980 if (rc) {
6981 if (rc != -ENODEV)
6982 dev_printk(KERN_ERR, host->dev,
6983 "failed to start port %d "
6984 "(errno=%d)\n", i, rc);
6985 goto err_out;
6988 ata_eh_freeze_port(ap);
6991 if (start_dr)
6992 devres_add(host->dev, start_dr);
6993 host->flags |= ATA_HOST_STARTED;
6994 return 0;
6996 err_out:
6997 while (--i >= 0) {
6998 struct ata_port *ap = host->ports[i];
7000 if (ap->ops->port_stop)
7001 ap->ops->port_stop(ap);
7003 devres_free(start_dr);
7004 return rc;
7008 * ata_sas_host_init - Initialize a host struct
7009 * @host: host to initialize
7010 * @dev: device host is attached to
7011 * @flags: host flags
7012 * @ops: port_ops
7014 * LOCKING:
7015 * PCI/etc. bus probe sem.
7018 /* KILLME - the only user left is ipr */
7019 void ata_host_init(struct ata_host *host, struct device *dev,
7020 unsigned long flags, const struct ata_port_operations *ops)
7022 spin_lock_init(&host->lock);
7023 host->dev = dev;
7024 host->flags = flags;
7025 host->ops = ops;
7029 * ata_host_register - register initialized ATA host
7030 * @host: ATA host to register
7031 * @sht: template for SCSI host
7033 * Register initialized ATA host. @host is allocated using
7034 * ata_host_alloc() and fully initialized by LLD. This function
7035 * starts ports, registers @host with ATA and SCSI layers and
7036 * probe registered devices.
7038 * LOCKING:
7039 * Inherited from calling layer (may sleep).
7041 * RETURNS:
7042 * 0 on success, -errno otherwise.
7044 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7046 int i, rc;
7048 /* host must have been started */
7049 if (!(host->flags & ATA_HOST_STARTED)) {
7050 dev_printk(KERN_ERR, host->dev,
7051 "BUG: trying to register unstarted host\n");
7052 WARN_ON(1);
7053 return -EINVAL;
7056 /* Blow away unused ports. This happens when LLD can't
7057 * determine the exact number of ports to allocate at
7058 * allocation time.
7060 for (i = host->n_ports; host->ports[i]; i++)
7061 kfree(host->ports[i]);
7063 /* give ports names and add SCSI hosts */
7064 for (i = 0; i < host->n_ports; i++)
7065 host->ports[i]->print_id = ata_print_id++;
7067 rc = ata_scsi_add_hosts(host, sht);
7068 if (rc)
7069 return rc;
7071 /* associate with ACPI nodes */
7072 ata_acpi_associate(host);
7074 /* set cable, sata_spd_limit and report */
7075 for (i = 0; i < host->n_ports; i++) {
7076 struct ata_port *ap = host->ports[i];
7077 unsigned long xfer_mask;
7079 /* set SATA cable type if still unset */
7080 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7081 ap->cbl = ATA_CBL_SATA;
7083 /* init sata_spd_limit to the current value */
7084 sata_link_init_spd(&ap->link);
7086 /* print per-port info to dmesg */
7087 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7088 ap->udma_mask);
7090 if (!ata_port_is_dummy(ap)) {
7091 ata_port_printk(ap, KERN_INFO,
7092 "%cATA max %s %s\n",
7093 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
7094 ata_mode_string(xfer_mask),
7095 ap->link.eh_info.desc);
7096 ata_ehi_clear_desc(&ap->link.eh_info);
7097 } else
7098 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7101 /* perform each probe synchronously */
7102 DPRINTK("probe begin\n");
7103 for (i = 0; i < host->n_ports; i++) {
7104 struct ata_port *ap = host->ports[i];
7106 /* probe */
7107 if (ap->ops->error_handler) {
7108 struct ata_eh_info *ehi = &ap->link.eh_info;
7109 unsigned long flags;
7111 ata_port_probe(ap);
7113 /* kick EH for boot probing */
7114 spin_lock_irqsave(ap->lock, flags);
7116 ehi->probe_mask =
7117 (1 << ata_link_max_devices(&ap->link)) - 1;
7118 ehi->action |= ATA_EH_SOFTRESET;
7119 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7121 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
7122 ap->pflags |= ATA_PFLAG_LOADING;
7123 ata_port_schedule_eh(ap);
7125 spin_unlock_irqrestore(ap->lock, flags);
7127 /* wait for EH to finish */
7128 ata_port_wait_eh(ap);
7129 } else {
7130 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7131 rc = ata_bus_probe(ap);
7132 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7134 if (rc) {
7135 /* FIXME: do something useful here?
7136 * Current libata behavior will
7137 * tear down everything when
7138 * the module is removed
7139 * or the h/w is unplugged.
7145 /* probes are done, now scan each port's disk(s) */
7146 DPRINTK("host probe begin\n");
7147 for (i = 0; i < host->n_ports; i++) {
7148 struct ata_port *ap = host->ports[i];
7150 ata_scsi_scan_host(ap, 1);
7151 ata_lpm_schedule(ap, ap->pm_policy);
7154 return 0;
7158 * ata_host_activate - start host, request IRQ and register it
7159 * @host: target ATA host
7160 * @irq: IRQ to request
7161 * @irq_handler: irq_handler used when requesting IRQ
7162 * @irq_flags: irq_flags used when requesting IRQ
7163 * @sht: scsi_host_template to use when registering the host
7165 * After allocating an ATA host and initializing it, most libata
7166 * LLDs perform three steps to activate the host - start host,
7167 * request IRQ and register it. This helper takes necessasry
7168 * arguments and performs the three steps in one go.
7170 * An invalid IRQ skips the IRQ registration and expects the host to
7171 * have set polling mode on the port. In this case, @irq_handler
7172 * should be NULL.
7174 * LOCKING:
7175 * Inherited from calling layer (may sleep).
7177 * RETURNS:
7178 * 0 on success, -errno otherwise.
7180 int ata_host_activate(struct ata_host *host, int irq,
7181 irq_handler_t irq_handler, unsigned long irq_flags,
7182 struct scsi_host_template *sht)
7184 int i, rc;
7186 rc = ata_host_start(host);
7187 if (rc)
7188 return rc;
7190 /* Special case for polling mode */
7191 if (!irq) {
7192 WARN_ON(irq_handler);
7193 return ata_host_register(host, sht);
7196 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7197 dev_driver_string(host->dev), host);
7198 if (rc)
7199 return rc;
7201 for (i = 0; i < host->n_ports; i++)
7202 ata_port_desc(host->ports[i], "irq %d", irq);
7204 rc = ata_host_register(host, sht);
7205 /* if failed, just free the IRQ and leave ports alone */
7206 if (rc)
7207 devm_free_irq(host->dev, irq, host);
7209 return rc;
7213 * ata_port_detach - Detach ATA port in prepration of device removal
7214 * @ap: ATA port to be detached
7216 * Detach all ATA devices and the associated SCSI devices of @ap;
7217 * then, remove the associated SCSI host. @ap is guaranteed to
7218 * be quiescent on return from this function.
7220 * LOCKING:
7221 * Kernel thread context (may sleep).
7223 static void ata_port_detach(struct ata_port *ap)
7225 unsigned long flags;
7226 struct ata_link *link;
7227 struct ata_device *dev;
7229 if (!ap->ops->error_handler)
7230 goto skip_eh;
7232 /* tell EH we're leaving & flush EH */
7233 spin_lock_irqsave(ap->lock, flags);
7234 ap->pflags |= ATA_PFLAG_UNLOADING;
7235 spin_unlock_irqrestore(ap->lock, flags);
7237 ata_port_wait_eh(ap);
7239 /* EH is now guaranteed to see UNLOADING - EH context belongs
7240 * to us. Disable all existing devices.
7242 ata_port_for_each_link(link, ap) {
7243 ata_link_for_each_dev(dev, link)
7244 ata_dev_disable(dev);
7247 /* Final freeze & EH. All in-flight commands are aborted. EH
7248 * will be skipped and retrials will be terminated with bad
7249 * target.
7251 spin_lock_irqsave(ap->lock, flags);
7252 ata_port_freeze(ap); /* won't be thawed */
7253 spin_unlock_irqrestore(ap->lock, flags);
7255 ata_port_wait_eh(ap);
7256 cancel_rearming_delayed_work(&ap->hotplug_task);
7258 skip_eh:
7259 /* remove the associated SCSI host */
7260 scsi_remove_host(ap->scsi_host);
7264 * ata_host_detach - Detach all ports of an ATA host
7265 * @host: Host to detach
7267 * Detach all ports of @host.
7269 * LOCKING:
7270 * Kernel thread context (may sleep).
7272 void ata_host_detach(struct ata_host *host)
7274 int i;
7276 for (i = 0; i < host->n_ports; i++)
7277 ata_port_detach(host->ports[i]);
7279 /* the host is dead now, dissociate ACPI */
7280 ata_acpi_dissociate(host);
7284 * ata_std_ports - initialize ioaddr with standard port offsets.
7285 * @ioaddr: IO address structure to be initialized
7287 * Utility function which initializes data_addr, error_addr,
7288 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7289 * device_addr, status_addr, and command_addr to standard offsets
7290 * relative to cmd_addr.
7292 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7295 void ata_std_ports(struct ata_ioports *ioaddr)
7297 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7298 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7299 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7300 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7301 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7302 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7303 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7304 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7305 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7306 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7310 #ifdef CONFIG_PCI
7313 * ata_pci_remove_one - PCI layer callback for device removal
7314 * @pdev: PCI device that was removed
7316 * PCI layer indicates to libata via this hook that hot-unplug or
7317 * module unload event has occurred. Detach all ports. Resource
7318 * release is handled via devres.
7320 * LOCKING:
7321 * Inherited from PCI layer (may sleep).
7323 void ata_pci_remove_one(struct pci_dev *pdev)
7325 struct device *dev = &pdev->dev;
7326 struct ata_host *host = dev_get_drvdata(dev);
7328 ata_host_detach(host);
7331 /* move to PCI subsystem */
7332 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
7334 unsigned long tmp = 0;
7336 switch (bits->width) {
7337 case 1: {
7338 u8 tmp8 = 0;
7339 pci_read_config_byte(pdev, bits->reg, &tmp8);
7340 tmp = tmp8;
7341 break;
7343 case 2: {
7344 u16 tmp16 = 0;
7345 pci_read_config_word(pdev, bits->reg, &tmp16);
7346 tmp = tmp16;
7347 break;
7349 case 4: {
7350 u32 tmp32 = 0;
7351 pci_read_config_dword(pdev, bits->reg, &tmp32);
7352 tmp = tmp32;
7353 break;
7356 default:
7357 return -EINVAL;
7360 tmp &= bits->mask;
7362 return (tmp == bits->val) ? 1 : 0;
7365 #ifdef CONFIG_PM
7366 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
7368 pci_save_state(pdev);
7369 pci_disable_device(pdev);
7371 if (mesg.event & PM_EVENT_SLEEP)
7372 pci_set_power_state(pdev, PCI_D3hot);
7375 int ata_pci_device_do_resume(struct pci_dev *pdev)
7377 int rc;
7379 pci_set_power_state(pdev, PCI_D0);
7380 pci_restore_state(pdev);
7382 rc = pcim_enable_device(pdev);
7383 if (rc) {
7384 dev_printk(KERN_ERR, &pdev->dev,
7385 "failed to enable device after resume (%d)\n", rc);
7386 return rc;
7389 pci_set_master(pdev);
7390 return 0;
7393 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
7395 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7396 int rc = 0;
7398 rc = ata_host_suspend(host, mesg);
7399 if (rc)
7400 return rc;
7402 ata_pci_device_do_suspend(pdev, mesg);
7404 return 0;
7407 int ata_pci_device_resume(struct pci_dev *pdev)
7409 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7410 int rc;
7412 rc = ata_pci_device_do_resume(pdev);
7413 if (rc == 0)
7414 ata_host_resume(host);
7415 return rc;
7417 #endif /* CONFIG_PM */
7419 #endif /* CONFIG_PCI */
7421 static int __init ata_parse_force_one(char **cur,
7422 struct ata_force_ent *force_ent,
7423 const char **reason)
7425 /* FIXME: Currently, there's no way to tag init const data and
7426 * using __initdata causes build failure on some versions of
7427 * gcc. Once __initdataconst is implemented, add const to the
7428 * following structure.
7430 static struct ata_force_param force_tbl[] __initdata = {
7431 { "40c", .cbl = ATA_CBL_PATA40 },
7432 { "80c", .cbl = ATA_CBL_PATA80 },
7433 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
7434 { "unk", .cbl = ATA_CBL_PATA_UNK },
7435 { "ign", .cbl = ATA_CBL_PATA_IGN },
7436 { "sata", .cbl = ATA_CBL_SATA },
7437 { "1.5Gbps", .spd_limit = 1 },
7438 { "3.0Gbps", .spd_limit = 2 },
7439 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
7440 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
7441 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
7442 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
7443 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
7444 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
7445 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
7446 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
7447 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
7448 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
7449 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
7450 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
7451 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
7452 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
7453 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
7454 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
7455 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
7456 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
7457 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
7458 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
7459 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
7460 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
7461 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
7462 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
7463 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
7464 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
7465 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
7466 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
7467 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
7468 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
7469 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
7470 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
7471 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
7472 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
7473 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
7474 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
7476 char *start = *cur, *p = *cur;
7477 char *id, *val, *endp;
7478 const struct ata_force_param *match_fp = NULL;
7479 int nr_matches = 0, i;
7481 /* find where this param ends and update *cur */
7482 while (*p != '\0' && *p != ',')
7483 p++;
7485 if (*p == '\0')
7486 *cur = p;
7487 else
7488 *cur = p + 1;
7490 *p = '\0';
7492 /* parse */
7493 p = strchr(start, ':');
7494 if (!p) {
7495 val = strstrip(start);
7496 goto parse_val;
7498 *p = '\0';
7500 id = strstrip(start);
7501 val = strstrip(p + 1);
7503 /* parse id */
7504 p = strchr(id, '.');
7505 if (p) {
7506 *p++ = '\0';
7507 force_ent->device = simple_strtoul(p, &endp, 10);
7508 if (p == endp || *endp != '\0') {
7509 *reason = "invalid device";
7510 return -EINVAL;
7514 force_ent->port = simple_strtoul(id, &endp, 10);
7515 if (p == endp || *endp != '\0') {
7516 *reason = "invalid port/link";
7517 return -EINVAL;
7520 parse_val:
7521 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
7522 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
7523 const struct ata_force_param *fp = &force_tbl[i];
7525 if (strncasecmp(val, fp->name, strlen(val)))
7526 continue;
7528 nr_matches++;
7529 match_fp = fp;
7531 if (strcasecmp(val, fp->name) == 0) {
7532 nr_matches = 1;
7533 break;
7537 if (!nr_matches) {
7538 *reason = "unknown value";
7539 return -EINVAL;
7541 if (nr_matches > 1) {
7542 *reason = "ambigious value";
7543 return -EINVAL;
7546 force_ent->param = *match_fp;
7548 return 0;
7551 static void __init ata_parse_force_param(void)
7553 int idx = 0, size = 1;
7554 int last_port = -1, last_device = -1;
7555 char *p, *cur, *next;
7557 /* calculate maximum number of params and allocate force_tbl */
7558 for (p = ata_force_param_buf; *p; p++)
7559 if (*p == ',')
7560 size++;
7562 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
7563 if (!ata_force_tbl) {
7564 printk(KERN_WARNING "ata: failed to extend force table, "
7565 "libata.force ignored\n");
7566 return;
7569 /* parse and populate the table */
7570 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
7571 const char *reason = "";
7572 struct ata_force_ent te = { .port = -1, .device = -1 };
7574 next = cur;
7575 if (ata_parse_force_one(&next, &te, &reason)) {
7576 printk(KERN_WARNING "ata: failed to parse force "
7577 "parameter \"%s\" (%s)\n",
7578 cur, reason);
7579 continue;
7582 if (te.port == -1) {
7583 te.port = last_port;
7584 te.device = last_device;
7587 ata_force_tbl[idx++] = te;
7589 last_port = te.port;
7590 last_device = te.device;
7593 ata_force_tbl_size = idx;
7596 static int __init ata_init(void)
7598 ata_probe_timeout *= HZ;
7600 ata_parse_force_param();
7602 ata_wq = create_workqueue("ata");
7603 if (!ata_wq)
7604 return -ENOMEM;
7606 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7607 if (!ata_aux_wq) {
7608 destroy_workqueue(ata_wq);
7609 return -ENOMEM;
7612 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7613 return 0;
7616 static void __exit ata_exit(void)
7618 kfree(ata_force_tbl);
7619 destroy_workqueue(ata_wq);
7620 destroy_workqueue(ata_aux_wq);
7623 subsys_initcall(ata_init);
7624 module_exit(ata_exit);
7626 static unsigned long ratelimit_time;
7627 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7629 int ata_ratelimit(void)
7631 int rc;
7632 unsigned long flags;
7634 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7636 if (time_after(jiffies, ratelimit_time)) {
7637 rc = 1;
7638 ratelimit_time = jiffies + (HZ/5);
7639 } else
7640 rc = 0;
7642 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7644 return rc;
7648 * ata_wait_register - wait until register value changes
7649 * @reg: IO-mapped register
7650 * @mask: Mask to apply to read register value
7651 * @val: Wait condition
7652 * @interval_msec: polling interval in milliseconds
7653 * @timeout_msec: timeout in milliseconds
7655 * Waiting for some bits of register to change is a common
7656 * operation for ATA controllers. This function reads 32bit LE
7657 * IO-mapped register @reg and tests for the following condition.
7659 * (*@reg & mask) != val
7661 * If the condition is met, it returns; otherwise, the process is
7662 * repeated after @interval_msec until timeout.
7664 * LOCKING:
7665 * Kernel thread context (may sleep)
7667 * RETURNS:
7668 * The final register value.
7670 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7671 unsigned long interval_msec,
7672 unsigned long timeout_msec)
7674 unsigned long timeout;
7675 u32 tmp;
7677 tmp = ioread32(reg);
7679 /* Calculate timeout _after_ the first read to make sure
7680 * preceding writes reach the controller before starting to
7681 * eat away the timeout.
7683 timeout = jiffies + (timeout_msec * HZ) / 1000;
7685 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7686 msleep(interval_msec);
7687 tmp = ioread32(reg);
7690 return tmp;
7694 * Dummy port_ops
7696 static void ata_dummy_noret(struct ata_port *ap) { }
7697 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7698 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7700 static u8 ata_dummy_check_status(struct ata_port *ap)
7702 return ATA_DRDY;
7705 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7707 return AC_ERR_SYSTEM;
7710 const struct ata_port_operations ata_dummy_port_ops = {
7711 .check_status = ata_dummy_check_status,
7712 .check_altstatus = ata_dummy_check_status,
7713 .dev_select = ata_noop_dev_select,
7714 .qc_prep = ata_noop_qc_prep,
7715 .qc_issue = ata_dummy_qc_issue,
7716 .freeze = ata_dummy_noret,
7717 .thaw = ata_dummy_noret,
7718 .error_handler = ata_dummy_noret,
7719 .post_internal_cmd = ata_dummy_qc_noret,
7720 .irq_clear = ata_dummy_noret,
7721 .port_start = ata_dummy_ret0,
7722 .port_stop = ata_dummy_noret,
7725 const struct ata_port_info ata_dummy_port_info = {
7726 .port_ops = &ata_dummy_port_ops,
7730 * libata is essentially a library of internal helper functions for
7731 * low-level ATA host controller drivers. As such, the API/ABI is
7732 * likely to change as new drivers are added and updated.
7733 * Do not depend on ABI/API stability.
7735 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7736 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7737 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7738 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7739 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7740 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7741 EXPORT_SYMBOL_GPL(ata_std_ports);
7742 EXPORT_SYMBOL_GPL(ata_host_init);
7743 EXPORT_SYMBOL_GPL(ata_host_alloc);
7744 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7745 EXPORT_SYMBOL_GPL(ata_host_start);
7746 EXPORT_SYMBOL_GPL(ata_host_register);
7747 EXPORT_SYMBOL_GPL(ata_host_activate);
7748 EXPORT_SYMBOL_GPL(ata_host_detach);
7749 EXPORT_SYMBOL_GPL(ata_sg_init);
7750 EXPORT_SYMBOL_GPL(ata_hsm_move);
7751 EXPORT_SYMBOL_GPL(ata_qc_complete);
7752 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7753 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7754 EXPORT_SYMBOL_GPL(ata_tf_load);
7755 EXPORT_SYMBOL_GPL(ata_tf_read);
7756 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7757 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7758 EXPORT_SYMBOL_GPL(sata_print_link_status);
7759 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7760 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7761 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7762 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7763 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7764 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7765 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7766 EXPORT_SYMBOL_GPL(ata_mode_string);
7767 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7768 EXPORT_SYMBOL_GPL(ata_check_status);
7769 EXPORT_SYMBOL_GPL(ata_altstatus);
7770 EXPORT_SYMBOL_GPL(ata_exec_command);
7771 EXPORT_SYMBOL_GPL(ata_port_start);
7772 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7773 EXPORT_SYMBOL_GPL(ata_interrupt);
7774 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7775 EXPORT_SYMBOL_GPL(ata_data_xfer);
7776 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7777 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7778 EXPORT_SYMBOL_GPL(ata_qc_prep);
7779 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7780 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7781 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7782 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7783 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7784 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7785 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7786 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7787 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7788 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7789 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7790 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7791 EXPORT_SYMBOL_GPL(ata_port_probe);
7792 EXPORT_SYMBOL_GPL(ata_dev_disable);
7793 EXPORT_SYMBOL_GPL(sata_set_spd);
7794 EXPORT_SYMBOL_GPL(sata_link_debounce);
7795 EXPORT_SYMBOL_GPL(sata_link_resume);
7796 EXPORT_SYMBOL_GPL(ata_bus_reset);
7797 EXPORT_SYMBOL_GPL(ata_std_prereset);
7798 EXPORT_SYMBOL_GPL(ata_std_softreset);
7799 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7800 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7801 EXPORT_SYMBOL_GPL(ata_std_postreset);
7802 EXPORT_SYMBOL_GPL(ata_dev_classify);
7803 EXPORT_SYMBOL_GPL(ata_dev_pair);
7804 EXPORT_SYMBOL_GPL(ata_port_disable);
7805 EXPORT_SYMBOL_GPL(ata_ratelimit);
7806 EXPORT_SYMBOL_GPL(ata_wait_register);
7807 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7808 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7809 EXPORT_SYMBOL_GPL(ata_wait_ready);
7810 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7811 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7812 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7813 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7814 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7815 EXPORT_SYMBOL_GPL(ata_host_intr);
7816 EXPORT_SYMBOL_GPL(sata_scr_valid);
7817 EXPORT_SYMBOL_GPL(sata_scr_read);
7818 EXPORT_SYMBOL_GPL(sata_scr_write);
7819 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7820 EXPORT_SYMBOL_GPL(ata_link_online);
7821 EXPORT_SYMBOL_GPL(ata_link_offline);
7822 #ifdef CONFIG_PM
7823 EXPORT_SYMBOL_GPL(ata_host_suspend);
7824 EXPORT_SYMBOL_GPL(ata_host_resume);
7825 #endif /* CONFIG_PM */
7826 EXPORT_SYMBOL_GPL(ata_id_string);
7827 EXPORT_SYMBOL_GPL(ata_id_c_string);
7828 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7830 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7831 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7832 EXPORT_SYMBOL_GPL(ata_timing_compute);
7833 EXPORT_SYMBOL_GPL(ata_timing_merge);
7834 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7836 #ifdef CONFIG_PCI
7837 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7838 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7839 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7840 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7841 EXPORT_SYMBOL_GPL(ata_pci_activate_sff_host);
7842 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7843 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7844 #ifdef CONFIG_PM
7845 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7846 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7847 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7848 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7849 #endif /* CONFIG_PM */
7850 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7851 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7852 #endif /* CONFIG_PCI */
7854 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
7855 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7856 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7857 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7858 EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7860 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7861 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7862 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7863 EXPORT_SYMBOL_GPL(ata_port_desc);
7864 #ifdef CONFIG_PCI
7865 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7866 #endif /* CONFIG_PCI */
7867 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7868 EXPORT_SYMBOL_GPL(ata_link_abort);
7869 EXPORT_SYMBOL_GPL(ata_port_abort);
7870 EXPORT_SYMBOL_GPL(ata_port_freeze);
7871 EXPORT_SYMBOL_GPL(sata_async_notification);
7872 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7873 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7874 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7875 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7876 EXPORT_SYMBOL_GPL(ata_do_eh);
7877 EXPORT_SYMBOL_GPL(ata_irq_on);
7878 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7880 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7881 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7882 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7883 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7884 EXPORT_SYMBOL_GPL(ata_cable_sata);